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15 years of GWAS discovery: Realizing the promise
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Summary

It has been 15 years since the advent of the genome-wide association study (GWAS) era. Here, we review how this experimental design

has realized its promise by facilitating an impressive range of discoveries with remarkable impact on multiple fields, including popula-

tion genetics, complex trait genetics, epidemiology, social science, and medicine. We predict that the emergence of large-scale biobanks

will continue to expand to more diverse populations and capture more of the allele frequency spectrum through whole-genome

sequencing, which will further improve our ability to investigate the causes and consequences of human genetic variation for complex

traits and diseases.

Introduction

The human genome project can have more than one

reward. In addition to sequencing the entire human

genome, it can lead to identification of polymor-

phisms for all the genes in the human genome and

the diseases to which they contribute.—Risch and

Markangas (1996)1

The fundamental promise of the genome-wide associa-

tion study (GWAS) experimental design was that polymor-

phisms could be detected that are associated with disease

risk at the population level, thereby explaining a propor-

tion of familial risk. 15 years from the first well-designed

GWAS by the Wellcome Trust Case Control Consortium

(WTCCC),2 we reflect on how much this promise has

been fulfilled, not just for disease but for a plethora of

complex trats. In previous reviews,3,4 we discussed the crit-

icism and perceived failure of GWAS and made several

predictions for future discoveries and use of GWAS data.

The initial skepticism of GWAS has largely diminished

because of the overwhelming empirical evidence of its

success. Given the explosion of GWAS discovery and appli-

cations across multiple disciplines, we cannot perform an

exhaustive review of all relevant literature in the permitted

space. Instead, we have focused on major developments in

the last 5 years, revisiting past predictions and looking to

the future of GWAS.

Bigger is better

Large sample sizes have been the primary foundation for

continued and increased discoveries from GWAS. Over

the past 5 years, the average sample size per publication

has more than tripled, substantially increasing the number

of significant associations (Figure 1). Several GWASs,

including those for height,5 smoking initiation,6 educa-

tional attainment,7,8 and blood pressure,9 have surpassed

the symbolic threshold of onemillion, partly through con-

tributions of many smaller cohorts that have increased in

number and size, but mostly because of large numbers of

samples from large-scale biobanks and the company

23andMe, Inc. Among the biobanks, the UK Biobank

(with genotype data of �500,000 deeply phenotyped

participants) has played a leading role,10 beside other

significant initiatives worldwide such as the pioneering

deCODE Genetics,11 the Estonian Biobank,12 Biobank

Japan,13 China Kadoori Biobank,14 FinnGen in Finland,15

Lifelines in the Netherlands,16 the Million Veteran

Program in the USA,17 and more recently, the All of Us

Research Program in the US.18

Most national biobanks attempt to sample a reasonable

representation of people living in their respective countries

and are therefore not specifically enriched for any one trait

or disease. Consequently, even though the sample sizes in

biobanks are large (e.g., 500,000), diseases with a lifetime

risk of, say, 1% will result in approximately ‘‘only’’ 5,000

cases. Hence, there is a continued need for contributions

of the often smaller but more specialized studies to disor-

der-specific research consortia such as the Psychiatric

Genomics Consortium (PGC)19 for psychiatric diseases

and the CARDIoGRAMplusC4D consortium20 for heart

disease. However, given the growth of well-phenotyped

large biobanks in many countries and the large contribu-

tion to sample size from 23andMe, Inc., the rationale

for consortia that combine many small samples for

commonly measured quantitative traits is much dimin-

ished. Compared to meta-analyses of multiple cohorts,

apart from their sheer size, large-scale biobanks improve

statistical power of GWAS in two ways. First, by harmo-

nizing phenotype definition andminimizing batch effects,

and second, by revealing and exploiting information

contained in phenotypes of (close) relatives also present

in the biobanks, even if close relatives are not genotyped.21

The latter aspect of biobanks had led to the development of

novel statistical methods that could exploit this untapped
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information to improve power.21–23 To accommodate the

increasing sample sizes, statistical approaches have been

devised that are computationally orders of magnitude

faster, scalable to analyze cohorts of millions of

individuals.24,25

Polygenic predictors have come of age

Marker loci associated with highly significant addi-

tive effects on the character can be included in a

net molecular score, m, which for any individual is

the sum of the additive effects on the character asso-

ciated with these markers.—Lande and Thompson

(1990)26

From its foundation in agricultural genetics,27 one of the

earlier promises from the human genome project and the

GWAS design has been the ability to predict the genetic

predisposition of heritable traits in humans.28–30 It is

now well established that results from GWAS can be used

to make predictions about diseases and other traits in indi-

viduals where those traits have not (yet) been observed. For

the majority of common diseases, such predictions will

never become diagnostic because their accuracy is limited

by the heritability of the trait, by howmuch of that herita-

bility is captured by the genome technology (e.g., common

SNP GWAS, GWAS-by-WES [whole-exome sequencing],

GWAS-by-WGS [whole genome sequencing]), and by

how well the effects of individual SNPs are estimated.

The precision of the estimation of SNP effects is limited

by the sampling scheme and sample size of the discovery

data and the statistical methods that are used (e.g., using

only genome-wide significant loci versus methods that

use all data and univariate versus multivariate methods).

