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Abstract

Unmeasured confounding is one of the main sources of bias in observational
studies. A popular way to reduce confounding bias is to use sibling compar-
isons, which implicitly adjust for several factors in the early environment or
upbringing without requiring them to be measured or known. In this article
we provide a broad exposition of the statistical analysis methods for sibling
comparison studies. We further discuss a number of methodological chal-
lenges that arise in sibling comparison studies.
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1. INTRODUCTION

A common research objective is to estimate the causal effect of a particular exposure on a partic-
ular outcome. A major obstacle is that, unless the exposure is controlled and randomized by the
researcher, there are often common causes—confounders—of the exposure and the outcome. In
the presence of confounding, the exposure and the outcome are statistically associated even in the
absence of a causal exposure effect.

To reduce confounding bias, researchers typically attempt to measure potential confounders
and adjust for these in the statistical analysis. However, this strategy is often hampered by the facts
that the number of potential confounders may be very large and that some important confounders
may be hard to measure or even unknown by the researcher. A popular way to adjust for unmea-
sured confounders is to use designs that compare differentially exposed siblings. Since siblings
are naturally matched on many potential confounders, including several factors in the early envi-
ronment or upbringing, such sibling comparisons implicitly adjust for these shared confounders
without requiring them to be measured or known. In this way, sibling comparison designs are
distinct from more standard matched designs, where all matching variables are completely mea-
sured and determined by the investigator (Rosenbaum 2020). Rather, sibling comparison designs
may be viewed as belonging to the more general class of quasi-experimental designs, which aim to
adjust for unmeasured confounders as well (Rosenbaum 2015). A prominent special case is the co-
twin control study, which, if restricted to genetically identical (i.e., monozygotic) twins, eliminates
confounding by all heritable genetic factors.

The use of sibling comparisons dates back to at least the end of the nineteenth century, when
Sullivan (1899) used siblings to estimate the effect of maternal alcoholism on offspring mortality.
A few decades later, Gorseline (1932) used siblings to estimate the effect of education on salary. In
the beginning of the twentieth century, the Medico-Biological Institute in the Soviet Union sys-
tematically collected data on twin pairs for various studies, of which some used a co-twin control
design (Levit 1935). Other early studies with co-twin control designs were described by Gesell
(1942). Notably though, in these studies the exposure (motor training) was randomized within
twin pairs, which, in large samples, eliminates any confounding bias and thus makes the co-twin
control design somewhat superfluous. From the mid-1900s, sibling/twin comparisons have been
used extensively to study the effects of various exposures, such as smoking (Floderus et al. 1988,
Piirtola et al. 2018), alcohol consumption (Lown et al. 2008, Dai et al. 2015), overweight and obe-
sity (Jonsson et al. 2003, Boone-Heinonen et al. 2020), poor fetal growth (Lawlor et al. 2006, Class
etal. 2014), stressful or traumatic life events (Eisen et al. 1991, Kendler et al. 1999), low cognitive
ability (Murray 2002, Kolk & Barclay 2019), advanced parental age (Lawlor etal. 2011, D’Onofrio
et al. 2014) and neurodevelopmental disorders (Lundstrom et al. 2014, Daley et al. 2019). In the
Nordic countries, co-twin control studies are facilitated by the existence of nationwide twin reg-
istries (Skytthe et al. 2011, Nilsen et al. 2013, Zagai et al. 2019).

The aim of this article is to provide a broad exposition of the statistical analysis methods for
sibling comparison studies. These have been developed with contributions from several fields,
such as epidemiology, biostatistics, econometrics, social science, and causal inference. For ease
of exposition, we mainly focus on outcomes that are measured at a single point in time, without
truncation and censoring. However, most of the methods and models for point outcomes that we
review have close analogies for time-to-event outcomes; we will indicate this as we proceed. We
emphasize that sibling data are a special type of clustered data. Hence, several of the papers and
books that we cite were primarily concerned with other types of clustered data, such as complex
survey data (e.g., Cai & Brumback 2015), studies with repeated measures (e.g., Allison 2009), or just
clustered data in general. A central feature of the methods and estimators that we review is their
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asymptotic (i.e., large sample) bias with respect to a particular target parameter. For simplicity, we
use the term bias throughout as shorthand for asymptotic bias.

Our focus is on estimating the causal effect of an exposure of interest and using siblings to
adjust for unmeasured confounding. We note that siblings are often used for the somewhat dif-
ferent purpose of estimating the heritability of traits. By contrasting the correlation in a trait for
individuals with different degrees of genetic and environmental relatedness (e.g., twins reared to-
gether, twins reared apart, full siblings, half siblings, cousins), it is possible to estimate the genetic
contribution to the trait (Falconer & Mackay 1996). This topic is beyond the scope of our review,
though.

The article is organized as follows. In Section 2, we introduce basic notation and definitions.
In Section 3, we review the analysis methods for sibling comparison studies. We start this section
with an account of model-free methods and then proceed to model-based methods. We end the
section with a brief review of existing software that implements these methods. In Section 4, we
discuss a number of methodological challenges that arise in sibling comparison studies. Finally, in
Section 5, we illustrate the methods and concepts with an application to fetal growth restriction
and attention-deficit/hyperactivity disorder (ADHD).

2. NOTATION AND DEFINITIONS

Let Xj; and ¥; denote the exposure and outcome of interest, respectively, for sibling j within family
i. Let C; denote the set of shared confounders, i.e., those confounders that have the same value
for all siblings in the same family. Let C;; denote the set of nonshared confounders for sibling ;
within family 4, i.e., those confounders that may vary across siblings within the same family. To
distinguish between measured and unmeasured nonshared confounders, we use C?/ for the former.
In practice, C}? would often be a vector of variables. However, to simplify notation we assume that
C7} is a scalar, with obvious generalization to vectors. We assume that data are measured on siblings
from » independent families, with #; siblings in family 7. Finally, for any scalar variable Vj;, we define
the vector V; = (Vji, ..., V},) and the mean V.= Z]. Vij/nj, for each family 7.

The causal diagram (Pear]l 1995, 2009) in Figure 1 illustrates the situation. Although useful
for pedagogical purposes, this causal diagram makes several simplifying assumptions; we prob-
lematize some of these assumptions in Section 4. The aim is to estimate the causal effect of the
exposure on the outcome, represented by the arrow from Xj; to ¥j;. Let Yj(x) be the potential
outcome (Rubin 1974, Little & Rubin 2000) for sibling j in family 7 that we would have observed,
had that subject been exposed to Xj; = x. Causal effects are defined as contrasts (e.g., mean dif-
ferences or risk ratios) between potential outcomes (Pearl 2009, Herndn & Robins 2020). The
sibling comparison methods that we review in the subsequent sections implicitly adjust for all
shared confounders, regardless of whether these are measured or not. However, these methods
do not adjust for unmeasured nonshared confounders. Hence, to make a causal interpretation of
estimates obtained from sibling comparisons, one has to assume that there are no unmeasured
nonshared confounders.

As discussed in Section 4, sibling comparison studies mainly use information from families
where there is variation in the exposure, and they largely ignore families with no variation in the
exposure; we refer to siblings from these families as exposure discordant and exposure concordant,
respectively. When the exposure is binary and there are two siblings in each family, the exposure-
discordant pairs are those where one sibling is exposed (X = 1) and one sibling is unexposed
(X = 0), and the exposure-concordant pairs are those where both siblings are either exposed or
unexposed.
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Figure 1

Causal diagram illustrating a family with #; siblings in a sibling comparison study. The variables Xy, ¥};, and
Cjj represent the exposure, outcome, and nonshared confounders, respectively, for sibling j within family 7,
and the variable C; represents the set of shared confounders.

