
ARTICLES
https://doi.org/10.1038/s41588-021-00901-3

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ✉e-mail: loconnor@broadinstitute.org

G
enome-wide association studies (GWAS) have detected 
thousands of disease-associated loci1–4, yet they remain far 
from saturation: significant associations explain a fraction of 

SNP heritability5, polygenic risk scores capture a fraction of herita-
ble risk6, and statistical power remains an obstacle for downstream 
analyses such as fine mapping7–9 and heritability partitioning10–12. 
What would it take for every genetic association to be discovered? 
What fraction of the genome would be associated, and how would 
effect sizes of newly discovered SNPs compare with those of SNPs 
discovered thus far?

These are questions about the genetic effect-size distribution, 
which describes how heritability accumulates across SNPs with dif-
ferent effect sizes1,13–15. Various statistical methods estimate this dis-
tribution. Park et al.16 used cross-validation to estimate the number 
of loci with effect sizes similar to those already discovered. Palla and 
Dudbridge17 fit a two-component mixture model, which assumes 
that all non-null loci have similar effect sizes (following a normal 
distribution). Similar models have been used in several applica-
tions13,18–21. Moser et al.22 and Zhang et al.14 fit more flexible mod-
els, permitting both small- and large-effect SNPs. O’Connor et al. 
quantified polygenicity nonparametrically15. A related but distinct 
objective is heritability partitioning, either across annotations10–12, 
regions23,24 or fine-mapped SNPs25.

I introduce FMR, a method-of-moments estimator of the 
common-variant effect-size distribution. Similar to linkage disequi-
librium (LD) score regression (LDSC)10,26, FMR operates on GWAS 
summary statistics, and it reduces the estimation problem to lin-
ear regression. Whereas LDSC coefficients quantify the heritability 
explained by different annotations, FMR coefficients quantify the 
heritability explained by components of a mixture model for the 
effect-size distribution.

Results
Definition of the effect-size distribution. Several studies14,18,22 have 
sought to estimate the distribution of causal effect sizes: the phe-
notypic effect of changing a single allele, without changing other 
alleles in the same haplotype (in practice, ‘causal’ effect sizes can be 
confounded by population stratification, biased ascertainment and 
family-related effects27–29). Causal effect sizes of individual SNPs 
are estimated in fine-mapping studies7–9,25,30,31, and they differ from 
marginal effect sizes or associations, which are duplicated across tag 

SNPs in high LD with one that is causal. Because of duplication, 
the distribution of marginal effect sizes across SNPs does not deter-
mine the number of associated loci or the proportion of heritability 
that will be explained by GWAS, and it seems necessary to estimate 
the causal effect-size distribution, a challenging problem. However, 
power calculations are actually determined by marginal effect sizes.

Instead of counting the number of SNPs with various mar-
ginal effect sizes and potentially overcounting tag SNPs, a differ-
ent approach is to measure the heritability that they explain. The 
heritability distribution of marginal effect sizes (HDM) is the distri-
bution of marginal effect sizes over proportions of heritability: for 
example, 50% of heritability is explained by SNPs with effect sizes 
up to the median of the HDM, and 90% of heritability is explained 
by SNPs up to the 90th percentile. Effect sizes are also measured in 
units of variance explained (which is larger on average for common 
SNPs). This definition avoids overcounting tag SNPs, as the num-
ber of non-causal tag SNPs has no effect on the amount of herita-
bility explained by a locus. Although the HDM is defined under a 
random-effect model (Methods), reported estimates are converted 
into proportions of fixed-effect SNP heritability24, which are more 
readily interpreted. Genome-wide significant SNPs explain a larger 
fraction of fixed-effect heritability (Methods).

Overview of FMR. To estimate the HDM, I developed FMR. Similar 
to stratified (S)-LDSC10,26, it involves regressing a function of GWAS 
summary statistics on SNP-specific scores computed from an LD 
reference panel. Whereas S-LDSC partitions heritability across 
annotations via multiple regression on annotation-specific LD 
scores10, FMR partitions heritability across mixture components via 
multiple regression on component-specific ‘Fourier LD scores’ that 
depend on the effect-size distribution of each mixture component.

FMR relies on the Fourier transform, which maps between 
a time-varying signal (for example, sound waves) and a distribu-
tion of frequencies (notes). The Fourier transform of a probability 
density function is called a characteristic function (CF), denoted as 
ϕ(t). Suppose the HDM is a mixture distribution for which mixture 
components have CFs Φ1,…,ΦK and weights (proportions of herita-
bility) w

1

,…, w

K

. The FMR regression equation is

d

dt

E

(

e

itz+
1

2

χ

2

0

t

2

)

≈ itNσ

2

∑

K

w

K

ℓ
K

(t) , ℓ
K

(t) =
∑

j

r

2

j

ϕ

K

(

r

j

t

)

.

(1)

The distribution of common-variant effect sizes

Luke J. O’Connor    ✉

The genetic effect-size distribution of a disease describes the number of risk variants, the range of their effect sizes and sam-
ple sizes that will be required to discover them. Accurate estimation has been a challenge. Here I propose Fourier Mixture 
Regression (FMR), validating that it accurately estimates real and simulated effect-size distributions. Applied to summary 
statistics for ten diseases (average N

eff

= 169,000), FMR estimates that 100,000–1,000,000 cases will be required for 
genome-wide significant SNPs to explain 50% of SNP heritability. In such large studies, genome-wide significance becomes 
increasingly conservative, and less stringent thresholds achieve high true positive rates if confounding is controlled. Across 
traits, polygenicity varies, but the range of their effect sizes is similar. Compared with effect sizes in the top 10% of heritability, 
including most discovered thus far, those in the bottom 10–50% are orders of magnitude smaller and more numerous, spanning 
a large fraction of the genome.
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The left-hand side is the derivative of the CF of the GWAS z score 
with noise correction. It depends on the sampling time t and the 
LDSC intercept ( χ

2

0

)26. The right-hand side is a linear combination 
of Fourier LD scores, ℓ

k

(t), one for each mixture component, with 
coefficients proportional to mixture weights. rj is the LD coefficient 
between the regression SNP and SNP j. N is the effective GWAS 
sample size, σ2  is the average per-SNP heritability, and i is the imag-
inary unit (both sides of the equation are imaginary). The equa-
tion relies on an LD approximation, roughly that LD between causal 
SNPs is either strong or weak (Methods).

In brief, FMR involves the following steps (see Methods and 
Supplementary Note for details): first, a K-component mixture 
model is specified, and Fourier LD scores for mixture components 
are computed at K convenient sampling times. I used 13 mixture 
components with variance parameters spanning a wide range of 
effect sizes (a factor of 4,000 difference between the largest and 
smallest effect-size variances). The human leukocyte antigen (HLA) 
region is excluded. Second, the left-hand side of equation (3) is 
evaluated at K sampling times for all M regression SNPs, and these 
MK values are regressed on the corresponding Fourier LD scores. 
Additional moment equations from LDSC and LD fourth-moment 
regression are also included15,26. Regression weights are chosen using 
a heuristic. The regression is constrained to produce non-negative 
coefficients. Third, the estimated mixture weights are converted 
into estimates of various quantities. Open-source software for FMR 
is available (Code availability).

