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Introduction to the series

This series consists of a numberof hitherto unpublished studies, which

are introduced by the editors in the belief that they represent fresh

contributions to economic science.

The term ‘economicanalysis’ as used inthetitle of the series has been

adopted because it covers both the activities of the theoretical economist

and the research worker.

Although the analytical methods used by the various contributors are

not the same, they are nevertheless conditioned by the common origin of

their studies, namely theoretical problems encountered in practical

research. Since for this reason, business cycle research and national

accounting, research work on behalf of economicpolicy, and problemsof

planning are the main sourcesof the subjects dealt with, they necessarily

determine the manner of approach adopted by the authors. Their

methodstend to be ‘practical’ in the sense of not being too far remote

from application to actual economic conditions. In addition they are

quantitative rather than qualitative.

It is the hope of the editors that the publication of these studies will

help to stimulate the exchange of scientific information and to reinforce

international cooperation in the field of economics.

The Editors
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CHAPTER 1

INTRODUCTION

P. Taubman

Kinometries is the methodology that allows one to use samples with

genetically linked relatives or kin to study the roles of genetics and family

environment in a variety of areas including educational attainment,

cognitive skills, occupational success, and earnings attainment. There are

two different but related concerns in kinometries. One of ‘these is

controlling for unmeasured or unobserved variables when estimating the

relationship between measured variables. A good example of this is

controlling for "ability" and "motivation" when estimating the effects of

education on earnings. The second problem is measuring the combined and

separate effects of the unobserved genetic and family environment

variables.
The letter inviting people to participate in this conference indicated

that the major purposes were to advance this methodology and to develop

a body of substantive results on the determinants of educational and

occupational success. It was also hoped that the exchange of ideas and

results would stimulate the individual participants to expand their own

work. I think the reader of this volume will find that the first two goals

were fulfilled. Editors and readers of journals will soon find that the third

goal has becomea reality.
The book begins with a survey of the literature on family effects by

A. Leibowitz and indicates a list of unresolved questions. These are

addressed in the following five papers by Behrman, Taubman and Wales
(BTW), Griliches and Chamberlain (GC), Jeneks and Brown (JB), Olneck,

and Sewell and Hauser (SH), each of which is based on a different and

unfortunately nonrandom sample. The next section contains three papers.

The first by Chamberlain examines the statistical methodology of
combined latent variable, variance components models which are the basis

of much of the work in the BTW and GC papers and are employed by SH.
Briefly a latent variable model is one in which the same unobserved

variable appearsin or is related to several observed variables. A variance

component model is one in which the variance of a variable is apportioned

into several componentsall of which are unobserved. For example, in the
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GC piece, the components are family and individual specific elements
while in the BTW paper, the componentsare specific environment, family
environment and genetic endowments. The basie questions that
Chamberlain poses are how we determine which parameters we can
estimate or identify in such systems, and how do we obtain additional
information which will allow us to identify additional parameters. An
oversimplified summary of this paper is that information on relatives
allow us to control for unobserved variables in a latent variable
framework provided the model can bespecified in an appropriate fashion.
In his second paper, Chamberlain also examines whether there are
additional advantages in having information on twins rather than siblings.
This issue will be examined below.

The paper by Goldberger contains a lengthy critique of the
statistical methodology used in papers by BTW and JB. His major point is
that some of the parameter estimates are obtained by imposing
restrictions (making assumptions) which he considers arbitrary. In other
words, Goldberger questions the assumptions made to identify their
models. The reader unfamiliar with the problems of identification in the
latent variable model may find Goldberger's discussion on pages ,
of particular versions of models in the Behrman, Taubman and Wales paper
a useful companion to the more general discussion in the Chamberlain
piece.

All the papers revolve around the question of how one ean control
for and measure the separate and/or combined contributions of
unmeasured aspects of genetic endowments and family environment.
Suppose that our modelis

1) Y=aX+ GtN + ey

where Y and X are observed variables such as earnings and schooling, G is
an unobserved index of genetic endowments, N is an unobserved index of
family and other systematic environments, and u is the unobserved and
unsystematie part of the environment. With noloss in generality, we have
standardized G and N so their coefficients are 1. We wish to obtain

i i f d of b 2 eeunbiased estimates of a andofbo qa? on SN Cax FxnN >

and o u’

As is well knownif b is nonzero and G is correlated with X, ordinary
least squares of Y on X will yield biased estimates of a@ . Similar
comments apply to X and N. Data on relatives can be used to control for
G and N because kin share common or correlated geneties and family
environments. The simpliest technique to exploit kin data is to use OLS
with "within kin" observations. Suppose there are only two members of
each family. Assign randomly the subscript of 1 or 2 to each member and
then calculate the within-family differenceas, e.g. Y, - Yo = AY. We

then have

2) AY =a@AX + bAG + cAN + Au

If AG and AN are not correlated with AX, OLS of AY or AX will
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Even the equations for identical twins in the BTW paper, will bebiased if there is measurementerror in years of schooling or if AN iscorrelated with AX. In Appendix A of the BTW paper, there areestimates of what the coefficient of schooling would be if there werevarious percentages of measurementerror in the schooling variable. TheSubstantial bias found by BTW between the individual and within pairequations can only be eliminated if it is assumed that nearly all theobserved within-pair variation in identical twins is due to measurementerror.
Assessing the importance of AN leads us to the latent variable

models which are employed by GC, BTW, SH and JB and analyzed in detail
In both the Chamberlain and Goldberger papers. A latent variable is an
unmeasured variable which appears in several equations. Under some
circumstances, it is possible to control for and estimate the contribution
of a latent variable to the variance of an observed variable. The first
paper by Chamberlain investigates some of the conditions under which it
is possible to identify parameters such as a in equation 1 and the
contributions of the unmeasured variables. The paper by GCapplies this
technique to a model in which the observable variables include several
measures of cognitive skills, years of Schooling and expectations of
earnings at age 30 which are held 5 to 10 years earlier. In their work and
in Chamberlain's separate contribution, the focus is on a model in which
the latent variable has a family (common) and individual component. That
is, if there were only equations for Y and Z, if A is the unmeasured
variable, if X is a vector of exogenous measured variable, and if i is the
individual and j his family, the reduced form of the model would be:

3) Yi = OX, + dA, + ui

4) Zi = eX, + dA, + Vii

5) A.. = F. + w..
1j J IJ

Here Fi is the family component.

While GC do not try to separate F into its genetic and
environmental components,it is instructive to do so here. Let G; be the

average value of genetic endowments in a family and bij be the difference

between Gi and G ij" Similarly let N, be the common component of N

andr i be the difference between Ni and Ni; Then we ean write

-- = G@ +N. + t.. + pz.5a) Ai

=

& i iy

7

Ty

here F. = G. + N. andw.. =r.. + t...were j ij iG
The model used by BTW, and explored briefly in JB, differs in

several ways from the GC piece. First, BTW implicitly assumethat:
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. = G. + N. + P..

9b) AG 1j J 1)

That is they divide N into within and between family components but do

not so divide G. Second, in their analysis, BTW at times impose the

restriction that only AG - Cy enters into equations 3 and 4. If there

were no genetic elements, this latter assumption in Griliches and

Chamberlain's model would be equivalent to assuming that only Fi and not

AG appears in equations 3 and 4. In the BTW framework this means that

common and specifie environments can have different effects on Y and Z.

Moreover BTW do not impose the restriction that Gi and N; enter all the

equations via Aiyp that is their coefficients need not be proportional in the

various equations. By making these last two "asymmetric" restrictions,

BTW are able to identify the estimates of o in their model. If these

asymmetric restrictions are appropriate, it is possible to do more with

samples of twins than with samples of brothers. However, if these

restrictions are not valid, Chamberlain's theorem in his second paper,

which indicates twins are no more valuable than sibs to estimate @ ,

holds.
In the BTW paper, the estimates of the parameters on schooling and

the other observed variables obtained from the latent variable technique

are nearly identical to those obtained from the within-pair equations for

identical twins. This comparability holds up under a_ variety of

restrictions on the genetic and environmental variables including a version

of the model in which there are no genetic components to Asie Thus BTW

find that not controlling for genetic endowments anc family environment

or for "ability" leads to a substantial bias.

On the other hand, GC find in their latent variable that not

controlling for farily effects or for "ability" leads to only a small bias.

Moreover, they find that the omitted variable that correlates highly with

expected earnings has a low eorrelation with IQ.

As noted earlier, the differences in results for BTW and GC may

reflect the years of work experience and age of the people in the samples

used. It is also possible, however, that the differences reflect the

structure of the models. In GC the available information from which the

latent variables are constructed is heavily dependent on cognitive skills.

The BTW model, which involves schooling and earnings at several points in

the life cycle, would seem to encompass more skills. However, in their

work labels such as cognitive ability cannot be used since for none of

these skills are measures available. It is possible that future work will

help resolve these issues. Both GC and JB find that I@ and schooling load

heavily but not exclusively on the same variables.

Much previous work has tried to control for family factors by

including observed variables such as parental education and number of

siblings. The results available in all but the GC study suggest that the

readily available measures do not adequately measure tne eontribution of,

nor estimate the bias from not controlling for genetics and common
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environment. SH, for example, find that parental education, father'soccupation, broken family, and numberof sibs account for about half thecross-sib correlation in educational attainment.
Thus far we have been discussing the control of family factors. Nowlet us examine the measurement of their effects. (The label family issomewhat of a misnomersince sibs may share common environments inthe military and other nonfamily settings, and because even in the family,sibs may be treated differently or be exposed to different environments.)The family effect is based on the cross-sib covarianees orcorrelations. On all variables examined in this book, the correlation isalways higher for identical than for fraternal twins. The fraternal twiand ordinary brothers cross-sib correlations are quite close though there is

NAS-NRCtwin samples in the BTW paper suggests that the family effectsmay account for about 75% of the variance in education and about 50% ofthe variance in earnings(late in the life cycle).
As explained in the BTW and JB papers, strong assumptions have tobe made in the so-called classical twin analysis of variance model to

to these family effects. JB, who test several of these assumptions such asthere is no more interaction among MZ than DZ twins generally are notable to reject the usual assumptions made. BTW show that more of theseassumptions can be tested in the combined latent variable/variancecomponent models. However, one crucial] assumption that neither theynor JB can test is that the cross-sib correlation in unmeasuredenvironments is the same for identical and fraternal twins. As Goldbergercogently argues, it is possible to explain all of the increase in the eross-sibcorrelation of identical twins over fraternal twins on the assumption ofgreater similarity of treatment or environment of the identical twins.That is, it is always possible to argue that there are no genetic effects.There is some weak evidence in the papers that bear on this particularassertion. First, when BTW fit a pure environment model to the data,using the latent variable technique, they find it fits less well than a mixedgenetics/environmental model. Second, if identical twins are treatedmore alike than fraternal twins, it would also seem that fraternal twinswould be treated more alike than ordinary sibs who would be raised insomewhat different family and social environments. Yet a comparison ofthe brothers in Olneck and the fraternal twins in BTW indicate littledifference in results in cross-sib correlations for education and earnings.
However, Olneck, who has investigated this issue in more detail, reaches
ambiguous conclusions on variation in eross-sib correlations by age.

It is important to remember that the debate over whether identical
twins have a more highly correlated environment is a debate solely over
the division of the so-called family effect. Several of the papers and
much of the discussion of the conference revolved around whether or not
this additional information was useful. Being too close to this debate toSummarize it fairly, the reader is referred to the papers by Goldberger,
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BTW and JB.

But it is important to remind the reader that with the exception of

the piece by GC, the empirical papers indicate that it is very important to

eontrol for family effects when estimating schooling, occupational status,

and earnings equations. It appears that within pair equations estimated by

OLS for identical twins yield results on the observed variables quite

comparable to those obtained from latent variable techniques. Further,

the latent variable techniques appear to be robust as to these same

coefficients regardless of the assumptions made about genetics and

environment.
The reader of these papers will be rewarded with a wide variety of

results and with several methodclogies which can be quite powerful in the

appropriate circumstances. It seems likely that the method can be

extended to incorporate more dependent variables or indicators. Some

prime candidates may be health and fertility. It is possible to include
additional categories of kin to refine further the estimates of genetic and
family environmental effects. Also the technique will indicate the extent
to which any set of measured variables, which ean be collected in random

and nonkin samples, represents the full family effects.
The people who were the formal discussants at the conference were

invited to submit their comments for publication. Several discussants,
however, who felt the authors in substantial revisions had responded fully

to these comments chose not to publish their comments.
Finally, let me take the opportunity to thank all of those involved in

the conference for their participation and cooperation. I particularly wish
to thank Jere Behrman, Arthur Goldberger, and Zvi Griliches for their
suggestions on organizing the conference. The conference was funded by
the National Science Foundation by a grant to the Mathematical Social
Science Board. I would like to thank both this Board and especially the
economics representative, Mare Nerlove, for their generous support.

This material was prepared with the support of the National Science
Foundation Grant # SOC-70-02316 A04, formerly GS-3256. Any opinions,
findings or conelusions or results are those of the authors and do not
necessarily reflect the view of the National Science Foundation.

And specia! thanks to ETC Business Services for their assistance in

preparing the camera-ready copy of this volume.



CHAPTER 2

FAMILY BACKGROUND AND ECONOMIC SUCCESS:

A REVIEW OF THE EVIDENCE*

Arleen Leibowitz

Law and Economies Center and

Department of Family Medicine
University of Miami

In a 1970 survey of the distribution of labor incomes, Jacob Mincer

contrasted the human capital approach to the analysis of personal income

distribution to the "traditional approaches centering on differences in

opportunity, ability and chance." It then appeared that the analysis of

income generation based on human capital theory had supplanted the

rather ad hoe theories based on "opportunity, ability and chance."

The human capital analysis was appealing not only becauseit put the

decision to invest in schooling on the same rational basis as the decision

to invest in other capital, but also because it was formulated in a way that

was empirically testable.

It was not long before there was a renewal of interest in

opportunity, ability and chance and these variables were reintegrated into

the theory and estimation of income determination. On an analytical

level these factors were treated as shifting the return to schooling and

schooling cost schedules and therefore schooling attainment (Becker,

1967). Empirically much effort in recent years has been directed to

measuring the impact of ability and opportunity or family background on

both schooling and income. First ability, and later background measures

have been added to the human capital variables in earnings functions. The

human capital variables have proved to be quite robust, retaining

significant effects on earnings even when measures of ability and

background are introduced into earnings equations. While the direct

effect of ability and background variables on earnings has proved to be

small relative to the effect of education, the effect of these variables on

education itself seems to be substantial.

From the initial ealeulations of rates of return to schooling, it was

recognized that the positive correlation of ability with years of schooling

would lend an upward bias to the rate of return calculations (Becker,

1964). In the years following the publication of Human Capital several

papers analyzed the relation between ability and schooling and their

impacts on income. While Hause (1972) found an interaction between

ability and schooling at high levels of both variables, Griliches and Mason.

 

*The support of the National Center for Health Services Research,

through Grant No. HS01623 is gratefully acknowledged.
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(1972) found that over-all the lack of the mental ability variables exerted
very little bias to the schooling coefficient. In the presence of an index of
mental ability, the schooling coefficient was 7% to 15% smaller than in an
equation containing no measureofability.

The "traditional" approaches stressed that not only characteristics
of the individual, such as ability and schooling, but also characteristics of
the individual's family could influence earnings. The empirical estimation
was next extended to include the influence of background variables on
education, occupation and earnings. In sorting out the impactof ability on
earnings, there was general agreement on what the measure ofability
Should be - since only one kind of ability measure was generally available -
and that was usually the score of an I.Q. test or some other test which
correlates well with I.Q. - such as AFQT.” In contrast, there is little
concensus on the appropriate background measures. Parental education,
occupation, earnings, residence, time inputs to children and college
quality are among the measures which have been used. Studies using data
on brothers point to the possibility that there are additional family
background variables which affect earnings and occupation but they're not
the variables we've looked at so far.

Part I reviews some studies that trace economic achievement to
differential human capital and background variables. Part II reviews
studies which utilize data on brothers to analyze the elements in family
background for which we have no ready direct measures. In Part III the
points of agreement and disagreement among these studies will be
summarized.

I. Economic Success and Measured Family Background

The influence of family variables on economic achievement can
either be direct - for example, earning higher income because one's father
had high income - or indirect - earning high income because one's family
purchased schooling. The analysis of these background factors and the
manner in which they influence income, occupation and intermediate
levels of achievement such as schooling has absorbed a great deal of
attention in recent years.

Most of the studies have in common a model, composed of one or
more of the following set of equations, which are assumed to be block
recursive and are estimated by OLS.

1) A=a,X + eG + u
1 1

2) S=a,X + boA + uy

3) O=agX + b,A + ¢,8 + u,

4) Y=a,X + b,A + e,8 + dO+ u,

A set of socio-economic background variables, X, and genetic
inheritance, G, are exogenous, and an early measure of ability, A, depends
on both. The quantity of schooling attained, S, is determined by various
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characteristics that do determine earnings.
It has been argued in Bowles (1972) and Bowles and Nelson (1974)

that the lack of significance of farnily background variables, found by
Duncan, results because there is little measurement error in I.@. and years
of schooling, while the parental status variables are derived from
retrospective data, and, therefore, are subject to preater error of
measurement. This would bias their ecoefficients toward zero in
estimating earnings functions, while the impact of I.Q. and years of
schooling is likely to be overestimated because they are correlated with
the unmeasured background elements.

Bowles and Nelson, using observations on four age cohorts of non-
farm, non-negro males from the 1962 Occupational Changes in a
Generation Survey, constructed a variable representing parental income
using independent information on_ its relationship to the reported
background variables. They also corrected the observed variables for
measurementerror.

In estimating the schooling equation, they find both childhood I.Q.
and a group of socioeconomic background variables are quite significantly
related to educational attainment for all four age cohorts - men aged 25-
34, 35-44, 45-54, and 55-64. I.Q., socioeconomic background and years of
schooling are generally significant predictors of occupational status and
income in the same four age groups. Bowles and Nelson note that the
normalized regression coefficients of their "corrected" socioeconomic
background variables on schooling, occupation and income, exceed the
coefficients of I.Q., in contrast with the findings of Duncan. The effect
of the corrections is to raise the standardized regression coefficients.
Bowles and Nelson conclude on the basis of these "corrected" data, that
I.Q. itself is not the major vehicle whereby parents are able to transmit
economic success to their children. Rather, they hypothesize that the
genesis of the correlation between children's and parents' achievementis
"In aspects of family life related to socioeconomic status and in the
effects of socio-economic background operating both directly on economic
success, and indirectly via the medium of inequalities in educational
attainments."

In spite of the crudeness of the corrections, the results obtained by
Bowles and Nelson do correspond to studies where the background data are
contemporaneous and fairly accurately measured. In their study of 1957
Wisconsin high school graduates, Sewell and Hauser (1975) have
background information not derived from retrospective data. Measures of
parental income were obtained ‘from Wisconsin income tax returns for the
year in which the subject was a high school senior (1957) anc the three
following years. This probably is a good index of the ability to afford
college and provide advantages in the working world. Own income was
quite accurately measured since it was derived from Social Security
records. Sewell and Hauser find that ability has a large dircet effect on
schooling, but that in determining earnings, both schooling and ability are
dominated by own occupational status (related to schooling) and parental
income.

Equations representing all four types of outeomes have been
estimated by Sewell and Hauser (1975). The initial data were derived
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is positively related to post-school labor market experience. It will be
interesting to see as the data collection continues if schooling and ability
are equally important in determining earningsat age 50.

Part of the explanation for the importanceof parental incomein the
earnings function may lie in the greater market experience of children
from richer families. Labor market experience may vary with family
income because children from poor families may take more years to
complete their degrees because of the need to work to finance their
schooling. Sewell and Hauser do examine several correlates of family
income and reject the hypothesis that the impact of father's income on
son's earnings is due to the place of residence, place of origin, military
experience, marital status or labor force experience. College quality may
also be a link between father's and son's earnings. They conclude that
"slightly more than half of the variance in earnings among colleges in
(their) sample was explained by the fagt that colleges select or recruit
men with varying prospects for earnings.

In this sample, data on the mother's characteristics were available in
addition to the data on father's which most studies rely on as indices of
family environment. Variables measuring the mother's education and
income significantly improve the amount of variance explained in the
ability, education and occupation equations. Including mother's income
with father's income increased the amount of explained variance in son's
earnings. This provides some support for the "production" explanation for
the importance of background variables as opposed to the transmission of
social class approach. An independent effect of mother's income on son's
earnings is consistent with the hypothesis that greater parental income
and productivity lead to more investments which inerease the son's
earnings capacity.

Can the effect of parents' income on earnings be traced to other
social variables? Sewell and Hauser find no evidence to support this
contention. While measures of teachers! and parents' encouragement of
college plans, high school grades, own and friends' plans for college and
occupational aspiration were good predictors of educational attainment
and occupational level, none wassignificantly related to income.

Sewell and Hauser conclude that much of the influence of social
background on earnings, occupation and schooling is "due to the superior
cognitive and motivational environment" provided in higher SES homes.
However, they see evidence of "aseriptive elements" permitting direct
transfer of occupational and economicstatus, as in the effect of parents!
income on son's earnings.

The evidence reviewed so far is consistent with the statement that
employers pay primarily for characteristics of the individual - his
schooling or ability - and that most background variables affect earnings
indirectly through their effects on earnings and ability. However,
parental income does seem to have a direct impact on son's earnings.
Perhaps parental incomeis related to other unmeasured dimensions of an
individual's earning capacity for example, quality of schooling.

Another example of a recursive model estimated on individual data
with contemporaneous data on family background is presented by Conlisk
(1971). He estimates versions of equations 2 and 4 of the prototype model
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attended high school. School quality retains its significant positive effect
in the earnings functions, while neither school quality nor state income
has a significant coefficient in the equations explaining ability or years of
schooling. It may well be that per capita expenditures in a school district
is a better proxy for family income than is median state income. It would
be interesting to have a better measure of family income in this data set
to determine if family income has an effect on earnings net of school
quality.

Solmon (1873), analyzing the same data set, found that earnings
were affected by two distinct aspects of college quality - faculty quality
(as measured by average salaries) and student quality (as measured by
average student test scores). The impact of quality of schooling appeared
to rise with age, both for men with 12-16 years of schooling and for those
with graduate training. For those with graduate training, quality of
undergraduate college was not significantly related to earnings on first
job, in 1955 or in 1969. While graduate school quality was not related to
earnings in the first job, it was significantly related to earnings in 1955
and 1969. Introducing variables for father's and maternal grandfather's
schooling and a rough index of father's occupation (indicating high,
medium and low) reduced the size and significance of the quality variables
Slightly, but the quality variables remained significant predictors of 1969
earnings,.

Morgenstern (1973) investigated the effect of school quality on the
earnings of blacks and whites with data from the 1968 urban problems
survey, conducted by the Survey Research Center at the University of
Michigan. The sample consisted of 842 black and 782 white male and
female employees living in 15 largely northern cities and two suburbs.

Measures of school quality were constructed by assigning to each
respondent the average value of per pupil expenditure, average teacher
salaries and student-teacher ratio which applied to the state and decade in
which the respondent attended primary school. In wage equations
estimated separately for blacks and whites, wages are a positive function
of schooling and experience, but are lower if the father's education level
was low and if the respondent was a female. In spite of likely downward
bias to the coefficients on school quality variables due to the use of state-
wide measures, whereas the intra-state variation in quality is likely to be
correlated with measured background variables, school quality proves to
have a small direct effect on the wages of blacks.

Per pupil expenditures are significantly related to earnings for
blaeks, although the coefficient becomes not significantly different from
zero when a North-South dummy variable is included. In none of the
formulations do wages of whites vary with school quality variables.

