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Graphical Abstract

Summary of predictive metrics for polygenic risk scores (PRS), when they are added to existing clinical risk tools. Also discussed are the potential

clinical uses for PRS.

Abstract

Cardiometabolic diseases contribute more to global morbidity and mortality than any other group of disorders. Polygenic risk scores (PRSs), the

weighted summation of individually small-effect genetic variants, represent an advance in our ability to predict the development and complications of

cardiometabolic diseases. This article reviews the evidence supporting the use of PRS in seven common cardiometabolic diseases: coronary artery

disease (CAD), stroke, hypertension, heart failure and cardiomyopathies, obesity, atrial fibrillation (AF), and type 2 diabetes mellitus (T2DM). Data

suggest that PRS for CAD, AF, and T2DM consistently improves prediction when incorporated into existing clinical risk tools. In other areas such as

ischaemic stroke and hypertension, clinical application appears premature but emerging evidence suggests that the study of larger and more diverse

populations coupled with more granular phenotyping will propel the translation of PRS into practical clinical prediction tools.
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Introduction
The heritability of cardiometabolic diseases is well recognized.1 Over

the last ∼40 years, the mechanisms underpinning this epidemiological

observation have begun to be appreciated.2 A major breakthrough

came in 19853 when Lehrman et al.3 identified a deletion in the low-

density lipoprotein receptor (LDLR) gene in a patient with homozygous

familial hypercholesterolaemia. This was one of the first descriptions of

cardiometabolic disease caused by a single genetic variant that disrupts

or truncates a protein conferring a substantial risk of developing a dis-

ease (i.e. a large effect size). However, most cardiovascular disease is

not caused by rare, monogenic variants. Twin studies have confirmed

the genetic susceptibility for common cardiometabolic disease traits

in the absence of single gene variants.4 For example, monozygotic twins

are at double the risk of developing atrial fibrillation (AF) compared

with dizygotic twins [hazard ratio (HR) 2.0, 95% confidence interval

(CI) 1.3–3.0].5

Genome-wide association studies (GWAS) examine the association

of up to millions of single variations in DNA [for example ‘A’ instead of

‘C’, known as single nucleotide variants (SNVs)] and their association

with a particular disease.6–8 SNVs are common and individually have

a small effect on disease risk, but when combined across the genome

give significant insight into an individual’s cardiometabolic risk.9 This

summation of risk from SNVs across the genome is the basis of a poly-

genic risk score (PRS).

This state-of-the-art review describes the evidence pertaining to PRS

for the prediction of coronary artery disease (CAD), obesity, type 2

diabetes mellitus (T2DM), hypertension, AF, stroke, and heart failure/

cardiomyopathies. It considers the data concerning prediction from

PRS alone, the added predictive benefit of PRS when combined with

clinical risk factors, the polygenic modulation of monogenic variants,

and the clinical utility of disease-specific PRS (Graphical Abstract).

Throughout the review follows the 2020 NHLBI guidelines on the

use and reporting of race, ethnicity, and ancestry.10

Methods used to construct
polygenic risk scores
Polygenic risk scores can be conceptualized as the summation of SNVs into

a single score. These SNVs are found throughout the genome and each in-

dividual SNV has a specific risk of developing a disease. A PRS combines

these individual risks into a single score. The individual risk from each

SNV is generally small, but their summation into a PRS significantly stratifies

risk between individuals. Important to this process of PRS construction is

the phenomenon of linkage disequilibrium (LD). Linkage disequilibrium is

the nonrandom association of alleles (e.g. SNVs) at different genomic loci

(positions in the genome). Typically, these SNVs are located in close prox-

imity to each other and are inherited together.11 SNVs that are inherited

together and highly correlated with each other (i.e. in linkage disequilibrium)

are often both associated with a disease of interest (e.g. CAD, from a

GWAS). However, this association does not reveal which, if any, of these

SNVs, are truly associated with a disease of interest. It has been shown

that inclusion of all SNVs in LD decreases the predictive performance of

PRS12 and so SNVs that are in LD need to be either removed, or their effect

sizes modified to more accurately reflect the true effect size of these var-

iants. Methods include LD clumping, and LD pruning, both of which remove

one of a pair of SNVs that are identified to be highly correlated.13 The SNV

removed is either the one with a higher P-value (clumping), or at random

(pruning).13Newer methods do not exclude SNVs but reweight their effect

size using difference approaches that utilize a Bayesian framework

[LDpred,14 Bayesian Sparse Linear Mixed Models (BSLMM),15

AnnoPred,16 LDpred-funct,17 PRS-CS,18 Algorithm by Newcombe et al.19

and PleioPred20], penalized regression (Lassosum21). Recent evidence sug-

gests that Bayesian approaches lead to more accurate measures.22

Polygenic risk scores are often presented as percentiles across a group;

for example: the top 25th, 10th, 5th, or 1st percentile of PRS. These PRS

percentiles are then compared with the remainder of the population and

a risk of disease is calculated.23 For example, a 2018 study showed that

the odds ratio (OR) for individuals with an AF PRS in the highest 1% com-

pared to the remaining 99% was 4.63 (95% CI 3.96–5.39).23

Many studies construct risk models using PRS to predict incident or

prevalent disease (typically controlling for age, sex and genetic measures

of ancestry). The accuracy of these models are often expressed as a

C-statistic or area under the (receiver operating) curve (AUC). These para-

meters are rank-correlation probabilities (0–100) that can be broadly de-

fined as the probability that a randomly selected participant who does

have the disease has a higher predicted probability than that of a randomly

selected participant who does not have the disease.24 The higher the

C-statistic (or AUC), generally, the better the prediction model.