3. STATISTICAL ANALYSIS METHODS
3.1. Model-Free Analysis

As a starting point, suppose that the exposure is binary (0/1) and that all families have exactly two
siblings (i.e., a sib-pair), which is always the case in co-twin control studies. In this special case
we can adjust for the shared confounders C; without making any parametric model assumptions.
To this end, we restrict attention to the exposure-discordant pairs and compare the distribution
of the outcome between the exposed and the unexposed among these pairs. Since C; is constant
within each sib-pair, the restriction to exposure-discordant pairs ensures that, for each value of
C;, there are exactly the same number of exposed and unexposed subjects. For instance, if C; has
a unique value for each sib-pair, then there will be exactly one exposed and one unexposed for
each value of C; in the restricted sample of exposure-discordant pairs. Or, to put it the other way
around, in this restricted sample, the exposed and the unexposed have identical distributions of
C;. Hence, if we observe that the outcome distribution differs between exposed and unexposed
in the exposure-discordant pairs, then we cannot attribute this to systematic differences in (i.e.,
confounding by) C;.

Comparing the outcome distribution between exposed and unexposed does not require any
parametric model assumptions and can be carried out with standard analytic methods. For in-
stance, to test for an exposure effect, we may use a standard test for paired data, e.g., McNemar’s
test (for binary outcomes), the Wilcoxon signed-rank test (for continuous outcomes), or a paired
log-rank test (for time-to-event outcomes; Jung 1999). To estimate the exposure effect, we may
compute any desired contrast between the exposed and the unexposed, such as the risk differ-
ence, the risk ratio or the odds ratio (for binary outcomes), or the mean difference (for continuous
outcomes). For time-to-event outcomes, we may compute and compare the Kaplan—-Meier curves
(Kaplan & Meier 1958, Klein & Moeschberger 2003) for the exposed and the unexposed. To assess
the sampling variability in the estimate, we would typically like to provide a confidence interval for
the true effect. A simple and general method is to use a Wald confidence interval on the form of
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estimate =+ standard error, where the standard error may be computed with the sandwich formula
(Stefanski & Boos 2002) to account for the paired data structure; Sjolander et al. (2012b, appendix
A) provide a worked example for binary outcomes.

However simple, this analysis has the usual limitations of model-free analyses, such as po-
tentially low statistical power, difficulty in accommodating nonbinary exposures, and difficulty
in adjusting for measured confounders. In addition, the model-free analysis does not general-
ize easily to families with more than two siblings. A more general and flexible analysis is based
on regression models. There is a plethora of model-based analysis methods for sibling compar-
ison studies. To provide a structured exposition and to illustrate how different methods relate
to each other, we organize the methods according to what parameter they aim to estimate and
what parametric assumptions they make. We distinguish between parameters that, in the ab-
sence of unmeasured nonshared confounders, can be interpreted as conditional causal effects and
marginal causal effects. We further distinguish between models that parameterize the relation
between the confounders and the outcome, and models that parameterize the relation between
the confounders and the exposure; we refer to these different models as outcome regressions and
exposure regressions, respectively. Estimation of conditional effects with outcome regression is,
by far, the most common modeling strategy. However, marginal effects and exposure regression
have gained popularity in recent years, particularly with the influence from the causal inference

field.

3.2. Model-Based Estimation of Conditional Causal Effects

In this section, we review the methods for model-based estimation of conditional causal effects.

3.2.1. Outcome regression. To analyze sibling data, it is common to use fixed effects models
of the form

SEX;1G, CFL X} = i + v + BX;, L.
where E(Yj|-) is the conditional mean of the outcome and g is an appropriate link function, typ-
ically the identity link, the log link, or the logit link. The term fixed here refers to the intercept
«;, which is considered a categorical parameter with one fixed level per family. This intercept is
intended to absorb, and thereby adjust for, the shared confounders C;. An analogous fixed effects
model for time-to-event outcomes is the Cox proportional hazards model with a family-specific
baseline hazard (Holt & Prentice 1974).

Model 1, as well as all subsequent models, assumes that there are no interactions between
(a,-,Xij,CZ?) and that all effects are linear, on the scale defined by g. Assuming no interactions
between «; and (Xj;, C77) is necessary, since such interactions pose identifiability problems for the
estimators that we consider (Zetterqvist et al. 2016). The remaining assumptions are mainly to
keep notation simple; in practice, we may allow for more complex relations by adding interactions
between Xj; and Cf}’ and/or nonlinear effects of these, such as splines. However, we note that more
elaborate models also make interpretation more difficult. We return to these important modeling
issues in Sections 3.4 and 4.2.

In Model 1, the exposure coefficient B measures the conditional association of the outcome
with one unit increase in the exposure:

B = gEQ;IC, CF, Xi; = x + 1)} — o{E(X;1C;, (77, X = x)}. 2.
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When there are no unmeasured nonshared confounders, 8 can be interpreted as the conditional
causal effect

glET ;@ + DI, G} — glE{Y;;(0)I(C, G, 3.

i.e., the conditional effect of increasing the exposure with one unit, given (C;, Cj).

A naive approach to estimate g would be to assume a parametric distribution for ¥} and use
standard maximum likelihood (ML) to estimate B jointly with y and «;. Since «; has one level, and
thus one parameter, per family, this approach can be computationally demanding. More seriously,
apart from some special cases, it gives an inconsistent estimate of g (Allison 2009). The reason for
this is that standard ML estimation fails when the number of parameters in the model increases
with the sample size (e.g., the number of families); this is often referred to as the incidental variable
problem (Lancaster 2000). To bypass this problem, 8 is usually estimated with conditional ML,
which eliminates «; by conditioning on the sufficient statistic ) ;1j for each family i, thereby
producing a consistent estimator of 8 (Andersen 1970, Neuhaus & McCulloch 2006). When Y5
is binary and g is the logit link, this is referred to as conditional logistic regression (Breslow &
Day 1980, chapter 7). Goetgeluk & Vansteelandt (2008) proposed an alternative semiparametric
estimator, which requires g to be the identity link or log link but does not require an assumed
parametric distribution for Y. The Cox proportional hazards model with a family-specific baseline
hazard can be fitted with partial likelihood methods; this is referred to as stratified Cox regression
(Klein & Moeschberger 2003, chapter 9.3).

An alternative approach is to use a random effects model. In this approach, «; is assumed to
have a parametric (e.g., normal) distribution, and B is estimated by integrating out ¢; from the like-
lihood. However, this approach is not suitable for sibling comparison studies. This is because the
standard formulation of the random effects model additionally assumes that «; is statistically inde-
pendent of the covariates in the model, e.g., Xj and Cj; this assumption is implicit in standard soft-
ware such as the glmer function in R; the GLIMMIX procedure in SAS; and the xtreg, xtpoisson,
and xtlogit commands in Stata. Since «; is supposed to absorb the shared confounders C;, and
since a confounder by definition has to be associated with the exposure, the model thus assumes
that there are no shared confounders. When this assumption does not hold, which is typically the
case in sibling comparison studies, the model fails to adjust for the shared confounders and thus
gives biased estimates (Allison 2009).