In explaining educational attainment, per pupil expenditures are
significant predictors for both races even holding constant region of birth.
Using parental education as a proxy for socioeconomic background,
Morgenstern found that mother's education is more strongly related to
educational attainment of blacks, while father's schooling is a better
predictor for whites. Thus, schooling attainment seemsto be significantly
related to socioeconomic background and school quality for both blacks
and whites, while the direct effect of school quality on wages was seen
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It is well known that I.Q. declines with birth order and family size
(Belmont and Marolla). If this results from lesser time inputs received by
children who must share their parents with additional siblings, last born
children should have an advantage over middle born children because they
have exclusive claim on their parents! time for part of their lives, while
middle children never do. This advantage may show up in measured
ability, acquired schooling or earnings achieved.

Lindert uses data on 1087 siblings collected from interviews with
312 senior male employees of a New Jersey utility company in 1963 to
trace birth order and family size effects on achievement. In explaining
the variance in schooling attainment across all 1008 persons in the sample,
mothers! and fathers' education both have coefficients which are highly
Significant and about equal in magnitude. Father's occupational status
was positively related to schooling attainment, and a broken home was
negatively related. First born children and those from small families
obtained significantly more schooling than others, although the
hypothesized disadvantage of middle children vis a vis last-borns did not
pass significance tests., Age and sex were notsignificantly related to
educational attainment.

An index of males' occupational status was significantly related to
fathers' education and occupation, but not consistently to mother's
education. Men from broken homeshadsignificantly lower occupational
Status and older men had a higher index rating. Again, men from small
families and first born men hadhigher status, holding all other background
variables constant. To overcome the problem that the interview
respondents had higher achievement than their siblings, on average, and
that the probability that any observation was an interview respondent was
related to his family size (one half of children in two child families were
interviewed, but only one third in three child families, ete.), regressions
were run on intra-family differentials in all variables. Less of the
variance is explained in these regressions (about 8%) than in the across
family regressions (about 31%). It had been hypothesized that last borns
get more time than middle children because they are the "only child" in
their home for some time. The coefficients support this hypothesis, but
are generally not significant. One comparison that was statistically
significant was that last-borns among 4 or 5 child families do better
relative to the first born than the 4th or 5th child in a family of six or
more. This supports the contention that last borns have an advantage over
middle children, as well as providing evidence for the family size effect.

When the set of sibling position variables was replaced by an index
derived from time budget data on relative amounts of time spent with
children in various size families and various birth orders, this index was
significantly related to educational attainment across and within families
and to occupational status across families. Lindert concludes that these
results are consistent with the view that "sibling position matters because
of its straightforward effects on family time and commodity inputs into
children..." Yet the evidence is not conclusive since the variation in the
time input index results largely from the greater time inputs received by
first born children.

Lindert's analysis does point to a rationale for the importance of
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maternal education on economic outcomes in studies which do not hold

constant sibling position. In these studies, maternal education may act as

a proxy for differential inputs to children, since more educated mothers

have fewer children and spend more time with each child.

The relative importance of education, intelligence and social
background in explaining variations in personal income in Sweden has been

analyzed by de Wolff and Van Slijpe. The data were provided by Husen and

relate to a group of Swedish men who werethird graders in the Malmopri-

mary school in 1938 when the data collection began. At that time social

elass of the parents, and I.Q. were recorded. In 1963 the original group

were resurveyed and queried about their 1963 taxed income, years of
schooling, and occupation. Complete set of data were provided by 65%,or

045 men.
Both linear and semi-log earnings functions were estimated. In both

formulations education is the most important explanatory variable,
followed by social class, then childhood I.Q.

In de Wolff and Van Slijpe's experiments with the interactions among
their independent variables, they found that intelligence and social class
reinforce each other in generating earnings, and their combined effect,
particularly at high levels of education, is much greater than implied by
an additivity of effect. Their data indicate that the small number of
highly intelligent children from low SES backgrounds who received high
levels of schooling earned less than their counterparts from more
advantaged backgrounds. However, even for a low level of social
background and moderate level of intelligence, schooling has a positive
effect on earnings.

II. Evidence of Unmeasured Elements of Family Background from
tudies of Brothers.

The availability of data on brothers has allowed a kind of "natural
experiment" which can provide some answers to the question whether the
omission of relevant background variables correlated with educational
level has biasec estimates of the relationship between schooling and
income. Using the Gata on brothers to run intra-pair regressions allows
one to hold constant some elements of family environment, and date on
monozygotic twins even allows one to hold constant genetic makeup.

To estimate the importance of genetics, home environments, and
individual investments explaining variance on earnings, Paul Taubman used
the NAS-NHRC sample which contained data on white male twins born
betveen 1917 anc 1927, both of whom had served in the military.
Taubman (1875) uses the fact that there are two types of twins -
monozygotic - those who are derived from a single fertilized egg and are,
therefore, genetically identical - and dizygotic - those who arose from
two separate fertilized eggs. This allows one to assign part of the
variance in earnings of dizygotic twins as due to genetic diversity by
contrasting with monozygotic twins, for whom there is no genetic
diversity within pairs. Some additional assumptions are also necessary.
These incluce:

1) no assortive mating
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capital, opportunity and ability, none of the studies reviewed above was
able to account for much more than 50% of the variance in earnings or
schooling. If we are unwilling to attribute more than half of the variance
in earnings and schooling to chance, we will have to consider other sources
of influence on measures of economic success.

The studies of brothers included in this volume employ a novel
tactic. By dropping the assumption of a fully recursive model and
allowing for common variance between brothers, these studies utilize
more completely the information contained in samples of siblings. In this
way, the importance of family background ean be estimated without
having knowledge of which particular facets of the family affect
economic outcomes. These analyses amply demonstrate that there are
one or more factors common to families which do affect economic
success.

However, much work remains to be donein "naming" those factors.
Naming with the labels "genetic" or "environmental," appears to be futile
(as implicit in the papers of Chamberlain and Goldberger). But identifying
the factors with processes in families so that we can understand the
mechanism by which families influence their children, would be most
worthwhile.



Family Background and Economic Success 31

FOOTNOTES

‘S. Mincer (1970), p. 2.

*-Taubman and Wales did use four ability variables derived from a
factor analysis of scores on 17 ability tests. The four faetors correspond
to mathematical ability, coordination, verbal ability and_ spatial
perception. They found that only mathematical ability is a significant
determinant of earnings ($7-100). They note that "Thorndike believes our >
mathematical factor is close to I.Q....."(p. 97n).

3 exceptions include the paper by Chamberlain and Griliches
discussed in Section II, and papers included in this volume.

4With the exception that father's occupation is second in importance
in explaining son's occupation and of at least importance in explaining
schooling and earnings.

"The single exception was that I.Q. was not a significant predictor
of occupational status at ages 25-34 once years of schooling was included
among the independent variables.

Scowell and Hauser (1975), p. 79.

"The magnitude of this bias might be great since 1/3 of the students
spent five years in obtaining a B.A. (p. 170) while the average numberof
years between college and obtaining the income data wassix years.

esewell and Hauser (1975), p. 141,

Sewell and Hauser find both standardized and regression
coefficients of father's education exceed those of mother's education in
predicting son's score on Henmon-Nelson Test of Mental Ability in his
junior year in high school.

The age range in the sample was 31 to 81, so most had completed
their schooling.

11 Chamberlain and Griliches (1275), p. 432.
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I. Biological Aspects and Twins

 

By genetic endowments (G), we mean the innate capabilities that are

based on a person's genes, half of which are contained in the egg and the

other half in the sperm.4 Environment (N) ineludes all other systematic

and nonsystematie determinants of skills, including prenatal development.

While environment is "everything else," some particular aspects that are

usually thought to be important include family, peer group, on-the-job

training, schooling and military. As this list indicates, an individual's

environment includes both elements over which he has little and much

Twin Types

Males and females normally have 23 pairs of chromosomes. The genes

are located on the chromosomeswith each parent contributing one gene of

the pair found at each location. In the population each gene may comein

one form such as A or in many varieties A, B...,Z. In an individual each of

the two genes at a location may be the sameordifferent, e.g., AA or AB.

We will assume that each skill or trait is influenced by many genes, some

of which have more than one variety. Only a randomly determined

member of each gene pair is transmitted to the next generation via the

egg or sperm, each of which is a gamete of one parent. But once the egg

is fertilized, i.e., the two gametes combine, the developing individual

receives one member of each gene from each gamete.

There are two types of twins-- monozygotic (MZ) and dizygotic (DZ).

The MZs, often known as "identical," are the result of the splitting of an

already fertilized egg, while the DZs, or "fraternal" twins, are the result

of two different eggs fertilized by two different sperm. Thus, DZ pairs do

not have the same genetic composition although they will be morealike

than randomly drawn individuals. The MZ pairs, however, have the same

genetic makeup because eachpiece of the split fertilized egg eontainsall

and only the genetic information of the original fertilized egg (barring

mutations).

Il. The Model

The general model we wish to estimate is given in Table 1. For

simplicity in presentation we have assumed that there are no exogenous

measured genetic or environmental variables. The model is easily

modified to include such measures. The left-hand part of the table

contains so-called structural equations, which may be thought of as

solutions of supply and demand equations, while the right-hand side

contains reduced-form equations.®

In these equations we represent the unobservablesas G, Gy> Go, Ge, N,

Ny No; and Ne, which we refer to as genetie and environmental indices.

An index ean be written as 2. b,X,. The components (X,) of each of the
Le JJ

four genetic indices are the same, but their weights differ (and may be
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In the next three sections, we indicate how we control G and N to
obtain unbiased or consistent estimates of the parameters of the measured
variables such as schooling in the earnings equation. Wealso indicate how
we can estimate the contributions of the various G and N indices.

Iii. Controlling for Genetic Endowments and Family Environment

In previous studies of the effects of education on earnings, it has not
been possible to control completely for the other determinants of earnings
that might be correlated with schooling. With twins, however, it is
possible to eliminate genetic differences for the identical twins and
common background for both types by studying the within pair differences
in earnings.

To understand what can and cannot be done with twins, it is necessary
to compare the estimates obtained when using the individuals and within
pair differences. As an aid in making this comparison, let us order
individuals within each pair randomly,e.g., alphabetically, and denote the
within pair difference by A. We can write an equation for individuals
and a corresponding one within pairs as

1) InY =aS + bG + eN tu

la) Aln Y = aAS+bAG+ @CAN + Au

We can estimate both 1 and la and compare both OLS estimatesof a.
Denote the estimate from equation 1 as a l and that from 1a as 35.

Using standard methods, it can be shown that

, Ay _ plim cov (S,bG +eN + u)
2) plim (a,) = at plim var (S)

A limcov{AS, bAG +cAN+Au)
3) plim (ay) a ~~pimvar(AS)

As is well known, 2 yields biased estimates if plim cov (S, bG + eN +
u) is nonzero, which is generally thought to be the ease for the earnings,
schooling model.

For MZ twins AG is zero. Making the usual assumption that Au is
uncorrelated with AS, plim ay will be unbiased provided either ¢ 1s zero

or AN is uncorrelated with AS. The first condition means that the
differences in MZ brothers' environments have no direct effect on
earnings, though they may affect schooling. The second condition means
that the differences in environment that determine earnings are not
correlated with schooling. The latter condition may prevail if N consists
of adult environment such as on-the-training. If the bias in @ arises
only because of genetics or common environment, a, will be a con -
sistent estimate. A

For DZ pairs, AG is not zero and ao will not be consistent if plim cov
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(AS, bAG) is not zero. Thus it is possible to determine if geneties should
be controlled for by testing the null hypothesis that the MZ and DZ within
equations are the same. It is interesting to note that the bias in a, can

he larger than that for a, because both the numerator and denominator

in the plim expression change when we go from levels to within pair
differences.

In the introduction we indicated that some people argue that genetic
endowments have no effect on earnings or schooling. As will be shown in
the next section, they attribute the MZ-DZ difference in the sib
correlation for Y to DZ's having a smaller correlation in environment than
MZ brothers. In the above comparison of bias in the MZ and DZ within
equations, we do not make use of the assumption that MZ and DZ brothers
have the same environment correlation; thus, the test of the null
hypothesis is a partial test of the hypothesis that there are no genetic
effects. oe

This test is only partial in two respects. First, it is possible for genes
to affect earnings but not bias the education coefficient in which ease the
MZ and DZ within equations would not differ. Second, our maintained
hypothesis is that plim cov (AS, c AN)is zero. If this is not true, it might
explain why the two within equations were different. Fortunately, this
latter possibility can be examined within the context of the latent
variable models described below.

IV. Variance Components Model

In this section we will describe a variance components model that is
often used to analyze twin data. Wewill conclude that if we examine only
one variable such as In earnings, the model is underidentified even if a
number of strong and perhaps invalid assumptions are made. However,
once we combine the variance component model with the latent variable
technique, which will be introduced in the next section, we can identify
the parameters and test the validity of most of these assumptions.

We will perform this analysis on an equation which ean be expressed as

4) Y=G+tN

The reduced forms in Table 1 ean be put into this format by combining the
various genetic indices into one aggregate index (which can vary by
dependent variable) and the N and the various error terms into a combined
environmental index. We then normalize these indices so that their
eoefficients are each 1.

We can write the variance for individuals as

2 2 2
Oy =O0q+ Oy + 20qy

Now denote an MZ brotherby an asterisk. We can then calculate cross sib
covariances as

6) oO = O + O + 90
YY* GG* NN* NG*
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Sinee for MZ twins G* = G, we ean rewrite this as

21
)  Oyye OG +t Syne + 20K,

we can thus ealeulate that

2 2
8) Oy - F%yy% =

2
_ oO = _ * oO me

ON nn* (-p*) Oy where

2* —

Pe = Onne/ON
Thus the expected value of the difference between the individual and MZ
cross sib covariance is the additive effect on Y of noneommon
environment. Common environment presumably arises because of
treatment in the family, neighborhood, school and elsewhere. Since the
neighborhood and school are chosen by the family, it does not seem
unreasonable to assume that the family influence is quite considerable in

these common environmental effects. However,o4 -Ovy iS an upper

bound for nonfamily environment since parents may treat twins
differently in relevant respects, an issue to which we willreturn shortly.

If we denote a DZ brother by a prime, we ean also caleulate

9 Oyyr = Faq + On+2 ONG
Since for DZ twins, G does not equal G', other assumptions have to be
made for us to be able to estimate other parameters. For example, O.4

150 if all genetic effects are additive, if there is random mating, and

if there are no sex linkages of genes. Also, Ona 0' o... Now it is

assumed thet p*=9' =p. Finally, assume that N= pN' + v_ and E(G',v)
= 0, so that Sant San: As we will stress in a moment, each of these

assumptions are questionable, but even if they are true, the modelstill
; 2 2

eorntains four parameters— Oo: On Ong

Statistics - Oy, Oyyy, and O,,,. Thus this model is underidentified.

Nowlet us consider these assumptions, beginning with those that yield
Mele = Y, of. Various studies have incieated that on sometraits, there

and 9 but only three observed

is nonrandom or assortive mating of parents. As long as people choose to

mate on the basis of the observed traits (the phenotype), and the observed
traits partially reflect genetics, there will be correlation of the genes.
Existing studies have shown positive assortive mating for measures of I
and schooling and negative assortive mating for measures of personality
such as extrovertism. Nonadditive genetic effects encompass beth
dominant, recessive genes anc the effect of one gene depending on the
level of another gene. Examples of both types of nonadaitive effects exist
in the genetics literature. 11
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The assumption that p* =p' has been questioned by a number of

people. Evidence exists, as in Koch, that MZ twins are morelikely to be

dressed alike or treated alike in any one day than DZ twins. However,it

has been argued that different observed parental treatment may indicate

either that the parents of the DZ twins responded to the different

genetically-based needs of the brothers or that it is because of their genes

that the brothers selected different items from parental offerings.

Thus the observed differences in treatment are, in this view, due to

genetic differences. Moreover, concentrating on the day-to-day

treatment of twins or on dressing alike may be less appropriate than the

year or childhood-long average treatment and quality of clothes. In

addition, it is possible that the dimensions of family environment that are

important are values and attitudes inculeated by the same examplesto the

brothers or good or bad nutrition offered jointly to both brothers. Thatis,

the important aspects of environment may be like publie goods which are

not appropriable by one brother at the expense of the other.
. 2. |

However, some peoplestill argue that OGis zero and that Ovy«> Ovyr

only because p* > P'. This view is difficult to accept since there are
diseases that are caused by known genetic problems and result in mental
retardation (if not treated) or are debilitating with respect to energy
levels. Nevertheless, the general proposition that p* > p' may still be
valid.
The assumption that E(G',v) = 0 can be interpreted as one DZ brother's
noneommon environment being uncorrelated with his sib's genes. While
this assumption may not be valid, it is not patently absurd. But note that
this restriction has not been imposed on the MZ pairs.

We show in the next section that it is possible to estimate some of
these coefficients in question rather than restricting them to particular

values. We can then test these restrictions to determine their validity.

V. Latent Variables and Indicators

A "latent" variable is defined as an unobserved variable which affects
two or more observed variables, zalled "indicators." While sociologists
have studied such models for a number of years, econometricians' interest
in this area dates from Zellner's pioneering study. Goldberger provides an
extremely useful summary. Chamberlain and Griliches have used the
technique with brothers, though they are not able to decompose "family
effects" into genetic and environmental components.

In this section we will derive maximum likelihood estimators for a
particular version of the model given in Table 1. Essentially we augment
the standard latent variable model with a variance component model by
including cross sib covariances. The reader not interested in the technical
details may skip to the next section.

We refer to the right hand side of the four equations in Table 1 in
which all the variables are unobservable as the reduced formresiduals.
Denoting the 4X1 vector of these reduced form residuals as € and
transposed by the superscript T, we define the following covariance
matrices:
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10) Eee!) = A Bee!) =A E(eex) = OO D M

where ¢€' is the residual vector for a DZ brother and ¢* is the residual
vector for an MZ brother. The values of these matrices depend on the
particular assumptions made about the covariances of the unobservables
(N, N), No, No, G, G,; Go, G.) and of the structural disturbances (u) as

discussed below.

For estimation purposes we assumethat the unit of observation is an
individual and his twin brother, and that the correspording 8¥1 vector of
reduced form residuals for the individual and his sib,( E)) or ( Ee is de-
notedas e' or e* for DZ and MZs respectively.13 similarly, we define the
corresponding covariance matrices! and *as:

11) E(ete'!) =" = mo Op

05 i Q,

Q Q
12) E(etet!) = QealeQ a

aii

Assuming now that e!' and e* are independently normaly distributed, then
the logarithm of the likelihood of observing a sample with (T' + 1) and
(T* + 1) DZ and MZ twins respectively is given by (aside from a
constant)

13) L=- ->- (log/Q' + trfQ +t wt ]})- +"ogia / +

trfaxt w*])

where W' and W*are defined analogously toO' andQ*, except that their
elements are the observed sample covarianees of the four dependent
variables. This likelihood funetion can be maximized with respect to
the underlying structural parameters in the reduced form parameters in
Table 1 once! and ©# (or, more basically, QO. OQ5 and O.,) are expressed

in terms of these parameters and provided the parameters are in fact
identified.

Before discussing this, ,table, we will consider the question of
identification of the model. A subset of our model ean be expressed as

— +14) Y, = A,G + YN Wy

_ +Y5 = By Yy + AG + YN u,

_ + YY +Y4 = By Ya + ay. +- A,G 3N U3
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Y, = BY, + oy, + AG+ YIN + u
4 3° 1 3 4

For this discussion it is useful to decompose G and into the family
and individual specific components, Gij = f. + Bi}? Nii = m, + hip»

where i is the family and j is the sib subscript. We will assume that
-o _ , ps

E(f,m,) fm and E(g:hj.) Onn while the specific components are

uncorrelated with the family components. Wewill also assumethat the u
. are uncorrelated across equations, across brothers and with G and N.

The reduced form of this modelis

G15) (Y,Y,Y,Y,) = (4k) [yy] + (,, Ey, Ey, Ey)

with

+ BLA,) + BoA,

A, + S[A, + A(A, + BLA
1

9 * By Ay) + By Ajit Bg Ay

 

+ B, Y,) + BY,

V, to[¥, + a(Y, + B, Y,) +B2%, Jt BgAy

+ B,u,) + Bou
21

+s
d(u,. + Bou + A(uy + Bou,)) + B3 21 u31 

Vand E(EE')
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2 2 2 6B + 2
oy Bios (By + oB,)o; (SaB,

+

BLé + By oy

2 2.2 2 2 5 2 2B,(B, + (4 Bon + Bid 16 2 aB,oy + a0; (ob,+ ) + B,)B a; + aso,

2 2.2 22 2 2, 2+ ;
93

+

(By + aB))' oy + aa, 803 ta do, + (aB, + B)(6(aB, + B,) + By)os

2, .22, 2,22 22
+o, +50, +a 8a, +(adB, + 6B, + B,)“o}

; 2 _ 2
and where O =-O_ , ete

1 U4

Thus we Cui. express our model in terms of the individual and cross sib
variance covariance matrices whose probability limits are given by

T T
16)Q = (02 +0%)aq

?

+ (9% +62
O f g dd (o Oo, ) kk + (0, +O, )

(dk 1 + ka) + Vv

_ T 2 T T T

17) Q, = ofdd + OF kk + OF(dk + RA )

19 = Z Z T 2 T 7 . TT

18) On, (Of + O .) dd +okk + (OG, + 0.) (cv

*

+kd *)

At times it is convenient to use the within sib covariances:

a) SS = _ _ ~2 T

1) = Qo- Oy

=

Oy Ke FY

7 - _ 2

4,

T 2 7
20) Uy = O5 QO, = Oo, dd + oF. kk + V

Now let us consider how we can estimate the variance parameters.

; , 2 2 _3 2
Note first that we can only estimate 0,, 05; O., and oO, and Bi, B, Ba, a

and ’from V since the first four parameters appear nowhereelse, while

there is not enough information to identify the others elsewhere. Since V
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indicaticators and any or the 2 parameters such as Sac »Oon

equivalent of oF/ Oc: We cannot, however, reduce the underidentification

in the 1G, 1N index part of the model. Similarly, we can add Go and Gey to
the model as in Table 1 and estimate additional parameters.

Next, suppose we return to the 1G, 1N model and then add Ny to our
model in the form given in Table 1. Once again the ranks of OO, and © M

change so that they will contain 15 independent variables. Suppose we
decompose N_ into family and specific components, m,. + ny. Then it

i ap
can be shownthat +,, = ok" + o. k k Tay. (The eleménts in k

ld
ean be found in Table 1.) As previously indizated, x

or the

1
M contains only 10

independent elements and V has 9 unknown parameters. Thus we ean only
estimate one of the 4 remaining unknowns, of, k, of , kK}. Unfortunately,

2
O, and oO? do not appear in Q. orQ,.. While k and appear in theh hy D M 1

blocks, they always multiply 0%, and On.? respectively. Thus it is not
aa . 9

possible to identify the coefficients unless further restrictions such as On =
1

2s o2 me} 2 are introduced.
N hy N,

As noted earlier, we can incorporate the full set of genetic effects in
our 4 indicator model by having a single vector that contains all the
possible genetic elements and then constructing 4 indices out of thjs
vector by using various weights. To estimate the parameters in V and 0}

20 or 0,/o

we must partial out all the equivalents of of for each of the 4 indicies

from *.., which ean be estimated from the OO, and On blocks.D’

It is equally true that 4 N indices would be needed to cover fully all
environmental effects. But since we can only estimate one of OF, jal.

-4, we will concentrate on models with only one environmental index.

Note, however, that the estimates of the genetic effects are derived from
O57 On Even if there are 4 environmental indices, this differencing will

. y

eliminate their contributions, provided the cross sib correlation is the
same for MZs and DZs for each environmental index.

Finally, this model can be compared with one in which wefirst partial
out the effect of a set of observable exogeneous variables. That is,

assume

21) N =Xy Hy + vy

22) G, =X U
P Gp Gp

where the Xs are observables that may serve as proxies for N and the Gs,

the s are unknown coefficients, and the v's are random disturbances.

+ Vv p=1...4
2
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Table 2

Some Summary Statistics for Individuals in the NAS-NRC Sample
(calculated separately for MZ's and DZ's)

1973 annual earnings

In 1973 annual earnings

1967 or 1972 occupational score d

Years of schooling

Initial full time civiliam occupation’?