Performance of FMR in simulations. I evaluated FMR in simu-
lations using real LD from UK Biobank typed SNPs (M = 455,000 

SNPs), generating effect sizes from two types of models. First,  
I simulated from the commonly used point-normal model17,20,32, 
which is parameterized by the fraction of causal SNPs, M

c

/M. At 
larger values of M

c

/M, the HDM cumulative distribution function 
is shifted to the right (Fig. 1a–c). I applied FMR to summary statis-
tics generated under these models at N = 460, 000 and heritability 
h

2

= 0.1 (similar to UK Biobank; see below) and determined that 
it produces unbiased and robust estimates of the HDM across all 
values of M

c

/M (Fig. 1a–c).
Second, I simulated from a mixture model including small-, 

medium- and large-effect SNPs. Each non-null mixture component 
explained one-third of heritability. Unlike the point-normal model, 
the width of this distribution can vary, depending on the relative 
variance of the three non-null components. I simulated a 25×, 100× 
or 400× difference between the small- and large-effect components 
(Fig. 1d–f). Under the 400× model (Fig. 1f), the cumulative distri-
bution function (CDF) has a shallow slope, and heritability is dis-
persed across a wide range of effect sizes, in contrast to Fig. 1a–c, 
where most heritability is explained by SNPs with similar effect 
sizes. FMR produced approximately unbiased estimates under these 
models, although its estimates were noisier than those produced 
under the point-normal model.

I performed three secondary analyses. First, I performed simula-
tions under the point-normal model at smaller GWAS sample sizes 
(Extended Data Fig. 1). The z score of the mean of the HDM (which 
is estimated as a preprocessing step using LD fourth-moment regres-
sion15) is an indicator for whether FMR is well powered; analyses of 
real traits below are restricted to traits with z scores greater than 
2. Second, I investigated the calibration of FMR standard errors 
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Fig. 1 | Performance of Fourier regression in well-powered simulations (N = 460,000) with real LD. Yellow, blue and gray curves indicate the true HDM, 

the mean estimated (est) HDM across 100 replicates and ten individual estimates (chosen at random). a–c, Point-normal genetic architecture with 

different proportions of causal SNPs. d–f, Gaussian mixture models with small-, medium- and large-effect SNPs. Each component explains one-third of 

heritability, and relative effect-size variances of the large- versus small-effect components are 25×, 100× and 400× in d–f, respectively.
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(estimated using a block jackknife). Estimated standard errors 
were accurate or conservative at N = 50,000–145,000, but they were 
underestimated at N = 460,000, in particular for the proportion of 
heritability explained by small-effect SNPs (Extended Data Fig. 
2). Third, I performed simulations with different numbers of mix-
ture components and sampling times (Extended Data Fig. 3). FMR 
obtained similar estimates under most parameter settings, except 
when there were too few sampling times relative to the number of 
mixture components (Extended Data Fig. 3d).

Performance of FMR predictions in UK Biobank. I applied FMR 
to summary statistics for 24 complex traits from the UK Biobank 
interim release (maximum N = 145,000) to predict the results of the 
full UK Biobank release (maximum N = 460,000). Predictions were 
generated for the number of genome-wide significant loci (M

GWAS

) 
and the proportion of SNP heritability that they explain (%h

2

GWAS

) 
(Supplementary Note). I compared these predictions with observed 
values (computed using pruning and thresholding; Methods), which 
were much larger at N = 460,000 than at N = 145,000 (Extended Data 
Fig. 4 and Supplementary Table 2). FMR predictions were approxi-
mately unbiased (mean 0.42 versus 0.43 for %h

2

GWAS

, 786 versus 731 
for M

GWAS

), and they were highly correlated with observed values 
(Fig. 2; r2 = 0.94 for %h

2

GWAS

, r2 = 0.92 for MGWAS), indicating that 
FMR can be used to project the results of future GWAS.

Predictions remained accurate at increasingly stringent signifi-
cance thresholds (χ2 > 100, 300, 1,000) (Extended Data Figs. 5 and 
6), indicating that FMR accurately estimates the right tail of the 
effect-size distribution. The same analysis cannot be used for less 
stringent significance thresholds because the observed values would 
be biased due to false positives and winner’s curse25,33. Conceivably, 
FMR estimates of the left tail of the effect-size distribution could be 
biased in a sample size-dependent manner, due to limited power to 
resolve small effects from zero (although this was not observed in 
simulations, for example, Fig. 1f). However, FMR estimates of the 
left tail were nearly identical at N = 145,000 versus at N = 460,000 
(Extended Data Fig. 7). Moreover, a modified version of FMR, 
FMR-noLD, produced accurate predictions of N = 460,000 quan-
tile–quantile plots (Supplementary Fig. 1 and Supplementary Note).

I compared FMR predictions with the state-of-the-art method 
GENESIS14, which models the distribution of causal effect sizes 
across SNPs using a three-component Gaussian mixture model, 
which is more realistic than the commonly used point-normal 
(two-component) model13,17,18,20. Applied to interim-release UK 
Biobank summary statistics, GENESIS produced predictions 
that were highly correlated with the true %h

2

GWAS

 at N = 460,000, 

similar to FMR; unlike FMR, however, these predictions were 
upwardly biased by approximately a third (Extended Data Fig. 8 
and Supplementary Table 1). This bias could result from model mis-
specification (Extended Data Fig. 9 and Supplementary Table 3). An 
additional advantage of FMR is its computational efficiency; it runs 
in less than a minute, while GENESIS requires more than a day.

FMR models population stratification and cryptic relatedness as 
excess noise in effect-size estimates. Similar to LDSC, it assumes 
that this noise is uncorrelated with LD scores (unlike table signal)26, 
and, similar to LD fourth-moment regression, it assumes that strati-
fication effects follow a normal distribution15. This assumption is 
expected to hold when stratification arises due to genetic drift34, and 
the observed distribution of PC loadings is consistent with normally 
distributed effects at neutral loci34. As a stress test, I applied FMR 
to summary statistics for height from the Genetic Investigation 
of Anthropocentric Traits (GIANT) consortium2 (2010 release, 
N = 131,000). Unlike UK Biobank summary statistics (computed 
using BOLT-LMM35,36), these data contain strong, uncorrected pop-
ulation stratification that has led to confounding results in studies 
of polygenic selection37,38. However, FMR produced nearly identi-
cal estimates on the two datasets (Extended Data Fig. 10), indicat-
ing that it is not confounded by population stratification within 
European populations. An additional source of potential confound-
ing in GWAS is assortative and non-random mating, and simula-
tions indicate that non-random mating could distort marginal 
effect-size distributions and affect FMR (Supplementary Fig. 2).