Yet another alternative, which does not suffer from the problem of standard random effects
models, is to use a so-called between-within (BW) model (Mundlak 1978, Neuhaus & McCulloch
2006), also referred to as a hybrid model (Allison 2009) or a poor man’s approximation (to the
fixed effects model) (Neuhaus & McCulloch 2006, Brumback et al. 2010). To motivate this model,
note that we may allow for «; to depend on X; and C” by assuming that

o =af +yC, + BeX,, 4.

where a has a N(u, o2) distribution and is statistically independent of (X;, C?”). Combining
Model 1 with the additional assumption in Equation 4 gives the equivalent model formulation

glE(Y;IC,, C, Xip) = o] + vsC, + BpXi + vClf + Xy, 5.

Here, the parameters (yp, Bg) and (y, B) are referred to as between-effects and within-effects,
respectively. Another common formulation replaces the terms yC}7 and BXj; in the model with
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y(CI’;’ — a”) and B(X;; — X ), respectively. This formulation reparameterizes the between-effects
into yp — y and B — B but leaves the within-effects unchanged. An analogous BW model was
proposed for time-to-event outcomes by Sjolander et al. (2013).

From its derivation through Equation 4, it is clear that the BW model allows for nonshared
confounders by allowing for «; to depend on X; (and C?). However, the formulation of the model
in Equation 5 is still in the standard random effects model format, with an intercept that is inde-
pendent of the model covariates, which means that the model can be fitted with standard software
for random effects models.

The BW model makes stronger parametric assumptions than the fixed effects model, in that
it assumes a parametric distribution for ;. Hence, one would hope that the BW model also gives
more efficient estimates. Unfortunately, though, this is typically not the case. It can be shown that
the fixed effects model and the BW model give identical estimates of 8 when g is the identity
link (Seaman et al. 2014). For other link functions, the estimates are generally not identical but
often very similar (Neuhaus & McCulloch 2006). This indicates that the BW model does not,
in general, provide any efficiency gain over the fixed effects model. However, the similarity of
the estimates also indicates that the BW model is fairly robust against its additional assumptions
and that it may often give consistent estimates even if these assumptions are wrong. This is not
guaranteed, though; Goetgeluk & Vansteelandt (2008) and Brumback et al. (2010) gave numerical
counterexamples, showing that incorrectly specified BW models with log links and logit links,
respectively, may occasionally give biased estimates. Sjélander et al. (2013) showed by simulation
that the BW model for time-to-event outcomes behaves somewhat differently than the BW model
for point outcomes, in that it often gives more efficient estimates than the corresponding fixed
effects (i.e., stratified Cox) model. However, these authors also gave numerical examples showing
that the efficiency gain may come at the price of biased estimates, if the additional assumptions of
the BW model are wrong.

A potential advantage of the BW model is that it provides a way of quantifying the degree of
shared confounding. In the complete absence of shared confounding (i.e., when C; is empty), we
would expect that «; is independent of X}, so that 8z = 0. Conversely, an estimate of 8 that differs
significantly from 0 signals the presence of shared confounding. Intuitively, then, we can use B as
a measure of the degree of shared confounding, where stronger deviations from 0 indicate a higher
degree of confounding. However, an important disadvantage of the BW model is that it generally
requires numeric approximation of complex likelihood integrals and is thus more computationally
demanding than the fixed effects model (e.g., Sjolander 2021).

3.2.2. Exposure regression. Both the fixed effects model in Equation 1 and the BW model in
Equation 5 are outcome regressions, in the sense that they model how the outcome depends on
the shared confounders and the measured nonshared confounders. Specifically, both models can
be partitioned into the target parameter $, as defined in Equation 2, and the outcome nuisance
model,

gEX;1G, Cf;,Xij =0)} =a;+ VCZ 6.
This nuisance model essentially parameterizes the arrows from (Cj, Cj) to ¥j; in Figure 1. In some
scenarios, though, the researcher may prefer to use a model that parameterizes the arrows from
(C,', Cg) to )(z]

Zetterqvist et al. (2016) showed how the target parameter 8 can be estimated with a regression
model for the exposure, when the link function g in Equation 2 is either the identity link or the log
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link. They replaced the outcome nuisance model with an exposure nuisance model on the form

FUEXGIC,C) = af + y*CL,
where we have used superindex* to distinguish between link functions and parameters in the mod-
els in Equations 6 and 7. They derived an unbiased estimating equation for 8 that depends on the
nuisance parameter y* and proposed to estimate B by solving this estimating equation, with y*
replaced by a consistent estimate thereof. Since the exposure nuisance model in Equation 7 is a
standard fixed effects model, a consistent estimate of y* may be obtained either with conditional
ML, or with the semiparametric method of Goetgeluk & Vansteelandt (2008) if g* is the identity
or log link.

Zetterqvist et al. (2019) showed how an analogous estimator of 8 can be obtained in the special
case when both Xj; and Vj; are binary and both g and g* are logit links. This estimator uses the fact
that, due to the symmetry of the odds ratio, B can, in this special case, also be formulated as

B = logit{E(X;;|C;, C7, Vi; = D)} — logit{E(X;;1C;, €7}, ¥y = 0)}. 8.
Combining Equation 8 with the exposure nuisance model in Equation 7 gives the conditional
logistic regression model

logit(E(X;/IC,, CLl, Yip)) = o +*CLl + BV 9.
A consistent estimate of B can be obtained from the model in Equation 9 using conditional ML;
Zetterquist et al. (2019) referred to this as retrospective conditional logistic regression.

In many scenarios, the researcher may not have a clear preference for the model in either
Equation 6 or 7. In such scenarios it could be desirable to have a doubly robust (DR) estimator of
B,1i.e., an estimator that uses both a nuisance model for the outcome and a nuisance model for the
exposure, and is consistent if either model is correct, not necessarily both (Bang & Robins 2005).
Zetterqvist et al. (2016, 2019) derived such DR estimators for 8 as well.

3.3. Model-Based Estimation of Marginal Causal Effects

The causal effect in Equation 3 is conditional, in the sense that it applies to groups defined by
fixed values of the confounders (C;, Cj). However, in some situations it may be more desirable
to estimate a population effect that applies marginally over the confounders. Before discussing
how this can be done with regression models, we note that the model-free analysis described in
Section 3.1 can be viewed as attempting to estimate one such marginal effect. When contrasting
the mean outcome for exposed and unexposed among exposure-discordant pairs, we are in effect
estimating

MEY;1X;; = 1, X5 # Xi)} — H{EQY;1X; = 0, X # X))}, 10.

where 4 is a link function that defines our contrast, e.g., identity, log, or logit. For instance, when ¥
is binary and 4 is the logit link, the contrast in Equation 10 is the exposure-outcome log odds ratio
among the exposure-discordant pairs. When there are no unmeasured nonshared confounders, it
can be shown (Sjolander et al. 2012b) that the contrast in Equation 10 can be interpreted as the
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causal effect
BIE/Y; (D} — BE/{Y;;(0)}]. 11.

In this expression, the expectations are taken with respect to a potential outcome distribution
where C; is distributed as among the exposure-discordant pairs: E/{Y;(x)} = E[E{Y;;(x)|C;}| X #
X;2]. Hence, we may interpret the effect in Equation 11 as the marginal (over C;) causal effect
among the exposure-discordant pairs. In the next section we show how we can use regression
modeling to estimate the effect among all pairs.