Age

Mother's education years

Father's education years

Father's occupational status?

% Catholic

% Jewish

% Other non-Protestant

Numberofsiblings alive 1940

Numberof oldersiblings alive 1940

Numberof pairs  

   

==
Mean Variance  

Note. Caleulations are for those for whom earnings are non-zero for both brothers.

For other variables, if one brother answered and the other did not, non-respondent is set

equal to his brother. If both did not answer, both are set at meanorput in "other category".

For mother and father data, if brothers' answers differ, mean of responses is used.

&Thousands of $

DMillions of $

CAs recalled in 1974.

dpunean Seale
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Table 3

Individual and Cross-Sib Correlations

$ : Coz inY i C eq

 
Note: Calculated for both brothers having nonzero earnings 1973. For other

variables, missing observations are replaced with brother's values, or if both are missing, with
the mean. Less than 20 people did not report years of schooling. About 500 people did not
report initial occupation. About 800 people did not report 1967 occupation. A comparison of
eross-sib correlations for OCe, based only on people who reported indicated slightly smaller

figures for MZs and DZs with the difference between the two cross sib correlations
practically unchanged.

S is years of schooling.

OC,isinitial civilian occupation, scored on the Duncan Seale.

oc 67 is occupation in 1967, scored on the Duncan Scale.

In Y is the natural log of earnings in 1973.





Table 4

Structural and Reduced Form Equations Estimated
for Individuals by OLS
From runs 2/10/76

   
 

 

  

    

   

      
     

   

   

 

  

  

 

  
  

     
      

 
   

          

Raised

Yrs. of Schooling s oC; 0CE7 Rural

(S-1) S 1.61 -.01

(7. 8) (.1)

Initial Occupation
(OCI-1) oc; -42 -2.01

(40.8) “a(14.7)
(OCI-2) OC) -08 -l1l/] 1.22 - 46 -.14 -086; .066; .0095 '1.66

(.8) (1.3)} (7.2) (4.8) (8.7) (7.0) (4.9) (6.3)] (2.6)

(OCI-3) oc; -37 -028 -.15 -~.0030/ .20 -62 - 46 -.064 -041/} .027)] .0030 -3.49
(33.2) (2.6) (2.2) (.03)} (2.6)} (4.1) (5.4) (4.4) (3.6) (2.2) (2.2)|] (5.9)

1967 Occupation |
(OC67~1) OCe4 - 36 -134

(40.0) | (1.1)

(OC67-2) .OCe., -29 .19 50
- (27.2) (14.6) (9.0)

(OC67-3) OCe, -.021 ;-.61 ‘] .15 -.10 -77 30 -.075 -040;, .043; .011)5.16
(1.9) (8.8) (1.8) (1.3); (5.2) (3.6) (5.4) (3.5) |(3.2) |(8.1)] (9.0)

(OCI-4) OCE, -28 -18 -.006 -.45 -077 '-.030| .23 -23 -004 -0086-. 010 j-.004; 1.10
(25.0) (13.7) (.7) (7.4) (1.1) (.5)! (1.8) (3.2) (.3) (.8) (.9))(3.4) (2.1)

1nY73

(¥1) 1nY 53 -080 i 8.58
(32.4) | (262.5)

(Y2) inY,, -067 -039 | 8.55
(23.6) (9.5) | | (262.8)

(Y3) inY_, -~.011 -.054 14 -03 ~43 -007 -.021 -014; .012; 0189.8
(4.1) (3.0) (6.6) (1.6); (11.2) (.32) (6.0) (5.2) (4.0) |(5.3)] (67.5)

(Y4) inY,, -059 -035 -.0079) -.008 ~13 .05 ~29 -.0080| -.0082 -0082;} .005d0 .0004 8.84
(19.5)| (8.8) (3-1) | (.5) (6.3) | (2-6) (8.3) (.4) (2.4) | (3.0) (1.6) |(1.3)] (63.5)

 

  

Note: OCe, and oc; Givided by 10 and are scaled from 0 to 10 as compared to Table 2. 

ec



Table 4a
Structural Equations

* Within Pair, MZ and DZ Separately, OLS

——
 

 

 

 

 

  
 

 

7 MZ df : DZ

Mar- Mar- Con- 2 Mar- Mar~- Con- 2
AS AOC; AOC. ried, ried, stant R |_88 AOC; AOC E45 ried ried stant R

Oe
i

(OCI-1) 2.10 -.126 -047 ~061 -03 .28 -.15 -24 -10 -09
(5.9) (.6) (.2) (. 3) (9.5) (.6) (1.0) (.4)

(OCI-2) - 209 -13 .03 -28 -.023 .09
(5.9) (82.5) (9.5) (31.3)

OC Ea

(O0C67~1) -26 -15 ~.15 -12 -013 -ll -29 -14 -.14 -.42 -43 .19
(8.4) (5.8) (.9) (.7) (.08) (11.3) (5.5) (.7) (2.2) (1.9)

(0C67-2) -26 -15 -.009 ll -29 -14 -.04 -19
(8.4) (5.8) (2.7) (11.3) (5.4) (48.3)

(OC67-3) -29 -.027 -08 -33 -.05 -16
(9.5) (33.4) (13.4) (259.5)

inY73

(Y-1) -017 -026 -.10 -.13 -.02 -04 -048 -038 -063 ~.10 -035 .09
(2.2) (5.1) (3.1) (2.7) (.4) (6.0) (3.8) (1.0) (1.9) (.5)

(Y-2) -019 -040 -0005 .03 -048 -038 -.002 .08
(2.4) (4.9) (.7) (6.0) (3.9) (4.8)

(Y-3) -026 -124 -.095 -.020 -02 -059 -052 -~.12 -057 .07
(3.5) (2.9) (2.2) (.4) (8.3) (.9) (2.0) (.8)

(Y-4) -027 -0030 .01 -059 -.00094 .07
(3.6) (9.2) (8.2) (5.2)

Note: These regressions use monents calculated from a single entry for each pair, i.e., 1 minus brother 2.
 

Intercepts are not forced to zero as would be done if double entry methods were used,
‘brother 2 as one observation and brother 2 minus brother 1 as another observation.

OCEy and oc; divided by 10 as compared to Table 2.

i.e. brother 1 minus

P
S

$
a
]
D
M
p
u
D
u
D
W
Q
n
D
]
,

‘
u
D
W
U
Y
y
a
g
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OC;

OCey

InY,.

Age

Raised

Rural

Married

1974

Catholie

Jewish

Born South

# Sibs Alive
in 1940

ED,

EDy

OC,

Variable Definitions

is years of schooling, reported in 1974

is initial full-time civilian occupation, reported in

1974, sealed on the Duncan Score

is current occupation, reported mostly in 1967 but
later for some of the sample, sealed on the Duncan
Seore

is the natural log of annual earnings in 1973,
reported in 1974

is 1974 minus birth date, taken from birth

eertificates

is a dummy variable equal to 1 if raised in rural
districts, reported in 1967

is a dummy variable equal to 1 if married in 1974,
reported in 1974

is a dummyvariable equal to 1 if raised in Catholic
religion, reported in 1974

is a dummy variable equal to 1 if raised in Jewish
religion, reported in 1974

is a dummy variable equal to 1 if born in the Census
defined region of the South, taken from birth
certificates

is numberof sibs alive in 1940, reported in 1974

is years of schooling of father, reported in 1974

is years of schooling of mother, reported in 1974

is father's occupation, Dunean Score, reported in
1967
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Reduced Form Equations

 

S 2.090 1.710
(20.5) (13.7)

oc; -847 1.043

(7.0) (8.2)

OCe -814 -658
(7.3) (5.4)

InY,, -210 - 150

(7.8) (5.1)

Structural Equations

S 2.090 1.710
(20.5) (13.7)

OC 5 -436 - 706

(2.7) (5.7)

oc -144 -058

67 (.9)  (.5)

Iny ~155 - 105

73 (4.2) (3.8)

Restrictions and other Parameter estimates

1.143
(17.1)

- 361
(4.8)

- 102
(5.6)

1.143
(17.1)

-192
(2.0)

-091

(5.0)

Normalizations and Restrictions

04 = of = of = of

1 2 3

oN = oN = 'N, =

Pmz pz = Fe

‘nc ~ °nc' ~ °Gn =

(13.0)

(13.0)

-.0078

-794

-016

(.6)

-794

(.3)

Table 5

Four Indieator Model (23 Parameters)

 

3 1 “2 43

1

-197 #1

(5.7)

-290 -149 1

(5.7) (8.8)

- 300 024 -0045 030 1

(23.1) (3.1) (3.6) (3.2)

1

1

L

- 300

(23.1)

Other Estimates

a2 = 2.18

ui (22.6)
2

o = 2.80
4) (25.2)

a2 = 2,49

U2 (26,2)

of = -13

3 (24.0)

Functional Value = 13435.

- 197
(5.7)

-261
(5.7)

-015
(1.9)

44

inY.,

-149
(8.8)

-030
(3.2)

s
o
l
j
a
u
a
y

fo
sj

oa
f{

{q
a
y
2
B
u
l
u
n
s
p
a
w
p
u
v

uw
oy

6u
ij
j}
0u
ZU
OD

AS





Tabie 5a

Four Indicator Model

(24 Parameters)

 

G N G G G u u u u S oc. oc 1lny

 

Reduced Form Equations

S 2.092 1.831 1

(20.5) (10.9)

OC; -843 1.121 1.140 -097 1

(7.0) (7.7) (16.9) (.6)

OCe 5 814 - 704 -361 -793 -267 -145 1

(6.0) (5.0) (4.7) (13.3) (5.8) (5.1)

inY., -208 -163 -093 - 020 - 302 -0079 .0043 .029 1

(7.7) (5.1) (4.4) (.7) (23.5) (.3) (3.0)

Structural Equations

S 2.092 1.831 1

oc; - 640 -943 1.140 1 -097

OCe 5 -164 -080 - 196 -793 1 2253 -145

inY.. -184 -142 -083 -.0032 - 302 1 -0010 029

Normalization and Restrictions

Q I Q II Q UI Q Il Q II oO ~

AM = 1/2

Other Estimates

s
o
1
j
a
u
e
y

f
o
st
oa
f{
fq
a
y

B
u
l
u
n
s
p
a
y
y
p
u
b
u
o
y

Hu
ij
jo
uj
7U
0D

Op =P = 186
MZ DZ (8.2)

of = 1.75 o* = 2.49
(4.0) “20 (26.1)

of = 2.71 o2 = 213
1 (17.5) 43 (21.5)

Functional value = 13435.14 6
S
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As the model is structured, we cannot identify separate estimates
for Puz and Poz: (See Goldberger's paper for a formal proof.) We can,
however, restrict Poo to be a fixed fraction of Pov: The results

obtained when Poo = .890 mz, are given in Table 5b. The estimates of
the variances of the random errors (u through Us) and the coefficients of
the measured variables are identical in. Tables 5a and 5b. In 5b the
estimates of the coefficients on G and G, are smaller while those on N

are larger when Puz>Ppz- All the coefficients significant in Table 5a

remain so in 5b except for that on G in the equation for OCj. The fit of

the model is, of course, the same as in 5a and is not a significant
improvementover that in Table 5.. . o _ ;Till now we have been assuming that GN Cant 0, which

restriction we would like to drop. Unfortunately, we have not been able
to get this version of the model to converge, apparently because the
gradient of the likelihood function is very flat with respect to San: It is

possible, however, to estimate the coefficients on of for any assigned

value of Can: The difference in the likelihood function when San = 0

or .6 is only .05. The coefficients on N vary greatly between the runs in
whieh o GN = 0 and .6. Examples of these differences are given in Tables

od and 5f in which we have also relaxed the composite restriction of
random mating and only additive gene effects. The reader will note that

only when Oqn= -6 the coefficients on o S change, a result which ean

be shown analytically to be valid. We also have not been able to estimate
o an and Oqnt when is not 1.

We have replaced the random mating additive gene effects
assumption by one that says for each genetie index for DZ pairs that

2 2 ; 2 20O aq9 Gq > "aia," "a, = oG,G, ‘PG, = "a,a,"° G, = AM where

AM is estimated. Tables 5d, 5e and 5f give the results for this model for
P restricted to 1 or allowed to vary and for various values of o GN"

The introduction of the AM parameter causes a sharp change of
about 3.5 for the In of the likelihood function. The estimate of AM is
about .35 which implies negative assortive mating or alternatively
nonadditive genetic effects. When approached in terms of assortive
mating, the value of .35 is somewhatsurprising since for IQ and schooling,
positive assortive mating has been found. Of course, for personality traits
such as extroversion, negative assortive mating has been found.33 The
results are more explicable in terms of dominance which reduces DZ cross
sib genetic correlation below 1/2—assuming random mating. 4 As should
be expected, compared with the random mating model, the estimates of
genetic effects are decreased while those for N are increased. But the
estimates for the parameters obtained primarily from x and Xn are
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(25 Parameters)
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little changed.
We have also estimated a model with AM for the first three genetic

indices but BM for the last genetic index. The results given in Table 5e
are not much different from those with AM restricted to be the samefor
all four genetic indices.

Up to now we have estimated our models with 4 G and 1 indices.
While in principle it is necessary to have as many genetic indices as
indicators, 35 in practice it may not be necessary to be so generous.
Similarly, it is possible to add more environmental indices provided we
restrict the p on newindices to be 1 (or the same as on the first N index).
In a table not shown, restricting all the coefficients on G, to be zero

reduces the In of the likelihood function by about 34 compared to the
model in Table 5. Since twice this difference is hirhly significant, we can
fit the data much better with G, included. As misnt be expected, the

coefficients on the other parameters estimated primarily in the Q,: Ov

bloeks shift about when G, is excluded from the model. The coefficients

derived primarily from the = block tend to increase by small amounts.
Next we return to the model with four genetic indices and add a new

orthogonal index (N.) to the OCen and Yo9 equations in which its @ is
36

restricted to 1. The new variable has coefficients with t values of 1.93

and .5. However, the coefficients on No are numerically small, the other

coefficients are essentially unchanged, and twice the In of the likelihood
funetion changes by about .8, which is not significant at the 5% level.

Up to now we have started with models which include several
genetic indices. Sinee some people take seriously a model in which only
environment matters, we estimate a system in which Pz is not

restricted to Poz for the various N indicators. Following Chamberlain,

this system can be shown to be identified if it has no more than 21
parameters. Moreover, the earlier material on identification indicates
that in such a model we ean only estimate one Pauaz and one Piz

Table 5g contains a model in which for the four N indices we
constrain Prag to be the same and similarly Poz is constrained to be the

MZ, need not equal Piz: Here we “ne pat me

estimates of the coefficients on the observables and for o W Ca Oo.

and of are quite close to those obtained in earlier runs in which Piz

3
# 1 (Tables 5a and 5d), though several of the coefficients are no

same, through

2

Pz
longer significant. The log of the likelihood function is smaller than our
previous best estimates by 16. Iforeover, our estimates are Purz = .95

and Pov = .61.

Onee we introduce a single genetic index (assuming AM = 1/2) into
this pure environmental model, the log of the likelihood funetion returns
to approximately the same level as in our earlier "genetic" runs. Thus one
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Table 6

Sources of Variance of Schooling, Initial and

Later Occupational Status and Earnings

(Assuming Yq =TG = 0)

Initial 1967 1973
Schooling Occupation Occupation Earnings

 
Source table 5c AM = .35, 0Mz 7 °pz = }

71
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Table 6a

Sources of Variances of Schooling,Initial

and Later Occupations and Earnings

(Assuming oyg = Ona = 6)

Initial 1967
Schooling Occupation Occupation

Note: Puz P pz = 1

Source Table 5f AM = .35

“GN = Can 6

1973
Earnings
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Table 6b

Sourees of Variances of Schooling, Initial and Later

Occupations and Earnings

8 PP )
. Q =

(Assuming "7 MZ.

Pereent of

Total Arising from

 
Source Table 5b
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elimination of capital market imperfections, or by taxes and transfers.
The evidence in this paper suggests more schooling won't be very helpful
in equalizing the income redistribution. For example, if everyone in this
sample had the same education, the variance in earnings would be reduced
less than 4%-- even if prices remained unchanged. Thus equalization of
earnings through compensatory education would require huge programs.
Other compensatory programs may be more powerful, thoughtit is hard to
specify such programs without having a good idea of what skills are
rewarded in the market place. We approve of eliminating market
imperfections but doubt that such a program would greatly reduce
inequality, especially since the effects of most market imperfections are
included in the common environment term. This leaves transfer programs.
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FOOTNOTES

tsome or all of these issues are considered for example in Becker,

Mineer, Champernowne, Lydall, Becker and Tomes, Meade, Taubman,

Jeneks and Sewell and Hauser.

2 For one view of geneticists of why such estimates are not useful,
see Feldman and Lewontin. For an alternative view, see Thoday.

If some people are born or reared to be lazy, this criteria suggests

that they are still entitled to transfer payments.

We are ignoring mutations, which occur very rarely, i.e., about
onee in 100,000 or less. For discussion of the biological and statistical

aspects of genes, see Cavalli-Sforza and Bodmer(1971).

For a more complete discussion of the biological aspects, see

Cavalli-Sforza and Bodmer (1971).

Beeause these two equations incorporate supply and demand

equations, the term "structural" is somewhat of a misnomer. The earnings

equation, for example, under strong assumptions can be considered to be a

hedonic price index in which prices for individual skills are the ones that

equilibrate supply and demand curves for that skill. Alternatively, the

eoefficients of the right-hand side variables in this equation can be

thought of as efficiency units weights for the inputs which are necessary

for the production of skills. However, within the framework of our model

we find it convenient to distinguish between the "structural" equations,

which incorporate both observable and unobservable variables, and the

"reduced form" equations, which are in terms only of the unobservable

variables.

The genetic indices are defined to be identical for each of the

members of a MZ pair. The environmental indices are allowed to be less

perfectly correlated across MZ or DZ pairs (although the correlation for

the latter may differ from that for the former).

The occupational status index utilized has its limitations in
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representing these phenomenon. Nevertheless, it would seem to bear a
definite relation at least to the first two of them. The degreeof specific
training and the extent of some nonpecuniary rewards(status, not having
to punch a clock), for example, probably are positively correlated with the
occupational index. Occupation-specifie dummy variables, nevertheless,
would permit a more compelling representation of such phenomenon.

2See, for example, Thaler and Rosen or Haspel and Taubman.

10owever, the results for the partition of variance given later are
essentially the same for schooling and occupational status or their Ins.

ITA, shown in, say, Eaves, it is possible to express the genetic
covariance between relatives as n

_ 1+Ary = Ces [=- + 1/2, (n+1),(n-1), (1-e,)
l

The parameters are defined as follows:

A is the correlation between the additive genetical deviations of
spouses;

Cc is the proportion of the total variation which ean be ascribed to

genetical differences(i.e., the "broad heretability");

Co is the proportion of the genetical variation which is additive;

n is the number of opportunities for genetical recombination in the
Shortest path in the pedigree linking the relatives under
consideration (i.e., n=1 for sibs, 3 for first cousins).

With enough typesof relatives it is possible to estimate these coefficients.

12chere is some evidence supporting this view in Searr Salapatek.

13Considering a twin pair as a unit of observation allows us to
assume that disturbances are independently distributed.

Mn and W* are in turn defined in terms of Wo Wp and Way Whieh
correspond to OQ, and One However, we do not restrict Wo to be the

same for MZ and DZ twins, but use instead the actual sample covariance,

which we denote as we and we :

15,,, . oo wo ;This section is based on the material in Chamberlain, whom we
also thank for correcting a major error in an earlier version.

16We are able to estimate of because Yo is not ineluded in the

Structural equation for Y 4:
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the seale of unobserved variables is arbitrary.

1BWe eliminate pairs if either does not have earnings, whose

derivation is deseribed in Appendix B. About 100 pairs whose zygosity is

unknownare not usedin this analysis.

The average 1973 earnings and education in our sample are

$18,000 and 13 years. In the population as a whole, the corresponding

figures for white veterans of the same cohort are about $15,500 and 12

years. About 1/4 of the differential can be eliminated if we reweight by

parental education and region of birth so as to produce the average of

white males born during the period 1917-1927 on these variables. See

Appendix B.

20 While our sample is not representative of the population, it seems

likely that we have over and underrepresented various population groups

rather than excluding all their members. For example, in Stauffer et al.

(1950), it is indicated that there were huge differences in disqualification

for mental problems by induction camp ranging from 1/2 of 1% to about

90%.

21 owever, sinee less than 5% of the sample have less than a ninth

grade education, our results may not be appropriate for those with low

education.

2215 our statistical analysis, it is necessary to distinguish between

MZ and DZ twins. For the most part, the twins' zygosity is determined by

their answers to: "As children, were you and your twin alike as 'two peas

in a pod' or of only ordinary resemblance?" This simple question assigns

pairs accurately almost 95% of the time. See Appendix B,for details.

23Se6 Taubman (1976), Appendix A, for discussion and references.

For samples of this size, the 5% level of significance in an F test

is about 1.2.

S66 also the comparison below of our regression results with those

based on Census data.

264 possible difficulty with the interpretation of the bias

calculations occurs because of differential importance of measurement

error in the various equations estimated. We consider this problem in

Appendix A.

"See Mincer.

28rhe Chow test often is used for testing this type of null

hypothesis. For the benefit of other users, we wish to report the following

observation which we find disturbing. We calculated F statistics for

alternative specifications of the same equation. In doing so we found that
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the F ratio could rise from .8 to 1.6 in specifications that differed only in
the inclusion of variables whose t statistics were less than 1.

22For the bias to vanish all the observed within pair variation must
be measurementerror.

30We ean still estimate the Go coefficient in the OC. equation
because of the other restrictionsin this model.

31 vinimizing the negative of the log likelihood function is
equivalent to maximizing the likelihood function itself. The minus sign on
the function value is omitted in the tables.

°2siternatively, we knowthat of or (1- P) is estimated from the al

and “yn blocks. While the coefficients obtained from the aM and x D
blocks will be affected by letting oe differ from zero, the changes are
not great.

33566 Vandenberg.

*4Goldberger has suggested that not allowing Paz a P57 may be
biasing our estimate of AM downwards. Such a bias reduces our estimateof genetic effects as would allowing Purz to be greater than Poy
though not necessarily by the same amount.

35S06 the material on identification in Section V above.

37
In allocations of the total variance, we use the Squares of thesecoefficients.

38 when pis not restricted to 1, this coefficient drops to .005 but pisnot significantiy different from zero.

2One contributing factor may be that the status measure isgenerally related to average earnings of all persons in an occupationwhatever their age. If those with less schooling enter high paying
occupations later than those with more schooling, this result might oeceur.

40
These are lower bound estimatessince any differential treatmentof twins in the family is included in the nonecommon environment term.
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APPENDIX A

John Bishop and several other economists have pointed out to us that

the previous statements on bias must be qualified because of measurement

error. As is well known if our true variable is s but we measure S which

has a measurement error of v, then the bias from the measurement error

(assuming v is uncorrelated with Y and with s) depends on a? joe.

Similarly in the within equations, the bias depends on a / a” We

2 2
would expect o Ay/ Ga, to be greater than alo. since the brothers’ true

schooling will be correlated while the brother's measurement error either

won't be correlated if we are dealing with wrongly reported numbers or

less highly correlated if measurement error is expanded to include quality

(denominated in units of earnings potential) as Welch has suggested. *

We ean calculate, however, the effect of any measurement error

varianee on the estimates from the within and between estimates. The

results (under the assumption that each estimate would be unbiased if

there were no measurement error) which are given in Table 1 assume that

the measurement errors across brothers are independent. As is evident in

the table if independent measurement error for years of schooling is no

greater than 10%, which seems large based on CES-Census comparisons,

the MZ within equations still imply a large bias. Alternatively if the

measurement error's variance is about 17 1/2% the within pair and

individual estimates would both yield an estimate of about 093. If

measurement error arises because of quality differences, which

presumably are correlated across brothers, the MZ within biases will be

smaller than those shown in Table Al.
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APPENDIX B

 

In 1955 a group of geneticists and medieal researchers decided to

assemble a "random" sample of white male twins to use in studying a wide

variety of diseases. The sampleis maintained by the National Academy of

Seience-National Researeh Council, who also eontrol access by

researchers. The sample construction and techniques are described in

Jablon et al. (1967), from which the following quotation is taken:

In 1955, experiments were initiated to

explore methods of identifying twins who

served in the Armed Forces during World War

Il. The method settled on was to obtain from

the various state and city vital statistics

offices in the U.S. copies of the birth records

of all white male twins born in the years 1917-

1927 and to match the names thus obtained

against the VA Master Index (VAMI) to

determine which twins survived with both

entering military service. About 99% of all

World War II veterans are represented in

VAMI.