Nevertheless, the large increases in sample sizes combined

with advanced multivariate analysis methods have led to

such increases in accuracy that polygenic predictors have

become an important research tool across disciplines.31,32

Furthermore, they are becoming ripe for clinical trials as

a result of their increased ability to improve screening

algorithms that aid in, e.g., the identification of individ-

uals at risk for disease or patients that benefit more from

certain medical therapies.33–35

One way to quantify the accuracy of a polygenic score is

as an ‘‘effect size’’ (sPGS), which expresses the change in

phenotypic standard deviations (SDs) per SD of the predic-

tor (sPGS ¼ Rsy, with R2 the proportion of phenotypic

variance explained by the polygenic score and sy the SD

of the phenotype). For example, a polygenic score with

an R2 ¼ 0.09 has an effect size of 0.3 phenotypic SD, about

2 cm for height, 5 mmHg for systolic blood pressure, or 1

year of schooling. In Figure 2, we show how the prediction

accuracy of height has increased since 2010. It demon-

strates how ever-larger sample sizes lead to increasing

effect sizes from 2.2 cm in 2010 to more than 4.1 cm in

2022, assuming that sy ¼ 6.5 cm for height. By expressing
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Figure 1. Average sample size and average number of genome-wide significant (GWS) loci per publication for each year during the
15 years history of GWAS discoveries
The data were extracted from 5,771 GWAS publications that used a genome-wide genotyping array and shared their summary statistics
on GWAS Catalog before November 8, 2022.
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polygenic score prediction accuracy in terms of trait SD

units, it can be compared to the effect sizes of exposures,

treatments, and interventions. This has been applied to

show that effect sizes (expressed as risk) of common disease

polygenic scores are of the same order as those of known

monogenic mutations.36 The larger the effect sizes of poly-

genic scores, the better they are at identifying people at

very high (and very low) risk of disease. For example, using
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Figure 2. Effect sizes of polygenic scores increase with sample size
(A–D) Each panel corresponds to one of four height polygenic scores derived from independent genome-wide significant SNPs identified
in Lango-Allen et al. (2010)39 (A), Wood et al. (2014)40 (B), Yengo et al. (2018)41 (C), and Yengo et al. (2022)5 (D). Note the difference
between the panels in the scale of the y axes on the right, indicating the increasing precision of the height polygenic scores as the dis-
covery sample sizes increase. Each polygenic score is scaled to have a mean of 0 and a variance of 1. Error bars indicate standard errors of
the mean. (A), (B), and (D) use data from 14,587 unrelated participants of the UK Biobank (not included in the discovery GWAS), while
(C) uses data from 8,235 unrelated participants from the Health and Retirement Study not included in Yengo et al. (2018). The number of
SNPs used in each polygenic score is reported in the legend of each panel (top-left) andwere based for Lango-Allen et al. (2010) andWood
et al. (2014) on a reanalysis by Yengo et al. (2022) based on the HapMap 3 SNP panel. Each polygenic score was binned into 12 groups
defined as: below �2.5, (�2.5,�2.0), (�2.0,�1.5), (�1.5,�1.0), (�1.0,�0.5), (�0.5,0.0), (0.0,0.5), (0.5,1.0), (1.0,1.5), (1.5,2.0), (2.0,2.5)
and above >2.5. Height differences are expressed on the z axis against the lowest group (defined). Each panel represents a histogram
of the height polygenic score (x axis) with the percentage of the individuals in each group represented on the y axis.
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the latest height GWAS, the mean height difference

between individuals at the extremes of polygenic score dis-

tribution is �23 cm (2.5 SD below the mean polygenic

score versus 2.5 SD above the mean, Figure 2D). In general,

more or earlier screening of people at high risk would pay

off if there are preventive treatments.37 For example, Kiflen

et al.38 determined optimal health-economic strategies for

prescribing statins on the basis of individuals’ polygenic

risk of cardiovascular disease.

Polygenic predictors can only capture phenotypic varia-

tion that is associated with genetic factors. Therefore, it is

never fully accurate to predict phenotypes nor sufficiently

diagnostic. For a quantitative trait, the SD of the outcome

around its prediction from a polygenic score can be ex-

pressed as sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � R2
p

, with an upper bound of

sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � h2
p

defined as a function of the total heritability

(h2). For example, for the hypothetical case that all genetic

factors for height (assuming h2 ¼ 0.8) are identified and

their effect sizes estimated without error, the variation in

actual height around its predicted value from the poly-

genic score would be of 6:5cm3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 0:8
p

z3 cm, equiva-

lent to a 95% confidence interval of about 12 cm.

Transferability of GWAS results across populations

Humans across the globe share a common ancestry, which

implies no clearly demarcated ancestry groups.42,43 Yet our

demographic and cultural history have led to human

groups that differ, on average, genetically and in their envi-

ronment. Genetic differences affect the distribution of

allelic variants between such groups and environmental

differences can alter their effects within groups on traits

and disease liability. Consequently, findings from GWAS

conducted in one group are not always transferable to

another group. We use transferability here to mean two

things: (1) that genetic associations may not replicate in

other groups because of reasons other than statistical

power and (2), its corollary, that polygenic predictors

derived from GWAS performed in one group may under-

perform when applied in other groups because of reasons

other than statistical power.