3.3.1. Outcome regression. We define the marginal causal effect in the whole sample (e.g.,
both exposure-discordant and exposure-concordant pairs) as

BIERY;;()}] — BELY;(x)}]. 12.

In this expression, the expectations are taken with respect to the distribution of C; (and Cj) in the
whole sample, e.g., the mix of exposure-discordant and exposure-concordant pairs. The values &’
and x are two exposure levels (e.g., 1 and 0) that we wish to contrast. Sjélander (2021) showed how
this marginal effect can be estimated with a fixed effects model. The estimator relies on the fact
that, if there are no unmeasured nonshared confounders, the regression function «; + yC;;? + Bx
can be viewed as a prediction of the potential outcome Vj;(x). Hence, for any fixed value x the mean
potential outcome E{Yj;(x)} can be expressed as

E(Y; (@)} = E(o; + yCJl + ), 13.

where the expectation is taken over («;, C77). When the link function g is the identity link or the log
link, Sjolander (2021) showed thatitis possible to construct an estimate of «;, for each family 7, such
that g(e;) is unbiased. Plugging these estimates into Equation 13 together with the conditional
ML estimates of (y, B), and replacing the expectation with the sample average, gives a consistent
estimate of E{Y}(x)}. This estimation method is referred to as standardization.

Unfortunately, there is currently no analogous estimator of E{Y};(x)} when g is the logit link.
An alternative standardization approach, which works for any link function, is based on the BW
model (Brumback et al. 2010, Cai & Brumback 2015). This approach uses the fact that, under the
additional assumption in Equation 4, the predictor of ¥}(x) can be written as o] + viC, + BpX: +
yCl + Bx. Hence, for any fixed value x, the mean potential outcome E{Y}(x)} can be written as

E(Y;@)} = E(] + ysC; + BeX. + yCij + Bx), 14.

where the expectation is taken over (a/, 5:7’,)7( i C17). A consistent estimate of E{Y;(x)} is obtained
by replacing (v 5, B3, v, ) with their estimates, & with a model-based prediction for each family
i, and the expectation with the sample average (Brumback et al. 2010). Alternatively, one may in-
tegrate out &) from the expectation by using its estimated marginal distribution (Cai & Brumback
2015). A similar estimator for time-to-event outcomes was proposed by Dahlqwist et al. (2019).
The estimator based on the BW model in Equation 5 is computationally demanding and may
not be feasible for large data sets. However, there is an alternative BW model for which estimation
is easier. In this model the random intercept «; is replaced with a fixed intercept &, common for
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all families. The model is thus given by
gEQHIC!, X)) = o + sC, + BeX . + yCll + Xj;. 15.

To distinguish between the BW models in Equations 5 and 15, Sjélander (2021) referred to the
former as conditional and the latter as marginal. The marginal BW model appears to be more
common than the conditional BW model in certain fields, particularly in twin research (Carlin
etal. 2005). Sjolander et al. (2012a) discussed the interpretation of the parameter § in the marginal
model. They showed that 8 may be interpreted as being partly marginal and partly conditional;
it is marginal over the shared confounders C; but conditional over the measured nonshared con-
founders C;. Sjélander (2021) showed how the marginal BW model can be used to estimate the
fully marginal effect in Equation 12 by averaging over the measured nonshared confounders. Since
the marginal BW model is a standard generalized linear model that does not require numerical
integration of complex likelihoods, this estimator can be computed very quickly with standard
software, even for large data sets.

3.3.2. Exposure regression. Skinner & D’Arragio (2011) showed how marginal causal effects
can be estimated with the exposure regression in Equation 7, provided that there are no unmea-
sured nonshared confounders, the exposure is binary, and g* is the logit link. Their approach uses
inverse probability weighting (IPW) and is similar to the estimation of causal effects in marginal
structural models (Herndn & Robins 2020). However, an important difference is that the model
in Equation 7 has a family-specific intercept e, which complicates the weighting scheme. In line
with standard conditional logistic regression, Skinner & D’Arragio (2011) proposed to condition
on the sufficient statistic ) ;Xj; for each family 7, which eliminates «; from the weights.

While avoiding the incidental parameter problem, this conditioning induces another
problem—namely, that some siblings will have infinitely large weights. This happens when one at-
tempts to estimate the mean potential outcome E{Y;(x)} for a specific exposure level x (0 or 1), and
there are families where no sibling has this exposure level. For such siblings, the conditional prob-
ability of receiving Xj; = «, given )_;Xj, is 0, which gives infinity when inversely weighted with.
A simple solution to this problem is to restrict the analysis to the exposure-discordant siblings,
i.e., to the families with at least one exposed and one unexposed sibling, thereby estimating the
marginal causal effect in this subsample (Sjolander 2021). In the special case when all families have
exactly two siblings, this becomes the marginal causal effect among the exposure-discordant pairs
(Equation 11). Current open questions are whether exposure regression can be used to estimate
the marginal causal effect in the whole sample (Equation 12) and whether it can accommodate
nonbinary exposures.

3.4. Marginal or Conditional Causal Effects?

Marginal and conditional causal effects answer different research questions, and the choice be-
tween these should ideally be driven by subject matter interest and scientific relevance. For in-
stance, if the aim is to estimate the effect of imposing an intervention (e.g., preventing an exposure)
from the whole population, then the marginal effect in Equation 12 is a relevant target parameter.
If the intervention may only be imposed on a subgroup of the population, then the conditional
effect in Equation 3 may more accurately reflect its effect.

As noted earlier, we may sometimes wish to make the models in Equations 1 and 5 more re-
alistic by adding, for instance, splines or interactions between Xj and CZ’ This generally makes
the interpretation of conditional effects more difficult, since the conditional exposure-outcome
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relation is then quantified by several parameters simultaneously. For instance, when C7? contains
five measured confounders, there are also five possible exposure-confounder interactions that we
may wish to include in the model, which are all part of the conditional effect. However, the inter-
pretation of marginal effects does not necessarily become more difficult since these average out
over all interactions. Hence, by focusing on marginal causal effects, the researcher is relieved from
the pressure to keep interpretation simple by using overly simplistic models.

That said, we note that the aim of some studies is precisely to detect interactions between the
exposure and predictors for the outcome (e.g., confounders). For instance, when the aim is to
implement an intervention, one may want to understand how the effect varies across subgroups
(e.g., who is helped by the new treatment). Even when the aim is not to implement interventions,
but rather to understand the etiology of the exposure-outcome relation, it may often be important
to investigate how this relation varies across subgroups. If so, then marginal effects are irrelevant,
since these are uninformative about effect heterogeneity.

Finally, we note that there are situations in which marginal and conditional effects coincide.
In the models in Equations 1 and 5, we have assumed that the conditional effect is constant (= B)
across levels of the confounders. Under this assumption, and if g is the identity link or log link,
the marginal causal effect in Equation 12, with » = gand &’ = x + 1, is equal to the conditional
causal effect in Equation 3. This is intuitively reasonable; if the exposure effect is the same for,
say, women and men, we would expect that it is also the same in the mixed sample of women
and men. Hence, in this special case, nothing is gained by standardization. However, for other
link functions such as the logit link, marginal and conditional effects are not generally equal,
even when the conditional effect is constant across levels of the confounders; this phenomenon
is referred to as noncollapsibility (Greenland et al. 1999). In the special case when there is no
confounding, and the family-specific intercept o, has a normal distribution with variance o, it
can be shown that the conditional odds ratio is approximately +/1 4+ 0.3460? times the marginal
odds ratio (Fitzmaurice et al. 2011). This indicates that the degree of noncollapsibility tends to
increase with the heterogeneity in the outcome over clusters, e.g., with 0.