Sample size targets across 32 diseases and complex traits. I 
applied FMR to publicly available summary statistics for 32 dis-
eases and complex traits, including 22 UK Biobank traits and ten 
European-ancestry meta-analyses (Supplementary Table 4). FMR 
estimates of %h

2

GWAS

 and M
GWAS

 were concordant with observed 
values at current sample sizes (Supplementary Figs. 3 and 4 and 
Supplementary Table 5). FMR predictions varied widely across 
traits (Fig. 3a and Supplementary Table 6). Assuming a large num-
ber of controls, the number of cases required for genome-wide sig-
nificant SNPs to explain 50% of disease heritability ranged from 
approximately 100,000 for inflammatory bowel disease (IBD) and 
hypothyroidism to several hundred thousand for schizophrenia and 
coronary artery disease (CAD) and millions for Alzheimer’s disease 
(which has low SNP heritability). The number of loci that will be 
discovered at these sample sizes ranges from a few hundred to sev-
eral thousand for most traits (Fig. 3b).

To increase %h

2

GWAS

 from 50% to 90%, a massive increase 
in sample size is needed: approximately 

10× for all traits studied 
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(Fig. 3a). This difference implies that GWAS will have diminishing 
returns (in Δ%h

2

GWAS

(Δ log(N))−1) well before %h

2

GWAS

 nears 100% 
(Discussion). The number of loci discovered does not diminish, as 
the number of loci required to explain 90% of heritability is 

10× 
the number required to explain 50% of heritability (Supplementary 
Table 6). However, distinct loci will become difficult to count, as 
a substantial fraction of all common SNPs will be genome-wide 
significant. When %h

2

GWAS

 is 50%, the fraction of significant com-
mon SNPs will be 0.01–0.15 for most traits (Supplementary Fig. 5a), 
and this fraction increases to 0.1–0.5 when 90% of heritability is 
explained (Supplementary Fig. 5b).

I derived an upper bound for the prediction r2 of any polygenic 
score (PGS) as a function of the HDM (Methods). This bound is 
expected to accurately predict the within-population performance 
of an optimal PGS method in large samples, although existing PGS 
methods may not actually approach it. According to this bound, 
when %h2

GWAS reaches 50%, an optimal PGS would explain 80–90% 
of SNP heritability (Fig. 3c). Four of the analyzed UK Biobank traits 
already have %h

2

GWAS

≈ 50%, and a previous study35 reported the 
PGS accuracy of BOLT-LMM36 trained on these traits (BOLT-LMM 
improves association power by conditioning on a PGS that assumes 
a two-component Gaussian mixture model). Reported r2 values 
were smaller than the predicted optimum (Supplementary Table 8). 
This difference indicates that existing PGS methods have substantial 
room for improvement, possibly because a two-component model 
does not approximate real effect-size distributions (see below).

Predicted sample size requirements are subject to two notable 
sources of uncertainty. First, heritability may differ across differ-
ent studies of the same disease, due to different age distributions, 
different environments and different patterns of assortative mat-
ing. Mixed models also lead to increased effective heritability35,36,39. 
Increasing the study heritability has the same effect on power as 
increasing the sample size; requirements for the product of effective 
sample size and heritability are reported in Supplementary Table 7. 
Second, uncorrected population stratification and cryptic related-
ness increase %h

2

GWAS

, and recalibration using genomic control40 
or the LDSC intercept26 decreases it. FMR projections assume that 
the amount of uncorrected population stratification, in particular, 
the LDSC intercept minus one, will remain constant at increasing 
sample size and that there will be no recalibration.

True positive rates of non-significant loci. Genome-wide sig-
nificance is a conservative threshold, and sub-GWAS loci may  

represent true associations1. To quantify true positive rates at dif-
ferent significance thresholds, I define the not-by-chance true posi-
tive rate (NTPR) for putatively associated loci: out of all lead SNPs 
exceeding a threshold, the proportion that are true positives with a 
correctly estimated direction of effect, not counting ‘true-by-chance 
positives’ for which the estimated direction could just as well have 
been the opposite (Methods). True positive lead SNPs may not be 
causal; the NTPR quantifies the fraction of loci that are genuinely 
associated. The NTPR is related to the false sign rate41, and it can be 
estimated using FMR (Supplementary Note).

The NTPR of nominally significant loci ( χ

2

> 4, roughly 
P < 0.05) would be nearly zero in an underpowered GWAS, as 
thousands of false positives are expected. However, current GWAS 
are powered to detect a vast number of true positives at this thresh-
old; for height and body mass index (BMI), they even outnumber 
false positives, and the NTPR is >50% (Fig. 4a). For most other 
traits, the NTPR of nominally significant loci is between 0.1 and 
0.5. The proportion of heritability explained by these SNPs is only 
57% on average; even in well-powered studies, close to half of SNP 
heritability can be explained by SNPs for which effect sizes are not 
even nominally significant. These estimates underscore the tension 
between large sample size (which allows GWAS to detect numerous 
small-effect SNPs) and extreme polygenicity (which causes missing 
heritability to persist despite ever-larger studies).

The NTPR increases quickly with the significance threshold. For 
most traits, it was greater than 50% at a χ

2 threshold of ten (Fig. 4b), 
greater than 95% at a threshold of 20 (Fig. 4c) and nearly 100% for 
genome-wide significant SNPs ( χ

2

> 30) (Fig. 4d). Well-powered 
studies have larger NPTR values at the same significance threshold, 
and NTPR increases as a function of sample size. However, just as 
sample size magnifies true signal, it also magnifies spurious signals 
due to uncorrected population stratification and cryptic related-
ness; these estimates assume that confounders are controlled.

I calculated the χ

2 threshold that corresponds to an NTPR of 
99%. Across most traits, this number varied from 14 to 28, and 
SNPs exceeding this threshold explained 10–50% more heritability 
than those with χ

2

> 30, with a 30–200% increase in the number 
of loci (Supplementary Fig. 6a,b). The difference was most pro-
nounced for well-powered, extremely polygenic traits, such as BMI. 
When genome-wide significant SNPs explain 50% of heritability, 
the 99% NTPR χ

2 threshold will fall to between ten and 20, and 
SNPs exceeding this threshold will explain 60–75% of heritability 
(Supplementary Fig. 6c).
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scale. Numerical results are presented in Supplementary Table 7.
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The common-variant effect-size distribution. I estimated the 
distribution of heritability across common SNPs with differ-
ent effect sizes. The median of this distribution is a measure of 
polygenicity: it describes the minimum number of loci required 
to explain 50% of heritability, as well as the per-SNP heritabil-
ity of a SNP at the 50th percentile. The requisite number of loci 
ranges from a few hundred to several thousand, and the median 
effect size is inversely proportional (across 25 well-powered traits; 
Supplementary Note) (Fig. 5a). Psychiatric and brain-related 
traits had the greatest polygenicity, consistent with previous esti-
mates15. These estimates exclude the major histocompatibility  
complex region.