Issues related to GWAS transferability have been at the

core of recent developments in GWAS research. First,

many studies have quantified the lack of transferability

of GWAS findings from European ancestry to other popu-

lations,44–46 which is explained by the over-representation

of European ancestries participants in GWAS.47 Second, a

growing number of GWASs are conducted in populations

with non-European ancestries, mostly driven by efforts

from large-scale biobanks (N > 100,000) in East Asia such

as Biobank Japan,13 China Kadoori Biobank,14 and the

Taiwan Biobank.48,49 Third, novel statistical methods are

being developed (and extended) with the main purpose

to improve transferability.50

The lack of transferability of GWAS findings between hu-

man groups is explained by a combination of factors

including differences in haplotype frequencies (e.g.,

caused by differences in linkage disequilibrium between

marker and causal variants) and effect sizes (e.g., caused

by gene-by-gene or gene-by-environment interactions or

gene-environment correlations). The relative importance

of these factors varies across traits. For example, Wang

et al.51 have shown theoretically and through simulations

that between 25% and 80% of the loss of accuracy of poly-

genic predictors could be explained by differences in

haplotype frequencies between European and Asian or

African populations. Therefore, it remains to be investi-

gated to what extent, and for which traits, environmental

or cultural differences between populations play a role.

There are indications that these contribute to population

differences in GWAS signals for mental health outcomes.

For example, the genetic correlation for major depression

susceptibility between East-Asian and European ancestry

populations was estimated at only �0.4, with BMI, coro-

nary artery disease, and type 2 diabetes showing a positive

genetic correlation with major depression in European

ancestry individuals and a negative genetic correlation

withmajor depression in East Asian ancestry individuals.52

These observations are consistent with the hypothesis that

cultural differences affect which traits lead to depression in

different populations. To interpret the magnitude of those

estimated genetic correlations between ancestries, they

should be benchmarked against genetic correlations

observed, within-ancestry, across multiple studies and

cohorts. Indeed, for major depression, the genetic correla-

tions between cohorts with participants from the same

ancestry group were on average �0.76,53 implying that

the accuracy of a polygenic score derived in one cohort

will be attenuated by 42% (1–0.762) when applied in

another cohort to individuals with the same ancestry.

Old questions addressed by new data and new analytical

methods

In general, the hypothesis of cumulative Mendelian

factors seems to fit the facts very accurately.—Fisher

(1918)54

For over a century, researchers have asked and theoreti-

cally tried to address questions about nature versus

nurture, the genetic architecture of complex traits, the

effect of natural selection on genetic variation between

and within populations, mate choice, and indirect (asso-

ciative) genetic effects.55,56 GWAS datasets have now

provided the means to empirically test previously pro-

posed hypotheses and estimate parameters that are funda-

mental in evolutionary, population, and quantitative

genetics.

Fine-tuning the genetic architecture of complex traits

The joint distribution of frequencies and effect sizes of var-

iants causing a trait or disease is commonly referred to as its

genetic architecture. GWASs are typically well powered to

capture the effects of relatively common genetic variation

and, when large enough, can fully map where this genetic
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variation is located on the genome. This has recently been

achieved for height through a GWAS involving over 5

million individuals frommultiple ancestries.5 This unprec-

edentedly large study showed a saturation of the common-

variant architecture among European-ancestry genomes,

whereby approximately 12,000 SNPs jointly explain

40% of variation in out-of-sample prediction, which

approaches the common SNP-based heritability. Despite

the high polygenicity, only �21% of the genome appears

to harbor common (MAF > 1%) genetic variation for

height.5 Height continues to be the workhorse of human

genetics because it is easily measured (a self-report is accu-

rate), often recorded in medical or health questionnaires,

and has a high heritability. A century ago, height served

as the model complex trait when Mendel’s laws of inheri-

tance were reconciled with the inheritance of quantitative

traits.57

Rare variants can explain a substantial fraction of the

heritability and have different properties than common

variants, at least in part as a result of natural selection.

They generally have larger effects and behave differently

in their relationship with ancestry,58 geography,59 and

therefore potentially also with respect to their association

with environmental effects. The vast majority of human

variants are rare; among 400 million detected variants in

53,831 sequenced individuals from the TOPMed project,

�97% had a minor allele frequency (MAF) of <1%, and

46% were singletons,60 and among 643 million variants

detected in 149,960 sequenced individuals from UK

Biobank, 92%–97% had MAF < 0.1% and 40%–46% were

singletons.61 Most of these variants will have little or no

impact on disease risk, and it is harder to identify those

that do in a GWAS design, as that would require exception-

ally large sample sizes (Figure 3). Rare variants have

therefore often been tested as a group (e.g., with a burden

test) rather than individually.62

In a subset of 25,465 TOPMed participants, rare variants

accounted for much of the missing heritability for height

(but less so for BMI), especially protein-altering variants

in low linkage disequilibrium (LD) with other variants.63

A GWAS-by-WES with a sample size of 640,000 reported

evidence of 16 genes that were significantly associated

with BMI via a burden test,64 whereas a GWAS for the

same trait on a similar sample size identified more than

500 distinct loci.41 The number of detected genes or

loci, however, is not necessarily a good indication of the

utility of GWAS-by-WES discoveries because in a GWAS-

by-WES the target gene is identified, which could, for

example, lead to faster translation to new therapeutics.