Cardiometabolic polygenic risk
scores

Coronary artery disease
Numerous studies have compared the predictive accuracy of PRS with

established clinical risk factors for CAD.23,25–27 Different approaches

have been examined including: (i) the predictive ability of PRS compared

to individual conventional clinical risk factors (e.g. PRS vs. hypertension),

(ii) the predictive ability of PRS compared to aggregated conventional

clinical risk factors [i.e. PRS vs. risk factors summed into a clinical risk

tool, such as the American College of Cardiology (ACC)/American

Heart Association (AHA) atherosclerotic cardiovascular disease

(ASCVD) risk score], and (iii) the predictive ability when PRS are inte-

grated into clinical risk tools (i.e. PRS integrated into the ACC/AHA

ASCVD risk score vs. the conventional ACC/AHA ASCVD risk score).

In comparison to individual clinical risk factors, many studies have

shown PRS to be of similar or enhanced accuracy in predicting

CAD.25–27 For example, a 2018 UK Biobank (UKBB) study of

European participants showed that a PRS had greater predictive ac-

curacy than any clinical risk factor: PRS C-statistic: 0.623 (95% CI

0.615–0.631), compared with a range of ∼0.550 to 0.594 for clinical

risk factors [smoking, T2DM, self-reported family history of heart dis-

ease, body mass index (BMI), hypertension, high cholesterol].26

Similar results have been replicated in other cohorts of European par-

ticipants (for example the Malmö Diet and Cancer Study).28

Trans-ancestral PRS derived from a combination of European and

non-European data have been shown to be similarly predictive of

CAD, and PRS derived from European cohorts are significant predic-

tors even across non-European populations.25,29 Although ancestral-

specific scores for non-European populations outperform European

derived PRS in non-European populations.30,31

When compared to combined clinical risk factors, PRS has largely been

shown tobe less predictiveofCAD. In theUKBB, a collectionof clinical risk

factors summed as a clinical risk tool was found to have a C-statistic of

0.670 (0.663–0.678), comparedwith 0.623 (0.615–0.631) for PRS alone.26

Similar results were seen in theMalmöDiet andCancer Study, C-statistics

for clinical risk tools (summed individual risk factors): 0.776 (0.737–0.815)

compared with 0.759 (0.724–0.794) for PRS.28However, studies in other

biobanks (for example: FinnGenn) have shown higher C-statistics for PRS

alone vs. clinical risk tools for CAD: 0.832 (0.828–0.836) vs. 0.823 (0.819–

0.827), respectively.9,26

2 J. W. O’Sullivan et al.
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Across a number of different biobanks, the addition of PRS to clinical

risk tools has shown improvement in risk prediction for CAD.25–27,32,33

The risk conferred by clinical markers and PRS is largely uncorre-

lated,27,28 suggesting possibly distinct mechanisms. The most common

clinical risk scores used for CAD are the ACC/AHA ASCVD risk score

and the UK’s QRISK score. For example, in the UKBB, net reclassifica-

tion index (NRI) using a 7.5% 10-year risk threshold improved with the

addition of PRS; NRI: 5.9% (4.7–7.0; Figure 1), and this increased to

15.4% (11.6%–19.3%) for younger subgroups.27 Similar results were ap-

preciated in younger participants (<55 years) in the FinnGenn cohort:

NRI: 3.9 (1.6–6.2).32 A significant improvement in predictive perform-

ance was also shown in more diverse cohorts [Atherosclerosis Risk in

Communities (ARIC) cohort, the Multi-Ethnic Study of Atherosclerosis

(MESA): NRI= 3.0% (1.7–4.3)], although only when cohorts were

meta-analyzed together to increase sample size.25,34 These improve-

ments translate into opportunities to offer preventative therapy (i.e.

statins) to individuals not identified via current guidelines. A 2020 ana-

lysis showed that an additional 4% of the population may be considered

high-risk and offered a statin if PRS is incorporated into risk

stratification.35 This improved reclassification of risk with the inclusion

of PRS into conventional clinical risk models is seen across sexes, ages

and, increasingly, ancestry groups (Table 1), with greatest benefit de-

rived in younger patients before the emergence of clinical risk fac-

tors.23,26,27,32 Further, evidence suggests the interrogation of PRS

into the ACC/AHA ASCVD risk score for CAD is overall more cost-

effective than the ACC/AHA risk score alone, and results in a lower

number of ASCVD events.40

There are some data to suggest that a high CAD polygenic risk con-

fers a similar risk as monogenic variants in LDLR, APOB, and PCSK9.41–44

For example, in the UKBB, familial hypercholesterolaemia (FH) carriers

were at an 3.2-fold (1.7–6.0) increased risk of CAD, compared to

2.3-fold (2.1–2.5) for non-carriers in the top 20% PRS.41 These results

appear consistent across numerous ancestry groups.44 Furthermore,

PRS appears to modulate monogenic risk.41 In the UKBB, FH carriers

in the lowest quintile PRS had only a 1.30-fold (0.39–4.32) increased

risk.41 Whereas, FH carriers in highest quintile PRS were at a

12.61-fold (2.96–53.62) increased risk.41 Similar results showed the pro-

tective effect of a low PRS equating to proportional protection to that

Figure 1 Improvement in prediction with the integration of polygenic risk scores into current, guideline-recommended risk tools. Plot A presents Net