At any level of polygenicity, heritability could be concen-
trated within a narrow range of effect sizes, or it could be dis-
persed across a wide range of SNPs with effect sizes both large and 
small. I meta-analyzed quantiles of heritability across all 32 traits 
(Supplementary Note) (Fig. 5b). In the meta-analysis, there was a 
factor of ten difference in per-SNP variance between SNPs in the 
tenth versus 50th and 50th versus 90th percentiles, totaling a factor 
of 100 difference between the tenth versus 90th percentiles (95% 
confidence interval (CI), 80–130). These estimates are consistent 
with the factor of ten difference in sample size required to explain 
90% versus 50% of heritability (Fig. 3a). The fifth versus 95th per-
centiles differed by a factor of ~500 (95% CI, 320–800).

The wide range of effect sizes was similar across traits. The dif-
ference in per-SNP variance between the tenth versus 90th percen-
tiles of heritability was ~50–200× for all well-powered traits (Fig. 
5c and Supplementary Table 12). This similarity contrasts with 
order-of-magnitude differences in polygenicity that were observed 
(Fig. 5a) (Discussion).

Commonly, effect sizes are modeled using a point-normal dis-
tribution13,18,20,21,42, even though it was shown to fit poorly for many 
traits14. Ignoring possible LD between causal SNPs, this model 
implies that per-SNP heritability in the tenth versus 90th percen-
tiles of heritability differs by only 11× (Supplementary Note); the 
point-normal misspecifies the width of the effect-size distribution 
by an entire order of magnitude. An alternative distribution is the 
log-normal model, where log(α2) follows a normal distribution 
over fixed-effects proportions of heritability. Its mean is inversely 
related to polygenicity, and its variance quantifies the width of 
the effect-size distribution. It has convenient mathematical prop-
erties (Supplementary Note). Fitting the log-normal model to 
observed effect-size distributions, with a trait-specific mean and a  
constant variance parameter, it provided an excellent fit in the 

meta-analysis (Fig. 5b) and an adequate fit for individual traits 
(Supplementary Fig. 8).

Discussion
These results suggest plausible sample size targets for future GWAS. 
For genome-wide significant SNPs to explain 50% of disease herita-
bility in populations of European ancestry, hundreds of thousands 
of cases will be required for most diseases (Fig. 3a). When these 
sample sizes are reached, thousands of additional loci below the 
genome-wide significance threshold will be probable true positives 
(Supplementary Fig. 6 and Supplementary Table 10), and polygenic 
risk scores will explain up to 90% of risk due to common variants 
(Fig. 3c). On the other hand, millions of samples would be required 
to increase %h

2

GWAS

 to 90% (Fig. 3a), and, for a disease at ~1% prev-
alence, this number could exceed the number of cases in Europe. 
Significant SNPs would span much of the genome (Fig. 3b and 
Supplementary Fig. 5), limiting their value. Extremely large sample 
sizes may be more useful in sequencing studies43 and in studies of  
diverse populations44–46.

Methods for polygenic risk prediction6,47–50 and fine map-
ping7–9,25,30,31,51–53 rely on models for the effect-size distribution. 
Several of them rely on a point-normal or similar model9,51–53, 
which assumes that non-null SNPs have a relatively narrow range 
of effect sizes. However, non-null SNPs actually have a wide range 
of effect sizes, so more flexible models may perform better in these 
applications; one candidate is the log-normal model (Fig. 5b and 
Supplementary Fig. 8).

The width of the effect-size distribution, from the tenth to 90th 
percentiles of heritability, is approximately two orders of magni-
tude for all traits analyzed (Fig. 5c), suggesting a shared underly-
ing phenomenon. If heritability is mediated by cellular networks, 
as hypothesized by Boyle et al.54, then the size of the range may be 
determined by network architecture: suppose that the effect size of 
a gene decays exponentially with its network distance d from a set of 
disease pathways (or core genes54) and that the number of genes at 
distance d increases exponentially with d. The heritability explained 
by genes at distance d would be the product of these exponential 
growth and decay functions, leading to a distribution in which 
heritability is distributed across a wide range of network distances 
and effect sizes. Moreover, if network architecture is similar across 
trait-relevant cell types, it could explain why this range is similar 
across traits.

Genetic effect-size distributions are flattened by negative  
selection, which prevents complex-trait heritability from being 
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dominated by large-effect loci15. Flattening could result either from 
direct selection acting on a trait (with selection coefficients approxi-
mately proportional to effect sizes) or from highly pleiotropic selec-
tion (with relative selection coefficients that vary widely). Direct  
selection is expected to result in a narrower effect-size distribu-
tion, with per-SNP variance concentrated around an equilibrium 
value that is similar across SNPs15. The wide range of effect sizes is 
more consistent with primarily pleiotropic selection, which varies 
in strength across SNPs with the same effect size. Simons et al.55 
also provided evidence that highly pleiotropic selection shapes 
complex-trait genetic architecture.

This study has several limitations. First, the HDM is defined as a 
distribution of marginal, rather than causal, effect sizes. This choice 
is desirable for projecting the results of future GWAS, and it simpli-
fies the estimation task; however, inferences about causal effect-size 
distributions are also useful, for example, to make inferences about 
cross-population genetic architecture45,56. Second, FMR currently 
does not model SNP annotations, including LD-dependent archi-
tecture57, which can potentially bias heritability-style analyses58,59. In 
previous work, estimates of M

e

 (inversely proportional to the mean 
of the HDM) were extremely similar when modeling LD-dependent 
architecture15. In principle, FMR could be extended to model any 
number of annotations, similar to S-LDSC10. Third, this study did 
not explore the joint distribution of effect sizes and allele frequen-
cies, which is an important component of genetic architecture15,18, 
and it also did not estimate the effect-size distribution of rare and 
low frequency variants. Fourth, FMR requires fairly large GWAS 
sample size, so it is not applicable to small pilot studies of under-
studied diseases or populations. In general, it is difficult to predict 
whether FMR will be well powered, but FMR contains an internal 
check for whether its estimates are well powered (Simulations). 
Fifth, although FMR does correct for population stratification and 
cryptic relatedness, it cannot distinguish between true causal effects 
and those mediated through dynastic effects or assortative mating 
(Supplementary Fig. 2)28,29.
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Methods
The non-independent and identically distributed normal model. The HDM 
is an effect-size distribution over proportions of heritability in a random-effect 
model. This model, the non-independent and identically distributed (i.i.d.) normal 
model15, assigns an effect-size variance parameter to each individual SNP. The 
vector of normalized (per-s.d.) causal effect sizes, denoted β, follows a multivariate 
normal (MVN) distribution with fixed covariance matrix Σ:

β ∼ N (0, Σ) . (2)

I assume for simplicity that Σ is a diagonal matrix with diagonal entries 
σ

2

1

, …, σ

2

M

.
The model has a second fixed parameter, the LD matrix:

R = E

(

X

T

X

)

, (3)

where X  is the random vector of normalized genotypes. The random vector of 
marginal effect sizes or associations is

α = Rβ. (4)

α is also MVN (as linear combinations of an MVN random vector are MVN). Its 
covariance matrix is E

(

Rβ (Rβ)T
)

= RΣR.