In another large GWAS-by-WES—24,248 individuals with
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schizophrenia versus 97,322 controls—ten genes were

identified that increase schizophrenia risk when affected

by rare variants,65 of which four were also identified in a

common variant GWAS.66 In another larger study of

exome sequence data, where associations between �12

million coding variants and 3,994 health-related traits

were investigated, there was a significant enrichment of

rare variant associations in loci from GWASs, although

most of these associations (�91%) were independent of

common variant signals, underscoring the value of rare

variants for providing additional evidence for implicated

genes.67

Inference on natural selection

Across nearly all complex traits that have been studied,

there is evidence for negative selection, in that alleles

with larger effect sizes are maintained at lower fre-

quency.68–70 Another notable manifestation of negative

selection is that it creates LD-dependent genetic architec-

tures. For example, SNPs within genomic regions with

lower (than average) levels of LD tend to explain more

heritability.71 However, the relationship between LD and

per-SNP contribution to heritability is nonlinear and can

vary according to alleles’ ages and selection coefficients

(s). Depending on how the relationship between the focal

trait and fitness is modeled, estimates of selection

coefficients (s) at trait-associated loci range from 10�3 to

3 3 10�5.72,73 These negative selection pressures have

shaped the genome-wide heritability distribution for

most complex traits by flattening the distribution of ge-

netic effects, meaning that the effective number of trait-

associated loci is larger than it would be under neutrality.74

Besides the major discoveries about Homo species made

through the new discipline of paleogenomics, ancient

DNA genomics has also shown to be useful for inferring

past selection pressures, for instance those on increased

stature in ancestors of Bronze age European ancestry pop-

ulations.61 The ability to infer height from skeletal remains

has also made height the first trait for which a polygenic

predictor computed from ancient DNA significantly pre-

dicts phenotypic variation in prehistoric samples.75,76

Polygenic adaptation on height over the past 2,000 to

3,000 years has also been inferred with GWAS data,77

although recent studies have shown weaker evidence of

positive selection on height than previously reported.77–80

Assortative mating in the genome era

Assortative mating, i.e., mate choice driven by trait simi-

larity, is a prevalent behavior across species.81 In humans,

evidence of assortative mating mostly come from

observed phenotypic resemblance between spouses

across many traits and diseases.82 Disentangling the

causes of this resemblance (mate choice versus shared

environment) has long remained a challenge, often

requiring complex experimental designs to be resolved.

Recently, GWAS data have fostered new solutions to

this problem by leveraging the fact that assortative mat-

ing induces widespread correlations between trait-

increasing alleles among genomes. This property of assor-

tative mating, already predicted in Fisher’s seminal 1918

paper,54 has led to the development of various methods

to quantify assortative mating in different contexts. For

example, when spouse pairs are available, assortative

mating can be quantified by estimating the correlation

of polygenic predictors between spouses.83 Other

methods proceed by quantifying (in unrelated individ-

uals) the correlation between polygenic predictors calcu-

lated from either odd- or even-numbered chromo-

somes,84 or by modeling the excess phenotypic (or

genetic) similarities between relatives that is expected un-

der assortative mating as opposed to random mating.85

Overall, GWAS-derived studies of assortative mating

have provided genetic evidence that height and intelli-

gence similarity between spouses is caused by mate

choice, while the similarity in the numbers of years of

education is likely to be (partly) driven by indirect

assortment involving other traits genetically correlated

with educational attainment.83 Despite numerous

previous attempts and suggestive evidence,84,86,87 how

much of the phenotypic similarity between spouses in

their susceptibility to neurological and psychiatric

disorders88 is due to mate choice remains an open

question.89

Detection and quantification of gene-environment correla-

tions

Gene-environment correlations have long been hypothe-

sized to affect estimates of genetic variance components

in twin and family studies.90 The GWAS era provides new

data and approaches to detect and quantify their effects

on complex traits. Effects of the parental rearing environ-

ment on offspring health was detected through associa-

tions between educational attainment polygenic scores

constructed from non-transmitted parental alleles and a

variety of offspring health outcomes.91 The inflation of

GWAS effect estimates resulting from these gene-environ-

ment correlations and assortative mating can be mitigated

with family-based GWAS designs, where members of the

same family (e.g., siblings) are compared. Out of 25 com-

plex traits investigated, within-family GWASs show the

strongest reductions in SNP-based heritability estimates

for educational attainment (�76% reduction), cognitive

ability (44% reduction), ever smoking (25% reduction),

and height (17% reduction).77 The predictive value of

polygenic scores for educational attainment also decreases

by about half when predicting education or other complex

traits within families or in adopted children.8,92,93

The polygenic score for educational attainment seems to

stand out from other traits in the way that it is affected by

assortative mating and gene-environment correlations.