It is not possible to tell just why the

proportion of matches wasso low. For a white

male eohort born in 1920, about 86% survived

to 1942. About 80% of the survivors served in

the military forees in World War I, so that we

might have expected to match 69% rather than

43.5%. Possible reasons for the discrepancy

include higher mortality in the twins than in

singletons born in the samme year, higher rates

of rejection for physical disability, and failures

to match correctly at VAMI because of

changes in name or inaccurgte birth dates

shown on the VAMI index card.
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substantially greater than Yo people had jobs that paid hourly and were

in seasonal occupations (construction), or currently unemployed, or

currently working far less than normal. For these people YA Was set

equal to Yo3° Conversely there were some hourly workers who normally

worked say 48 hours and whose Ya3 would approximately equal Ya if time

and a half for overtime were introduced. Once again Ya was set equal to

Yo3° Such judgmental changes as described in this paragraph were made

to 1 1/2% of the observations.
Sinee some information is better than none and since people may not

have felt the need to report earnings twice when the answers were the

same, when we observed a positive estimate for Y73 and zero figure for

Yq>we substituted the Yo9 estimate. Naturally, we also followed the

reverse procedure. Including these changes, about 15% of the

observations in YA and Yo9 have been supplied or altered by the editing

process.
Let us turn from a description of the editing process to the question

of the accuracy of the data. If we assume that people did not bother to

give Yx3 because it was the same as the "usual" earnings, then for nearly

90% of our observations, the two estimates of earnings varied by no more

than 15%. Given other information on thereliability of earnings data on

mail surveys and on the transitory part of current earnings for these 90%,

the earnings estimates are reasonable. Of course, there still are 10% of

the sample whose two estimates differ by more than 15%. Manyof these

are self-employed. For these Ya whieh is generally reported on a

monthly or annual basis, may be the more appropriate number to use

though we received the impression that some of these people were giving

their monthly draw which was less than normal business earnings. For

another large group, it appeared that the difference depended upon the

frequency of overtime, short work weeks and unemployment, but we eould

not determine which earnings estimate was the more representative. For

this reason, we used both series in the preliminary analysis, which

indicated that the ANOVAandregression results were fairly insensitive to

the definition used.
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NATIONAL RESEARCH COUNCIL
TWIN REGISTRY

NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING

FOR SCIENTIFIC PURPOSES...

For several years, research has been going on in connection with

the effects of our environment on health. This questionnaire is part

of an extensive study performed by the NATIONAL ACADEMYOF

SCIENCES and supported by the U. S. PUBLIC HEALTH SER-

VICE. From thescientific point of view,it is of the greatest impor-

tance that every one to whom the questionnaire has been sent

cooperate and answerit as carefully as possible.

a

Please note that your name does not appear

onthe questionnaire. The number onit is all

the identification weneed. The confidentiality

of your replies will be fully respected.

i

aie

First Here Are Some Questions Concerning Your General Health
e
t

1. Have you ever had any pain or discomfort in your chest? 3. Doyouregularly or for extended periods of time havea

[] Nommmaje Proceed directly to Question 2 cough?

Yes
- :

Lj Ye C] Nom! Procesd directly to Question 4

[] Yes

a. When do you feel this pain or discomfort?
Wh . . .

. wren you ortoadnewalknoaitl excited a. For how many months in a row do you cough per year?

[[] When you walk at normal speed on level ground [[] Less than three months in a row

{_] Under other circumstances (_] More thon three months in a row

b. Whatdo you do wh i i i i : :
walking? u en you feel this pain or discomfort while you are b. Forhow many months in a row do you bring up phlegm from your

(C] Stop waiking or walk more slowly
(_] Take medicine and continue walking at the same speed

{_} Continue walking at the same speed without taking medicine

([] Less than three monthsin a row

[_] More than three months in a row

c. Hf you stop walking, regardless of whether you take medicine or “°° When is the cough worse?

not, how is the pain or discomfort then? [1] Wintertime

(1 The pain usually passes within ten minutes (_] During the other seasons

[_] The pain usually continues for more than ten minutes [Jt is equally troublesome throughoutthe yeor

d. mieve er “ discomfort located? 4. Have you ever had a severe pain across the front of
in the middle of the chest iLr fhe lett aide of the chest your chest lasting for a half hour or more?

TL] In the left arm LJ Neo

[_] tn some other place C] Yes

.2. Do you get short of breath walki ith othot of ordinary pace onthe Ieee” with other people 5. ne you ever had a heart attack (coronary)?

[|Ne ; ; Cl] Yes === What year?

Ci Yesome oo you get shori ef breath walking a1 your own pace? If hospitalized, where?

|] No

L] Yes

——

$e

  

PeAeG

P
N
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6. As a child, did you have croup?

89

10. Did you have eczema when you were a baby?[_] No

) Yes

11.
7. Have you ever had asthma?

["] No

C] Yes ——mjeWhen did you have your last attack?
‘C] Within the past year

([] More than a year ago
[_] Only as a child

. Have you ever had hay fever, rose fever or allergic
rhinitis (characterized by running nose, watery and
itching eyes when you do not have a cold)?
CINo

C1 Yes

9. Do you suffer from migraine or severe headaches?
[-] No

C] Yes amjmDo you get symptoms before the headache starts
which tell you that you will get a headache?
L_] No

[] Yes ———jmDo you then take medicine before the
headache starts?

["] No

CL] Yes

 

Next We Shail Ask You About Your Food Habits...

12.

13.

14.

["] No
L] Yes

Did you at times later in life have ecrema-like skin
conditions?
(] No ame Proceed directly to Question 13
CJ Yes

Do you know the name of the
or have had?
(_] No
() Yes,
C] Yes,
[] Yes,
C) Yes,
C] Yes,

skin condition you have

Psoriasis
hives (urticaria)
ecne
allergic rash
eczema in knee or elbow fold

(_] Yes, allergic eczeme
(_] Yes, others, mamefly——_

Do you have or have you ever had:
(_] Rheumatic fever er rheumatic heart disease
(_] Saint vitus dance (chorea)
C] None of the above

When you become emotionally upset or are under emo-
tional stress, do you often experience persisting (last-
ing more than an hour) disturbances in the form of:
[_] Pounding headache
[_] Palpitation of the heart
(] Intestinal upset
(_] Sweating of palms
(_] None of the above 

sooo
FOOD HABITS

 

15. How many times adaydo you normally eathot meals:
[At no time

(_' Once
(] Twice

[_] Three times or more

16. Do you have to diet to keep your weight down?
(_] Yes
[] No

17. How often do you eat pastries (coffee cake, sweet
rolls, pie and cake)?

(“J Several times a day
[] Once a day

{_] Less often
21.

18. How oftendo youeatcandy,candied fruit,chocolates?
(J Several times a day
[J Once a day

("] Less often

19. Estimate your daily consumption of the following: 2
Pieces of bread or rolls

 

glasses of milk or buttermilk

 

glosses of skim milk

 

—_—_——.cups of coffee, with teaspoonfuls of sugar

 

cups of tea, with teaspoonfuls of sugar

 

 

20. How often do you usually eat the following?

 
 

 

 

  
 

Daily or Once Once Less
aimost or twice or twice often
daily a week o month

Pork (chops, ham, bacon, sau- _sage, ete.) CT] Cy CI [|
Hot dogs, ground meats (meat
loaf, hamburgers, etc.) Cc Cc] C] ]
Roasts (other than pork ),
steaks, lamb, poultry C) C] - Cy
Dishes made of flour, cereals
(dumplings, pancakes, spa-
ghetti, macaroni, etc.) CC] CL] Cc) 1
Eggs C] CJ Ch OOFish and other seafood Cc] C] (] Cc
Potatoes C) C] Cj Ch
Fruits and vegetables Cj L C] Cj     

 

Have you at any time made an extreme change in yourfood habits?
[] No
L] Yes wepWhen?

eee

Why?eee

Are there any foods to which you are allergic?
[J Ne
[] Yes mummjiee Wha tfoods?

How do youreact?

In what way?

OT
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_.. About Your Smoking Habits .. .
I

SMOKING HABITS 28. If you now smoke cigars, about how much do youin-
hale when smoking cigars?
[_] Do not inhale
[_] Inhale slightly

[_] Inhale moderately

 

23. Do you now smoke? [_] Inhale deeply

(1) NomProceed directly to Question 30 29. 1f you now smoke a pipe, about how much do you in-

Cj Yes hale when smoking a pipe? 

Do notinhale

24. How many cigarettes do you usually smoke a day? inhale slightly

 

 

 

 

  

cigarettes C Inhale moderately

[_] Inhale deeply

25. How many cigars do you usually smoke a day? 30. If you do not smoke cigarettes now, did you ever

- cigars smoke cigarettes regularly?
[_]No [_]Yes

26. How many pipefuls of tobacco do you usually smoke a. How long has it been since you last smoked cigarettes

a day? pipefuls regularly?

. b. How many cigarettes did you usually smok day?

27. If you now smoke cigarettes: yee you usvany Smows pore

a. About how much do you inhale when smoking cigarettes?

(_] Do notinhale

cigarettes

 

c. How old were you when you started smokingcigarettes?

 

31. If you

do

not smoke cigars now, did you ever smoke

  
 

 

 

 

(I Inhale slightly cigars regularly?
[_] Inhale moderately TN Y

[_] Inhale deeply
LJ Me

b. What type do you usually smoke? 32. If you

do

not smoke a pipe now, did you ever smoke

C) Filter-tip a pipe regularly?
(_] Without filter-tip L] No

Y
c. What brand do you usually smoke? 33 Do you chew tobacco or use snuff?

d. How old were you when you started smoking cigorettes?___ LY Oe, I
ecasionally

[_} Regularly  

 

.. . And About Your Consumption of Alcoholic Beverages .. .
I

II

DRINKING HABITS | 35. How often do you usually drink beer?

[_] Almost daily

 

34. Have you at any time during the past year consumed (] Onceor twice a week

beer, wine, or other alcoholic drinks (liquor)? ) Once or twice a month
 [_] Once or twice a year

(_] Less often

C]No Have you consumed any alcoholic beverage (_] Never P Proceed directly to Question 37

earlier in your life?
Y :

ClYes Nee Proceed directly to Question 46 . On a day when you drink beer, how much do you usually

drink?
L] Yes

[(_] Less than one bottle or con (12 oz.)

When did you stop drinking alcoholic beverages? C) One bottle

Yeo [_] Two bottles

Proceed ' (_] Three bottles or more

directly to
Question Why did top? . .

35 y ame you stor . How often do you usually drink wine?

F f addicti(_] Fear of addiction C] Almost daily

(_] Once or twice a week

(] Once or twice a month

(_] Other reasons

(_] Once or twice a year

() Less often
Ol Neversamp Proceed directly to Questioa 39

. On a day when you drink wine, how much do you

usually drink?

(] A wine-glass or two

. (_] A half bottle

And now proceed directly to Question 45°... (LA half bottle — one bottle

[_] One bottle or more 
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39. How often do you usually drink liquor? 43. How often do you become really intoxicated?
(-] Almost daily (3 Daily
(_] Once or twice a week L_] Weekly
{_] Once or twice a month {_] Monthly
{] Once or twice a year (| Less often
(} Less often L_] Never
[) Nevers Proceed directly to Question 41

44. H ften do h “‘h ?”"40. On a day when you drink liquor, how much do you ow olfen

do

you have a “hangover

 

— ne:
usually drink? Ld we Doyou then take another drink in the moming

|] Weekly (an “‘eye-opener’’)?(_] Less than 1 shot (2 oz.) L_] Monthly
{"] 1-2 shots (| Less often L) No
(["] 3-7 shots CD Never [Yes
(| More than one pint (8 shots)

. i to which41. From time to time, one may have occasion to drink 45. Is there any alcoholic beverage to which you areallergic?more than usual. How often do you drink alcoholic cK 9
beverages in an amount that corresponds to at least one ° .
pint of liquor or two bottles of wine or four quarts of L] Yes=—=3> Which?

 

beer at one occasion? How do youreact?

  

 

[_] Daily or almost daily

= once or twice a week 46. What is your height?__— feet inchesnce or twice a mont

[_] Less often
:[7] Never 47. What is your weight? pounds

42. Ifyou compare yourself with other persons you know, ;
do you drink more or less alcoholic beverages than 48. What was your weight at age25?poundsthey do?

[_] Much more 49. Have you checked your weight this year?Somewhat more
About the same as others } Yes

[_] Less than others C] No
eee

And Now Some Rather Specific Questions About Where You Have Lived Since the Second World War

 

50. For consecutive periods, fill in length of period, city or community, as well as state. Check also at the right
of Table in what type of area you were living and working, respectively.

PERIOD
OF
TIME
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70. Below are anumber of statements regerding your occupational activities. Mark ‘‘X’’ the choice that corresponds
to your opinion.

agree agree by am as much

 

 

 

    

completely and large in favor as do ee disagreeSTATEMENT with with against “Thee erely completelyne statement statement statement isagreeI have reached the position (within
my vocation) to which | have aspired C4 C] C] CI _]

My ability ond traininghave been used
in full O O C] CI C)

My training has not been adequate
for the type of work | am doing

C

| C] | —] C3

My position involves too much re-
sponsibility Oo Cj (J - CI

I often have difficulty in finding
enough time to complete the work Cc) C] | 4 |assigned to me

I have often felt somewhat uneasy in

my work Lu Lj L O o
Mostly, I have gotten along well with
my co-workers C} C3 Cj Lt rr

Financially, |have not achieved what
| have hoped for E} Ci I Co C3  

Thank you for your help.

If our mailing address for you was incorrect, please indicate below your correct
mailing address, including zip code.

Street

 

City StateCZ

 

Wealso wantto bring up-to-date our address for your brother.If it is convenient,
please indicate his address below.

Street

 

City State. Zip

 

Read carefully through the whole questionnaire again and make sure that nothing has been omitted.
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FOOTNOTES

APPENDIX A

sa why
1 a, _ 902 — 20, where primeindicates a sib's brother.

S S SS

2
The Census-CPS match may overstate measurementerror since in

the Census in some eases wives provide data for their husbands. This

source of error is not found in our study.

APPENDIX B

lwe have been told that inaccuracies in the VAMI index are no

longer considered a major reason for the low match rate. Infant mortality

was much higher for twins than for single births in the relevant time

period. See Woodworth (1941).

The mailing and processing of the questionnaire and the preparation

of the data tapes was done by the Medical Follow Up Agency of the NAS-

NRC, who performedthese tasks most efficiently.

For an indication of the reasons for and incidence of rejection,

whieh was about 15% in World WarII, see Stouffer et al., The American

Soldier, Vol. IV. Incidentally, there is some evidence in this book that

criteria for rejection differed widely by inductee camp and that the

distributions are under-represented in. the left-hand tail but not

completely omitted.

 

4S00 Christiansen (1973).

There is an adjustment factor based on the tell-apart question and

imprecise genetie information such as ridge count on fingerprints.
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CHAPTER 4

MORE ON BROTHERS*

Gary Chamberlain and Zvi Griliches

I. Introduction

 

In an earlier paper (Chamberlain-Griliches, 1975) we developed amodel for and attempted to estimate the effects of an unobserved abilityvariable on the observed ineome-schooling relationship across individuais.The major features of that paper were the assumption that theunobservable had a varianece-components structure and the use of data onbrothers (from Gorseline, 1932) to estimate its effects. For that data setthe usual estimate of returns to schooling was changed very little when weallowed for the presence of such an unobservable variable.
The findings of the earlier paper were subject, however, to severalreservations. First, they related to a rather old and non-representativeset of data. Second, our model relied on the presence of a second(indicator) equation, one for occupational success, to identify theparameters of interest in the income-sehooling relationship. There issome question, however, whether it is legitimate to treat income andoccupation as two different measures of success. Third, sinee no testscores had been collected in that data set, our interpretation of theunobservable as "ability" was rather tenuous. Moreover, there appeared tobe very little commonality in the occupation experience of brothers atthat time and place (Indiana in the late 1920's), the intra-class correlationbeing only about .04. This is rather unfortunate for a model that reliesheavily on the additional occupational equation and. the differencebetween family and individual effects for identification.“ All this lead usto pursue such questions on other, potentially better, data sets.In this paper we will report the first results of our analysis of dataon pajrs of brothers from the National Longitudinal Survey of YoungMen.” This is a national sample of (criginally) over 5,000 young men,interviewed first in 1966 and followed up annually through 1971, andbiannually thereafter.4 -
To save cn sampling costs the Census Bureau based this sample andthe parallel sani:ples of the Clder Men, Iiature Women, and Young Women

*Weare indebted to the NIE and NSF for financial support and to BronwynHall and Stephen Messner for research assistance,
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Table 1:

Chamberlain and Griliches

Characteristics of the NLS Brothers Sample

N = 584 (292 pairs)

Means and Standard

Deviations

Variable Total Within p

Age 69 20.3
2.3 1.4 23

ES 14.8

2.3 1.1 51,

S66 11.3
1.7 1.1 ~15

EY 8.67

~404 -270 ell

KWW 34.9

7.7 4.5 ~32

IQ 102.8

15.9 7.5 -56

FOMY 14 5418

2179

BLACK 20

CULTURE 2.5

76

SIBLINGS 3.6

2.1

SMSA -67

ROS ~32

The lower

p

ES

S66
EY

KWW

IQ

FOMY14

CULTURE

SMSA
ROS

number in a pair of numbers is the standard deviation.

One minus twice the ratio of the within families

variance to the total variance.
Expected total schooling to be completed eventually,

in years.
Schooling completed in 1966, in years. .

Logarithm of the 1959 median earnings (in dollars)

of all males in the occupation expected (desired)

at age 30.
Score on the "knowledge of the world of work"

test, administered in 1966.
Score on IQ type tests, collected from the high

school last attended by the respondent.

Occupation of father or head of household when

respondent was 14, scaled by the median earnings

of all U.S. males in this occupation in 1959.

Index based on the availability of newspapers,
magazines and library cards in the respondent's—

home.

Respondent in SMSA in 1969.
Respondent in South when 14.
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Table 2: Correlations Between Selected VariablesaaSeeeeestpetectedVariables

584 Individuals

Variables ES EY KWW IQaaA59|Se5©

ES 1.000 coe eee coe

EY ~415 1.000 eee oe

KWW 2324 ~220 1.000 oe

IQ -482 275 -482 1.000

Cross-Sib Correlations

292 pairs

Variables ES' EY' Kww' IQ!CTF

ES -508 eee eee ee

EY ~228 - 109 eee eee

KWW ~267 -196 2323 eee

IQ 2333 - 204 2359 2555
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Figure l

NLS Brothers: General Model

Structural Model

Y, = 1Q = Kay

Yo = S66 = Xoo + BS>

Y3 = KWW = Ka, + B3Y9

Y, = ES = Xa, + BS, + Bayo

Y, = EY = Xa, +B sY4

AG5 ~ BS) + fi + Ji

Reduced form residuals e (net

e, = h, (£+9)

ho (f+g)

(Ag+835) (+9)

Qn ={(AgtBe (Agt+B, Ay) }(Et9)

Variance-covariance Matrix of

Residuals:

, _ ' _
plim R Ele;. e'..) = 0 + z

n>o

+r, A +

+r5A +

tA + U

+rX,A +

+A +

of X and B):

the Reduced Form
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Family components of variance : @= dd' , with

hy

do
3 + BA, Oo

GA + BX~ 4 42
he + Ba (hg + Bgho)

|

Individual components of variance: = = 10 + V
~~? ~

Individual “ability” related components of variance:

TO, with Tt =05/0¢

Other individual components of variance:

of 0 O 0 0

05 B30 B495 B48509

- 03+8305 838405 83848505

o4tBe05 8. (o4tBeo5)

2,,2, 2,,2 2
O5tBs (o,t+By05) ,

assuming that Eu, U, = Egu, =0 for all k#h

d. Variance-covariance matrix of average family
residuals:

e = i raeik p “j ijk

e D — mm ot\_.plim R = E(e;ei)=0 +
1
p 2

n>oa



104 Chamberlain and Griliches

Table 3

NLS Brothers: Estimates of a One-Factor Model |

  

  

  
   
  

   

 

   
  

   
  

 

Dependent
Variable

   Estimated    

   

Other Variables Coefficients of
In Equation S66 ES A

  

  

  

   

   

Y, = 10 9.03
(.16)

Y. = S66 .423 -90
(.063)

Y3 = KWW 2.87 5.64
(.31)

Y, = ES 895 1.59
(.135)

Y, = EY .057 .045 .363
  

(.009)  (.016)

Estimated asymptotic standard errors in parenthesis

Xs Age, ROS, Dates (of the expected variables)

B: FOMY14, MED, Number of Siblings, Black, Culture
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TABLE 4

105

Variance Decompositions of the Major

Dependent Variables

Due to the variance of   
The contribution of B is "total", both direct and indirect via
the tests and schooling.

Table 5

Estimated Effects of Background Variables

FOMY 14 MED Black
in $1000 in years

IQ: A184 -98 71 -11.2
(in IQ points)

ES (in years)
via G: (A,+B45)6 .ll .08 - 1.30
direct: 6 +845, 07 13 2.16

ES Total 18 21 86

The effects via S66 are solved out and included in Es

Culture Sibs
Index: 0-3 Number

5.1 -.38

-99 -.04

19 -O1

-78 -.03







108 Chamberlain and Griliches

are uncorrelated with the observed background variables B . The family (f
and m) and individual (g and h) unobservable components may be
correlated across the two factors with correlation coefficients Fem and

toh respectively. We have thus added eight new parameters to our

original model (5 Y's, 2 r's, and t 9 = / o ). That this results in a severe

icentifieation problem should comeas no surprise to us.

The igentification of this model is explored in greater detail in the

Appendix. We show there that the 8's remain identified in this model

but that the \'s and Y 's cannot be estimated separately without imposing

additional substantive assumptions. That is, we can estimate the

schooling coefficient in the presence of two unobservable factors, but we

cannot really interpret the separate contributions of such factors

uniquely.
Table 6 presents the results of the two-factor version of our model

based on the normalizations Y 1 =Q andrgh =0. This assumes that H is not

IQ and that only the common family components (f and m) may be

correlated with each other. Alternative interpretations will be discussed

shortly.
Allowing for a second unobservable factor raises the estimated

schooling coefficient from .057 to .064 without changing muchelse in the

model. This is similar to what happens in the larger individuals sample

when schooling is also allowed to be endogenous though the change in

the coefficient is smaller here (see Griliches, 1976a for details). It is

consistent, as we shall show below, with several interpretations of the rele

of ability and schooling and the possibility of errors in the measures of

both variables.
Given the maximum likelihood estimates in Table 6, we can

reinterpret the factor structure by imposing alternative normalizaticns.