Reclassification Improvement, Net Reclassification Improvement data were not available for all diseases included in this review. Plot B presents

C-statistic: both for the guideline-recommended clinical risk tool and for risk tools that integrates polygenic risk score into the respective

guideline-recommended risk tool. The guideline-recommended risk tool for each disease is as follows: Atrial Fibrillation: CHARGE-AF using a risk

threshold of >5% over 5 years, variables included in CHARGE-AF: age, height, weight, systolic blood pressure, diastolic blood pressure, smoking status,

blood-pressure-lowering medication, diabetes, heart failure and history of myocardial infarction; coronary artery disease: AHA/ACC PCE: American

Heart Association/American College of Cardiology Pooled Cohort Equation using a 7.5% risk threshold over 10 years, including the following variables:

Age, diabetes, sex, race, smoker, total cholesterol, HDL, systolic blood pressure, treatment for hypertension; Type 2 Diabetes was the American

Diabetes Association risk score using a 33% risk threshold over 10 years and including the following variables age, sex, bodymass index, history of stroke

or CHD, parental history of diabetes, systolic blood pressure, diastolic blood pressure, HDL and triglycerides; Ischaemic Stroke in Atrial Fibrillation:

CHA₂DS₂-VASc, variables included: Congestive heart failure, hypertension, Age (>65, > 75), diabetes, vascular disease, prior stroke and sex;

Hypertension: Framingham hypertension risk score, variables included: age, sex, systolic blood pressure, diastolic blood pressure, body mass index,

and current smoking, as well as diabetes; Ischaemic Stroke: Combination of family history, blood pressure, body mass index, smoking status, and dia-

betes. Data was obtained from the following primary sources: atrial fibrillation,32 coronary artery disease,27 type 2 diabetes mellitus,32 ischaemic stroke

in atrial fibrillation,47 hypertension,64 and ischaemic stroke46 only C-statistics for coronary artery disease were statistically compared. Confidence in-

tervals for C-statistic for clinical risk tool for hypertension were not reported in primary data.
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from PCSK9 loss of function (LOF) variants.43 These results suggest that

future risk tools should include both PRS and monogenic risk.

Stroke
There is a consistent signal for predictive benefit of PRS for stroke,

although this varies with stroke type.45–48 Most stroke PRS are de-

rived from the MEGASTROKE consortium, which conducted a

GWAS on 67 000 participants who had suffered a stroke (cases)

and 454 000 controls.49 The MEGASTROKE consortium identified

SNVs associated with any stroke type and also four stroke sub-

types–ischaemic stroke (IS), large artery stroke, cardioembolic

stroke, and small vessel stroke– and included participants from

across the world (European, East Asian, African, South Asian, mixed

Asian, and Latin American).49

The initial PRS built from theMEGASTROKE data showed that those

in the top third of PRS risk had a 35% increased risk of incident stroke

(stroke of any kind) compared with those at low genetic risk (bottom

third) [HR 1.35 (1.21–1.50)].45 This risk appeared to be independent

of lifestyle behaviours (smoking, diet, BMI, and physical exercise).45

Further work in a largely European population in the UK Biobank

showed that PRS that are specific to stroke subtypes (such as IS) are

more predictive [C-statistic: 0.580 (0.566–0.593)] than all clinical risk

factors individually (self-reported family history of stroke, smoking, dia-

betes, LDL cholesterol), aside from hypertension and systolic blood

pressure (SBP) [C= 0.590 (0.577–0.603); C= 0.584 (0.570–0.598), re-

spectively].46Notably, the combination of clinical risk factors was found

to have a larger C-statistic than the IS PRS individually [C= 0.628

(0.614–0.641)].46 The addition of PRS to the combination of clinical

risk factors is of unclear benefit. While the addition of PRS did lead to

the highest C-statistic: C= 0.637 (0.623–0.650), compared with clinical

risk factors combined: C= 0.628 (0.614–0.641), this improvement was

not statistically significant.46 Similar results have been shown when PRS

are examined within randomized controlled trials (RCTs). A 2021 ana-

lysis of the ASPREE trial of older adults (>75 years) showed that PRS

alone was a better predictor than most clinical risk factors, however,

with the addition of PRS to a clinical tool, the C-statistic was increased

non-significantly [AUC improved from66.6% (62.2–71.1) to 68.5 (64.0–

73.0) P= 0.095].50 Lastly, a 2021 analysis of participants of five RCTs

(ENGAGE AF-TIMI 48, SOLID-TIMI 52, SAVOR-TIMI 53,

PEGASUS-TIMI 54, and FOURIER) showed that participants with a

PRS in the highest third were at greater risk of IS even after adjustment

for clinical risk factors [HR: 1.27 (1.04–1.53)—results presented for pri-

mary prevention cohort].48

Studies have also explored the role of PRS in the prediction of IS in

patients with AF.48 The risk of stroke in AF is currently determined

using a clinical risk tool (CHA2DS2-VASc
51 but despite the heritability

of IS (∼40%),52 the CHA2DS2-VASc tool does not include any index

of genetic susceptibility, such as family history. Evidence from GWAS

shows a shared genetic aetiology between AF and IS (e.g. loci at the

PITX2 and ZFHX3 genes are associated with risk of AF and IS).49,53 In

addition, several AF PRS are predictive of stroke,54–56 and prophylactic

oral anticoagulants have been shown to be effective in high risk pa-

tients.57 A recent study in the UKBB showed that a cardioembolic

PRS was predictive of IS in participants with AF, and also showed the

addition of PRS to the CHA2DS2-VASc tool improved prediction

with a NRI of 2.3% (1.3%–3.0%) (using a 4% 10-year risk threshold)