Out of 33 polygenic scores analyzed, that of educational

attainment showed the strongest differences between

geographic regions within Great Britain, most likely driven

by socio-economic status (SES)-related migration.94 These
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regional differences could further induce assortative mat-

ing as well as gene-environment correlations that extend

beyond families, increasing the genetic correlation with

educational attainment and income for a wide range of

physical and mental health outcomes.95 Population-based

GWAS on indicators of SES, such as educational attainment

(now at N¼�3 million),8 thus seem to capture a bundle of

underlying traits that are associated with socio-economic

success in the modern world, and thus with getting

exposed to more advantageous or detrimental (social)

environments.94–97 Genetic data will be useful in further

teasing out the causal relationships between all of these

factors.

Gene-environment correlations and assortative mating

both lead to a difference in genetic variation and GWAS

effect sizes relative to a hypothetical population in which

there is random mating and no association between genes

and environments. Whether this means that estimates of

genetic effects and genetic variances are ‘‘biased’’ if such

between-family or between-region effects are present and

ignored depends on one’s perspective and interests. For

example, the within-family genetic segregation variance

(which is 50% of the genetic variance under random

mating) best explains genetic and phenotypic differences

between siblings, yet differences between families are bet-

ter explained by considering the extra variation induced by

assortative mating, gene-environment correlations, and

population stratification. If the goal is tomaximize the pre-

dictive power of polygenic scores under the same environ-

mental conditions as the discovery dataset, we would not

have to account for gene-environment correlations or as-

sortative mating. However, if we want to understand the

mechanisms behind the genetic effects or use them to

make causal inferences, these factors would have to be

taken into account.

Novel mendelian randomization methods and applications

Mendelian randomization (MR) is a statistical method that

attempts to infer exposure-outcome causality by

mimicking a randomized control trial through the use of

genetic variants as instrumental variables (a popular tech-

nique in the econometrics literature).98 The power and

interpretability of MR are dependent on the robustness

and relevance of the instruments in the causal models,

which have substantially improved with larger GWASs.

Over the last years, the number of genome-wide significant

variants that can serve as instrumental variables has

increased and the arrival of the large biobank samples

has made it more feasible to conduct (one-sample) MR.

At the same time, as a result of partly unverifiable assump-

tions, a broad variety of new analytical methods have been

developed, each with their own strengths and weaknesses,

including weighted median regression,99 weighted mode

regression,100 MR-Egger,101 generalized summary-based

MR,102MR-PRESSO,103GSMR,104 Steiger filtering,105 latent

causal variable modeling,106 MR-CAUSE,107 and multivari-

able MR.108 Well-executed MR studies use various of the

above mentioned methods, with stronger evidence for

causal relationships when findings are consistent over

these different methods. An interesting example of MR

answering long-standing questions is the relationship

between myopia and schooling (e.g., reading time). The

connection betweenmyopia and schooling was impossible

to test with a randomized controlled trial because it would

be unethical to keep children out of school. Once powerful

GWASs for both educational attainment and myopia were

available, MR revealed evidence for a causal influence of

higher educational attainment on myopia and not the

other way around.109 The unique potential of GWAS data

for causal inference has clinical value and can contribute

to disease prevention by identifying modifiable non-ge-

netic risk factors.

GWAS in and around the clinic

Many clinically actionable biological insights have fol-

lowed from the identification of genetic variants that influ-

ence disease risk. Rare genetic variants with large effects

have so far been most clinically viable through widespread

translational applications for monogenic disorders.110 For

complex traits, there is a longer trajectory between detect-

ing genetic associations and mechanistic insights. There

are several reasons for this, including (1) the lower

penetrance of individual variants; (2) the limits that LD

structure imposes on the resolution of the genome; (3) non-

coding regions harboring most GWAS associations, which

makes it more challenging to link significantly associated

variants to specific genic actions; and (4) gene-environment

correlations and widespread pleiotropy, which complicate

the identification of the specific trait thatmakes the genetic

variant increase disease risk. Nevertheless, notable progress

has been made for a variety of complex traits in a relatively

short time frame. Since our last review, more insights into

functional mechanisms have followed fromGWAS associa-

tions, which include the effects of increased production of

the vasoconstrictor peptide ET-1 in endothelial cells by

END1 in a range of vascular diseases,111 the (sex-specific) ef-

fects of reducedKLF14 expression in adipose tissue in type 2

diabetes,112 and the cellular alterations resulting from

APOE4 variant expression in neurons, astrocytes, and mi-

croglia in Alzheimer’s disease.113 COVID-19, however, has

been a particularly telling example for the potential of

GWAS to accelerate the unraveling of biological mecha-

nisms with substantial clinical impact.

COVID-19

The urgency to combat a global pandemic has pushed

COVID-19 research to make more progress in �2 years

than any other diseases have since the advent of the

GWAS design. Infectious diseases are typically studied by

focusing on the pathogen rather than the host, but

GWAS initiatives have helped identify human genetic var-

iants that led to compelling insights into the susceptibility

to SARS-CoV-2 infection and COVID-19 disease severity.