Random-effect heritability. The heritability of the non-i.i.d. normal model is

h

2 = Var (Xβ) = E

(

β

T

Rβ

)

= Tr (RΣ) . (5)

When Σ is a diagonal matrix, this is equal to Mσ

2 , where M is the number of 
SNPs and σ2  is the mean causal effect-size variance. (Tr is the trace.)

The heritability distribution of marginal effect sizes. The random-effect 
heritability explained by SNP j is σ2

j

, the jth diagonal element of Σ. These values, 
which sum to h2, define a probability distribution over proportions of heritability. 
Let J be the index of a random SNP chosen with probability

P (J = j) =
σ

2

j

h

2

.

(6)

For example, under a point-normal model13,18,21, a proportion π of SNPs are 
causal with effect-size variance σ2

j

= h

2(Mπ)−1, and a proportion 
1 − π

 are 
non-causal (σ

2

j

= 0). Under this model, the distribution of causal effect sizes 
over proportions of heritability, the distribution of β

J

, is normal with variance 
h

2(Mπ)−1.
The HDM is the distribution of α

J

: a randomly chosen element of the random 
vector α. The quantiles of the HDM describe what proportion of random-effect 
heritability is explained by SNPs with less than a given marginal effect size.

Notation. I express probabilities and expectations over proportions of heritability 
with the notation P

h

2 (·) andE
h

2 (·), respectively, dropping the index J. For example, 
the CDF of the HDM is

P

h

2

(

α

2 ≤ x

)

= P

(

α

2

J

≤ x

)

, (7)

and its mean is

E

h

2

(

α

2

)

= E

(

α

2

J

)

. (8)

E

h

2

(

α

2

)

 is equal to h2M−1

e

, where M
e

 is the effective number of independently 
associated SNPs15.

I use the notation P(·) and E(·), with index-free arguments in the conventional 
fashion, to express a proportion of SNPs or an average across SNPs. For example,

h

2

= ME

(

β

2

)

= ME

(

σ

2

)

. (9)

Fixed-effect heritability. I distinguish between random-effect heritability, which is 
a fixed parameter of the model, and fixed-effect heritability, which is a function of 
β and therefore a random variable under the model. The fixed-effect heritability is

h

2

fixed

= Var (Xβ|β) = β

T

Rβ = β

T

α =
∑

j

β

j

α

j

.

(10)

The fixed-effect proportion of heritability explained by set of SNPs A is

h

2

fixed

(A) =
∑

j∈A

β

j

α

j

.

(11)

For any fixed set of SNPs A, for example, coding SNPs, the random-effect 
heritability is the expected value of the fixed-effect heritability:

h

2 (A) = E

(

h

2

fixed

(A)
)

. (12)

However, A itself can be a random variable under the model, in which case its 
random-effect heritability may differ from its expected fixed-effect heritability. 
For example, let A(β) be the set of SNPs j with larger-than-expected effect sizes: 
β

j

α

j

> σ

2

j

. Then E(h2
fixed

(A(β))) > h

2 (A(β)).
Similarly, the heritability explained by genome-wide significant SNPs is a 

random variable under the model, and SNPs that reach genome-wide significance 
have larger-than-expected effect sizes on average. I define %h

2

GWAS

 as the 
fixed-effect proportion of heritability. Similarly, I describe the shape of the 
effect-size distribution using quantiles of fixed-effect heritability. Estimates of 
the HDM can be converted into expected proportions of fixed-effect heritability 
(Supplementary Note).

Per-standard deviation effect sizes. Causal and marginal effect sizes are measured 
in per-s.d. units, that is, in standard deviations of the phenotype per standard 
deviation of the genotype, rather than in per-allele units5. In these units, squared 
effect sizes are equal to the proportion of variance explained. Common SNPs 
have larger effect sizes on average than rare SNPs (even though rare SNPs have 
larger per-allele effect sizes)18. It would also be of interest to quantify the HDM in 
per-allele units, but per-s.d. effect sizes determine power in GWAS60, and they can 
be interpreted as fractions of heritability.

HDM characteristic function. The CF of the HDM is

ϕ

h

2 (t) = E

h

2

(

e

iαt

)

= E

(

σ

2

e

iαt

)

σ

−2

, (13)

where i is the imaginary unit and t is a ‘sampling time’. The CF is the Fourier 
transform of the density function.

If the HDM follows a mixture distribution, the components of which have CFs 
ϕ

1

, …,ϕ

K

 and mixture weights (proportions of heritability) w
1

, …, w

K

, then

ϕ

h

2 = w

1

ϕ

1

+ · · · + w

K

ϕ

K

. (14)

FMR assumes a finite mixture model for the purpose of estimation (see below).
The usefulness of the CF in this application is a relationship between the CF of 

the HDM and the CF of an effect-size distribution over SNPs. Let X ≈ N(0, σ2). 
Its CF is

ϕ

X

(t) = e

−

1

2

σ

2

t

2

.

(15)

Taking the derivative, the variance parameter is pulled out:

d

dt

ϕ

X

(t) = −σ

2

tϕ

X

(t) . (16)

This equation is useful because the factor σ2 on the right-hand side is precisely 
what differs between the CF of a normal mixture model for the effect-size 
distribution over SNPs and the CF over proportions of heritability. For example, 
if 1% of SNPs have effect-size variance equal to 0.1% of per-SNP h2, they explain 

0.1% ÷ 1% = 10% of heritability. More generally, suppose the distribution of 
causal effect sizes β is a mixture of normal distributions with variance parameters 
σ

2

1

, …, σ

2

K

 and mixture weights (proportions of SNPs) a
1

, …, a

K

. The distribution 
of β over proportions of random-effect heritability is also a mixture of normal 
distributions, with the same variance parameters but with weights proportional to 
a

1

σ

2

1

, …, a

K

σ

2

K

. These two distributions have closely related CFs and, in particular, 
by equation (16):

tϕ

h

2 (t) ∝
d

dt

ϕ (t) . (17)

FMR regression equation. FMR relies on a regression equation that relates the 
distribution of GWAS summary statistics with the HDM. I discuss the choice 
of estimator and derive the equation in the Supplementary Note. The key step 
involves differentiating the CF of the marginal effect size of a randomly chosen 
regression SNP. After using an LD approximation (see below), I obtain

d

dt

E

(

e

itα|r
)

≈ −tσ

2

∑

j

r

2

j

ϕ

h

2

(

r

j

t

)

.

(18)

The right-hand side is an LD-weighted sum of LD-scaled CFs: SNPs in weak 
LD with the regression SNP contribute less amplitude to its CF (proportional to 
r

2

j

), and their contribution has a lower frequency (t is scaled by r
j

). The amplitude 
effect corresponds to the intuition that a SNP in weak LD contributes less to the 
heritability tagged by the regression SNP (because ϕ

h

2 is an expectation over 
proportions of heritability). The frequency effect corresponds to the intuition 
that weak LD proxies have smaller effect sizes than strong LD proxies (because 
frequencies correspond to effect sizes).