(Figure 1).47 Most of this reclassification improvement reflected the

downgrading of IS risk [NRI for non-cases: 2.3% (95% CI 0.6%–

5.4%)] suggesting participants with low PRS are at lower risk than their

CHA2DS2-VASc risk score suggests.
47

Hypertension
GWAS have identified many genomic loci associated with the develop-

ment of hypertension across different ancestry groups.58,59 PRS based

on these data show a consistent association between a high PRS and

the development of hypertension,60–63 but results regarding the pre-

dictive benefit of PRS over established clinical risk factors are

mixed.60–63 More recently, Bayesian methods for PRS construction

and validation on larger samples have shown improved performance

compared to clinical risk factors.64,65 For example, a 2021 analysis of

218 754 individuals (55 917 of whom had hypertension) found a HR

of 1.42 (1.41–1.43) per 1 standard deviation (SD) increase in PRS for

SBP and aHRof 1.41 (1.40–1.42) for diastolic blood pressure (DBP) (de-

fined as ‘SBP ≥140 mmHg and DBP ≥90 mmHg’).64 This same study

showed an association of PRS with the age of onset of hypertension.64

Participants in the top 2.5th percentile of PRS developed SBP and DBP

hypertension 10.6 and 10.5 years earlier than those in the 20th–80th

PRS percentile.64 The addition of a SBP and DBP PRS to the

Framingham hypertension risk score66 improved the predictive per-

formance of the model modestly [C-statistic 79.7–80.4 (80.0–80.8)]64

and was predictive of cardiovascular events.64 Encouragingly, similar re-

sults are seen in non-European ancestral groups.65

Heart failure and cardiomyopathies
Phenotype heterogeneity, changing disease definitions, and a diverse

aetiology have posed challenges for GWAS in heart failure cohorts.

Studies have identified genomic loci associated with heart failure with

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Net reclassification improvement across
ancestral groups for coronary artery disease

Net reclassification

Improvement (95% CI)

Black/African American/Black

Caribbean/Black African

2.5% (0.6–4.3) in Weale et al.25

South Asian (Indian, Bangladeshi

or Pakistani)

8.7% (3.1–14.4) in Weale et al.25

3.9% (0.9–7.0) in Huang et al.36

Hispanica 7.5% (−1.4–16.5) inWeale et al.25

European 2.7% (1.1–4.2) in Weale et al.25

Chinese 3.5% (1.2–6.0) in Lu et al.31

Net reclassification improvement (NRI) of a risk tool with the incorporation of PRS.

Weale et al. compared AHA/ACC PCE+ addition of PRS with the AHA/ACC PCE

alone. This PRS was constructed using data largely from the CARDIoGRAMplusC4D

consortium,6 which consisted exclusively of participants of European Ancestry and

was validated in the MESA, ARIC and UK Biobank cohorts. 25 Data from Huang et al

(which compared QRISK + addition of PRS compared with QRISK alone36 obtained

from the Genes & Health cohort and validated in the same cohort36) and Lu et al

(which compared a Chinese ASCVD risk score, with similar covariates to QRISK and

the AHA/ACC ASCVD, but used a Chinese ASCVD risk score with a risk threshold

of 4.5%)31 obtained data from a variety of Chinese and European GWAS

studies,6,37–39 and was validated in three cohorts in the China-PAR project: the

International Collaborative Study of Cardiovascular Disease in Asia (InterASIA), the

China Multi-Center Collaborative Study of Cardiovascular Epidemiology

(ChinaMUCA-1998), and Community Intervention of Metabolic Syndrome in China

and Chinese Family Health Study (CIMIC).
aNRI was not significant in Hispanics although sample size was substantially smaller and

the PRS effect sizes itself significant and of comparable size to those seen in individuals

of Europeans.45

4 J. W. O’Sullivan et al.
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reduced ejection fraction (HFrEF), and preserved ejection fraction