3.5. Software

Most of the methods and models that we have reviewed have been implemented in standard soft-
ware, and new implementations are frequently made. We provide here a few examples that we
have experience with, which appear robust and well programmed.

In R, conditional logistic regressions and stratified Cox regressions can be fitted with the
clogit and coxph functions, respectively, in the survival package. The fixed effects model in
Equation 1 can be fitted with the gee function in the drgee package; this function uses the semi-
parametric estimator of Goetgeluk & Vansteelandt (2008). The BW model in Equation 5 can be
fitted with functions for random effects models, such as the glmer function in the 1me4 package.
Estimation of conditional effects with the exposure regression in Equation 7, as well as DR es-
timation, can be carried out with the drgee function. Estimation of marginal causal effects with
(log-)linear fixed effects models or marginal BW models can be carried out with the stdGee and
stdGlm functions, respectively, in the stdReg package.

In Stata, conditional logistic regressions and stratified Cox regressions can be fitted with the
clogit and stcox commands, respectively. The fixed effects model in Equation 1 and the BW
model in Equation 5 with identity, log, and logit links can be fitted with the xtreg, xtpoisson,
and xtlogit commands, respectively; for fixed effects models these functions use the conditional
ML estimator. Estimation of marginal causal effects with marginal BW models can be carried out
with the margins command.
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In SAS, conditional logistic regressions and stratified Cox regressions can be fitted with the
LOGISTIC and PHREG procedures, respectively. We have found no general implementation of the
conditional ML estimator or the semiparametric estimator of Goetgeluk & Vansteelandt (2008) in
SAS, but Allison (2005) provides workarounds for several link functions of the fixed effects model
in Equation 1. The BW model in Equation 5 can be fitted with the GLIMMIX procedure.

4. METHODOLOGICAL CHALLENGES

Although sibling comparison studies are powerful tools to adjust for unmeasured confounding,
they have special challenges that are not present, or present to a lesser extent, in studies of unre-
lated individuals. Several of these challenges arise because in order to estimate the exposure ef-
fect, sibling comparison studies mainly use information from the exposure-discordant siblings and
largely ignore the exposure-concordant siblings. In particular, sibling comparison studies ignore
all subjects without siblings. This is obvious for the model-free analysis of exposure-discordant
pairs and the IPW analysis of Skinner & D’Arragio (2011), but it is also true for the fixed effects
model discussed in Section 3.2.1, regardless of whether one uses the conditional ML estimator or
the semiparametric estimator of Goetgeluk & Vansteelandt (2008). On a superficial level, the BW
model may seem to use information from all siblings; however, the close similarity between the es-
timates from the fixed effects model and the BW model indicates that the latter mainly relies on the
same subsample of exposure-discordant siblings as the former. An important exception is the BW
model for time-to-event outcomes, which seems to borrow information from all siblings, thereby
producing a more efficient estimate than the stratified Cox regression (Sj6lander et al. 2013). The
standardization methods described in Section 3.3.1 use information from all siblings when aver-
aging in the expressions in Equations 13 and 14; this is how they are able to estimate the marginal
effect (Equation 12) in the whole sample. However, these averages are functions of the conditional
effect B, which is estimated by mainly using information from the exposure-discordant siblings.

The distinction between informative and noninformative siblings is useful to convey the special
challenges of sibling comparison studies, but this distinction is not always clear-cut. First, some
of the exposure-concordant siblings may have a slight influence on the estimated exposure effect.
"This happens if there are measured nonshared confounders and the exposure-concordant siblings
are discordant in these confounders. The siblings will then contribute to the estimated confounder
effects, and since the exposure and confounder effects are not orthogonal (e.g., the likelihood for
B and y under the models in Equation 1 or 5 does not factorize), the siblings may therefore
also contribute indirectly to the estimated exposure effect. Second, when the exposure is truly
continuous and measured with high accuracy, there will be no siblings that are perfectly exposure
concordant since no individuals will have exactly the same exposure levels. In practice, though, one
would typically expect that families with little or no variation in the exposure contribute relatively
little to the estimated exposure effect. For pedagogical purposes, we thus argue in the following
sections as if the distinction between informative and noninformative siblings is clear-cut and as
if sibling comparison studies are entirely restricted to exposure-discordant siblings.

4.1. Low Statistical Power/Efficiency

An obvious consequence of the restriction to exposure-discordant siblings is a loss of statistical
power/efficiency. This becomes clear when contrasting the sibling comparison estimate with a
population-level estimate obtained by treating the siblings as unrelated individuals, e.g., by ana-
lyzing the siblings with ordinary linear or logistic regression. Whereas the population-level esti-
mate is often expected to have larger bias, since it is not adjusted for any unmeasured confounders
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shared within families, the sibling comparison estimate often has much higher variance—e.g.,
wider confidence intervals—due to the smaller effective sample size.

One way to handle this problem is to weigh the two estimates together to minimize mean
squared error (MSE) (Kalish 1990, Greenland 1991, Sjolander 2013). However, the optimal
weights that are guaranteed to minimize the MSE are usually unknown, and there is no guar-
antee that the MSE is minimized in finite samples when the weights are estimated from data.
Furthermore, optimal weights have currently only been derived for odds ratios, and without tak-
ing measured confounders into account. Finally, due to noncollapsibility, the two estimated odds
ratios will generally have different interpretations, even in the complete absence of confounding.
Hence, it is not straightforward to interpret the (asymptotic limit of the) weighed estimate.

4.2. Poor Generalizability to the Whole Sample

Another consequence of the restriction to exposure-discordant siblings is that the sibling com-
parison estimates may not generalize well to the whole sample. Both the fixed effects model in
Equation 1 and the BW model in Equation 5 assume that the exposure effect is constant and
equal to B across all levels of Cj, i.e., across all families. Under this assumption, the effect that is
estimated from the exposure-discordant siblings applies to all siblings. This is a crucial assumption
for the standardization methods discussed in Section 3.3.1, and it is the handle that allows these
methods to estimate the marginal effect (Equation 12) in the whole sample. However, the assump-
tion of a constant exposure effect is strong and untestable, and it is likely violated to some extent
in any real scenario. When the assumption is violated, the estimate of B is a weighted average of
the C;-specific effects, where the weight depends on the distribution of C; among the exposure-
discordant siblings (Sjolander et al. 2012b, Sjolander & Zetterqvist 2017). One may thus argue
that, in practice, the analysis based on the fixed effectsyBW model may not be more informa-
tive about the whole sample of both exposure-discordant and exposure-concordant siblings than
is the model-free analysis or the IPW analysis by Skinner & D’Arragio (2011). The difference,
one may argue, is that the latter analyses are more honest about what can reasonably be learned
from data, in that they refrain from making strong extrapolations from exposure-discordant to
exposure-concordant siblings and are more explicit about what parameter is being estimated in
practice—i.e., the marginal effect (Equation 11) among the exposure-discordant siblings.