Modeling the HDM as a mixture distribution with unknown weights, such that 

ϕ

h

2 =

∑

k

w

k

ϕ

k

, equation (18) becomes a sum over the mixture components:

∑

j
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2

j
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t

)

=
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k

w

k
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j
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2
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r

j
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=
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k

w

k

ℓ
k

(t) ,
(19)
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where ℓ
k

(t) is the ‘Fourier LD score’ of the regression SNP for mixture component k:

ℓ
k

(t) =
∑

j

r

2

j

ϕ

h

2

(

r

j

t

)

.

(20)

The left-hand side of equation (18) is a function of the true effect sizes. The 
sampling distribution of GWAS summary statistics is a normal distribution61, 
which allows the regression equation to be restated in terms of the distribution of 
z scores:

d

dt

E

(

e

itz+ 1

2

χ

2

0

t

2

)

≈ itNσ

2

∑

k

w

k

ℓ
k

(t),
(21)

where z is the z score of the regression SNP, χ

2

0

 is the LDSC intercept26 (the 
sampling variance of z), and N is the GWAS sample size.

LD approximation. In the derivation of FMR, an LD approximation is used to 
link the observed effect-size distribution of regression SNPs with the unobserved 
effect-size distribution of the causal SNPs that they tag. Intuitively, it would 
simplify the estimation task if there were exactly one causal SNP per locus (and 
no LD between causal SNPs): the marginal effect size of SNP j would be equal 
to r

jc

j

β

c

j

, where c
j

 is the causal SNP in LD with SNP j. This assumption may be 
adequate for traits with less polygenic architectures, but a better assumption is that 
LD between causal SNPs is either weak or strong (r2 ≈ 1), such that the marginal 
effect size of SNP j is equal to r

jc

j

α

c

j

, where c
j

 is any of the causal SNPs in LD with 
SNP j (all of which have the same causal effect size).

In detail, FMR assumes that, for all SNPs j and k, either r
jk

≈ 0 (‘no LD’) 
or σ2

k

≈ 0 (‘SNP k is not causal’) or E(α2
j) ≈ r2

jkE(α2
k) (‘every causal SNP in LD 

with SNP i is in strong LD with SNP j’). This type of approximation, which holds 
under two extremes, is expected to work well in practice because the most severe 
violations of the weak LD approximation satisfy the strong LD approximation and 
vice versa. A similar assumption is used for LD fourth-moment regression, and it 
was found to be robust15.

Choice of mixture model. The HDM is modeled as a mixture of 13 overlapping 
normal distributions with variance parameters σ2

=

σ

2

mean

128

,

σ

2

mean

64

,

σ

2

mean

32

, …, 32σ

2

mean

, 
a factor of 4,096 between the smallest and largest variance parameters (this is 
much larger than the ∼ 100× difference between the tenth and 90th percentiles 
of heritability observed in Fig. 5). The grid is centered on a trait-specific value: 
σ

2

mean

= E

h

2 (α

2), the mean of the HDM, which is computed as a preprocessing 
step using LD4M15. Instead of recomputing Fourier LD scores for each trait, scores 
are computed once, and summary statistics are scaled to match them.

Choice of sampling times. I used one sampling time for each mixture component, 
with t

k

= σ

−1

k

. This choice is convenient because it reduces the number of scores 
that must be computed: ℓ

k

(

t

j

)

 only depends on σ2

k

t

2

j

, so when t and σ are in 
geometric sequences with the same step sizes, many pairs have identical scores, 
and the number of Fourier LD scores to be computed is reduced from K

1

K

2

 to 
K

1

+ K

2

− 1.

Additional regression equations. FMR includes second-moment and 
fourth-moment regression equations, which are equivalent to regression equations 
for LDSC10,26 and LD fourth-moment regression15, respectively (see Supplementary 
Note for details). For example, the second-moment equation is

E

(

χ

2

)

= χ

2

0

+ (w
1

+ · · · + w

K

1

) ℓ(2), (22)

where χ

2

0

 is the LDSC intercept, and ℓ(2) is the LD score.
The effect of including this equation is that the FMR heritability estimate is 

constrained to be approximately equal to the LDSC estimate.

Regression weights. FMR is a weighted regression with heuristic weights 
(Supplementary Note). These downweight redundant SNPs in high LD with other 
regression SNPs. They also reweight the various regression equations (different 
sampling times and second- and fourth-moment equations) so that they contribute 
equally to the objective function.

Choice of regression SNPs. FMR is applied to ∼ 10

6 common SNPs 
(MAF > 0.05), with the HLA region excluded. SNPs with large effect sizes are not 
excluded, as doing so would inappropriately truncate the effect-size distribution.

Non-negativity constraint. Because probabilities and proportions of heritability 
are non-negative, FMR uses non-negativity constraints on regression weights. 
The computational cost of the constrained regression does not scale with the 
number of SNPs; therefore it does not contribute to computational complexity 
(Supplementary Note).

Calculation of Fourier LD scores. I computed Fourier LD scores from 
European-ancestry samples in 1,000 genomes62. Estimated scores were corrected 
for bias due to finite reference-panel sample size (Supplementary Note).

Implementation of FMR. Open-source software for FMR is available (Code 
availability). FMR is implemented in MATLAB, and it requires the ‘lsqlin’ 
function from the MATLAB optimization toolbox. The software does not require 
installation, and scripts are provided to replicate the main results.

Simulations. I performed simulations using real LD patterns computed from UK 
Biobank typed SNPs (M = 455,000) as previously described15. In detail, I simulated 
per-normalized-genotype causal effect sizes from

 1. An i.i.d. point-normal distribution with a specified proportion of causal 
SNPs (10%, 1% and 0.1% in Fig. 1a–c). The variance parameter was equal to 
0.1Mc

−1, where M
c

 is the expected number of non-null SNPs.
 2. A four-component mixture of normal distributions with a null component 

and small-, medium- and large-effect non-null components (Fig. 1d–f). In 
Fig. 1d, proportions of SNPs in each non-null component were 0.01, 0.01(5)−1 
and 0.01(25)−1, respectively. In Fig. 1e, proportions were 0.01, 0.01(10)−1 and 
0.01(100)−1. In Fig. 1f, proportions were 0.01, 0.01(50)−1 and 0.01(2,500)−1. 
The effect-size variance of each component was equal to 0.1(3M

c

)−1, where 
M

c

 is the expected number of SNPs in that component.

Next, I simulated GWAS summary statistics from the asymptotic sampling 
distribution61, which depends on the LD matrix, as previously described15. I 
calculated Fourier LD scores directly from the LD matrix that was used to generate 
summary statistics, with no correction for finite reference-panel size. I applied 
FMR with the same model and parameter settings as I used for analyses  
of real traits.

Pruning and thresholding. I calculated the number of genome-wide significant 
loci and the heritability that they explain by thresholding GWAS summary 
statistics at a specified significance level and LD pruning to remove SNPs that 
tag the same signal. Pruning is performed in a greedy iterative manner: at each 
step, a new lead SNP is added, which is the most significant SNP that is not in 
LD with any lead SNP selected thus far, until no significant SNPs remain. The LD 
threshold is r2 < 0.01. The heritability explained is proportional to the sum of their 
χ

2 statistics. This estimation procedure can be biased due to winner’s curse or 
excessive LD pruning (Supplementary Note).