(HFpEF),7 but have been insufficient to generate useful PRS in either

scenario.67 For example, a heart failure PRS in the UKBB showed a

HRof only 1.01 per SD (P= 0.38),67 although this improved when

PRS was combined with a collective biomarker PRS for heart failure

[35 biomarkers including albumin, total cholesterol, LDL cholesterol,

sodium in urine, and glycated haemoglobin (HbA1c)]; HR 1.08 per

SD (P< 2× 10−16).67 This relatively poor performance of generic heart

failure PRS is at least in part explained by the non-selective phenotype

coding of ‘heart failure’ in many genetic biobanks. For example, most

heart failure participants in the UKBB are classified as ‘heart failure un-

specified’ (ICD10-I509), ‘heart failure’ (ICD10-I500), or left ventricular

failure unspecified’ (ICD10—I501). Conversely, PRS studies that have

used manual curation have shown more promising results.68 For ex-

ample, a dilated cardiomyopathy (DCM) PRS, which used cardiac mag-

netic resonance imaging to classify DCM based on the body surface

area (BSA) indexed for left ventricular ejection function (LVEF), left

ventricular end-systolic volume (LVESV), and stroke volume (SV),

showed an OR of 1.51 per SD increase in LVESV polygenic score

(P= 8.5× 10–34).68

PRS for more phenotypically distinct cardiomyopathies have shown

more encouraging results.69 A 2021 analysis showed that some of the

variability in hypertrophic cardiomyopathy (HCM) disease course can

be explained by PRS.69 Participants in the lowest 20th percentile of

PRS risk had half the odds of developing HCM as those in the middle

60% PRS [OR= 0.53 (0.45–0.63)], whereas those in the top 20th

percentile risk were at greater than a twofold increased odds of

HCM [OR= 2.30 (2.02–2.62)].69 These results were also expressed

in PRS-predicted risk of left ventricular hypertrophy: a 1 SD unit in-

crease in PRS ‘conferred a 0.71± 0.35 mm increase in maximum left

ventricular wall thickness (P= 0.048) in carriers of MYBPC3 truncating

variants (n= 232) and a 0.73± 0.36 mm increase (P= 0.037) in carriers

ofMYH7missense variants (n= 186)’.69All of these results speak to the

value of meticulously defining phenotypes to allow maximum benefit of

heart failure PRS.

Weight, body mass Index, and obesity
Increased BMI and obesity are well recognized risk factors for cardio-

metabolic disease,70 and several single gene variants are associated

with an increased risk of obesity.71 While these variants confer a large

risk, they are rare and account for only a small proportion of people

with obesity (between 1.75% and 4%).72–74 GWAS have revealed the

contribution of common, polygenic variation to obesity risk,75 and

have facilitated the creation of obesity PRS, which have subsequently

been shown to accurately identify those at increased susceptibility.76,77

For example, a 2019 PRS validated across four cohorts (UKBB, Partners

Healthcare, Framingham Offspring/CARDIA, and Avon Longitudinal

Study of Parents and Children) showed that 43% of participants in

the highest 10% of PRS risk were obese (BMI≥ 30 kg/m2), compared

to just 9.5% in the lowest 10% risk.76 This was similar for severe obesity

(BMI >40 kg/m2), where 5.6% of participants in the highest 10th per-

centile of PRS were severely obese compared to 0.2% of the lowest

10th percentile risk; a 25-fold gradient in risk of severe obesity (P<

0.0001). In absolute terms, those in the highest 10% of PRS risk had

an average 4.8 kg/m2 higher BMI than those in the lowest 10% risk

(BMI: 30.0 kg/m2 vs. 25.2 kg/m2, P< 0.0001).76 A high obesity PRS

also corresponded to an increased risk of associated traits. For ex-

ample, individuals with the highest 10% risk were at a 28% increased

risk of CAD, a 72% increased risk for diabetes mellitus, a 38% increased

risk for hypertension, a 34% increased risk for congestive heart failure, a

23% increased risk for IS, and a 41% increased risk for venous thrombo-

embolism.76 People with very high PRS have a similar risk of obesity as

those with rare monogenic forms. For example, in one study, carriers of

the monogenic variant MC4R have, on average, a 4.1 kg/m2 higher BMI

compared to non-carriers. Those in the top 1.6% PRS risk have, on

average, a 4.1 kg/m2 higher BMI compared to the remaining 98.4% of

the population. This is particularly noteworthy as only 0.14% of the gen-

eral population carries pathogenic MC4R variants, whereas around

1.5% of the general population has a PRS with a comparable effect

size.76

Despite the association between obesity PRS and BMI, the ability of

PRS to predict BMI beyond clinical risk factors is less clear.77 A 2020

study of 2517 individuals in the CARDIA cohort showed that PRS ex-

plained between 11.9% and 13.6% of variation in BMI, compared with

the strongest clinical predictor (52.2% for BMI at baseline).77 Some

have suggested that serial BMI measurements are more predictive

than PRS, but the discriminative ability of PRS from an earlier age (be-

fore the emergence of an increased BMI) is likely to remain valuable.76,77

Lastly, it should be noted that healthy lifestyle habits (i.e. regular exer-

cise) can mitigate some of the effects of a high obesity PRS; up to 17% of

participants in the top 10% PRS risk group had a normal BMI76 and high

fitness level (measured by treadmill test) has a mitigating effect on the

development of a high BMI, even in the presence of a high obesity

PRS.77

Atrial fibrillation
PRS have been shown to predict AF23,32,78–84 and, as with many PRS,

increasingly sophisticated methods have led to improved perform-

ance.32,78,79 The predictive ability of PRS seems to be comparable to

conventional clinical risk factors. In a 2020 study of European partici-

pants in the FinnGenn cohort, the CHARGE-AF risk score (comprising

age, height, weight, SBP, DBP, smoking status, blood pressure-lowering

medication, diabetes, heart failure and history of myocardial infarction)