One way to assess the degree of generalizability from sibling comparison studies is to com-
pare the distribution of measured characteristics between exposure-discordant and exposure-
concordant siblings. If these differ substantially, then this indicates that the siblings that are infor-
mative for sibling comparisons are special in some sense and that the sibling comparison estimates
may not generalize well to the whole sample. However, we note that this method is at best indica-
tive, since it does not take unmeasured confounders into account.

4.3. Amplified Bias Due to Unmeasured Nonshared Confounding

In most observational studies, there are unmeasured confounders. When the unmeasured con-
founders are not shared within families, it can be shown that sibling comparison studies often
tend to amplify the bias due to these, as compared with studies of unrelated individuals (Griliches
1979, Frisell et al. 2012). This happens when the exposure is correlated within families due to other
reasons than shared confounding, as illustrated by the double dashed arrow between Xj; and X,
in the causal diagram of Figure 2 for a family with two siblings. Such correlation is likely present,
to some extent, in virtually all sibling comparison studies. In Figure 2 we absorb the shared con-

founders C; into the nonshared confounders Cj,

thereby making these partly shared, and thus also
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Figure 2

Causal diagram illustrating amplified bias due to unmeasured nonshared confounding (the dashed double
arrow between Xj; and X)), for a family with two siblings. The shared confounders C; have been absorbed
into the nonshared confounders Cj;, making them partly shared and thus also correlated, as illustrated by the
dashed double arrow between Cj; and Cjs.

correlated. This latter modification is mainly for pedagogical purposes, as it gives more intuitive
bias expressions. However, one may also argue that the clear-cut distinction between shared and
nonshared confounders in Figure 1 is somewhat artificial, since very few confounders are in prac-
tice exactly equal within families. For instance, even monozygotic twins may have slightly different
genomes due to postfertilization mutations.

To understand why the bias is amplified, suppose for pedagogical purposes that all variables
are binary and that all arrows on the diagram represent positive effects—e.g., C; = 1 increases the
probability of Xj; = 1. Due to the correlation between Xj; and X, these exposures tend to be equal
in a random pair taken from the whole sample. However, sibling comparison studies are restricted
to the exposure-discordant pairs, i.e., to the subsample where Xj; and X}, are not equal. In order
for Xj; and X, to differ, there has to be a differential influence of other factors, presumably C;; and
C;,. Hence, to explain that, say, X;; = 0 and Xj; = 1, we would expect that C;; =0and C;; =1 as
well—i.e., we would expect a correlation between Cj; and Xj;. Of course, even in the whole sample
of all pairs, there is a correlation between Cj; and Xj; due to the positive effect of Cj; on Xj;, but in
the subsample of exposure-discordant pairs, this correlation has to be stronger in order to override
the correlation between Xj; and Xj; and make these unequal. As the selection imposes a stronger
correlation between Cj; and Xj;, the confounding influence by Cj; becomes stronger as well.

Griliches (1979) and Frisell et al. (2012) derived analytic bias formulas under linear models, and
Frisell et al. (2012) provided simulations under logistic models for the scenario in Figure 2. The
formulas for linear models are pedagogically useful, so we reproduce one of them here. Suppose
that Cj; in Figure 2 is completely unmeasured, and let biasgy.q and bias, be the biases of the sibling
comparison estimate and the population-level estimate of 8, obtained from a linear fixed effects
model and an ordinary linear regression model, respectively. The ratio of biases is given by

; 2 2 2

binsged Y o; tox 16

bias,. 252 2 1-px )
Im y oo+ oy Toc

In this expression, y is the effect of C;; on Xj; o is the variance of Cjj; p¢ is the correlation between

1>
Ci and Cp; o} is the conditional (residual) variance of X, given Cjj; and py is the conditional
correlation between Xj; and X, given C;; and Cj. Thus, p¢ parameterizes the dashed double
arrow between C;; and Cj in Figure 2, and py parameterizes the dashed double arrow between
X1 and Xj,. The numerator and denominator in Equation 16 differ by the term t—’;’é. When
pc increases, this term increases as well, so that the bias ratio decreases. This makes intuitive
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sense since, in the limit when Cj; is perfectly shared within families (o¢ = 1), the fixed effects
model eliminates all confounding bias so that the bias ratio is 0. However, when py increases, the
bias ratio increases as well. This is a consequence of the restriction to exposure-discordant pairs
explained above; the larger the correlation px, the stronger the confounding influence by Cj; in this
restricted subsample. When px > p¢, the fixed effects model gives larger bias than the ordinary
linear regression, and thus the elimination of bias due to shared confounders is outweighed by the
amplified bias due to unmeasured nonshared confounders.

4.4. Attenuated Effect Due to Measurement Errors in the Exposure

In many studies, the observed variables are measured with error. It can be shown that random mea-
surement errors in the exposure tend to attenuate the estimated effects more strongly in sibling
comparison studies than in studies of unrelated individuals (Griliches 1979, Frisell et al. 2012).
"This happens for similar reasons as the bias amplification discussed in the previous section. Let
X; be the observed exposure level for sibling j within family 7 in the presence of measurement
error, X} is not necessarily equal to Xj;. The subsample of apparently exposure-discordant pairs
(X1 # X3) is a mixture of pairs that are truly exposure discordant and pairs that are truly exposure
concordant. If the correlation py is large, then the true exposures X;; and X, tend to be equal
in any given pair. Hence, if the observed exposures X and X} are not equal, then we may sus-
pect that this is due to measurement error and that the apparently exposure-discordant pair is
truly exposure concordant. The larger the correlation py, the more likely this misclassification
is to happen, and the greater the attenuation of the estimated effect in the selected subsample of
apparently exposure-discordant pairs will be.

Ashenfelter & Krueger (1994) proposed a way to correct for this measurement error bias when
more than one measure of the exposure is available. In their co-twin control study of economic
returns to schooling, each twin was asked to provide information about her co-twin’s education
history as well her own. By having two measures of the exposure for each twin and assuming an
additive model for the measurement errors with uncorrelated errors, the authors were able to
derive a bias-corrected estimate for the fixed effects model with identity link. However, there is
currently no extension of the method for models with other link functions.

4.5. Bias Due to Carryover Effects

The causal diagram in Figure 1 assumes that the exposure and outcome of one sibling have no
effect on the exposure and/or outcome of the other sibling. However, such carryover effects may
often be present in real studies. Sjolander et al. (2016) provided a discussion of various types of
carryover effects and their implications. They showed that carryover effects generally lead to bi-
ased estimates in sibling comparison studies, and they derived bias expressions under fixed effects
models with identity and logit links. They concluded that the bias tends to attenuate the estimated
effect toward the null in some common scenarios, thus producing a conservative estimate of the
true exposure effect. Furthermore, some types of carryover effects may not give bias under the null
hypothesis of no exposure effect, in which case the statistical test of this null hypothesis remains
valid.

As an example of how carryover effects may give bias, consider the sibling comparison study of
Meyer et al. (2004), where the exposure was maternal smoking and the outcome was birth defects
in the offspring. Suppose that women who give birth to a child with birth defects tend to avoid
smoking during the next pregnancy to minimize the risk that birth defects occur in the subsequent
child as well. This outcome-to-exposure carryover effect is represented in the causal diagram of
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Figure 3

Causal diagram illustrating exposure-to-outcome carryover effects, for a family with two siblings. The arrow
from Y1 to Xj» represents an outcome-to-exposure carryover effect.