The virus enters the body through ACE2 receptors. A
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recent GWAS has identified a relatively rare variant 60 bp

upstream of ACE2 (rs190509934, MAF < 2%) that reduced

the risk of infection by �40%.114 Follow-up analysis of

RNA-sequencing data from liver tissue showed this variant

to downregulate ACE2 expression by �37%.114 The ACE2

receptor interacts with the proline transporter SIT1, which

is encoded by SLC6A20 on chromosome 3, one of the

earliest and best replicated associations with SARS-CoV-2

infection.114–116 These associations confirm the key role

of ACE2 in SARS-COV2 infection and increase its potential

as a therapeutic target for COVID-19 prevention. Once in-

fected, there is a risk of developing severe disease with res-

piratory failure, which has resulted in more than 6 million

deaths worldwide. Several of the loci associated with dis-

ease severity are associated with lung function,115 some

of which implicated in pulmonary surfactant biology.117

The associated SFTPD gene,117 for example, encodes sur-

factant protein D, which is part of the immune response

that protects lungs against pathogens such as SARS-

CoV-2, where it binds to its S1 spike protein.118 The im-

mune response plays a key role in critical illness as indi-

cated by several other GWAS associations with implicated

genes, including the innate antiviral defense (IFNAR2

and OAS genes), which is important early in disease, and

inflammatory lung injury (DPP9, CCR2, and TYK2 genes),

which is more implicated in later life-threatening symp-

toms.119 Evidence for a causal link between TYK2 expres-

sion and critical illness has nominated baricitinib as a

candidate drug, which inhibits TYK2 expression and was

originally licensed for the treatment of rheumatoid

arthritis and atopic dermatitis.119 A randomized controlled

clinical trial showed treatment with baricitinib to reduce

the COVID-19 mortality rate with �20%.120

Drug repurposing

GWASs have proven to be an effective guide on the long

road to drug approval. Two-thirds of FDA-approved drugs

were supported with evidence from genetics.121 The long

duration and cost of novel drug development and approval

has increased the focus on the quicker and cheaper alterna-

tive of repurposing existing drugs. As illustrated in the

COVID-19 example above, biological insights from

GWASs can be used to identify suitable compounds for

drug repurposing. Two drugs originally used for treatment

of psoriasis, namely ustekinumab and risankizumab,122,123

target interleukin-23 (IL-23), which activates the IL-23 re-

ceptor encoded by IL23R, one of the first and well-repli-

cated associated genes in Crohn disease GWASs.2,124,125

Several clinical trials have confirmed a significant benefit

from ustekinumab126–128 and risankizumab129,130 for

Crohn disease treatment. FDA approval for treatment of

Crohn disease was given in 2016 for ustekinumab and in

2022 for risankizumab. A variety of computational

approaches are being applied to reveal more leads for

drug repurposing, including GWAS-imputed transcrip-

tomic profile matching,131 Mendelian randomization,132

and drug-gene set analysis.133,134

Polygenic scores

The value of these predictive SNPs could be reaped

long before the causal mechanism of each contrib-

uting variant can be determined.—Wray et al.

(2007)135

Interpreting the mechanisms behind regulatory causal

variants will require the Herculean task of systematically

annotating their functional impact across cell types and

tissues136,137 throughout different external influences

and developmental stages.138 In revealing the highly poly-

genic nature of the mechanisms underlying common

diseases, GWASs showed that the aggregate of estimated

allelic effects can result in predictive polygenic scores

with clinical potential, regardless of how well we under-

stand their biological underpinnings. Current polygenic

scores for COVID-19 outcomes are powerful enough to

improve the identification of individuals that should be

prioritized for COVID-19 vaccinations because of

increased risk for severe disease (top 10% polygenic score

was associated with up to 1.75-fold increased risk of severe

disease).114 A growing number of clinical trials are being

conducted assessing whether integrating polygenic scores

in screening procedures can improve early detection and

facilitate personalized risk-based screening,139 for instance

for breast cancer,140,141 colorectal cancer,142 and heart

disease.33 Communication to individuals about their

own cardiovascular disease risk based on polygenic scores

has shown tomotivate positive changes in health behavior

and the propensity to seek care.143 Our Future Health,

which aims to genotype up to 5 million people in the

UK, has recently announced a collaboration with the com-

pany Genomics PLC to generate polygenic scores that can

be used for research purposes as well as for personal feed-

back to their participants that could help them toward

actions that reduce their risk on common diseases such

as diabetes, heart disease, stroke, dementia, and cancer.144

The relative ease and low cost of constructing polygenic

scores has already accelerated their implementation in

pre-natal polygenic risk screening in IVF treatments for

common diseases such as diabetes, heart disease, cancers,

Alzheimer disease, and schizophrenia,145,146 despite

ongoing discussions about the ethical and practical value

of screening embryos.147,148

Gene editing

Recently, genetic associations have resulted in another

revolutionary development in medicine with a treatment

that can directly and permanently affect the genetic

sequence of a specific tissue in an individual. After con-

firming its effect in primates in 2021,149 it was reported

in July 2022 that the first human had received a dose of

the gene-editing medicine, named VERVE-101, which

permanently turns off PCSK9 in the liver, reducing the

disease-driving low-density lipoprotein (LDL) cholesterol

through a single base change.150 This clinical trial (called

8 The American Journal of Human Genetics 110, 1–16, February 2, 2023

Please cite this article in press as: Abdellaoui et al., 15 years of GWAS discovery: Realizing the promise, The American Journal of Human
Genetics (2023), https://doi.org/10.1016/j.ajhg.2022.12.011