had a C-statistic of 0.725 (0.719–0.732), compared with 0.751 (0.744–

0.757) for PRS.32

Further evidence has supported the role of PRS for predicting AF in

the absence of clinical risk factors. A 2021 study showed those in the

top 10th percentile of PRS risk had an OR of 5.70 (2.60 to 13.95) for

developing lone AF, compared to the bottom 90th percentile of

PRS.85 Similarly, a 2020 study in the UKBB showed that those in the

top 2.5th percentile PRS risk developed AF almost 7 years before those

in the 20–80th percentile.32 The same study showed of those who de-

veloped AF before age 60 years, 27.9% were at high PRS risk (>5%

5-year risk of developing AF determined by PRS model only), whereas

only 4.9% of these participants with early AF were deemed high risk by

the common clinical risk tool, CHARGE-AF.32 Similarly, even in patients

with monogenic AF, polygenic risk appears to modulate this risk.82

The inclusion of PRS with a clinical risk model led to an increase in the

predictive ability. In European populations discrimination was modestly

improved [C-statistic improved from 0.725 (0.719–0.732) to 0.734

(0.728–0.741)], but reclassification was significantly better [NRI using

a 5% risk threshold over 5 years: 10% (4.2% to 15.7%)].32 Similar im-

provements in prediction were seen when a PRS was added to a clinical

risk model across four TIMI RCTs (n= 36 662), with results consistent

across participants of European and non-European ancestry.84

Discrimination was even better appreciated in a Japanese population:

AUC improved from 0.72 (0.67–0.74) to 0.84 (0.80–0.86) for clinical

risk score and clinical risk score with the inclusion of PRS,
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respectively.78 The augmented predictive performance of AF when PRS

is added to clinical risk models is encouraging and PRS does appear to

be an effective strategy for early detection of early-onset AF and its

complications. However, the earlier prediction of AF may have less clin-

ical actionability than other cardiometabolic diseases.

Type 2 diabetes mellitus
Many GWAS have confirmed the polygenic nature of T2DM,86,87 and

PRS have shown promise in disease prediction.88 Early studies showed

an apparent risk gradient between PRS and development of T2DM; a

2018 UKBB study showed that participants within the top 2.5% of

PRS were at 3.4-fold increased risk compared to the average (median)

PRS, and 9.4-fold increased risk compared with participants with the

bottom 2.5% risk.88

In comparison to clinical risk factors, studies have shown mixed re-

sults regarding the predictive ability of PRS alone. A 2018 study showed

comparable AUC (both PRS and the collection of BMI, age and sex had

a reported AUC of 66%, no 95%CI reported).88 Conversely, a 2020

study showed the combination of clinical risk factors (age, sex, BMI, his-

tory of stroke or CHD, parental history of diabetes, SBP, DBP, HDL

and triglycerides) was more predictive for the development of T2DM

than PRS alone [C-statistic: 0.835 (0.831–0.839) compared with

0.763 (0.758–0.767), respectively].32 This was supported by a 2021

study that showed the combination of clinical risk factors was more

predictive of T2DM than PRS [C-statistic: 0.709 (0.696–0.722) for

PRS, compared with 0.839 (0.829–0.849) for the combination of clinical

risk factors].89

Nevertheless, the addition of PRS to clinical risk models has shown

promise. The integration of PRS into the American Diabetes

Association (ADA) clinical risk model tool showed a NRI (using 33%

risk threshold over 10 years) of 4.5% (3.0–6.1), but a modest improve-

ment in C-statistic 0.84 (0.83–0.84) with clinical risk factors only to 0.85

(0.84–0.85) with the inclusion of PRS.32 Similarly, a 2021 study showed

the addition of PRS to a clinical risk score (consisting of sex, age, family

history, BMI, SBP, serum glucose levels, serum HDL-cholesterol, and

serum triglycerides) improved NRI [22.5% (17.4%–28.0%) for continu-

ous NRI, and 6% (2.0%–10.9%) for categorical NRI].89

Although there are no studies that have sequenced patients to exam-

ine the polygenic modulation of monogenic T2DM, there is indirect evi-

dence that suggests this occurs,90 via the varying clinical penetrance of

monogenic variants. Similarly, the highest PRS appears to confer a simi-

larly high risk as monogenic variants. In a 2020 study of European par-

ticipants, those with a PRS in the top 2.5th percentile (compared to

participants with a PRS in the middle 20–80th percentile) were at

3.5-fold increased risk of developing T2DM whereas those with a

PRS in the bottom 2.5th percentile risk had an ∼80% reduction in life-

time T2DM risk.32

Clinical utility of polygenic risk
scores
A number of clinical uses for PRS have been suggested.13 In this section,

the use cases are divided into primary and secondary prevention tomir-

ror current, clinical risk stratification (Table 2). Many of the described

examples are supported only by observational data. Furthermore, as

clinical implementation is considered, the recalibration of PRS to the

target population is essential. Recalibration is the adaptation of risk

models to account for differences between the population in which

the risk model was derived and the target population (in which the

PRS is being deployed). Like all risk models, PRS are derived from re-

search cohorts. These cohorts are likely to vary from clinical cohorts

in the healthcare systems where PRSmay be used. To ensure PRS mod-

els remain accurate they should be recalibrated using the genetic, and

clinical risk factor profile of the target population. This has been shown

to ensure accuracy of clinical risk tools upon clinical integration.91

Table 2 Potential clinical utility of cardiometabolic PRS

Primary

prevention

Promote a healthy

lifestyle

Communicating a patient’s risk may promote a healthier diet and increased exercise, although data

examining this are mixed.

Enhanced prediction For a number of cardiometabolic diseases, the addition of PRS enhances the prediction of classification.

Earlier therapeutic

interventions

Patients at high risk may benefit from early interventions, such as those at high risk of CAD.