Risk-prediction accuracy. Under the non-i.i.d. normal model, the optimal  
PGS r2 is

E

(

r

2

PGS

)

= Tr

(

S

(

1

N

I + S

)

−1

S

)

, (23)

where S = RΣ = E(αβT), and N  is the GWAS sample size (see Supplementary 
Note for derivation). This is the accuracy of an optimal predictor given Σ, 
which is unknown in practice; it gives an upper bound on the accuracy of a real 
risk-prediction method. (I is the identity.)

Equation (23) can be approximated in three ways. First, when N is small,

E

(

r

2

PGS

)

≈ N Tr

(

S

2

)

=
N

M

e

h

4

,

(24)

where M
e

 is the effective number of independently associated SNPs15.
Second, when N is large,

E

(

r

2

PGS

)

≈ h

2

−
M

c

N

,

(25)

where M
c

= rank(S) is the number of linearly independent SNPs with non-zero 
effect sizes. This approximation is relevant when most heritability is explained by 
SNPs with effect-size variance ≫N−1 (Supplementary Note). It cannot be computed 
using FMR, which does not estimate M

c

.
Third, it can be approximated using the FMR LD approximation:

E

(

r

2

PGS

)

≈ E

h

2

(

σ

2

α

σ

2

α

+ 1

N

)

, (26)

where σ2

α

= E(α

2). This is the approximation that is used in Fig. 3c,  
as it can be estimated using FMR and it is appropriate at any sample size 
(Supplementary Note).

The not-by-chance true positive rate. The NTPR measures the proportion of 
two-tailed positive tests that correctly reject the null hypothesis in favor of the 
correct alternative and not by chance. It is designed to satisfy the property that, 
for any mixture of null and non-null effects, if there is no power to estimate the 
direction of effect, the NTPR is zero. It thereby avoids an arbitrary distinction 
between effects that are near zero 

(

0 < α

2

≪
1

N

)

 and those that are exactly zero. 
Estimates of the NTPR quantify a rate across loci, as opposed to one across SNPs.

For a z-score threshold T ≥ 0, NTPR is defined as the fraction of true positives 
with the correct sign minus the fraction of sign errors:

NTPR (T) = P

(

zα > 0

∣

∣

z

2

> T

2

)

− P

(

zα < 0

∣

∣

z

2

> T

2

)

. (27)
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Under sign symmetry, for every near-zero effect for which the effect direction is 
estimated incorrectly, there is expected to be a near-zero effect for which the effect 
direction is estimated correctly due to chance; therefore subtracting the fraction 
of sign errors (counting them as −1 true positives, rather than as 0 true positives) 
cancels out ‘true-by-chance’ positives. False positives (SNPs for which the true 
effect size is exactly zero) count as 0 true positives; therefore the expected number 
of true positives is the same for a SNP for which the effect size is exactly zero or 
nearly zero. The NTPR is related to the false sign rate introduced by Stephens41 
(Supplementary Note). It can be estimated using FMR (Supplementary Note).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
GWAS summary statistics are available at https://alkesgroup.broadinstitute.org/. 
Numerical results for Figs. 2–5 are reported in the Supplementary Tables.

Code availability
Open-source software is available at https://github.com/lukejoconnor63. GENESIS14 
software is available at https://github.com/yandorazhang/GENESIS.
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Extended Data Fig. 1 | Performance of FMR in simulations at different sample sizes. I show the true HDM (yellow), estimates for 10 individual simulation 

replicates (grey), the mean estimate across 20 replicates (blue), and the mean uncorrected estimate. The uncorrected estimate is obtained by running 

FMR without any correction for sampling variation in the GWAS summary statistics (see Supplementary Note). Data were simulated under a point-normal 

model with either 1% or 10% of SNPs having nonzero causal effect sizes.
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Extended Data Fig. 2 | Calibration of FMR jackknife standard errors. Simulations were performed under a normal mixture model with small-, medium- 

and large-effect SNPs (similar to Fig. 1d), at sample size N=460k, N=145k or N=50k. For different effect-size thresholds, I calculated the standard error 

of the proportion of random-effect heritability explained by SNPs with effect sizes less than that threshold. Bar plots show root-mean-squared jackknife 

standard errors (blue) and empirical standard errors (orange) based on 25 replicates. At large sample size (N=460k), standard errors were sometimes 

underestimated, probably due to the nonnegativity constraints in the regression. Caution is needed when making comparisons between the genetic 

architecture of different traits, as underestimated standard errors could lead to false-positive differences.
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Extended Data Fig. 3 | effect of changing the FMR sampling times and mixture components in simulations. Simulations were performed under a 

normal mixture model with small-, medium- and large-effect SNPs (similar to Fig. 1d), at sample size N=460k. I specified a set of 17 mixture components 

(σ

2 = [2−9

, 2

−8

, …2

7]) and 17 sampling times (t
k

= 1/σ

k

), and performed simulations with various subsets of the respective values. In panels a-d, I use 

the same values of σ2 (σ
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, σ

2
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, …, σ

2

15

, which correspond to the default FMR model) and various values of t. In panels e-f, I vary the values of σ2. In most 

cases, very similar results are obtained, except when too few sampling times are used (panel d). 25 replicates are performed (identical between the 

figure panels), the first 10 of which are plotted in grey. The mean and standard deviation across replicates are shown in blue. (a) σ2 = [σ2

3

, σ

2

4

, …, σ

2

15

], 

t = [t
3

, t

4

, …, t

15

]; (b) σ2 = [σ2

3

, σ

2

4

, …, σ

2

15

], t = [t
1

, t

2

, …, t

17

]; (c) σ2 = [σ2

3

, σ

2

4

, …, σ

2

15

], t = [t
5

, t

6

, …, t

11

]; (d) σ2 = [σ2

3

, σ

2

4

, …, σ

2

15

], t = [t
5

, t

7

, …, t

15

]; (e) 

σ

2

1

, σ

2

2

, …, σ

2

17

, t
1

, t

2

, …, t

17

; (f) σ2

=

[

σ

2

5

, σ

2

6

, …, σ

2

13

]

, t = [t
5

, t

6

, …, t

13

]. I recommend using 13 mixture components and 13 sampling times, even though a 

smaller number may suffice (Extended Data Fig. 3f).
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Extended Data Fig. 4 | Observed number of genome-wide significant sNPs and proportion of heritability explained at N=145k vs 460k. For numerical 

results, see Supplementary Table 2.
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Extended Data Fig. 5 | Predicted vs. observed heritability explained by genome-wide significant sNPs at different significance thresholds. %h2GWAS 

was predicted using interim-release UK Biobank summary statistics (maximum N=145k) and evaluated in the full release (maximum N=460k). Squared 

correlations between predicted and observed values were 0.94, 0.95, 0.93, and 0.88 in panels a-d respectively. Lower r2 at χ

2

> 1000(panel d) could 

result from the small number of loci with large effect sizes, which may increase the sampling variance of both the FMR predictions and the observed 

values. In panel d, the data points for several traits are superimposed near the origin. For numerical results, see Supplementary Table 2.
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Extended Data Fig. 6 | Predicted vs. observed number of genome-wide significant sNPs at different significance thresholds. MGWAS was predicted 

using interim-release UK Biobank summary statistics (maximum N=145k) and evaluated in the full release (maximum N=460k). Squared correlations 

between predicted and observed values were 0.92, 0.97, 0.92 and 0.91 in panels a-d respectively. In panel d, the data points for several points are 

superimposed near the origin. For numerical results, see Supplementary Table 2.
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Extended Data Fig. 7 | Consistency of FMR predictions at different sample sizes. %h2
GWAS and MGWAS were predicted for 22 traits based on N=145k vs. 