heart-1) is set to evaluate VERVE-101 in �40 patients with

heterozygous familial hypercholesterolemia, a subtype of

atherosclerotic cardiovascular disease. More applications

of this base editing technology are underway for the treat-

ment of Mendelian forms of disease such as sickle cell dis-

ease and b-thalassemia,150 opening up another avenue for

genetic associations to prevent and cure diseases. As we

continue to refine this groundbreaking technology for

safe use in humans on genetic variants with known and

large (deleterious) effects, our mechanistic understanding

of GWAS associations will continue to advance, poten-

tially paving the way for the direct re-coding of complex

traits.

Discussion

In the past 15 years, GWAS discoveries have changed and

impacted research across multiple disciplines. Polygenic

scores have been suggested for clinical,151 social,152 and

even reproductive purposes (e.g., embryo selection).147

The full spectrum of consequences of such applications is

hard to predict given that the biological functions of causal

variants and the environmental effects captured by the

GWAS signals are not fully understood, especially across

populations with different genetic backgrounds and envi-

ronments. As GWAS sample size, ancestry diversity, and

coverage of genetic variations increase, we expect to

continue to improve our understanding of the pathways

between identified variants and complex traits.

Expanding population coverage to enhance discovery

and promote equity

One of the most important advancements for the coming

years will be the expansion of GWAS data collections to

populations across the world. In 2021,�86% of GWAS par-

ticipants were of European ancestry.153 This Euro-centric

bias in human genetics and genomics research reflects

the fact that past investments and infrastructure develop-

ment have largely been concentrated in countries with

high proportions of European-ancestry. This Euro-focus is

limiting the ability to study the genetic architecture of

traits under different environments and across ancestries.

It also limits the accuracy of polygenic prediction across

populations and may further hinder the development

and utility of new therapeutics across the world. The

largest contributions to a more diverse GWAS catalog are

coming from East Asia, and further expansions to the rest

of the world are of vital importance, both scientifically

and ethically. More emphasis on population diversity in

data collection will lead to more discovery and better

prediction accuracy across all ancestries. While approaches

are being devised to improve the predictive power of poly-

genic scores across ancestries by accounting for LD differ-

ences,50 these will not fully solve the lack of transferability

due to environmental or cultural differences between pop-

ulations. The awareness of this problem is growing rapidly

in the genetics community,45,153–155 and it is now time for

the data to catch up. If we had to advise where to construct

the next large biobanks, we would recommend starting a

pan-African biobank to maximize the genetic variation

captured and broaden the range of environmental expo-

sures. Such initiatives could be deployed on the African

continent (e.g., the Nigerian 100K Genomes Project) but

also in European countries with large diasporas from all

corners of Africa (e.g., France or Belgium). It is important

that partnerships behind such projects are equitable in

such a way that the local researchers and local commu-

nities are engaged as equals while prioritizing their benefit,

following the example of, e.g., NeuroGAP.156

By collecting more genotype data across populations,

cross-population comparisons of genetic architectures of

complex traits can be investigated. Natural selection has

the potential to drive genetic mean differences among

populations by making them adapt to different environ-

ments, and GWAS data can, in principle, be used to quan-

tify such differences. For human height, the correlation of

SNP effect sizes at genome-wide significant loci across

global ancestry groups is high (ranging between 0.64

and 0.99),5 and polygenic predictors using estimated

SNP effects in one population are positively correlated

with height in another, although the magnitude of this

correlation is (much) reduced compared to predictor-trait

correlation within the same population.5 However, even if

the correlation of effect sizes would be perfect, predicted

mean genetic differences may not translate into pheno-

typic mean group differences. Effects of causal variants

can depend on the environment, both within and be-

tween populations. Effect sizes could be smaller in envi-

ronments where the mean trait value is smaller (a simple

scale effect), effect sizes could interact with environ-

mental factors (gene-by-environment interaction), and ef-

fect sizes can be correlated with environmental factors

(gene-environment correlations). Questions about be-

tween-group genetic differences are particularly contro-

versial for traits associated with social outcomes. Differ-

ences in traits like educational attainment and

intelligence have a history of being (mis)interpreted in

the context of deprecated classifications of human popu-

lations into a handful of categories (‘‘races’’)157 to bolster

racial supremacy ideologies. They are also more sensitive

to gene-environment correlations than other complex

traits as a result of systematic socio-economic differ-

ences,77,95 which are expected to exist especially between

groups who have historically experienced differences in

socio-economic opportunities, oppression, or exploita-

tion. Research into the genetic background of population

differences in social traits is therefore particularly sensitive

to being misunderstood or misused, e.g., to incite hate or

influence social policy. Trying to understand whether be-

tween-population mean phenotypic differences in com-

plex traits, specifically diseases and their risk factors, are

partly driven by genetic differences is likely to become

an active area of research in the future. Researchers,
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including geneticists, need to remain vigilant about the

pitfalls of such analyses, on both an analytical and a soci-

etal level, and take responsibility to mitigate the misuse

and misinterpretation of genomic data in a discriminatory

or racist framework.