Robust risk factor

control

Many cardiometabolic diseases are risk factors for other cardiometabolic diseases, such as hypertension for

coronary artery disease. Identification of those at high risk could facilitate more robust risk factor control,

e.g. lower blood pressure target for those at high risk of CAD.

Personalized screening Those at higher PRS may benefit from earlier routine screening to facilitate earlier intervention, such as

regular HbA1c screening. Although long-term data is required.

Cascade screening For patients who have a PRS that is similar to that inferred by monogenic risk. This may mean families may

benefit from screening, as is recommended for monogenic diseases

Secondary

prevention

Drug response For some cardiometabolic diseases, there is an array of medication options. PRS may indicate which

medication or which combination of medicines is most beneficial.

Disease progression At diagnosis, the trajectory of disease is largely unknown, PRS could indicate which participants will develop

mild or severe disease.

Disease complications Prediction of complications from cardiometabolic conditions, such as ischaemic stroke in patients with atrial

fibrillation.

6 J. W. O’Sullivan et al.
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Primary prevention
For primary prevention, earlier identification of high-risk individuals

could facilitate earlier interventions. For most cardiometabolic diseases,

these are lifestyle modification (diet and exercise), however for others

(CAD and stroke) pharmacological interventions may also be indicated.

A protective effect of exercise has been shown for almost all cardiome-

tabolic diseases,92 but the impact of communicating genetic risk on

positive behaviour change is inconsistent.93,94 Recent evidence suggests

the communication of genetic risk via an interactive web tool does pro-

mote behaviour change; in a cohort of more than 7000 participants,

42.6% of participants that were identified at high risk of an myocardial

infarction or stroke had made at least one positive behaviour change

(weight loss, smoking cessation, or online health coaching).94 Similar

2021 data showed a greater reduction in the cases of T2DM in those

with a PRS in the highest third of T2DM PRS who successfully com-

pleted lifestyle interventions compared with those in the middle and

lowest third of T2DM PRS.95 For both T2DM and CAD, it appears

positive lifestyle changes have protective benefits across all strata of

PRS risk, but the greatest protective benefits are seen in those with

the highest PRS.22

Regarding pharmacological interventions, it appears PRS may have a

role in enhanced primary prevention of myocardial infarctions and

strokes (ASCVD). Contemporary data for adult patients suggests the

addition of state-of-the-art PRS to current primary prevention

ASCVD risk tools improves prediction (Figure 1).25,27,32 This will facili-

tate the identification of more patients that will benefit from medica-

tions. A building evidence base of cost-effectiveness studies has

suggested that the integration of PRS into ASCVD risk tools leads to

overall lower costs to health care systems and society, as well as

more precise identification of those at risk and, ultimately a reduced

number of ASCVD events.40,96 Also, acquisition of genetic data is rap-

idly falling, both the older, but still common, genotyping technique (es-

timated at $30USD, £25)40,96 and the newer low-pass whole genome

sequencing are decreasing in price even while the technology improves.

It is anticipated that the cost-effectiveness of PRS will continue to

improve.40,96

Beyond early interventions, identification of people at high-risk could

facilitate more effective screening. Examples where this might be the

case include wearable devices for AF detection, regular cardiac imaging

for heart failure, home blood pressure monitoring for hypertension,

and targeted HbA1c checks for type 2 diabetes. Family screening may

also be beneficial in individuals with a high PRS.

Secondary prevention
The clinical utility for PRS in secondary prevention is more limited, as

the presence of disease typically signifies high-risk and leads to the ini-

tiation of medications and interventions. However, there may be some

utility in predicting disease complications and disease progression.

Following a diagnosis, the trajectory of disease can be difficult to deter-

mine and PRS could conceivably have a role in identifying individuals

who require more intensive therapies; for example, multiple medica-

tions or higher doses in hypertension and tailoring of therapy in

T2DM where PRS may assist in predicting macro- and microvascular

complications.

Next steps
There are many opportunities to further PRS research. Most of the cur-

rent limitations stem from a lack of diversity within biobanks and

enrichment of non-European participants is an urgent priority. There

is also a paucity of data for people aged <40 and older than 80. While

the clinical benefit in those over 80 will likely be modest, it is expected

that predictive benefit will be greatest in the young,27,32 as PRS is appre-

ciable from birth, long before the emergence of clinical risk factors.

Evidence to support this come from the FinnGen biobank where indivi-

duals in the top 2.5 percentile PRS developed CAD >4 years before

those in the 20–80th percentile PRS [−4.35 (−4.84 to −3.86)], and

>6 years before those in the lowest 2.5 percentile PRS.32

Furthermore, in the UKBB, almost 10% of participants who had at least

a 3-fold increased risk of CAD could not be identified by clinical risk fac-

tors alone.23

Concerns surrounding the portability of PRS across diverse ancestry

groups are well-recognized,97 and increasing the ancestral diversity of

participants in studies and biobanks is critical. However, data produced

from biobanks will take time. In the meantime, emerging evidence sug-

gests some portability of PRS across ancestral groups25 (Table 1). For

example, using data from Atherosclerosis Risk in Communities cohort,

the Multi-Ethnic Study of Atherosclerosis, UKBB, and Chinese Biobanks

show that the improved prediction with the addition of PRS into the

AHA/ACC PCE was seen in individuals identified as ‘Europeans’,

‘black/African American/black Caribbean/black African’, ‘Chinese’ and

‘South Asians (Indian, Bangladeshi or Pakistani)’ (Table 1). It is important

to note that all of these studies ensured recalibration of PRS to the tar-

get population, typically by comparing the observed vs. expected

events. This is essential to ensure any enhanced predictive performance

is meaningful improvement, rather than a poorly calibrated model.