The B 's and o's are unaffected by the choice of normalization. One

possibility (given as alternative | in Table 7) is to set Y i: r 5 = 0 and let

 

ry, be free. This implies (in terms of the estimates of Table 6) that H* =

iie~ (.920/ .0079)G. H* is now interpreted as the relevant initial human

capital variable and G as the "true score" on the [Q test. Both variables

heve positive effects on KWW, but H* has a negative partial effect on us,

as Goes E in Table 6. This correspondsto interpreting H*, the unobserved

initial human capital, as consisting of two pieces: a part (G) that reduces

the cost of schooling in terms of the time and effort required to complete

a grade, and a part (H) that does not affect the cost of schooling, except

via feregone earnings. Then for a given level of G, increases in Hi (or H*)

are transmitted to the schooling equation with a negative sign. ‘This is

because the optimum total stock of human capital is unaffected by H, so

thet an increase in initial H implies that less additional investment in

schooling is needed to attain the fixed target. |

For an endogenous schuoling iiodel tiie basic uptiniality coiuitioi is

dv. ,.
as /!
should equa! the foregone income Y plus the monetary equivalent C of the

= Y + C(G); i.e., the discounted increment to life time earnings
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Table 6

NLS Brothers: Estimates of the Two-Factor Model

  

     

  

Coefficients (and standard
errors) of

S66 ES G H

Dependent
Variable

      

  

Estimated Other variables
in equation

Table 7

Alternative Two-Factor Structuresaeaetorotructures

Alternative 1 Alternative 2Dependent Coefficients of Coefficients ofVariable G H* G* H

2,2 2 2 | 2 2 2 2.Oto, = Onset One = 1 Orxt Os = °.* - =1

T, = 1.05 TS = 1.16 TF = 1.16 T, = 1.95

Teme = 295 Coh* = 91 Ceam= °32 Coen = 0
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Postscript on Expectations

Our analysis has not been tailored specifically to data on

expectations. The principal problem is that expected earnings and

expected schooling are likely to be jointly determined. This section

models the joint determination of these variables by treating them

symmetrically.
Assume a causal relationship connecting the actual variables:

(1) Y=PBS+ At u
So earnings are determined by schooling, ability, and a random disturbance

(u) that is uncorrelated with S and A. The disturbance can be interpreted

as luck or unanticipated random events which occur after the completion

of schooling. But this interpretation of the disturbance is much more

tenuous with data on expectations. Future random events that are

unanticipated cannot possibly influence expected earnings (EY) or

expected schooling (ES); events that are anticipated are likely to influence

both EY and ES. Such events are like characteristics of the individual,

and their omission ean bias the results. Although schooling may be a

determinant of earnings, expected schooling does not cause expected

earnings. Rather they are jointly determined in that an individual may

choose an income level and then calculate how much schooling is needed

to attainit.
A simple formulation of the problem ean be based on the assumption

of conditionally unbiased expectations. The assumption is that

(2) E(Y| EY, ES, A) = EY

E(S | EY, ES, A) = ES
This means that the expectation errors (Y-EY and S-ES) are uncorrelated

with the expectations and with ability. So the expectation errors have a

mean of zero even within a group of individuals who all have the same

expectations and ability. We also assume that

(3) E(u| EY, ES, A) =0,

since the interpretation of u in the realization model is that it is

unpredictable from information that is available when the expectations

are formed. Combining these conditional expectations with (1) gives:

(4) EY iI _ es 7) + ra >

dispensing with the "luck" disturbance altogether.

Since the restriction that o,, = 0 is quite strong, it may be

preferable to allow for random departures from the assumption of

unbiased expectations. A possible specificationis

(5) EY =¥ + €,ES =S +6,

where Y and § satisfy the consistency condition in (4). Then provided

that the errors « and 6 are not themselves eorrelated across brothers,

the main implication of the model is to allow the individual specific
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disturbances in the ES and EY equations tp be correlated with each other.30 in Table 1 we would have E(u,u,) # 0.

Consider the following model:

(6) 1Q55 * AG; + uy,

S66... = OAs; + You, + “044

KWH, = B, S66,, + reAs tugs,

PS 5 7 Pq $6615 + ALS tym + "Aig

tm as i W
D

ty wr + »
~

> +

equations. It is interpreted as "opportunity" | Becker (1967)| , reflectingthe extent to which the family subsidizes the cost of Sehoolingor providesencouragement for schooling achievement.
This model is identified (except for B,) even in the extreme easein

which all of the individual disturbances (u,, wee, u,) are freely
correlated. Then 2 contains no information about the structural slopeparameters. The identification of these parameters must be basedcompletely on ®. The key to studying identification in © is that the @moments are determined solely by the family specifie effects (withisubscripts). This gives

(7) IQ, = + hf,

566, = jf + Yom,

KWW, = B 4866, + A,f,

ES, = df; + Ym,

EY, = BeES, + Ast, ’

correlated across brothers, we can treat IQ as a perfect measure of f (upto a seale factor). So B. is identified by a regression in 6 of EY on ES
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Table 8: NLS Not-Enrolled (1970), Working Brothers:Estimates of a Two-Factor ModelOmactorModel

  

  
   Estimated

Coefficients (and standard errors) ofSnanestandarderrors)of
Oo

Dependent S66 SC XBT A m
Variable
       

   

 
 

 

 

  
10.96

  
          
    
             

 

(1.40)

S66 ~655 436 -949
(.350) (.139)

KWW -618 2.62 6.09
(.527) (1.00)

sc 839 ~ 406 365 839
(.164) (.279) (.145)

XBT -046 -.0051 -068
(.003) (.0059)

LW -072 -.365 -.0049 335
(.020) (.278) (.028)    

= -.38
(.51)

eee
161 pairs; age, region, dates (X), and measured family background (B)
variables enter unconstrained in all of the equations.

SC - years of schooling completed in 1970 (in years).

XBT - e (T° EXP70- where EXP70 is cumulated work experience
in 1970 (in years). See Griliches (1976a) for more
details.

LW - logarithm of hourly earnings on the current or last
job in 1970.
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estimates declines.

Postscript on the Earnings of the Not-Enrolled Subsample

We originally chose to use the expectation data because the extreme

youth of the sample creates fewer problems with expected occupation at

age 30 than with the current wage rate. Moreover, the inclusion of those

still enrolled in school tripled our sample of brothers. This section

compares the expectation results with the estimates based on the recently

available data for 161 pairs of brothers who were not enrolled in 1970.

This data also allows us to use the actual hourly wage rate instead of the

median earnings in the individual's occupation.

The principal problem due to the extreme youth of the sample is

that current earnings are a poor indicator of future prospects. Much of

the labor foree behavior of these youths is characterized by search,

experimentation, and often a lack of "seriousness." Hence we expect

schooling and ability to have weaker effects on current than on subsequent

earnings. Even for the group that has settled into its long-run trajectory,

on-the-job training drives a wedge between potential and actual earnings.

If schooling and ability are complementary to this training (and not

substitutes for it), then omitting an adequate measure of training will bias

the schooling and ability coefficients to zero.
Table 8 presents our estimates from the 1970 data for a constrained

two-factor model. Now the second factor is family specific (+ 9 = 0) and

only enters the schooling equations. It is interpreted as family wealth or

family encouragement for schooling achievement. Allowing this

opportunity factor to have a direct effect on earnings gave a small anc

insignificant effect. But an attempt to allow for within family variation

in the second factor did not converge; the residual schooling variance (04)

was tending to zero, whereas a positive variance is necessary for the

identification of the model (see Appendix).
The main results are the negligible ability coeffi¢jent and the

substantial schooling coefficient in the earnings equation. We expect

the ability coefficient to increase as the sample ages, as in Sewell and

Hauser's (1975) study of Wisconsin high school seniors. The finding of an

already substantial schooling coefficient is borne out in Griliches's study

based on over 2000 youths in the NLS survey.

On the whole we feel that the results from the expectation data are

better indicators of the eventual peak schooling and ability effects. There

will be an opportunity to check this as the panel is resurveyed every two

years. More important, we will eventually be able tc estimate models

that combine the expectation cata with the realizations.
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FOOTNOTES

*

We are indebted to the NIE and NSF for financial support and to
Bronwyn Hall and Stephen Messnerfor research assistance.

bee Griliches (1974, 1977) for surveys of related literature and
Chamberlain (1975) for more details on the model.

*This was pointed out to us by C. Jencks.

>See Chamberlain (1974 and 1976a) for analyses of related data sets
not based on family structure.

tSee Griliches(1976) and Parnes et_al.(1964-74) for more details on
these data. They are based on a national sample of the civilian non-
institutional population of males who were 14 to 24 years old in 1966.
Blacks were oversampled in a 3 to 1 ratio. The original sample consisted of
0,220 individuals of whom 3,734 were white. By 1969 about 23 percent of
the original sample was lost, 13 percent of it only temporarily (to the
Army).

Unfortunately, the IQ test scores are unavailable for about a third of
the sample, including all those who did not continue school beyond the 9th
grade.

6 ; .These are answers to questions "As things now stand, how much
more education do you think you will actually get?" and "What kind of
work would you like to be doing when you are 30 years old?". The first
question is asked in every survey, the second only in 1966 and 1969. The
latest available answers were taken and dummy variables were added for
those observations that did not originate from the 1969 survey
(DATELOMY and DATE66, identified collectively as DATES).

"This point is developed in a postscript to the paper.

Some results on the not-enrolled subsample are presented in the
second postscript.

* Clearly the presence of S66 in the ES equation does not have a
Structural interpretation. It is simply a ecnvenient substitute for a non-
zero correlation between the S66 and ES residuals (uy and u,). The S66

equation also lacks a structural interpretation. It is simply an auxiliary
regression that summarizes the correlation between S66 and A. Moreover,
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we can dispense with S66 by solving it out of the KWW and ES equations.

Then the new ES and KWWresiduals are eorrelated; but the correlation can

be reset to zero by allowing ES to enter the KWW equation. This version of

the modelis still identified--simply substitute IQ as a proxy for G in the EY

equation and use the other brother's IQ score as an instrumental variable—

and it yields very similar estimates of the earnings equation.

10, is the number of brothers per family. In our ease p=2. This

estimate is not efficient since it doesn't take into account the implication

of the model that6 =dd! is of rank 1.

11 these and subsequent estimates were computed using an amended

ACOVSM (1971) program. The standard errors were estimated by

pesturbing the solution and interpolating from the resulting likelihood ratio

x” (chi-square) statistics.

l2ohe Appendix treats the model in which S66 has been solved out of

the KWW and ES equations with the resulting correlation between their

residuals captured by including ES in the KWWequation. Thus the S66

equation, which is difficult to interpret, is not necessary for our analysis,

and in fact the estimates are very similar without S66. This modelis also

eovered by the general identification analysis in Chamberlain (1976b).

If we do use S66, then there is a very simple argument for

identification: a combination of I@, KWW, and S66 will serve as a proxy for

\ G+yYH in the EY equation, with a measurementerror that dependson Fy

and #33 then the IQ and KWWscores for the other brother can be used as

instrumental variables.

13 without including IQ in the equation, the difference is a bit larger:

bt = .074 versus bY, 1.4 x = +069, but still quite small.
EY, ES.X ym

14gce Chamberlain (1976) for some details on this model and for a

discussion on combining the expectations with the eventual realizations.

We can obtain the same estimate of 8B F by regressing EY on ES,

KWW and S66. Once again the reciprocal regression also gives the same

estimate.

16 Note that ris not identified in this version of the model. Also the

correlation between f and m is not identified.

we have already seen (in the concluding section of the body of the

aper) that usi trained@ results in b® = .061.paper) that using an unconstrained

@

results in DRY.ES.1Q

18 ; : _ ;
The OLS estimates give OFW,1Q.SC,XBT,X,B = 0001 with a

standard error of .001 ana DLWSC.1Q,XBT,X 8 ~™~= .076 with a standard

error of .014. RoR
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APPENDIX

Identification of the Two-Factor Modela

OTPACUOPMOCEL

We will werk with the following two-factor model:

T, = + A,G + y,H + uy

GS = AyG + YoH + u,

T) = B48 + 146 + Y 3H + us

Y = 86,S FA G+ y,H + uy,4 4 4

with f and m freely correlated and g and h.freely correlated. The u's are
assumed to be uncorrelated with G, H and with each other. It is
Straightforward to allow for observable background characteristies and to
allow the late test (T,) to depend upon only a partofS.

We wili show that B. and By are identified. The A's and y's,
however, are not identified without additional normalizations. For
example, we can set A,G + Y,H = A, G* and AG + YH = hG* +

CranpbH for n = 2, 3, 4. This transformation of the factor
1

structure implies that Vy = 0. But the B's are not affected by this

transformation; hence showing that they are identified with the ¥1= 0
normalization will show that the B 's are identified in the seemingly more
general model. We shall see that an additional normalization, as well as
two scale normalizations, is required in order to fix the factor structure.
One possibility is 47 0.

The reduced form is:
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with y’ = (T,,8,7,,%)

D = (d,k),d=| a, .k=|0 E[ u

ho Yo %

A, +B, AD) ¥3 + 83 Yo Wy F BAU,

ee ar eeee

We allow for unecnstrained correlations between f and m and between g

and h by projecting m. onto f anc h onto g:

m=, f+ m*,h= no et h,

where m* is uncorrelated with f and h* is uncorrelated with g. The scale

 

normalizations are that To = Fe = 1. The implicit assumptions that

Te * Gand 714 * 0 are necessary for identification. Then with

C en C i : h DC |: | +
= ; = , wehavey =

~ ] ~ 2 ? nw 1 r

DC é + €=o )n a x

Let @ be the covariance matrix generated by the family effects (f,

m*) and let 2 be the matrix of within family covariances. Then we have

e@= DEC, Sy B

a = DC,eC, D+ V,

tT, O ; 2, 2 _ 2 2
where ‘| 1 with T 1 7 Tole ps To ~Ope [oy* and

O T
2
_ , ;

v= E(e €') = |9, 0 0

2 2 2

oP) B35 P47
2 2 _2 2

2 2



More on Brothers 12]

The identification problem is to determine which of the structural
parameters can be obtained from @ and z

Let DC, = (b »k_ ) where b =d + ur Kk,
and note that K, = 0. Therefore the first column of 8 is b,2 . This will
identify b up to a sign normalization provided that b, = 0, i.e., if x 1
~ 0. Then @-b b' = k k"' will identify k .

w

In > we set D Co g l/2 = (s,vV tT, k), wheres = V Ty (d +
"ok ). Then Ky = 0 together with the zero off-diagonal elements in the
first row of V imply that the first row of = identifies p' = Sy (so, Sa;
S,). Since s is 9 linear eombination of ds and k »wehavep = as b
+ @ 9 k , where b ,»K contain the last three elements of b », andk ,re

This uniquely determines Oy % provided that (b , kK ) has rank 2. This
will be true as long as the reduced form coefficients of G and Hin thelastthree equations are not proportional to each other. Then with e =
a b +a 9 k , we ean identify S uptoaseale factor froms =e /S,-
We ean solve for Sy provided that T, is correlated within families with at

] if oOo = =
least one other variable. For example, if 12 = 0 then "12 S185

2. , 2C1 C,/S, implies that s; = C)Cy/o 12°

Then givens we have 2-SS = Ty kk! + V

We will write the lower right 3 x 3 block of this set of equations astag 2BS gtk Ft \ep Bs 05 a,

24. B2% Z
73 7 3% Ps By oo

2 2 2oT, t Bi v5 .

Where t! = (ko, Ke, k,) can be obtained from @. For a given value of
T 9» we can solve for

Zz _ Vy _T 2

Pe 7 ty

B.=(¥.0-7.t to?G 12 Z12 2
B 2
a= (Ma7 Tottog |
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But we ean also solve for

By By = (93 - T tots
This yields:

Yo.

_ 2
Ty = yay Yoda) / iy tots + Yoati~4atite -Yatits).

So onee we have obtained Ss , the model reduces to the §S, To: Y

equations with one common factor (H), which is equivalent to the model in

Chamberlain and Griliches (1975).

The rank condition is that the denominator in our solution for T 9

must not equal zero. Expressing this condition in terms of the structural

parametersgives:

2. 2.
On* 2 V3 V4 - 0.

So H must have a family component, and there must be variation in S that

is independent of G and H. Also To must be related directly to H (not just

via its dependence on S$). To is not identified if Y, = 0. But then H is not

contributing to the bias in the OLS estimate of B, ; hence it is easy to.

show that 64 and d4 (as well as rj -and ro) are identified without using

the T, equation at all.

As for the other parameters, it is clear that k together with Be and

vay: ; _ _ it vay: ,
8, will identify ¥. Also by A, and s, N , 1, Will identify 4, and 7).

_ Los «ps | _ _ _ A. AL A
nN,

-

Ny is identifiable from b sN7 = (1, -1g) k - But 49, %3% 4

and 1 (or 1 9) are not identified without an additional normalization.

The problem is that we cannot distinguish our model from one that sets

: = * = .7yY. . H*, 1h,Gty, H vq H and}, Gt Y, H (A -y;A, ) G+ ¥, HM

Y4

= 2, 3. An additional normalization could be rh =Q. Then b, = 1.4 +

By bo andd = b - 1, k will identify "y and 4. Note that the ML

estimates of 6 t B 5 and y are not affected by this additional
~~

normalization.
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CHAPTER 9

ON THE USE OF SIBLING DATA TO ESTIMATE THE EFFECTS

OF FAMILY BACKGROUND, COGNITIVE SKILLS, AND SCHOOLING:

RESULTS FROM THE KALAMAZOO BROTHERSSTUDY

Michael R. Olneck

Institute for Research on Poverty and

Department of Educational Policy Studies

University of Wisconsin-Madison

Introduction

During the last ten years, sociologists have devoted considerable
effort to measuring and modelling the effects of family background on the
economie attainments of men (Blau and Dunean, 1967; Duncan,
Featherman, and Duncan, 1972; Jencks et al., 1972; Sewell and Hauser,
1975). In addition to assessing the quantitative importance of background,
they have attempted to trace out the extent to which background affects
economic standing by affecting edgnitive skills and educational attain-
ment. In the process of decomposing the effects of backgroundinto direct
and indirect components, sociologists have estimated standardized
regression coefficients for ability and schooling in models of occupational
Status and earnings. This work has brought them close afield to interests
usually pursued by economists.

Economists of the human capital persuasion have had to contend
with the possibility that what appearto be the effects of schooling are, in
fact, the effects of the determinants of schooling. Concern with this
question has usually centered on the impact of ignoring family background
and tested mental ability when estimating the effects of schooling on
earnings (Griliches and Mason, 1972; Taubman and Wales, 1974; Welch,
i974). ,

Both sociologists and economists have usually equated family
background with measures of socioeconomic position. Variables which are
commonly employed include parental education, family size, and father's
occupational status. Critics have been quick to point out that potentially
important background measures, such as parental income, are usually
omitted (Bowles, 1972)." The problem is further complicated by the fact
that families may systematically confer advantages and disadvantages in
ways that are unrelated to socioeconomicposition. "Family climates" and
other elusive factors may well vary between families which are equal on
all conceivable measures of socioeconomic status and demographic
characteristics. If that is true, the explained variancein ordinary models

The research in this paper was supported by the following grants:
MDTA Dissertation 91-25-75-43, Ford and Carnegie Foundations to Center
for Educational Policy Research, U.S. Department of Labor and National
Institute for Education. NIE-G-74 to Center for Educational Poliev
Research, and Poverty Institute.
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Brothers data to estimate the effects of family background on cognitive
skills, educational attainment, occupational status, and earnings, and to
control family background when estimating the effects of cognitive skills
and education on occupational status and earnings. In Section 2, I deseribe
the sample and the variables. In Section 3, I compare the sibling
correlations predicted by the effects of measured background to those
actually observed, and compare the magnitude of sibling differences to
the magnitude of differences between randomly chosen individuals. I also
develop alternative models representing the effects of background. And
in Section 4, I compare the results of within-pair regressions to individual
level regressions. Section 5 summarizes my results and suggests their
implications for further research.

Section 2 Sample and Variable Descriptions

 

The Kalamazoo, Michigan public school system has preserved the
results of its standardized testing program since the program's inception
in 1928. During the summer of 1973, I selected a sample of males from
the records of sixth grade scores for the years 1928 to 1950. I used school
census and enrollment reeords to determine siblingship. This procedure
resulted in a potential sample of 2782 individuals from 1224 sets of
brothers.

I was able to trace 1612 of the original 2782 individuals in the
sample. Of these, 1243 completed a follow-up telephone interview during
September 1973 to May 1974; 152 were dead, 52 were never directly
contacted and 165 refused to be interviewed. When an interview was
conducted with the first brother to be contacted in any set, the
respondent was asked to report the schooling, occupation, and earnings of
his other brothers who were also in the sample. I concluded that the
reports of brothers' occupations and earnings are too unreliable to be
substituted for self reports (Olneck, 1976a; Chapter 4), so only men who
themselves completed an interview and who could be paired with at least
one brother who also completed an interview are included in the present
analyses. 916 respondents satisfied that criterion. However, item
nonresponse on background variables, initial occupation, and earnings byone or both brothers in a pair lead to further attrition. The analyses
reported here are for 692 individual respondents, or 346 weightedpairs.
Differences between the means, Standard devitations, and correlations for
the 1243 men interviewed and the 692 men comprising the present sampleare negligible (Olneck, forthcoming, Tables 2 and 11). The average testscore for men in this sample is only 3.66 points higher than for men whowere not interviewed (i.e., 100.89 v. 97.23). However, comparisons withnational and regional data do suggest upward biases on some crucial
variables.

Table 1 presents the means and standard deviations for the variablesemployed in the present analyses. They are compared to means andStandard deviations for respondents also aged 35 to 59 from the 1973replication of the nationally representative "Occupational Changes in aGeneration" Survey.
The Kalamazoo respondents are clearly advantaged on parental
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Variables

1. Age

2. Test Score

3. Father's Education®

4, Father's Occupation®

3. Siblings”

6. Education

7. Initial Occupation

8. Current Occupation

9. 1973 Earnings

(Kalamazoo) or
Income (OCG II)

10. Natural Logarithum

Table 1. Means and Standard Deviations of

Variables in the Kalamazoo Brothers

of 1973 Earnings
(Kalamazoo)

Income (OCGID)

Sample (N=692) and the 1973 Occupational

Changes in a Generation Replication

Sample, Men 35 to 59 (N=9398)

  

Means

Kalamazoo OCG Il

46.13 46.43

100.89 NA

9.51 7.90

38.33 28.29

3.72 3.83

13.20 11.84

39.51 33.66

49.91 43.18

16745.66 12821.50

9.62

(12775.33)>

9.19

19.25)”

Standard Deviations

 

Kalamazoo

6.02

15.32

3.33

22.52

2.53

2.73

23.80

23.17

7633.78

0.45

OCG II

 

6.94

NA

3.97

21.83

2.73

3.29

25.18

25.65

9729.89
(7757.91)

1.07
(0.71)

8
é
l

Y
I
O
U
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Table 1 Continued (2)

Notes
 

a.

Variable Definitions in the Kalamazoo Sampleete

RataMazoosample

Age - 1973 minus schoolrecord of year of birth.

Test Score - Score on Terman grouptest administered in the
6th grade or score on Otis group test adjusted for sealing differences
and trendsin parental education, father's occupational status,
and family size. See Olneck (forthcoming) for adjustment procedure.
Three-quarters of the respondents took the Termantest.

Father's Education - Normative years completed(eg., high school
graduate is coded 12 even whenit took 13 yearsto finish).

Father's Occupation - Duncan Socioeconomic Index. See Duncan
(1961).

Siblings - Numberof siblings who grew up in respondent's family.

Education - Normative years completed.

Initial Occupation - Duneanscoreforfirst full-time civilian .
job after completion of reported level of schooling.

Current Occupation - Duncanscore for current job.

1973 Earnings - Expected annual earnings for 1973. Interviewers
recorded only the interval in which respondents earnings fell.
Reluctant respondents were encouraged to nameaninterval.