Polygenic differentiation between populations should

be studied with care, firstly because of societal sensitivities

mentioned above, but also because of its subtle nature and

high sensitivity for misinterpretation and confounding

due to systematic allele frequency, LD, and environmental

differences.78,79,158We should also note here that between-

population genetic differences in disease prevalence and

trait means are not necessarily caused by natural selection.

Under a pure genetic drift model, one could expect mean

genetic differences among groups that differ in allele

frequencies for polygenic traits.56 Furthermore, there are

scenarios in which selection pressures may have even

made it more challenging to detect polygenic differentia-

tion between populations. Negative selection pressures

can give rise to population-specific genetic architectures

and causal variants for the same traits, making it difficult

to detect trait mean differences by comparing polygenic

scores based on GWASs from a single population.159

Theoretical work indicates that a polygenic trait con-

strained by stabilizing selection to a certain optimum

phenotypic value in two populations can, counter-intui-

tively, increase the genetic differentiation of trait-influ-

encing loci: genetic variants that accidentally increase

in frequency as a result of drift in one population would

lead to a compensatory decrease in frequency of

other loci in this population.160 This could create the illu-

sion of an implied phenotypic mean differentiation when

basing the comparison between two populations on

polygenic scores computed from a GWAS done in only

one of the two populations.

Expanding genomic coverage through GWAS-by-WGS

Rare and common genetic variation have thus far been

interrogated with largely different measurement and ana-

lytic approaches, even though complex traits are influ-

enced by alleles distributed across a continuous spectrum

of frequencies that vary between populations, often impli-

cating the same genes. Sequencing larger proportions of

human populations could help future GWASs bring the

realms of rare and common variants closer together. In

our 10-year review,4 we showed a comparison of the power

to detect association for low frequency variants, using

either a GWAS-by-WGS or GWAS-by-chip approach. We

revisit this comparison because there already have been

large GWAS-by-WES studies64,65,67 and because we have a

better quantification of the relationship between effect

size and frequency of trait-associated alleles. GWAS-by-

WGS studies are emerging, and are expected to measure

�40 times as many variants as WES datasets of the same

individuals.61 Sample sizes of whole-genome-sequenced

datasets are increasing; the sample size of the TOPMed

initiative is >53,831 and the entire UK Biobank is being

sequenced, of which 200,000 have already been made

available including 150,119 recently described and

analyzed.61Moreover, research in the last 5 years has quan-

tified the association between allele frequency and effect

size for many traits, showing larger effects for lower

frequencies, and this association affects the power of detec-

tion. In Figure 3, we calculate the ratio of the sample sizes

needed to map low frequency variants in GWAS-by-WGS

compared to that of mapping a common variant associa-

tion, as a function of MAF and the association between

effect size and frequency (parameterized as S).68 It shows

that for a realistic range of S, the required sample size to

detect rare variants in GWAS-by-WGS is much larger

than the detection of common variants, and the rarer the

variants the larger the sample size ratio. The reason is

that although rare variants tend to have larger effect

sizes,68–70 this does not necessarily compensate for its

lower heterozygosity; power depends on 2pð1 � pÞb2,
with p being the minor allele frequency, 2pð1 � pÞ the het-

erozygosity under Hardy-Weinberg equilibrium and b the

per-allele effect size. If we assume as in Zeng et al.68 that

b2 is on average proportional to ½2pð1 � pÞ�S; then the pro-

portional increase in sample size (RN) to detect a rare-

variant (e.g., p < 1%) association with the same statistical

power as that needed to identify a common SNP

with an MAF pREF, can be expressed as RNðpÞ ¼
f½pREFð1 � pREFÞ�=½pð1 � pÞ�gðSþ1Þ. This implies, for a trait

such as height with an estimated S around �0.65 (Zeng

et al. 68), that detecting SNPs with an MAF of 0.1% would

require 7-fold larger samples than currently needed to

detect common variants associations (pREF ¼ 1/2).

Altogether, we expect that sample sizes will continue to

increase and the focus on rare variant detection will

continue to grow nonetheless, as rare variants explain a

substantial portion of complex trait variation and have a

better likelihood of being the causal allele when

significantly associated.

Concluding remarks

The initial promise of GWAS was discovery of variant-trait

associations through linkage disequilibrium, as an entry

into studying disease biology and ultimately leading to

better prevention and treatment of diseases and disorders.

15 years from the first well-designed GWAS, this promise

has not only been realized, but much more has been

achieved that was unforeseen and not predicted at the

time: the effects of natural selection and polygenic adapta-

tion at many trait-associated loci have been detected and

quantified, novel causal relationships between exposures

and disease have been detected, new drugs are being trialed

on the basis of GWAS results, polygenic scores are undergo-

ing clinical trials, and polygenic approaches are becoming

embedded in the social sciences. Overall, GWAS has

contributed to a much better understanding of the causes

and consequences of human genetic variation for complex

traits and disease and will likely continue to do so in the

future.
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