N=460k summary statistics, with target sample size equal to 460k, 2M or 10M. Predictions assume that the LD score regression intercept will be equal to 

what was observed at N=145k for both sets of estimates. Numerical results are presented in Supplementary Table 2.
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Extended Data Fig. 8 | Performance of GeNesis vs. FMR predictions in uK Biobank. FMR and GENESIS were applied to interim-release UK Biobank 

summary statistics (maximum N=145k) for 22 traits in order to predict the results of the full release (maximum N=460k). Numerical results are 

presented in Supplementary Table 1.
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Extended Data Fig. 9 | Consistency of GeNesis predictions at different sample sizes. %h2
GWAS and MGWAS were predicted for 19 traits (Supplementary 

Table 3) based on N=145k vs. N=460k summary statistics, with target sample size equal to 460k, 2M or 10M. At N=460k, predictions of large-N %h2
GWAS 

were slightly smaller (panels b-c), while predictions of M
GWAS

 were slightly larger (panel f). This difference could result from a less severe form of the 

power-dependent bias that is known to affect the point-normal (2-component) model when it is misspecified: as sample size increases, SNPs with smaller 

effect sizes become detectable, and estimates shift toward a larger number of causal SNPs with smaller effect sizes. (This only occurs when the model 

is misspecified, with a larger-than-expected number of small-effect SNPs). The 3-component model ameliorates this bias by including a small-effect 

heritability component even at small sample sizes. However, if this model too is misspecified (for example when there is a mixture of small-, medium- 

and large-effect SNPs), then it would be affected in the same way as the point-normal model, to a lesser degree. Numerical results are presented in 

Supplementary Table 3. The same analysis using FMR is presented in Extended Data Fig. 7.
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Extended Data Fig. 10 | estimated HDM of height using summary statistics from GiaNT vs. uK Biobank. If results were biased by population 

stratification, the bottom-left portion of the curve (corresponding to small-effect SNPs) would be inflated for estimates based on GIANT.

NaTuRe GeNeTiCs | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


nature research cavesoningathos) wacovoe 
  

Last updated by author(s): Jun 23, 2021 
  

Reporting Summary 
  

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist. 

Statistics 
  

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section. 

Confirmed 

Xx The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement 

[ | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly 

Oo The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section. 

|_| Adescription of all covariates tested 

x A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons 

x A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) 

O For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable. 

[ | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings 

[ ] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes 

O
x
X
M
 xX

 
O 
O
X
X
N
M
O
s
 

Xx Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated   
Our web collection on statistics for biologists contains articles an many of the points above. 

Software and code 
  

Policy information about availability of computer code 

Data collection NA 

Data analysis Software used to perform the analyses is provided, implemented in MATLAB 2020b. Open-source software is publicly available at github.io/ 

lukejoconnor. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information. 

Data 
  

Policy information about availability of data 

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability 

Summary statistics are available at https://alkesgroup.broadinstitute.org. Numerical results for Figures 2-5 are reported in supplementary tables. 

=) 
a5) 
Com 

Cc 
cal 
fap) 
= 
ta) 
n 
fa) 

mw 
= 
(a) 
>a 

om] 
(a>) 

5@) 
2) 
=e 
D> 

te) 
17 

= 

3 
3 
eB) 

— 

Oc
0z
 
Ju

dy
  



Field-specitic reporting 
  

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection. 

DX] Life sciences |_| Behavioural & social sciences [| | Ecological, evolutionary & environmental sciences 

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.odf 

Life sciences study design 
  

All studies must disclose on these points even when the disclosure is negative. 

Sample size No data were collected. 

Data exclusions Datasets were excluded from the analysis if they were not sufficiently well powered, as determined by whether the LD4M Z score was greater 

than 2 (see Supplementary Note). 

Replication The findings are reproducible, and code to reproduce main findings is available (see Code Availability). 

Randomization There was no randomization, as no clinical trial was performed. 

Blinding There was no blinding, as no clinical trial was performed. 

Reporting for specific materials, systems and methods 
  

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

  

Materials & experimental systems Methods 

Involved in the study n/a | Involved in the study 

[| Antibodies [| ChiP-seq 

  
x 

[| Eukaryotic cell lines x! [| Flow cytometry 

[| Palaeontology and archaeology x [| MRI-based neuroimaging 

|_| Animals and other organisms 

[| Human research participants 

[| Clinical data 

[| Dual use research of concern X
X
X
X
R
R
R
S
 

  

=) 
a5) 
Com 

Cc 
cal 
fap) 
= 
ta) 
n 
fa) 

mw 
= 
(a) 
>a 

om] 
(a>) 

5@) 
2) 
=e 
D> 

te) 
17 

= 

3 
3 
eB) 

— 

Oc
0z
 
Ju

dy
  


	The distribution of common-variant effect sizes

	Results

	Definition of the effect-size distribution. 
	Overview of FMR. 
	Performance of FMR in simulations. 
	Performance of FMR predictions in UK Biobank. 
	Sample size targets across 32 diseases and complex traits. 
	True positive rates of non-significant loci. 
	The common-variant effect-size distribution. 

	Discussion

	Online content

	Fig. 1 Performance of Fourier regression in well-powered simulations (N = 460,000) with real LD.
	Fig. 2 Predicted versus observed GWAS results in UK Biobank.
	Fig. 3 Sample size requirements and predictions for future GWAS.
	Fig. 4 The NTPR.
	Fig. 5 The genetic effect-size distribution.
	Extended Data Fig. 1 Performance of FMR in simulations at different sample sizes.
	Extended Data Fig. 2 Calibration of FMR jackknife standard errors.
	Extended Data Fig. 3 Effect of changing the FMR sampling times and mixture components in simulations.
	Extended Data Fig. 4 Observed number of genome-wide significant SNPs and proportion of heritability explained at N=145k vs 460k.
	Extended Data Fig. 5 Predicted vs.
	Extended Data Fig. 6 Predicted vs.
	Extended Data Fig. 7 Consistency of FMR predictions at different sample sizes.
	Extended Data Fig. 8 Performance of GENESIS vs.
	Extended Data Fig. 9 Consistency of GENESIS predictions at different sample sizes.
	Extended Data Fig. 10 Estimated HDM of height using summary statistics from GIANT vs.