 

Interval Coding Percentage among
1243 interviewees

Under 1000 500 0.2%
1000-1999 1500 0.0
2000-2999 2500 0.1
3000-3999 3500 0.1
4000-4999 4500 0.6
5000-5999 5500 0.4
6000-6999 6500 1.4
7000-7999 7500 1.7
8000-9999 9000 8.8
10000-11999 11000 15.8
12000-13999 13000 17.8
14000-16999 15500 19.4
17000-19999 18500 10.2
20000-24999 22500 11.3
25000 and over 34000 12.1

Errors in these background measures appear random (Olneck, 1977,
Chapter 5). Self-reported outcomes correlated as well with background
reported by brothers as with self-reported background. Therefore, when
reports of father's education or occupation, or number of siblings were
missing for a respondent I substituted the report(s) provided by his brother
where available. I deleted pairs in which both brothersfailed to report
a background measure.

b. OCG II income reeoded to Kalamazoo coding scheme.
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Table 2. Correlations Among Variables in the Kalamazoo
Brothers Sample (N=692) and the 1973 Occupational
Changes in a Generation Replication Sample, Men

35 to 59 (N=9398) OCG shown below.

 

3 4 5 6 7 8 9 10

TT

OU
1.

2.

10.

Age

Test

Score

Father's

Education

Father's
Occupation

Siblings

Education

Initial
Occupation

Current

Occupation

Earnings
(Kalamgzoo) or
Income

(OCG ID

Ln Earnings
(Kalamazoo) or
Ln Income

(OCG I)

1 2

1.000

-.164 1.000

NA NA

-.182 261
-.121 NA

-.165 260
-.060* NA

- 066 -.276
-087 NA

-.184 -976
-.136 NA

-.140 445
-.112 NA

-.105 453
-.067 NA

-.071 359

-.021 NA

(-.038) (NA)

-.083 - 360

-.048 NA

(-.058) (NA)

1.000
1.000

-470
901

-.250
-.308

-400
454

-350
356

215
-340*

171.

.228
(.260)*

-160

.167
(.233)

1.000
1.000

-.224
-.295

383
-423

391
- 426

-218
-392*

212

261
(.298)*

-197

.172
(.243)

—
_ -000

1.000

-.328
-.357

-.256
-.302

-.220
-.282

-.155

-.191
(-.216)

-.154

-.134
(-.188)

1.000
1.000

-716
.659*

991
624

431

.388
(.452)

-407

.292*
(.416)
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1.000
1.000

.563 1.000

.630* 1.000

411 .482 1.000

.378 .453 1.000
(.429) (.521) (1.000)

.386 .409 .938 1.000

.256* .336 .612* 1.000
(.356) (.466) (.859)* (1.000)

Re

a.

* OCGsignificantly different from Kalamazoooat the .05 level.

Correlations in parentheses pertain to OCG II income coded to Kalamazoo coding scheme.
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Table 3. Correlations Between Brothers
Characteristics (N=346 weighted pairs)

AGE' IQ' ED' FIRSTOC' oc! EARN' LN EARN'SN

AGE 987

IQ -.158 -469

ED -.157 - 400 049

FIRSTOC -.142 326 ~427 394

OC -.120 -300 378 321 309

EARN -.032 178 ~ 285 231 2225 237

LNEARN -.050 . 169 . 269 211 218 219 ~ 220

nee

a

AGE = Age Primes denote the second memberof a
IQ = Test Seore given pair. Correlations were computed from
ED = Education a tape on which every pair appears twice,
FIRSTOC = Initial Occupation with order reversed. This makes the product
OC = Current Occupation momentcorrelations equal to intraclass
EARN = Earnings correlations.
LNEARN = Natural Logarith of Earnings

E
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the 1973 OCG survey asked respondents to report on a

_

brother's

educational attainment. Correlations between a respondent's characteris-

ties and his brother's education in the Kalamazoo sample are quite similar

to analogous correlations in a subsample of| CG II respondents 35 to 59

who reported their brothers' educations. Sibling correlations on

cognitive ability vary depending on the nature, reliability, and timing of

the test. My Gerrelations involving Brother's Test Score incluce no

aberrant values. Those involving Brother's Initial Occupation tend to be

somewhat higher than analogous correlations reported by Behrman,

Taubman and Wales (1976) for fraternal twins, but the differences are not

generally large, and in the case of the Initial Occupation-Ln Earnings

cross sib correlation there is virtually no difference. My correlations

involving Brother's Occupation are similar to those reported elsewhere,

with the exception of Behrman, Taubman and Wales (1976), whose value

for the correlation between the junean scores of DZ twins in the NAS-

NRC sample is unusually low. My correlations involving Brother's

Earnings are difficult to assess. There are few other studies which have

data on brothers' earnings. My correlations tend to lie in the middle of

values reported elsewhere. Because of small sample sizes, age

restrictions, and unusual sample definitions, these other studies are

suspect as regards, their generalizability. But that is true also of the

Kalamazoo data. This means that my results with respect to the

importance of family background on earnings should be viewed with even
more caution than my otherresults.

Section 3. The Impact of Family Background

This section considers the overall impact of family background on

sons' characteristics, and the directions through which the influences of
family background are passed. It does not consiger the absolute effects of
any given measured background characteristic.

Sibling Resemblanee

If family background were adequately measured by socioeconomic
variables, if on the average background characteristics affected each
brother in a family to the same degree, and if the individual characteris-
ties of one brother did not directly affect the characteristics of another
brother, the correlation between brothers on any outcome could be

correctly predicted from a path model relating the outcome to background
measures. Figure 1 presents such a model, based on the regression of Test
Seore on Father's Education, Fathers, Occupation, and Siblings for the 692

individuals comprising my sample. The diagram simply applies the
results of the regression to the test scores of two brothers rather than to
the seore of only one individual.

The fundamental path theorom expresses the correlation between
two endogenous variables as ri > Pay Pik , where ri is the correlation

being analyzed, Pik is a path (i.e., standardized regression coefficient)



Figure 1: Path Model Relating to Test Scores
of Two Brothers to Measures of Socioeconomic Background
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from variable k to the second of the two variables (i.e., i), and Kg is the

correlation between the first of the variables (i.e., j) and variable K.2t
Apply the path theorom to Figure 1, we can predict the correlation
between brothers' test scores from Equation (1).

(1) +

19°, 1Q Pq’ , e1Q’ “elQ’ ,1Q * Iq’ , 1Q'I1Q,1Q

PIQ~ ,POPED'POPED,IQ ~ PIQ’ , POPOC'POPOC,IQ

* PiQ@_ ,SIBS'SIBS,1Q

Since "e1Q~ IQ and Pig’ IQ are both assumed to equal 0, rewriting

Equation (1) with appropriate values gives Equation (2).
(2) iQ IQ = .140 (.261) + .148(.260) + (-.208)(-.276) = .132.

If the correlation between brothers' test scores arises only because
of the effects of Father's Occupation, Father's Education, and Siblings, we
would expect the sibling correlation on test scores to be 0.132. This is
exactly the proportion of variance in individual score explained by the
regression of Test Seore on the three background measures. This can be
seen by comparing the equation predicting the sibling correlation to the
equation for R” for a dependent variable, controlling one or more
independentvariables. :

2.52 _ J 2.
The equation for R” is Rikj = z Tip where Rikj is the

proportion of variance in i explained by the regression of i on variable
k and j, Pix is the path from k to i, and Pa is the correlation betweeni

and k. Since the correlation between measured background variables and
individual outcomes is assumed to be the same for all brothers (e.g.,
TQ” OPED = TQ,POPED” Equation 2 is nothing more than the

equation for R” in a regression of Test Seore on Father's Education,
Father's Occupation, and Siblings.

Column 1 of Table 4 gives the predicted sibling correlations for test
scores, educational attainment, initial occupation, current occupation,
earnings, and In earnings. Column 2 gives the observed correlations. The
results in Table 4 show that analyses which equate family background with
measured socioeconomic variables will fall far short of accounting for
resemblanee among brothers on test seores, education, and economic
attainment. Moreover, even if the actual value for the sibling correlation
on test scores is assumed prior to predicting other sibling correlations, and
test scores are incorporated into models predicting subsequent outcomes,
the predictions will fall short. There are substantial advantages and
disadvantages associated with family to family variations within equal
levels of measuredsocioeconomic background, and which are not mediated
by tested ability.

Unless the brothers in the Kalamazoo sample are unusually similar,



Table 4. Comparison of Sibling Resemblance Predicted by the
Effects of Socioeconomic Background to Observed
Sibling Resemblance (N=346 weightedpairs)

 

Predicted Observed Residual Standard Residual Standard
Sibling a Sibling Deviation Controlling Deviation Controlling

Variable Correlation Correlation Socioeconomic Brothers' Share
Background Background

1. Test Score .132 -469 14.27 11.16

2. Education .253 -549 2.36 1.83

3. Initial - 209 -394 21.17 18.53

Occupation

4. Current .088 - 309 22.13 19.26

Occupation

5. Earnings 061 .237 7397.29 6668.10

6. Ln Earnings 055 .220 0.44 0.40

 

a. R2 from regressions in which Father's Education, Father's Occupation, and Siblings are the
independent variables.

b. Father's Education, Father's Occupation, Siblings.

1/2e.  Caleulatedas [1-r... |

deviation of the dependent variable reported in Table 1. This is not the observed within-pair standard

S, where Sib is the sibling correlation and S is the standard

deviation [| (1-rsib’2 | V/2 The observed within-pair standard deviation is less than the total

standard deviation even when thesibling correlation is zero.
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it is unlikely that I have substantially overestimated the relative
importance of unmeasured aspects of family background for any outcome
with the exception of current occupational status. Exeept for Current
Occupation, R” from analogous regressions for J e OCG II sample aged 35
ta, o are quite similar to those for my sample.” For current occupation,
R™ i3 appreciably higher in the OCG II data than in the Kalamazoo data.

than it is in my data.
Nor is it likely that I have overestimated the importance of

unmeasured background factors relative to measured factors because of
measurement error. hen I attempt to correct my correlations for
measurement error, R’srise, but so do sibling correlations. Predicted
sibling correlations based on corrected data underestimate the corrected
sibling correlations by almost the same proportions as in the observed
data. The only outeome for Which there is appreciable improvement in
prediction is initial occupation.

Differences Between Siblings

If the distributions of the outeome measures were normal, we could
calculate the average differences between two randomly picked indi-
viduals and compare them,to the average differences between two
randomly chosen brothers. Because the distributions of outeome
variables depart to some extent from normality, we must calculate
average differences between brothers directly, and, assuming similar
distributions within and between pairs, infer the average differences
between randomly picked individuals from the observed differences
between brothers and the sibling correlations,

The average pair of brothers in the Kalamazoo sample differs by
around 12 points on test scores, 1.78 years on educational attainment, 19
points in initial occupational status, 21 points on current occupational
Status, 6690 dollars on earnings, and 0.406 on In earnings. Assuming that
the ratio of differences between randomly chosen individuals and pairs of
brothers is 1: 1-rsib » Suggests that the average difference
between randomly paired individuals in my sample is 16 points on test
scores, 2.66 on years of schooling, 24 points on initial occupational status,
25 points on eurrent occupational status, 7690 dollars on earnings, and
0.460 on In earnings.

 

has substantially larger effects than ordinary sociological analyses might
imply, the effects are nonetheless modest when viewed against the overall
degree of inequality in outcomes. This is especially true of earnings. The
average difference between brothers on earnings is 87 percent as large as
the difference between raridoin individuals. Eliminating earningsdifferences among men raised in the same home would do far more toreduce variance in income than would eliminating differences betweenmen raised in different families. If brothers earned the same amount asone another, while family to family differences in earnings remained





Table 5. Sibling Correlations and Within-pair Standard Deviations
for Brothers Three or Less Years Apart in Age and for
for Brothers More Than Three Years Apart in Age

  

Sibling Correlation Within-Pair StandardDeviation
Variable 3 or Less (N=155) More than 3 (N=197) 3 or Less (N=155) More than 3 (N=197)

pairs pairs pairs pairs

Test Seore -516 -434 7.47 8.24

Education -5/0 2531 1.32 1.27

Initial — 424 379 13.06 12.97Occupation

Current | 469 181% 12.02 14.75%Occupation

Earnings 266 183 5005 4542

Ln Earnings .196 .201 331 .261%*

eee
*Significantly different at the .05 level.
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Figure 2: Model of Individual
Attainment Omitting Occupational Status
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.166 in Figure 2 below.) They suggest that it instead may proxy shared

preferences for pecuniary versus nonpecuniary rewards. It is possible,

however, that the variable represents a combination of personality

eharacteristies, unmeasured skills, values and shared information which

bear varying relationships to Father's Occupation. Attempts to reject or

establish unitary definitions of such a variable are, therefore, potentially

misleading.
The correlation among the hypothetical variables indicate that

families who have sons with higher test scores also tend to have sons

whose educational attainments exceed the attainments expected on the

basis of test seores alone, but that net earnings advantages associated

with family membership are not strongly related to net educational

advantages or to overall test score advantages. Indeed, families whose

sons have test scores above the mean tend, albeit weakly, to have sons

whose earnings are below the earnings expected on the basis of test scores

and education alone. (Note in Figure 2 that while EF-ED,EF-IQ equals

0.617, 'op_pARN,EF-ED CqUals only 0.341, and rinbarn, EF-IQ equals-
0.145.)

Figure 3 presents a model in which the overall, rather than the net

effeets of family background on individual outcomesare represented. The

effect of each hypothetical variable is simply the square root of the

sibling correlation for the outcome associated with the variable. The

correlations among the hypothetical variables are calculated by using

eross-sib correlations (e.g., ren 1Q”” and measure the tendency of

brothers who share advantages on one outcome to share advantages on

others. The error terms in the model are the square root of the variance

not explained by family background. The correlations between an

individual characteristic (e.g., ep 1Q) are accounted for by the effects

of family background and a correlation between error terms. For

example, the correlation between earnings and education is expressed in

Equations 3 and 4.

(3) TEARN.ED ~ PEARN,EF-EARN'EF-EARN,ED

PEARN,e-EARN e-EARN,ED

(4) .431 = .487 (.790) (.741) + .874 (.249) (.672)

The model shown in Figure 3 allows us to determine the extent to which

brothers who are advantaged on one outcometend to have similar shared

advantages on other outcomes, and to determine the extent to which

individual level effects are independent of family background.

The inter-correlations among the hypothetical variables in Figure 3

suggest that brothers who comefrom families that are unusually effective

in conferring educational advantages, also tend strongly to come from

families that are unusually effective in their influence on both test scores

and earnings, but families that are unusually effective in their influence

on test scores are not as likely to be similarly effective in their influence

on earnings.



Figure 3: Model Representing the Overall Impact of Family
Background on Test Scores, Education and Earnings

(Prime denotes brother.) _
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Table 6. Effects of Test Scores and Education (Standard

errors of regression coefficients in parentheses;

Braecketed coefficients less than 1.96 times their

standard errors.)

 

Residual
Dependent Test a Standard Other Variables

Variable Score Education R Deviation Controlled

1. Education 103 2300 2.23 None

(.006)

2. Education 081 431 2.06 Socioeconomic Background”

(.006)

3. A Edueation -059 -608 1.71° Brothers' Common Background

(.008)

4, Initial 691 .197 21.33 None

Occupation (.053)

5. Initial .910 299 19.93 Socioeconomic Background

Occupation (.053)

6. Initial 390 420 18.13° Brothers' Common Background

Occupation (.087)

7. Initial 6.242 2512 16.63 None

Occupation (.232)

8. Initial 5.170 2020 16.40 Socioeconomic Background

Occupation (2.64)

9. Alnitial 5.976 O77 15.47° Brothers' Common Background

Occupation (.454)

10. Initial [076] 5.997 .513 16.61 None
Occupation (.050) (.283)

11. Initial [.062| 5.520 525 16.40 Socioeconomic Background
Occupation (.050) (.303)

12. A Initial [0221 5.526 2976 15.49° Brothers' Common Background

Occupation .080) (.488)

13. Occupation .685 202 20.70 None

(.051)

14. Occupation -601 217 20.50 Socioeconomic Background

(.055)

15. A Occupation 436 0351 18.66° Brothers' Common Background
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re

Residual
Dependent Test _9@ Standard Other Variable
Variable Score Education ‘R Deviation Controlled
eee

16. Occupation 5.016 349 18.70 None
(.261)

17. Occupation 9.031 347 18.72 Socioeconomie Background
(.302)

18. A Occupation 4.002 -407 17.84° Brothers' Common Background
(.524)

19. Occupation 255 4.192 - 367 18.44 None
(.056) (.314)

20. Occupation 254 4.280 - 362 18.50 Socioeconomic Background
(.057) (.342)

21. 4 Occupation ~229 3.499 -416 17.70° Brothers' Common Background
(.092) (.557)

14, A Occupation ~224 2.150 -441 17.32° Brothers' Common Background,
(.090) (.639) Initial Occupation

15. Earnings 179 -128 7130 None
(18)

17. Earnings 156 -141 7075 Socioeconomic Background
(19)

18. A Earnings 170 .296 6404° None
(31)

19. Earnings 1205 185 6893 None
(96)

20. Earnings 1157 -184 6895 Socioeconomie Background
(111)

21. A Earnings 906 282 6469° Brothers' Common Background
(190)

22. Earnings 83 938 - 202 6820 None
(21) (116)

23. Earnings 82 914 - 202 6820 Socioeconomic Background
(21) (126)
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a Residual

Dependent Test _2 Standard Other Controlled

Variable Score Education R Deviation Controlled

24. A Earnings 133 612 313 6327° Brothers' Common Background

(33) (199)

25. A Earnings 111 [276 361 6102° Brothers' Common Background,

(32) (203) Occupation

26. Ln Earnings .0106 129 -420 None

(.0010)

27. Ln Earnings -0094 137 418 Socioeconomie Background

(.0011)

28. A Ln Earnings .0105 294 378° Brothers' Common Background

(.0018)

29. Ln Earnings 0671 . 166 411 None

(.0057)

30. Ln Earnings 0642 . 166 411 Socioeconomie Background

(.0066)

31. A Ln Earnings -0499 . 268 385° Brothers' Common Background

(.0113)

32. Ln Earnings 0055 -0492 - 186 - 406 None

(.0012) (.0069)

33. Ln Earnings 0055 -0480 186 406 Socioeconomic Background

(.0012) (.0075)

34. ALn Earnings .0086 -0310 306 .375° Brothers' Common Background

(.0019)  (.0118)

35. ALn Earnings 0072 |. 0094] 364 .359° Brothers' Common Background,

(.0019) (.0119 Occupation

  

a. Calculated as 1- (Error Variance/Total Variance) for individuals.

b. A indicates variables defined as sibling differences.

ec. Within pair standard deviation corrected for degrees of freedom. Calculated as

.5(1.4144)=.707 times the observed standard deviation of residuals for regressions

of sibling differences.

d. Father's Education, Father's Occupation, Siblings.









152 Olneck

taken into account.?® This suggests that research paradigms which
inherently reinforce the view that our own economic fates and the overall

distribution of economic rewards are’ generated by personal
characteristics should be seriously questioned, and emphasis in economic
research should be concentrated on the systemic factors determining
inequalities in economic rewards. In sociology, a more fruitful pursuit
than the further refinement of path models would be an assessmentof the
ideological antecedents and impact of the dominance of the status
attainment school.
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FOOTNOTES

‘What direct evidence there is suggests that the inclusion of
parental income reduces the coefficients of other background measures,
but that it does not significantly enhance the explanatory power of
measured background. I reanalyzed Sewell and Hauser's sample of 1957
Wisconsin high school seniors, and found that the addition of average
parental income from 1957 to 1960 to equations already including Father's
Education, Mother's Education, and Father's Oceupation did not
Significantly reduce the residual standard errors for educational
attainment, 1964 occupational status, and 1967 earnings.

2 the assumptions do not hold, the sibling correlation still reflects
the extent to which between family variance exceeds within-family
variance, but the interpretation of the correlation becomes ambiguous. If
the effects of background vary bybirth order, the proportion of variance
due to family and to such an interaction could be higher than thesibling
correlation. If brothers' characteristies directly affect one another, the
sibling correlation exceeds the variance attributable to shared baekground
characteristics. Fortunately, the assumptions that background effects are
Symmetric by birth order and that interbrother effects are unlikely appear
tenable for the Kalamazoo data. See Olneck (1976a, Chapter 4).

Two other caveats are in order. If background factors have
different effects for men with no brothers, estimates of explained
variance based on sibling data may be misleading for the general
population. This possibility cannot be tested for unmeasured background
factors. Nor am I familiar with analyses of national data which relate
outcomes to measured variables separately for men with brothers and men
with no brothers. Such analyses could be conducted with the 1962 and
1973 OCG data (Blau and Duncan, 1967; Featherman and Hauser, 1975).

My definition of "background"includes the effects of genes, but only
to the extent that brothers' genetic makeupsare correlated. If genes are
viewed as an "inheritance", I have underestimated the effects of
background even when usingsibling data. However, unshared, unmeasured
environmental factors whose effects I eannot analyze may also be related
to family background in a narrow sense, and in a wider sense are almost
definitionally related to background. No methodology can analytically
distinguish unmeasured individual "background" factors from "later"
influences.

3

This would be trug even if socioeconomic variables were measured
without error. While R“'s from equations using corrected variables are

See Equations 1 and 2.
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higher than those from equations using observed measures, corrected

sibling correlations are also higher. See Olneck (1976a, Table 4.7).

For an early anticipation of this strategy, see Gorseline (1932). For

reanalyses of Gorseline's data, see Chamberlain and Griliches (1974).

Behrman, Taubman, and Wales (1976) also report within-pair regression

results.

The strategy involves two hazards which I discuss in more detail

below. The first is that it assumes variables measure the same things

within and between families. The second is that it exacerbates biases due

to measurementerrors (Bishop, 1976).

ore Wiseonsin 1957 high school seniors (Sewell and Hauser, 1975)

are only now in their mid-thirties, ana the sample excludes high school

dropouts. Published analyses of this sample cover earnings only 10 years

after high school graduation. The Project Talent respondents (Crouse,

forthcoming,) were only around 28 years old when last surveyed. The

effects of cognitive skills on earnings appear to be lower in the early

eareer than later on. [ See Hause's (1972) report of Roger's data; Also see

Jencks (fortheoming) and Fagerlind (1975). ] Unpublished data from the

Wisconsin sample also show this effect. This means that analysts who

have relied on younger samples may have prematurely eoncluded that the

ability bias in the income-schooling relationship is small. For example,

Griliches and Mason (1972) concludes that the bias in post-military

schooling in the NORC Veterans sample is only 10 percent. I found the

bias in the coefficient for total schooling for respondents 30-34 in that

sample to be 42 percent. See Olneck (1976b).

Unfortunately, samples of older men which include test scores are

rare, and, invariably, flawed. The test in the Michigan Panel Study of

Income Dynamies is unreliable, and was taken at the time the survey was

administered (Mueser, forthcoming). Respondents in the NBER-TH sample

were all in the military, and scored at or above the median (Taubman and

Wales, 1974).

Because of its local nature, the Kalamazoo data does not remedythe

need for large, representative samples with ability measures. That it adds

significantly to available data reflects the meager base on which analyses

in this area are conducted.

Tone quarter of the respondents are from families in which more

than two brothers were interviewed. Consequently, there are actually

more than 346 unique pairs. I weighted the sample so that no individ-

val would count as appearing in more than onepair.

8 reatherman and Hauser (1975). I am grateful to Robert Hauser for

making this information available to me.

*This speculation assumes that respondents' fathers who left

Kalamazoo were disproportionately lower status. For support, at least for

the early part of the century, see Thernstrom (1973). For a contrary view

which emphasizes the greater success of out-migrants and in-migrants

among the 1962 OCG respondents, see Blau and Dunean (1967) and
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Dunean, Featherman and Dunean (1972).
10

and 54,

11

Eighty-two percent of the OCG II men 35 to 59 were between 35

U.S. Bureau of the Census (1975), Table 34.

2 Por discussion of this and other issues relating to differences in
results across samples see McClleland (forthcoming).

sIntergenerational correlations are lower in the 1966 Detroit Area

Survey than in the 1962 OCGI survey. See Duncan, Featherman, and

Dunean (1972, p. 46).

14there is a disproportionate number of mangers, administrators and
proprietors in the sample compared to the number in the total 1970

Kalamazoo male workforce aged 16 and over, and compared to the number

in the 1970 Lansing, Michigan male workforce aged 35 to 54. See Olneck
(1976a, p. 25).