Figure 3. A consequence of this carryover effect is that children who are unexposed are more
likely to have an older sibling with birth defects than children who are exposed. Thus, among
the exposure-discordant siblings (e.g., first sibling exposed, second sibling unexposed), the out-
come tends to be more common among the exposed sibling than among the unexposed sibling, in
the complete absence of an exposure effect. Hence, for this type of carryover effect, even a statisti-
cal test of the null hypothesis is invalid. Sj6lander et al. (2016) gave a more general explanation for
the bias induced by carryover effects, based on properties of conditional ML estimators. Petersen
& Lange (2020) provided further discussion of the symmetric scenario where there is a carryover
effect of Xj; on ¥}; and a carryover effect of Xj; on Y};. They showed that, although the conditional
ML estimate of B in the fixed effects model is biased under this scenario, it still has a causal inter-
pretation in the absence of unmeasured nonshared confounders. However, for nonlinear models,
this causal interpretation is rather nonstandard as it simultaneously includes the exposures and
outcomes for both siblings.

One may attempt to use the observed data to test for the presence of carryover effects. For
instance, Meyer et al. (2004) regressed the exposure X, of the second sibling on the outcome ¥}
of the first sibling, while controlling for the exposure Xj; of the first sibling. When observing no
conditional association between Y;; and X}, these authors concluded that birth defects in the first
sibling are not likely to influence maternal smoking behavior in the second sibling. The authors’
rationale for this analysis can be understood from the causal diagram in Figure 3; conditioning
on Xj; blocks the path ¥;; < Xj; < C; — X,, and thus one would perhaps expect ¥}; and X, to be
conditionally independent, unless there was also a path ¥;; — Xj;. However, the causal diagram
also reveals that the conditioning on Xj; opens the path V};; < C;; — Xj; < C; — Xj; on which
X1 acts as a collider (Greenland 2003). Hence, the absence of conditional association between
Y; and X;; may, at least in principle, also be explained by an association component along this
opened path that has the opposite sign of, and almost perfectly cancels with, a carryover effect
of ¥;; on Xj,. This example illustrates that carryover effects are difficult to test for, due to the (at
least partly) unmeasured confounders Cj; and C;. Sj6lander et al. (2016) provided other examples
as well as possible strategies to reduce bias for some types of carryover effects.

4.6. Shared Mediators

We have argued that sibling comparison studies automatically adjust for all shared confounders.
However, covariates that are shared within the family may not necessarily be confounders, which
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Figure 4

Causal diagram illustrating shared confounders (C;), mediators (M;), and colliders (I;), for a family with two
siblings.

is illustrated by the causal diagram of Figure 4 for a family with two siblings. In this diagram, the
variable M; represents the set of shared mediators; these are affected by the exposures (Xj1, X5)
and in turn affect the outcomes (¥;;, ¥5). The variable ¥ represents the set of shared colliders;
these are affected by both the exposures (X1, X») and the outcomes (¥, 17). Since the fixed effects
model and the BW model adjust for the shared confounders in an implicit fashion, by absorbing
these into the family-specific intercept «;, one may wonder whether these models also absorb and
thereby implicitly adjust for the shared mediators and colliders. Using both analytic arguments and
simulations, Sjolander & Zetterqvist (2017) showed that the models do indeed adjust for shared
mediators as well as shared confounders, but not for shared colliders.

It follows that the estimated effect in a sibling comparison study may not be interpreted as a
total exposure effect, but rather as a direct effect from which all influence through shared medi-
ators has been washed out. We emphasize that this may not necessarily be viewed as a bias, but
as an inherent feature of sibling comparison studies to implicitly define the target parameter as a
direct effect. Whether this feature is positive or not depends on whether the direct or total effect
is most relevant for the research question at hand. That the estimate is not adjusted for shared
colliders is entirely positive though, since adjustment for colliders would lead to bias—e.g., to an
observed exposure-outcome association even in the complete absence of a causal effect (Greenland
2003).

5. ILLUSTRATION: FETAL GROWTH RESTRICTION AND
ATTENTION-DEFICIT/HYPERACTIVITY DISORDER

Several studies have shown that poor fetal growth is statistically associated with various neuropsy-
chiatric conditions, such as autism spectrum disorder (Lampi et al. 2012), depression and bipolar
disorder (Nosarti et al. 2012), and schizophrenia (Abel et al. 2010). However, the strong poten-
tial for confounding by unmeasured (e.g., genetic) factors raises concerns about whether these
statistical associations represent causal relations. To adjust for unmeasured familial confounding
in this context, Pettersson et al. (2015) carried out a co-twin control study of the association be-
tween fetal growth restriction and ADHD symptoms. Using data from the Swedish Twin Registry,
they found a statistically significant association between low (for gestational age) birth weight and
high degree of ADHD symptoms. As an illustration, we elaborate on and extend the analysis by
Pettersson et al. (2015).
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5.1. Data

Birth weight was obtained from the Medical Birth Registry, which contains data from more than
95% of all births in Sweden. ADHD symptoms were assessed when the twins were between 9
and 12 years old, through telephone interviews with their parents. The symptoms were measured
with two continuous scores, ranging from 0 to 9, corresponding to inattention and hyperactivity—
impulsivity symptoms, respectively. Finally, these two scores were added to produce a total ADHD
score ranging from 0 to 18. Pettersson et al. (2015) included both monozygotic and dizygotic
(DZ) twins in their analysis; we focus here on the DZ twins. After excluding pairs with missing
information, the original data set comprises 11,816 twins from 5,908 pairs, born between 1992 and
2000. These data are not publicly available. Thus, to enable the reader to replicate our analyses,
we simulated data that are very similar, but not identical, to the real data. R code for the simulation
is provided in the Supplemental Appendix.

Pettersson et al. (2015) considered birth weight as their exposure and adjusted for gestational
age in all analyses. Arguably, though, the underlying causal agent (if any) is instead fetal growth,
which is captured by birth weight and gestational age jointly. Thus, we defined our exposure as
the standardized birth weight,

birth weight,, = birth weight — E(birth weight|gestational age)

sd(birth weight|gestational age)

where E(birth weight|gestational age) and sd(birth weight|gestational age) are the gestational age—
specific mean and standard deviation, respectively (Land 2006). In this definition we used the
means and standard deviations in the general population of all infants as estimated by Marsil
et al. (1996), not the mean and standard deviation in the subpopulation of twins. We also used a
binary version of the exposure, where we followed a common convention and defined infants with
standardized birth weight below the 10th percentile (i.e., birth weightyq < —1.28, assuming that
birth weightyq has a standard normal distribution) as small for gestational age (SGA) (Wikipedia
2020).

5.2. Descriptive Statistics

Figure 5 shows the distribution of standardized birth weight (panel #) and ADHD score
(panel &) for the DZ twins. On average, the twins are considerably smaller at birth than infants
from the general population; the mean standardized birth weight is —0.66. Most twins have few
or no ADHD symptoms; the mean ADHD score is 1.55, and 54% of all twins have a score equal
to 0. The within twin-pair correlations for standardized birth weight and ADHD score are 0.35
and 0.25, respectively. Among all twin pairs, 32.3% are discordant in SGA.

5.3. Methods

We first carried out population-level analyses, which do not adjust for any unmeasured con-
founders. In these analyses we estimated the mean difference in ADHD score between the SGA
and non-SGA twins, and fitted an ordinary linear regression model with standardized birth weight
as the exposure and the ADHD score as the outcome, adjusted for infant sex. We computed 95%
confidence intervals for the mean difference and the estimated regression slope, using the sand-
wich formula (Stefanski & Boos 2002) to account for the paired data structure.