Despite predictive benefits with the addition of PRS to clinical risk tools

across ancestry groups, benefit still remains unequal. 98

Portability tools andmethods should be used to ensure equity of PRS

across ancestral groups, but the ultimate solution remains the inclusion

of more diverse groups into studies and biobanks. Perhaps the best ex-

ample of the power of diversity of genetic studies is the 2021 analysis of

1.65 million individuals that showed improved polygenic prediction of

lipids with diverse participants.99 With the 2022 release of All of Us

genetic data, of which >50% of participants identify as ‘non-white’,

portability and equality of PRS should improve.100

A small number of RCTs have examined PRS (Figure 2), but most

have been post-hoc analyses. For example, Mega et al examined the ef-

fect of statins stratified by genetic risk in an observational study (the

Malmo Diet and Cancer Study) and four RCTs (two primary preven-

tion: JUPITER and ASCOT, and two secondary prevention: CARE

and PROVE IT-TIMI 22).101 The meta-analysis of these trials showed

greater relative benefit from statins in higher risk genetic groups: rela-

tive reductions in CAD across genetic risk quintiles: intermediate quin-

tiles (2–4) [29% (16%–41%)] and highest quintile [48% (29%–63%)] and

also greater absolute benefit for the participants in high genetic risk

[three-fold decrease in the number needed to treat to prevent one

CAD event (P= 0.01)].101 Similar results were seen in analyses of other

statin trials, acrossWOSCOPS, ASCOT, and JUPITER primary preven-

tion trials, where participants in the highest quintile of genetic risk had a

greater relative risk reduction (46% compared with 26% for the rest of

the cohort, P for heterogeneity= 0.05).102 Similarly, absolute risk re-

duction was greater: 3.6% (95% CI 2.0–5.1) vs. 1.3% (95% CI 0.6–

1.9).102

Newer PRS, with larger numbers of included SNVs, have also been

shown to be of value in trials of PCSK9 inhibitors. For instance, the

ODYSSEY OUTCOMES investigators showed that a PCSK9 inhibi-

tor (alirocumab) had greater absolute (6.0% vs. 1.5%) and relative

risk reduction in participants with high PRS (>90th percentile, HR:
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0.63 (0.46–0.86)) compared with those with low PRS [≤90th per-

centile, HR: 0.87 (0.78–0.98)] (Figure 2).103 Similarly, results from

the FOURIER trial showed that evolocumab had a greater absolute

(4%) and relative risk reduction [HR: 0.69 (0.55–0.86)] in partici-

pants with high genetic risk compared with participants at high

clinical risk (Figure 2).104 Similar results have been seen in RCTs

for IS.48,50

Future RCTs will add valuable data as most current measures of pre-

dictive performance are from observational data and expressed as NRI

and C-statistic, which have been criticized as misleading, and overly re-

liant on risk thresholds.105,106 There is now a consensus regarding best

methodological practice for PRS papers,107most notably: an independ-

ent training and test cohort of participants, methodological approaches

to account for LD, calibration assessment, and quantification of accur-

acy metrics (such as C-statistic), particularly against current clinical

practice.

As clinical utility is considered, there is likely to be varying thresholds

and metrics that stakeholders will consider sufficient to merit interven-

tion. To some degree, this theme has already emerged in academic lit-

erature. For example, a 2020 study of PRS for CAD concluded that a

NRI of 4.4% (3.5%–5.3%) was ‘modest’ and did not warrant clinical im-

plementation.33Others have disagreed.108 Thresholds of improvement

that constitutes clinical improvement will likely be disease-specific.

It should be noted that many of the studies reported in this review

use the same datasets. For instance, most stroke PRS reported in this

state-of-the-art review are constructed from the MEGASTROKE con-

sortium, and many PRS are validated in the UKBB.With the emergence

of further biobanks (All of Us, Japanese Biobank, Chinese Biobank,

FinnGen, and Our Future Health), this limitation should diminish with

time.

Conclusions
Of the diseases reviewed, PRS for CAD, AF, and T2DM appear to have

the most consistent evidence for clinical utility. A lack of diversity

among participants in GWAS and PRS studies is an important limitation

that needs to be addressed through development of ancestrally-diverse

biobanks. Improved clinical phenotyping is required to improve stratifi-

cation of broad phenotypes such as heart failure. Nevertheless, as the

science continues to improve, it seems likely that the inclusion of PRS

into risk tools will benefit clinical patient care.
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risk reduction: 4% vs 0.7%, P= 0.004, hazard ratio: 0.69 (0.55–0.86)

for high polygenic risk score]104 and ODYSSEYOUTCOMES trial (ab-

solute risk reduction: 6% vs. 1.5%, interaction P= 0.04).103 High poly-

genic risk score was defined as top 20% in FOURIER, and top 10% in

ODYSSEY OUTCOMES. Panel B shows the hazard ratios for PCSK9

inhibitors in the high risk polygenic risk score groups in each trial:

FOURIER: hazard ratio: 0.69 (0.55–0.86), and ODYSSEY

OUTCOMES: 0.63 (0.46–0.86).
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