19ty a eheck in the Kalamazoo data, I found that respondents'

reports of their brothers’ educations had almost the same correlations

with respondents' characteristics as did brothers' own reports of

education. The degree of similarity between correlations involving
Brother's Education in the Kalamazoo and OCG II samples would probably
not be changed if OCG II had interviewed brothers.

16546 Hildreth (1925); Corcoran, Jencks, Olneck (1976).

LTSee Jencks (1972); Hermalin (1969); Eaglesfield (forthcoming).

18coe Behrman, Taubman, and Wales (1976); Coreoran, Jencks, and

Olneck (1976). Restricting the Kalamazoo sample to pairs of brothers who
differ in age by three or less years exaggerates rather than narrows
discrepancies between correlations in the DZ portion of the NAS-NRC
twin sample and the Kalamazoo brothers sample. Except for correlations
involving In earnings, the NAS-NRC DZ twin correlations tend to be

appreciably lower than analogous correlations in the Kalamazoo sample.

19op regressions of son's outcomes on background measures see
Olneck (1976a, forthcoming).

20adding measures: of maternal education, family composition,
paternal nativity, father white-collar, and significant nonlinear and
interaction terms raises the proportion of variance explained by measured
background slightly, but never by more than 0.037 for any outcome.
Consequently, I have used only three basic background variables in the
present analyses.

21666 Duncan, (1966).

22che predicted sibling correlations for Edueation, Initial
Occupation, Current Occupation, Earnings, and Ln Earnings, taking into
account sibling resemblance on test scores are 0.353, 0.264, 0.165, 0.090

and 0.082.
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23 adding variables measuring family composition, race, and farm
background never raises R™ by greater than 0.022 in the OCG II data I
analyzed.

2466 Olneck (1976, Chapter 4) for these comparisons, and for the
derivation of my corrections for measurementerror.

25Jencks et al. (1972) report such comparisons for occupational
Status and income. See Inequality p.201 and pp. 239-240. They
erroneously refer to the formuia for average sibling differences as 1.13
times the within-pair stangard deviation. The formula which they actually
give, i.e. 1.13 [14 rsib] S, involves the within-pair standard deviation
corrected for degrees of freedom. See Column 4 in Table 4 below.

oTheAfandard deviation of predicted family means for earningsis
7634 (.237)°"" = 3716. The standard deviation of earnings eliminating the
effects of family background is 6668.

For similar comparisons for In earnings in several data sets, see
Coreoran, Jeneks, and Olneck (1976).

aT a model predicting Occupation that takes into account the
effects of Education and Initial Occupation, the correlation between the
error terms for brothers is 0.284 for pairs 3 or less years apart in age, but
only 0.001 for pairs more than 3 yearsin age.

28 is not due to the presence of outliers. I looked at cross-
tabulations of brothers' Dunean scores categorized into 5 point intervals
for the two groups. The number of pairs with very large differences in
Dunean scores is similar for widely-spaced and closely-spaced brothers. In
general, the spread of brothers’ Duncan scores tends to be greater forall
levels of respondents’ scores for widely-spaced brothers than for closely-
spaced brothers.

There is some suggestion that a similar conclusion might hold for
earnings when brothersare very far apart in age. The correlation between
earnings for brothers 5 or less years apart in age is 0.281, but it is only
0.108 for brothers more than 5 years apart. However, the difference
between these correlations is not significant, and the correlation between
absolute age difference and absolute earnings difference is only 0.054.

For similar models which include initial and current occupational
status see Olneck (1976a).

30Figure 2 is a variant of Figure B-7 in Jencks et al., (1972). I
considered an alternative model in which orthogonal family background
factors, one affecting all outcomes, one affecting all but the first
outcome, one affecting all but the first two, and so on, are posited. In my

data, the path to earnings from a factor common to test scores,

education, and earnings is imaginary, so I abandoned the model. Nor did I
estimate models in which measured background exercises direct effects,
and unmeasured background factors are defined as orthogonal to measured
background. I estimated the model shown below by hand calculation from
observed correlations. Consequently, I cannot report standard errors for
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the correlations among hypothetical variables.

$1oineck (1976a) reports, however, that inclusion of high school

teachers' ratings of several personality characteristics such as

industriousness, dependability, and executive ability, does not improve the

prediction of sibling correlations on economic outcomes. See Olneck

(1976a, Chapter 5).

32 Pop a similar critique and an attempt to decompose the

oecupation-education relationship in Norway into familial and nonfamilial

components, see Sweetser (1975).

33this econelusion should be generalized cautiously. It is not so

strongly supported by Behrman, Taubman, and Wales (1976). Moreover,

the effects of secondary education on initial occupation in the Michigan

Panel Study of Income Dynamics, and in my data are smaller and less

robust than the effects of higher education. See Olneck, 1976b. This is

also true in the 1973 OCG II sample I analyzed.

341 Behrman, Taubman and Wales (1976) the within-pair education

coefficient for DZ twins in the NAS-NRC sample is 92 percent as large as

the uncontrolled coefficient. The cross-sibling correlation for education

and occupation in that data is anomolously low comparedto the analagous

correlation in the Kalamazoo and OCGII data, so I tend to favor the

Kalamazoo results. In the OCGII data, for 6865 respondents, 35 to 59,

who reported their brother's education, controlling father's education,

father's occupation, number of siblings, family composition, race, and

farm background reduces the occupation-education coefficient by 15.0
percent. Using reports of brothers’ education to calculate a within-pair

occupation-education coefficient reduces the uncontrolled relationships by

23.2 percent. The importance of unmeasured compared to measured

background factors for bias in the occupation-education relationship is
less in the 1962 OCG I data thanit is in the OCG II. See Olneck (1976b).

see Griffin (1976) and Olneek (1976b). Olneck (1976b) assesses
differential bias by level of schooling, and finds that the occupational
effects of completing college are larger and more robust thanthe effects
of completing high school.

36antilog 0.1060 = 1.1118. A one standard deviation difference in

test seores in the Kalamazoo data is associated with a 17.6 percent

difference in earnings. A one standard deviation difference in test scores
is associated with a 10 percent difference in 1971 earnings and a 5.7

percent difference in 1968 earnings among 1957 Wisconsin high school
graduates (Hauser and Daymont, 1976), a 9.6 percent of difference in
expected 1964 earnings among NORCVeterans respondents aged 25 to 34,
and 17.5 percent among Veterans 30 to 34 (Jencks, forthcoming), and a 9.2

percent difference in 1972 earnings of Project Talent 11 year follow-up
respondents (Crouse, forthcoming). These comparisons indicate that

estimates of the effects of tested ability vary by both age of respondents
and tests. This accounts, in part, for differences among researchers in
estimates of the proportionate and absolute "ability" biases in the effects

of education.
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37Crouse (forthcominga) offers little support for this interpretation
however. The correlations between the separate components of the
Project Talent Academie Composite and In earnings do not differ
significantly in the Talent 11 year follow-up.

38 controlling measured background in the NAS-NRC twin sample
reduces the bivariate education-In earnings relationship by 12 percent.
The within-DZ pair coefficient is, however, only .059/.080 = 73.8 percent
of the uncontrolled coefficient, and the within-MZ pair coefficient is only
.027/.080 = 33.8 percent as large as the uncontrolled coefficient. The
difference between MZ and DZ results suggests that either controlling
genes is important, or that MZ twins share more common environments
than do DZ twins. See Behrman, Taubman, and Wales(1976).

The 1973 OCGII data also suggest the importance of controlling
unmeasured as well as measured background. Controlling measured
socioeconomie background among 6855 respondents, aged 35 to 59, who
reported their brother's education, reduces the relationship betweeen
education and In earnings by 19.7 percent. But using the correlations
among respondent's education, respondents’ In earnings, and brother's
education to calculate a within-pair coefficient reduces the relationship
by 36.4 percent. The 1962 OCG data do not, however, suggest dramatic
differences between the education coefficients controlling measured
background and unmeasured background. I have not yet investigated the
possible sources of the discrepancy between the OCG I and OCGII results.
See Olneck (1976b).

9The question may be raised as to whetherit is more appropriate to
estimate and compare proportionate or absolute biases across samplesor
within populations sampled longitudinally. If the uncontrolled effects of
education differ between samples, the proportionate biases will differ
even when absolute biases are the same. In longitudinal studies, if the
effects of education rise faster than the effects of test scores or
background, the proportionate bias will fall even though the absolute bias
increases. It is probably best to report both absolute and proportionate
biases. See Hauser and Daymont (1976), Griffin (1976), and Olneck
(1976b).

Olneck (1976b) indicates that the observed effects of secondary
schooling are more biased than the effects of higher education.

Bishop estimated the correlation between reported and true values
as 0.90, assuming that errors in separate reports of education are
correlated 0.40 (Bishop, 1976; p. 5). I estimated the correlation between
true and reported values of education in the Kalamazoo data as 0.964
(Olneck, 1976; pp. 172-178).

I ealeulated the error variance of schooling as (2.73)? (1-

0.9647) = 0.5292. Bishop gives the ratio of the observed to tne true

2V (ui) ]eoefficient as b,/B =1/ao [1-VK where
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8 = true coefficient

b, = observed

a = correction for floor and ceiling effects producing a correlation
between the errors in measurement and true values.

V(u,,) = error variance in education

V( AP) = variance of sibling differences in education.

Adopting Bishop's values of =0.95, I have bt/B = [1-
2 (.5292)/6.720 ] = .95 = .887.

41assuming random errors and a reliability of 0.929, the error
variance in schooling is (2.73)°(1-0.929) = 0.5292. The ratio of error
variance to the variance of sibling differences is 0.5292/6.7288 = .07865.
If errors in test scores are random, assuming a reliability of 0.900 yields
an error variance of (15.32)"(1-0.900) = 23.3292. The ratio of error
variance in test seores to the variance of sibling differences is
23.3292/249.5294 = 0.0935 (See Bishop, 1976).

42op the econnection between status attainment research and
American values see Blau and Duncan (1967,esp. pp. 432-441) and Jencks
et al. (1972, Chapter 1).

43 pop an argument that genetic endowments explain substantial
amounts of variance in earnings see Behrman, Taubman, and Wales (1976).
For a critique of Behrman, Taubman, and Wales, see Goldberger (1976).
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FAMILY BACKGROUND AND ACHIEVEMENT: A COMMENT

Robert T. Michael
Stanford University and NBER

Olneck's paper makes an important contribution to the rapidly

growing literature on the relationship of family background to subsequent

achievement. With entrepreneurial effort matched by few but the editor

of this volume, Olneck identified, collected and analyzed a quite useful

source of data on male siblings who attended grade school in Kalamazoo,
Michigan over a period of two decades (1928-1950). He is to be
commended (and assuming he shares his data with others, thanked) for his
efforts in obtaining the data set. Olneck's analysis produced several
findings whieh are informing and which should prove useful in subsequent

study.
Olneck's most important finding, which provides independent support

for results from other investigations, is that brothers are more alike in

earnings, occupation and schooling attainment than can be explained by
measured background characteristics or by measured similarity in ability
test scores and other frequently used explanatory variables. Several
studies have shown us that a sizable portion of the variance in, say,

earnings (or log earnings) cannot be attributed to measured variables such
as job experience, schooling, and ability; yet other studies of longitudinal
data on earnings have indicated that there is a positive covariation in the
unexplained earnings residual for an individual from year to year. This
evidence suggests that there are persistent and perhaps systematic forces
affecting earnings which have not yet been identified.

Olneck's evidence provides a valuable clue that family-related
factors are in part responsible for these forees. These factors work
through channels other than those reflected in standard recursive models
of earnings. Olneck does not provide any hints about what these channels
are, be they motivation, attitude or skills, social status, wealth, access to

capital, connections, or whatever.
Clues are of value for their potential, however, and in my judgment

the latent variables approach with which Olneck exploits his clues about
the importance of family background is not as useful as a direct approach
investigating what measurable background characteristics appear to
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Surely parents exercise some volition about their influence on (or at least
the resources devoted to) each of their children. Confronted with two
children with different personalities, energy, motivation, intelligence,
health, et cetera, parents presumably make decisions about the level and
composition of resources (time and money) they will devote to each child.
Only if it is the parents' intention to make their children as similar as
possible (in terms of tested intelligence, schooling level, occupation and
earnings) does Olneck's analysis reveal the influence of parents' character-
istics on their children.

If parents respond to differences in children's attributes by
promoting the comparative advantages of each child (perhaps even
devoting different levels of total resources among children on the basis of
some sort of absolute advantage), then similarity between brothers is not
evidence of the importance of family characteristics noris dissimilarity
evidence of its lack of importance. Indeed, if parents respond so as to
reinforce the potentials of gifted children (e.g., mentally, musically,
physically gifted), then it may be in families in which there is the widest
difference in achievement between siblings that there is in fact the
greatest influence of family background.

In discussions of family background in the literature, many studies
investigate the effects of explicit measures of parental or family
characteristics. Olneck points out that several of these explicit measures
together do not account for the similarities between brothers in his data.
This fact is quite interesting as are estimates of the gross magnitudes of
the resemblances between brothers and the net magnitudes conditional
upon differences in intervening variables. However, it is not informative
to label these resemblances "family background" effects, nor to ignore the
difference between the influence on children of what parents are and what
parents do. It may seem unfair to ask of Olneck insights about the
resemblances between brothers when he has done a considerable service in
providing estimates of their magnitudes. The point applies to most of the
"kinometriec" research; the estimated numbers are interesting, but the
interpretations are far from straightforward.

In his dialogue, The Republic, Plato asks, "and how shall we manage
the period between birth and education, which seems to require the
greatest care? Tell us how these things will be." While I think none of us
would endorse his substantive answer, we might sense wisdom in hisinitial
response: "Yes, my simple friend, but the answeris the reverse of easy;
many more doubts arise about this than about our previous conclusions."
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FOOTNOTES

tDhe magnitude of the slope of the profile is greater at higher levelsof schooling in this age interval. Judging by figures for all males withincome from the 1966 C.P.S., in the five years between age 35 and age 40

than for the latter group. I find this result puzzling; it doesn't appear tobe related to a bigger difference in schooling levels for brothers who arecloser in age.

This argument is extensively developed in a related context inG.S. Becker and N. Tomes, "Child Endowments and the Quantity andQuality of Children," J.P.E., 84, No. 4, part 2 (August 1976) p. S157.
Sif parents attempt to offset ability differences in order to achievemore similar schooling levels among their children, this could explain anegative relationship between y and z, but it seems an unlikely explana-

 

41¢ children were virtually identical when they entered a family, Iknow of no theoretical reason why parents would behave so as to createdifferences. But children within a family are indisputably different inmany respects, and there are theoretical reasons to expect parents torespond to these differences. Becker and Tomes (1976) explore theseincentives analytically and suggestit is likely that parents tend to investhuman capital in their children in a manner which reinforces differences,but to transfer (any) nonhuman capital to children in a way thatcompensates for differencesin skills.







170 Jencks and Brown

percentage of variance in human traits explained by variations in

genotype. It also discusses the substantive assumptions behind these

formulas and assesses the empirical evidence for and against them.

Section IV uses the data presented in Section II and the formulas in

Section III to estimate the "heritability" of test performance, educational

attainment, and career plans. Using conventional assumptions, these

heritabilities are all significantly greater than zero, but their standard

errors are also quite large, and the results of career plans are internally

contradictory.
Section V investigates the extent to which the genes that influence

educational attainment operate by influencing test scores. The data imply

that genes have substantial effects on education that are independentof

test performance. This suggests that investigators who restrict

themselves to estimating the impact of IQ genotype on adult success, as

Jencks et al. (1972) did, may seriously underestimate genes' overall impact

on success.
The conclusion reviews some of the methodological problems

encountered in earlier sections and summarizes our substantive findings.

I. Conceptual Issues

We will use three terms from population genetics: phenotype,

genotype, and heritability. A simple example will illustrate their

meaning. Suppose a farmeralternates two genetically pure strains of corn

in the same field. Suppose that after many years of alternating strains in

this way he finds that Strain A has yielded an average of 1120 bushels per

year, with a standard deviation of 160 bushels, while Strain B has yielded

an average of 880 bushels per year, again with a standard deviation of 160

bushels. Under these circumstances we can define our terms as follows:

Phenotype is the observed yield in any specific year. The phenotypic

mean for all years is (1120 + 880)/2 = 1000 bushels. The between-strains

phenotypic variance is [ (1120 - 1000)“+ (880 - 1000)" } /2 = 1207 =

14,400. The within-strains phenotypic variance is 1607 = 25,600. The

total phenotypic variance is therefore 14,400 + 25,600 = 40,000.

Genotype is the average yield of a given stain when it encounters

the range of environments provided by this particular field over the years

in question. The genotypic values are 1120 bushels for Strain A and 880

bushels for Strain B. The genotypic mean for both strains together is by

definition the same as the phenotypic mean, i.e. 1000 bushels. The

genotypic variance is the variance of the genotypic values. This is simply

the between-strains phenotypic variance,i.e. 14,400.

Broad Heritability (2) is the percentage of the phenotypic

variance that can be explained (in the statistical sense) by genotype.

This is the same as the ratio of the genotypic variance to the

_ 14,000/40,000 = 0.36.
9

Many unwary investigators treat 1 -has an estimate of the fraction

of the phenotypic variance attributable to environmental variation. This

is an extremely misleading practice. It is true that in this example

phenotypic variance. In this case h
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environment as E. Our model assumes two equations:

(1) P=aG+bE+ew

and

(2) E=eG+dxX+fV

where a,b,c,d,e, and f are scalars (regression coefficients) and V and W are
error terms. W embodies the non-additive effects of G and E on P, while
V embodies the non-additive effects of G and X on E. Some may
therefore prefer to think of W and V as interaction terms rather than as
error terms. Figure 1 portrays this model visually. |

We are interested in measuring the total effect of G on P when G
and X are uncorrelated. This is the same as the total effect with X
controlled, i.e. a+be. As we shall see, one can estimate this effect by
taking advantage of the fact that genetic theory allows us to estimate the
correlation between certain individuals' genotypes with considerable
eonfidence. We know, for example, that the correlation between identical
twins' genotypes is 1.00. The same is true for members of sufficiently
inbred strains. Likewise, we know that the correlation between the
genotypes of ordinary siblings is typically on the order of 0.50, though this
value may be inflated by assortative mating or depressed by non-additivity
(i.e. dominance and epistasis). Section III presents methods for using these
facts to estimate the effect of Gon P.

In principle, we are also interested in estimating the effects of E on
P, but in practice we cannot hope to do this. Neither psychological nor
sociological theory provides any strong basis for believing we can actually
measure E. Nor do psychologists or sociologists have any a priori basis for
predicting the correlation between values of E for particular sets of
relatives. E is thus a completely free endogenous parameter. There are
no known constraints on its behavior. Under these circumstances one
cannot hope to estimate its correlation with anything except by making
completely arbitrary assumptions. As a result, we ean only estimate a
"reduced-form" model, in which E does not appear,i.e.

(3) P=aG+tb(eG + dX + fV) + eW = (a+ be)G + bdX + bfV + eW.

Setting atbe =h, bd =i, and bfV + eW = jU, we have

(4) P=hG+ix+juU.

Figure 2 displays this model visually. We use roman type to denote
unstandardized values and italics to denote standardized values, i.e. values
that have been rescaled to have standard devitations of 1.00 as well as
means of zero. We have scaled G so that h = 1.00 by definition. It follows

_ 2 82,2 wy» iia,that h = (1.00) (s/Sp), hence that h” = Sq /Sp = "heritability."

How much variance is explained by "environment" (E)? The answer
depends on precisely what one means by the term "explained." One
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possibility is to ask how much of the observed variance in P we could

explain statistically if we knew E, i.e. how large R? is. If we
PE

standardize all variables and use italics to denote standardized

eoefficients,

(5) Rpg = (b + ac)” b? + 2abe tare’,

If we assume Rog =1- hn’, how wrong will we be? First, note that:

(6) h” =(a + be)” = a’ + be" + 2abe

Furthermore,

(7) 1=2” + b” + Zabe + e”.

Subtracting equation 6 from equation 7 weget:

(8) 1 -h’ = db’ - b’e? + e”

The bias that arises from assuming Roe =1- nh? is then the difference

between equation 5 and equation 8,i.e.

(9) RZ, - (1-h2 = 2abe + a2 0” + b2 ec? +e
Rpg —_—_ - = -- -

Thus if the correlation between genotype and environment (e) iS positive,

and if the effects of G and X are nearly additive(i.e. e” is small), 1 -n?
2

will underestimate Rog

Alternatively, ‘one might want to know what percentage of the

observed variance would disappear if environments were equalized.

Sw = 0. The phenotypic variance will

therefore be a’st, , or in standard form, a’. We ean eall this the "non-

environmental" variance. The "environmental" variance is then 1 - a’. If

we assume 1 - a” =1- h’, the bias is equal to:

9

(10) (L-a’) - (1-h?) = h® -a” = b* e*+2abe.

Equalizing environments makes Sp =

Using this definition, then 1—-h 2 overestimates the "environmental"

variance if the correlation betweenG and (i.e. ¢) is positive, regardless

of the size of e’. But if society allocates environments so as to

compensate for genetic disadvantages, c will be negative. In that case 1-

h2 mav over-estimate the effects of environmental ineaualitv, though

equations 9 and 10 show that this is not a foregone conclusion.

One final observation may be helpful. Debate over the heritability

of certain human traits, notablv "intelligence", has traditionally been

highly political. Both liberals and conservatives seem to assume that hich
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Table l

Sources of Attrition in Final Talent Twin Sample

 

 

 

DZ
MZ MZ DZ DZ Mixed
Males Females Males Females Sex Total

1. Estimated pairs 677 «656 677 656 1333 4000
per 400,000 live
births

2. Estimated pairs in 540 523 228 220 448 1959
Schoenfeldt's

sample

3. Pairs of known 184 239 66 127 448 1064
zygosity

4&. Pairs with 76 90 26 ' 5) 93 336
composite test
scores and

education data

Notes on Table l

 

Line 1 assumes that one U.S. birth in 100 produces twins, that a third of thesetwins are identical, that 50.8 of all same-sex twins are male, and that 49.2 percentare female. See Loehlin and Nichols (1976), pp. 7-8.

Line 2. The N's in columns 5 and 6 are from Schoenfeldt (1968). To estimatecolumns 1-4, we assumed that the N for DZ Same-sex pairs was equal to that for Dzopposite-sex pairs, and that the sex ratio was 50.8:49.2. We then assumed that allremaining pairs were MZ. These assumptions may not hold for twins in grades 9-12 ofthe same school.

Line 3. The figures for same-sex pairs include only those who both returnedSchoenfeldt's questionnaire on zygosity. Schoenfeldt did not send this questionaireto twins enrolled in different grades. The figures for opposite-sex pairs include 45pairs enrolled in different grades.

Line 4. These cases were identified by merging records from Talent's 5-yearfollowup file with Schoenfeldt's lists of same-sex pairs with zygosity data and withhis full list of mixed-sex pairs. We then eliminated 30 pairs who lacked either acomposite test score or data on educational attainment.
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changes from 9th to 12th grade, but because it is a proxy for aptitudes
that remain stable from 9th to 12th grade. We will therefore treat our
achievement scores as fallible measures of academic aptitude. This
implies that we should treat changes in students' scores between 9th and
12th grades pF measurement errors. We do not know the magnitude of
these errors.

Since raw scores increase with age, while aptitude presumably does
not, we standardized all scores by age. To do this, we first regressed the
raw scores on age. This regression wasessentially linear for 14 to 17 year
olds, with scores increasing by a sixth of a standard deviation each year.
Eighteen and 19 year olds scored below 17 year olds, presumably because
the abler 18 and 19 year olds were in college. Thirteen year olds wereless
than a sixth of a standard deviation below the 14 year olds, presumably
because 13 year olds with low scores werestill in 8th grade. These results
were consistent with the assumption that the regression slope for the
population as a whole was linear from 13 to 19, inereasing at about 0.17
standard deviations per year. We used this assumption to standardize all
scores. This meant that the 13 year olds in our sample had above-average
aptitudes, while 18 and 19 year olds had below-average aptitudes. This is
what one would expect on the basis of known selection biases. We did not
try to adjust the slope for 14-17 year olds to take account of the bias
introduced by differential attrition. Since age explained less than three
percent of the variance in observed scores, and less than one percent of
the variance in adjusted scores, this standardization procedure should be
adequate.