To adjust for unmeasured confounders that are shared within pairs of DZ twins, we car-
ried out co-twin control comparisons. We again estimated the mean difference in ADHD score
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Distribution of standardized birth weight and ADHD score for dizygotic twins from the Swedish Medical Birth Registry. Abbreviation:

ADHD, attention-deficit/hyperactivity disorder.

between the SGA and non-SGA twins, now restricting the analysis to the SGA-discordant twin
pairs. We fitted a linear fixed effects model and a linear BW model, with standardized birth weight
as the exposure and the ADHD score as the outcome, adjusted for infant sex. As a comparison,
we also estimated the exposure coefficient g in these models with exposure regression, using a
linear fixed effects model for standardized birth weight adjusted for infant sex. Finally, to allow for
nonlinear effects, we refitted the fixed effects model for the outcome, replacing the linear expo-
sure term by a natural cubic spline function with knots at the three quartiles in the standardized
birth weight distribution (—1.40, —0.65, and —0.06) of the full sample. To allow for sex-specific
effects, we added an interaction (product) term between this spline function and the sex variable
in the model. Based on the fitted model, we used regression standardization to estimate the mean
counterfactual ADHD score as a function of standardized birth weight. We provide R code for all
analyses in the Supplemental Appendix.

5.4. Results

Table 1 shows the estimated mean difference between SGA and non-SGA twins and the estimated
exposure coefficient 8 together with 95% (Wald) confidence intervals, for the population-level
analyses and the co-twin control comparisons. The population-level analyses indicate that SGA
infants have 0.13 units higher ADHD score than non-SGA infants, on average, and that 1 unit
increase in standardized birth weight is associated with a 0.11 unit decrease in ADHD score, on
average. These associations are somewhat stronger in the co-twin control comparisons, where the
corresponding figures are 0.21 and —0.22, respectively. The estimates and confidence intervals are
virtually identical for the two outcome regressions and the exposure regression, which is expected
from theory (Section 3.2.1). All associations are statistically significant, at 5% significance level.
The estimated between-effect 5 in the BW model (not shown in Table 1) was equal to 0.12,
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Table 1  Analysis results

Estimate 95% CI
Population-level analysis
SGA versus non-SGA 0.112 (0.00,0.21)
Ordinary linear regression —0.11° (=0.16, —0.07)
Co-twin control
SGA versus non-SGA 0.227 (0.08, 0.36)
Outcome regression, fixed effects model —0.19P (—0.26, —-0.13)
Outcome regression, BW model —0.19P (=0.26, —0.13)
Exposure regression —0.19P (—0.26, —0.13)

2Estimated mean difference.
bEstimated exposure coefficient g, adjusted for sex.
Abbreviations: BW, between-within; CI, confidence interval; SGA, small for gestational age.

with a 95% confidence interval equal to (0.03, 0.20). The statistical significance of this estimate
indicates fairly strong evidence of shared confounding.

Figure 6 shows the estimated mean counterfactual ADHD score as a function of standardized
birth weight and the estimated mean difference, using 0 as reference, together with pointwise 95 %
confidence limits. We observe that the estimated effect indeed appears nonlinear and flattens out
at higher standardized birth weights. At a standardized birth weight of 0, the estimated mean is
~1.39, which indicates that, if all children would have a standardized birth weight equal to the
general population mean, then the mean ADHD score would be about 1.39 units. We emphasize
that this causal interpretation crucially hinges on the assumption of no nonshared confounders,

except sex.
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(@) Estimated mean counterfactual ADHD score as a function of standardized birth weight (so/id /ine), with pointwise 95% confidence
limits (dashed lines). (b) Mean difference in estimated counterfactual ADHD score as a function of standardized birth weight (so/id line),
using 0 as reference, with pointwise 95% confidence limits (dashed lines). Abbreviation: ADHD, attention-deficit/hyperactivity disorder.
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5.5. Critical Interpretation of the Findings

The co-twin control comparisons provide fairly strong evidence for a causal effect of fetal growth
restriction on ADHD symptoms. However, the results should be interpreted in light of the chal-
lenges discussed in Section 4. The loss of statistical power/efficiency and the potential for poor
generalizability are strong concerns in the model-free analysis, since the effective sample size is
reduced by two-thirds when dichotomizing birth weight. This may be less of a problem in the
model-based analyses, which avoid dichotomization of birth weight and thereby enable informa-
tion to be drawn from the whole sample.

The potential for amplified bias due to unmeasured nonshared confounding is a concern, since
the standardized birth weights of two twins from the same pair are quite strongly correlated. If the
correlation is largely due to shared (e.g., parental) factors that are not related to the ADHD score,
then this may substantially amplify any existing bias due to unmeasured nonshared confounding.

At first glance, influential bias due to measurement errors in the exposure may not seem likely,
since birth weight is easy to measure with high accuracy and gestational age is identical for both
twins within the pair. However, as argued above, the putative causal agent is fetal growth re-
striction, for which standardized birth weight only serves as a proxy, and it should in general be
recognized that the degree of (bias due to) measurement errors is ultimately determined by how
well our proxy measure correlates with the underlying true exposure. This general point concerns
measurement error, which is random with respect to the twins, however, and it may be argued in
the case of fetal growth that many of the factors that cause birth weight to be a poor proxy of fetal
growth in the whole population are shared by twins (e.g., maternal stature). If measurement error
is indeed shared by twins, the co-twin control will remove such measurement error along with
other shared factors. Taken together, we believe that the accurate measure of birth weight and the
potential for shared rather than random measurement errors make it unlikely that measurement
error has substantially biased the within-twin estimate in our example.

Outcome-to-exposure carryover effects are logically impossible due to the temporal order of
variables; the exposures for both twins occur before the outcomes of both twins. In principle,
though, there could be other types of carryover effects, such as an exposure-to-exposure effect
or an exposure-to-outcome effect. The former would occur if, for instance, the larger size of one
twin inhibits the growth of the other twin. This may indeed be expected, since twins share a finite
supply line and a larger share pooled to one twin may be at direct expense of the other. The latter
would occur if, for instance, a twin born very small receives strong parental attention during the
first years in life, and this induces attention-seeking and rebellious behavior in the co-twin.

Finally, one could imagine that a causal effect of fetal growth restriction on ADHD symptoms
is partly mediated through factors that are shared within families. For instance, if either or both
twins are severely growth restricted, then this may influence the psychosocial environment in the
family, which in turn may influence the behavior of both twins. Such shared mediated effects are
implicitly eliminated in all co-twin control comparisons.

6. SUMMARY

Sibling comparison studies have an indisputable role in observational research. They have a strong
potential to reduce confounding bias, and they can be used to estimate both conditional and
marginal causal effects, with a regression model for either the exposure or the outcome. These
regression models are typically fixed effects models or BW models. Most of the analysis meth-
ods are implemented in standard software, which makes them easily accessible to practitioners.
However, sibling comparison studies suffer from several methodological challenges, which are
not present, or present to less extent, in studies of unrelated individuals. These include potentially
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low statistical power and generalizability, amplified bias due to unmeasured nonshared confound-
ing and attenuated effects due to measurement errors in the exposure, and bias due to carryover
effects and shared mediators. Hence, the results from sibling comparison studies must be inter-
preted carefully with these challenges in mind.
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