Once we had standardized for age, we transformed the resulting
aptitude scores so they would have a mean of approximately 100 and a
standard deviation of approximately 10 in the full Talent sample. This
transformation may not be exact, since Talent only publishes normsforits
tests by grade level, not age.

Educational Attainment. The "5-year followup" was actually
conducted five years and four months after expected high school
graduation. A student who had remained in school and progressed at the
usual rate would therefore have been entering his second year of graduate
work. If a student was not in school at the time of the survey, we
assigned him the highest grade he had completed. If he was enrolled in
college as a freshman or sophomore, we assigned him two more years than
he had completed. If he was enrolled as a junior or senior, we assumed he
would earn a B.A. but no more. If he was enrolled as a part-time graduate
student, we assumed he would complete one further year of graduate
work. If he was a full-time graduate student, we assumed he would
complete two years of graduate study. If he had completed technical or
vocational training after high school, we assigned him 13 years of
education. These assignments obviously underestimate some people's
eventual attainment and overestimate others', but the discrepancies
should not be large relative to the total variance. In a small subsample
that was resurveyed six years later our estimates correlated 0.91 with
educational attainment at 28. The correlation between two independent
estimates of educational attainment rarely exceeds this level even when
the measures are obtained within a few weeks of one another.





Table 2: Means, Standard Deviations, and Correlations of Academic Achievement (A) and
Educational Attainment (B) for Twins and Siblings with Data on Both A and B

Sample Abbreviation No. of A Sy B Sp TAB CaAt Cap ' Capt
Pairsa

,

MZ Twins M 166 104.776 9.631 14.587 1.984 .621 864 . 780 . 586

Male Pairs Mm 76 105.821 9.852 15.211 1.900 -677 853 -745 -609
Female Pairs Mf 90 103.894 9.377 14.061 1.903 573 871 .770 564

DZTwins D+D" 170 105.362 9.079. 14.282 2.007 . 989 567 521 472 QD

®Same-Sex Pairs D 77 106.166 9.361 14.364 1.963 565 1722 -590 544 =Male Pairs Dm 26 105.124 9.879 14.615 1.952 . 588 -641 547 951 “
Female Pairs Df 51 106.696 9.089 14.235 1.966 971 .767 -605 558 8

RQ,Mixed-Sex Pairs p" 93 104.697 8.808 14.215 2.045 -610 -416 | -467 -411 wD

©Siblings $+S5 " 867 105.629 9.398 14.227 1.959 -535 434 -492 .329 a

Same-Sex Pairs s 410 105.693 9.704 14.311 1.984 540 451 -540 .350 ”Male Pairs Sm 205 105.742 9.783 14.590 1.890 563 483 -481 . 380 SFemale Pairs Sf 205 105.644 9.636 14.032 2.038 529 417 577 .329 a~
—

Mixed Sex Pairs s" 457 105.572 9.119 14.151 1.935 531 -417 -443 .309 aS

=Pairs Born 10-18 274 105.640 9.085 14.117 1.854 488 445 412 273 SMonths Apart

Pairs Born 19-27 316 105.517 9.386 14.215 2.000 - 946 431 916 .318
Months Apart ,

Pairs Born 28-36 189 106.514 9.394 14.524 2.021 932 436 -507 . 366
Months Apart

Pairs Born 37 or 83 104.419 10.173 14.006 1.946 .608 398 541 412
More Months Apart

prmnd,
Total 1203 105.474 9.387 14.284 1.972 551 514 . 538 .383 o



Table 2 (cont'd)

Other Twin and Sibling Samples

Schoenfeldt's Same- MZ 410 100.9 9.2 NA NA NA . 838 NA NA

Sex Talent Twins DZ 175 102.1 9.4 NA NA NA .625 NA NA

NAS-NRC Male MZ 1022 NA NA 13.5 3.0 NA NA .765 NA
Twins porn 1917- DZ 914 NA NA 13.3 3.1 NA NA .545 NA

1927

NORC Brothers Born 150 NA NA 12.447 3.168 NA NA .528 NA

1910-1949

Kalamazoo Brothers 346 100.893 9.579 13.197 2.730 .576 -469 .549 -400

born 1917-1938

Individuals in This Sample

Males 1164 105.179 9.688 14.543 1.937 .586

Females 1242 105.750 9.091 14.042 1.975 536

Individuals in Other Samples

CPS 25-29 in 1971° 10 ,000 12.366 2.778

CPS 25-29, B = 9 in 1971 9,200 12.871 2.205

4our tabulations of Schoenfeldt's data

oRehrman, Taubman and Wales, Chapter 3 of this volume.

“Raglesfield (forthcoming)

doineck (1976); sis transformed to our metric (i.e. s, = 10 for the full population) assuming
that the population vatiance for Otis and Terman IQ's was 16.

“u.S. Bureau of the Census, Current PopulationReports, Population Characteristics, Series P-20,

No. 229, "Educational Attainment: March 1971," Washington, D.C. 1971, Table 1. The N's are approximate.
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Table 3 (cont'd)

Individuals in This Sample

Males 782 105.987 9.778 14.839
Females 510 108.422 8.653 15.065

OCG Non-Negro Men*

(25-64) 7000 NA NA 11.15

(25-34); non-farm) 1500 NA NA 12.38

1.935 62.032 22.230 .589 .531 .588
1.862 60.500 16.138 .471 .334 .578

3.40 39 .6 24.5 NA NA .606 NA .573 NA NA NA -401

3.04 43.3 25.0 NA NA .651 NA .536 NA NA NA 391

*Behrman, Taubman and Wales, Chapter 3 of this volume.

C = Duncan score at age 40-49.

Griliches (1975) and in correspondence.
A = Miscellaneous school tests standardized to our metric.

B = Expected eventual educational attainment.

C = Mean earnings of expected occupation.

“olneck (1976). See Notes to Table 2.

C = Duncan score of occupation at age 35-54.

deaglesfield (forthcoming) .
C = Duncan score of occupation at age 25-64.

“Duncan, Featherman, and Duncan (1972:263). Pairwise correlations for non-Negro men aged 25~64 in the civilian labor force in 1962, half

of whom had a brother and reported his education.

C = Duncan score of occupation at age 25-64.
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'pP'D* . The true correlations are Pppmyy and ppp’ If Ewe is the

percentage of same-sex twins diagnosed as MZ whoare really DZ, and
EDs is the percentage of same-sex twins diagnosed as DZ whoarereally

MZ, and if the observed means and variances for MZ and DZ pairs are the

same, one can show that:

(1D) tppiye=(-Eye) pry t Eye "pprp

and

(12) Pppips = (@- Eps) Tpprp * Ep« "ppiy
Solving for the true correlations weget:

(13) "PP'M = ‘PP'M* + Me "ppg *"PPID )

~T - Eye ~ Eps

and

(14) Tpprp = "pprpe ~ Ensppry *Tpprp #
1 - Ev «—- EDs

Using Schoenfeldt's point estimates for Ewe and EL. (i.e. 0.096 and 0.171)

and solving equations 13 and 14 simultaneously we obtain:

A
"PPM = "PPM + 0.131 pprys - 'ppip# =

1-131 typing * ~ 0.131 Ppprps

and

Poon = - 0.233 ( - ) ="PPD ~ "ppip* °7*°" “ppyy* “ppip* ~

1.233 r - 0.233 rPP'D* PP'D*
These formulas imply that accurate diagnosis would not alter the

correlations in Table 2 dramatically, but that the effects are large enough

to justify retaining the correction in future computations. Since Taubman

reports that his diagnosis procedure is 95 percent accurate, the

corrections for his results would be smaller(i.e. 'ppmw ~ 1.056 Poppe -

0.056 Poppe ANd Ppp ~1-056 Poppe - 0-056 Cppry*

probably beneglected entirely with little loss of information. These

and could
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players are regarded asslightly odd, so that on the average extremely tall
students get no more education than anyone else. Likewise, suppose that
having a talented high school basketball coach slightly increases the
percentage of students from a school who get basketball scholarships, but
that a talented coach also reduces academic effort in his school so that on
the average students from such schools have the same probability of
attending college as students from other schools. Under these
circumstances height has no effect on G,and the ability of the high school
basketball coach has no effect on X. A tall student in a school with a
talented basketball coach will therefore be at the mean on both G and X,
and will have the same predicted educational attainment as anyone else.
In fact, however, a tall student with a talented coach is much more likely
than anyone else to get a basketball scholarship. His expected value of U
is therefore positive, at least for educational attainment. Such an
interaction would not necessarily signal its presence by making P. - Ee

correlate with P.. The absence of such a correlation does not therefore

prove the absence of complex interactions. The only way to detect such
interactions is actually to measurethe specific genetic and environmental
variables that affect P. Nor can we eliminate complex interactions by
rescaling P. Transforming P can eliminate errors due to misspecification
of the relationship between G, X, and P, but it cannot eliminate errors
that arise because P varies among individuals with identical values on both
G and X. The only way to eliminate such errors would be to decompose
both G and X into their components and estimate the additive and non-
additive effects of these components on P.

For practical purposes, then, it is more useful to think of U as a
random error term, uncorrelated with G and X by construction, than to
think of it as a conventional interaction term.

We now introduce six new measures, defined as follows:
G is the predicted mean genotype of all children with a given set of

parents. If parents had an infinite numberof children, G would equal the
mean of G for all their children (Go). Sinee parents do not have an

infinite numberof children, Sc will differ in random ways from G. The

standard deviation of Go - G will be equal to 1/VN, where N is the
A

number of children. If all genetic effects were additive, G would equal
the mean of the parents' genotypes (Gp). Sinee genetic effects are not

A
completely additive, i.e., since there is some dominance andepistasis, G is
not exactly equal to Gp:

G = the genotypie deviation of any particular individual from the
expected genotypic value for his x her family. For the first member of
the ith pair of twins, G: = G. - while for the second member
~ 1

Gi=Gi - G.. The expected value of Gi is zero, but the mean value for a

given pair need not be zero, since both membersof the pair may be either
above pr below the family's expected mean.

A is the predicted mean of the exogenous environmentalvariables
that affect all individuals in a given family, when these variables are
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some extent on this exogenous environmental factor. Equation 15

embodies this interaction in U. Equation 16 captures it by letting BA
| , ° 2 2; Nees , o&

differ from at This makes S A + 85 less than Sy

The same logie applies to exogenous environmental factors. If one
child suffers from a debilitating disease, for example, the parents may be

able to compensate the child with extra attention, special schooling, and
the like. If every child in the family suffers from the disease because of
unhealthy living conditions, the parents will be less able to offset its
effects. Thus Bd may differ from Ex.

Both examples assume that families do more than the larger society
to offset the effects of genetic or exogenous’ environmental
disadvantages. So long as this is true, Pa> EcG and B4 > Be. But one can

imagine societies that try to offset the effects of coming from a
disadvantaged family, while families makeless effort to offset the effects
of being the least advantaged sibling. This could happen if, for example,
schools allocated extra effort to low SES children, regardless of their
actual abilities, while parents favored their ablest children. This could
end up making Ba < Pa or E” < Be.

Now let us consider the likely correlations among the variables on
the right side of equation 16, If parents are genetically advantaged for
some particular phenotype, G will be positve for their children as well.
Such parents are also likely to provide their children with unusually
favorable environments, regardless of the child's genotype. This will make

X positive. It follows that ray will be positive.??

Unlike G, G is initially random.'* Genetic deviations from the
expected family mean can end up correlated with environmental factors,
but only if genotype affeets environment. Environmental responses to

genotype are by definition endogenous. Exogenous environmental factors
eannot, then, be correlated with genetic deviations from the expected

family mean. This makes ray = 0.
A A ~ ~ ~

Q, X and U only vary between families. G, X, and U can also vary

between families, but the variations are by definition random. This

ensures that pAxw =rAy =P~rAr =zarAan =rar=rAag = ray =rAs
GG GX GU AG AA XU UG UX

=rA~=0. Furthermore, rAf =rAA\ =res =res=0 by construction.
UU Gu kU “GU “XU

Taking variances from equation 16 therefore yields:
9 2 2 2 2 2 2 2 2 2 9 2 9

= wow ASA wie + Asn + ~ ~ +

(17) Sp =Basg +Basg +Bgse + Pesy

+

Bysy

*

BOSE

2 A

2BABSEGSETER
We will eall A the between-family genetic variance, 52 the within-

I -

2 G

family gengtic variance, <4 the between-family exogenous environmental
oh

variance, Sx the within-family exogenous environmental variance, Ef the
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education, and career plans do not differ significantly for MZ twins, DZ

twins, and ordinary siblings. In what follows we will therefore assume

that our twin sample does not differ from our full sample in either genetic

or environmental terms, though our full sample clearly differs from the

population as a whole in these respects.

if we use M to denote MZ twins, D to denote DZ twins, and no

subscript to denote the full sample, our argument implies that:

2 2 2
(18) SA= SAn = sd

2 2 2
(19) “SoM = "@D = “6

2 9 2

(20) sou = §Rp = SX

2 2 2

(21) £¥yp = S¥p = SX
2 2 2

(22) Siu = SOn = sii

2 2 2

(23) Shy = S§D = SU

(24) rA4,, = rAAW = ras
GAM GAD CA

Assumption II (Absence of Reciprocal Influences). Suppose friends

emulate one another. If this were the ease, a respondent's test

performance and education would depend partly on his choice of friends.

One would expect most genetically advantaged respondents to choose

genetically advantaged friends, while genetically disadvantaged

respondents would usually choose genetically disadvantaged friends.

Suppose that best friends’ genotypes correlate 0.25 for the population as a

whole, but suppose identical twins almost always choose each other as best

friends. For them, then, the correlation between respondent's genotype

and best friend's genotype approaches 1.00. Now consider two individuals

who both rank one standard deviation above the mean in terms of test

score genotype, one of whom has an identical twin while the other does

not. Suppose the phenotypic standard deviation is 10 points, as it is for

our test, and that the genotypic standard deviation is 9 points. Other

things equal, an individual whose genotype ranked one standard deviation

above the mean would have a predicted phenotypic score of 100 + 5 = 105

points. This expected value assumes that the respondent's best friend will

have a genotype 0.25 standard deviations above the mean,since that is the

usual value for respondents with genotypes a full standard deviation above

the mean. But if the respondent has an identical twin, and if his twin is

his best friend, his best friend will have a genotype a full standard
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deviation above the mean. The respondent's predicted test scores will
therefore exceed 105. The implied values of Ba and Ba will thus be

greater for MZ twins than for ordinary siblings. (Alternatively, we could
constrain BA and Ba to be the same for MZ twins as for others. Then U

would correlate with G among MZtwins.)
This logic may or may not apply to fraternal twins. The correlation

between their genotypes is only about 0.5. Thus even if DZ twins are as
likely as MZ twins to choose one another as best friends, the genotypic
correlation between the respondent and his best friend will be lower for
DZ twins than for MZ twins. Indeed, if assortative friendship normally
produced a genotypic correlation in excess of 0.5 between best friends,
genotypes could end up having less effect on DZ twins' phenotypes than on
ordinary siblings' phenotypes. This seems unlikely, but it underlines the
point that the values of EA and Ba may be about the same for DZ twins

as for ordinarysiblings.
In order to estimate the effect of each twin on the other, we need to

identify one or more instrumental variables, i.e., respondent characteristics
that can affect a respondent's own phenotype but ean only affect the
twin's phenotype indirectly, through the effect of the respondent's own
phenotype on his twin's phenotype. Suppose, for example, that we could
measure G and G' directly, or at least could measure a significant number
of the genetic characteristics that determine G and G'. Suppose, too, that
we could convinee ourselves that these genetic traits had novisible
manifestations other than their effects on a respondent's phenotype. If we
then regressed the respondent's phenotype on both G and G!
simultaneously, and if we found that G' affected P even with G controlled,
we could impute the effect of G' on P to the fact that P' affected P. We
could then use the ratio of the coefficient of G' to the coefficient of G to
estimate the effect of P'on P. Suppose, for example, that:

—_ !(25) P = B,G + BP! + e

(25')P' = B,G' + BoP + e!

where G is an "invisible" genetic determinant of P, and e and e' are
random error terms. The reduced form equation for P is then:

 

9_ 1(26) P ByG + B,B,G' + BYP + Boe! + e

= By * BB +B, _ 7 io,
1-B? “ 1-B? “ -B 1 - By, 9 9

Dividing the observed coefficient of G' by the coefficient of G would thus
give us an estimate of the effect of one twin's phenotype on the other
twin's phenotype with genotype controlled,i.e. Bo.

Unfortunately, our data provide only one measure that is clearly a
proxy for genotype, namely sex. Furthermore, meantest performance and
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career plans do not differ by sex, so sex is not a proxy for genotype in

these instances. But males do get 0.5 years more education than females

in our sample. It follows that G for males exceeds G for femalesby 0.5.
If twins had no effect on one another, males should get 0.5 years more
education than females regardless of whether they had a male or female
twin. This is not the case. Males with a male twin get substantially more

education than males with a female twin. This is particularly true if the
male twin is identical. In order to sort out these effects, we regressed the
respondent's educational attainment on nine dichotemous_ variables,

defined as follows:

m = 1 if respondentis male, otherwise 0

m' = 1 if respondent's twin or sibling is male, otherwise 0

m*m'=1 if m=1 and m'=1, otherwise 0

DZ = 1 if respondent has a DZ twin, otherwise 0

MZ = 1 if respondent has an MZ twin, otherwise 0

m*DZ = 1 if DZ = 1 and m = 1, otherwise 0

m'*DZ = 1 if DZ = 1 and m' = 1, otherwise 0

m*m'*DZ = 1 if DZ = 1 and m*m' = 1, otherwise 0

m*MZ =1if MZ =1 and m =1, otherwise 0

If we enter all nine variables, we get an exhaustive analysis of variance

for the main effects and interactions of respondent's sex, his , Ewin or
~~» gibling's sex, and the type of pair (MZ, DZ, or ordinary sibling)...“ Only

three of the nine variables have significant coefficients. None of the

other five coefficients even approach significance. Indeed all five were

less than their standard errors. The unstandardized equation (with

standard errors in parentheses) was:

Education = 0.27m + 0.28m*m' + 0.62m*MZ + 14.04

(0.12) (0.10) (0.18)

The intercept of this regression represents the attainment of females with

a female sibling. Males generally get 0.27 years more education than

females. Having a male sibling or DZ twin raises male educational

attainment by another 0.28 years. But having a male sibling or DZ twin

does not have a significant effect on female educational attainment, since

m' and m'*DZ are insignificant. This suggests that same-sex pairs may

affect one another's educational attainment, while mixed-sex pairs may

not. This interpretation is reinforced by the fact that pp is consistently

(though not significantly) higher for same-sex twins and siblings than for

mixed-sex twins and siblings (see Table 2).
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eventual educationalattainment, while their twins had not had the disease. One could thenconduct a regression analysis aimed at determining how much impact therespondent's illness had had on his twin's educational] attainment. If wewere sure that the respondent's illness had had no direct effect
respondent's education on his twin's education.Reciproeal influence invalidates the conventional formula forestimating heritability. If we knew the magnitude of the reciprocalinfluence, we could derive an alternative formula. Sinee we do not knowthe magnitude of such influences, we must make some arbitraryassumption. The simplest assumption is that the effects of sex oneducational attainment are atypical, and that twins do not generally
correct, but neither do we have any basis for assuming that reciprocalinfluenees are large. Loehlin and Nichols (1976) found no evidence thatreciprocal influences had large effects on test performance, but they didnot investigate educational attainment.

Assumption III (Having a twin does not alter the effects of eithergenotype or environment). Even if twins do not affect one another, onecould imaginesituations in which having a twin would alter the effects ofone's Own genes or environment. Suppose, for example, that twins spendmost of their time with one another, and that this diminishes the effect of

another exactly offsets the effects of mutual emulation. The net effectof one's twin's phenotype on the other twin's phenotype will then be
zero. But the coefficients of exogenous environmental variables, such asparental test seores and education, will still be reduced.

In order to test the hypothesis that having a twin has no effect on Ba,
\ ~ AN ~ AN“ ~

A 7 ~
a, G, K, X, U, or U.

Rays Re, PY, Re or Py one must somehow measure (

With the exception of sex, we have no genetic measures that affect thephenotypes that interest us. In the ease of sex, having a DZ twin doesnotalter the effects of sex. Having an MZ twin seemstoalter the effects of

We examined the coefficients of father's education, father's occupation,and numberofsiblings. The coefficients of these measures did not differsignificantly between MZ twins, DZ twins, and ordinarysiblings for any ofour three outcomes. The coefficient of test score wassignificantly higherin the education equation for MZ twins than for DZ twins and siblingscombined. But since we tested a total of 24 interaction terms, and sincethe IQxMZ interaction was not significant at the 0.01 level, we do not

environmental influences.
If Assumption II and Assumption III were both correct, we couldassume that:
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(31) Bom Ban iY

(32) POM = Pip = ES

If all these conditions hold, along with those specified in equations 18

through 24, the phenotypic variances for MZ and DZ twins should equal

one another. They should also equal the phenotypic variances for ordinary

siblings drawn from a similar population. In fact, these phenotypic

variances do not differ significantly in our sample. But this is not

sufficient proof that equations 18-24 and 27-32 hold. Equation 17 shows

that the phenotypic variance is a complex function of the B's and s's. If

there were reciprocal influence between twins, for example, the reduced-

x j By. Ee Seyform value of Pam might exceed GD But XM might be less than XD?

since a factor that ordinarily contributes to “¢, namely one's choice of

friends outside the family, would be less important. Thus while equal

variances are a necessary condition for accepting Assumptions I-III, they

are not sufficient.
One further problem deserves attention. While the phenotypic

variances for MZ pairs, DZ pairs, and siblings do not differ significantly,

neither are they identical. If we assume that these differences are due to

random sampling error, all the components of variance on the right side of

equation 17 are equally likely to be affected. This implies that we can get

an unbiased point estimate of heritability by standardizing variances for

different sorts of twins and siblings to unity. If we use italics to

distinguish these standardized variables and their regression coefficient,

we can write our equation as:
A“ A“ ~ ~~ ~

(33) P, = aG, + bx, + cU, + dG, + eX, + fU;

Taking variances we get:

(34) 1 = a” + b2 + e + a? + e2 + £2 + QabrrAA
— = = = = —XG

Note that a, b, c, d, e, and f in equation 34 have no relation to a, b, ¢, d,

e, and f in equations 1 to 9. The values of a, b, e, d, e, and f inequation

34 should be the same for MZ twins, DZ twins, and ordinarysiblings.

If AssumptionsI-III are correct, Figure 3 provides a full accounting of

the sources of resemblance between twins reared together. Applying the
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ily show that thcorrelation between twinsis © Phenotypic

(35) Pop = a” + b2 + o2 + cabm + nae

a

2 eeppr~ 2 *b +e abm

+

nd” + pe” + af
where m= Tax a = "Gq 2 = 'ye~andgq = ra If Assumptions I-III

values for MZ and DZ
q ( pairs. If we use thesubscripts M* and D* to designate parameters for fallibly diagnosed MZ

2, 2(36M*) lppry* = 2 + b + e + Zabm + Daye 2 + Pyao” + Oyef”

and

2. 2 2 2 2 236D") Poppe ta tb’ +c? + 2abm Mysd + Pose” + dnaf

variance due to genetic deviations fr
with perfect diagnoses of zygosity, Nyse = 1 and Nye = 9. With errorsin
diagnosis one ean showthat: 7

(39) Oe ~ Nhs = 1 - Et ~ Ens

where Eve and Ens are the percentages of erroneously diagnosed MZ and
DZ twins. It follows that:

 

 

2
2 2

(40) d = Pppy* - PppIp* ~ (Dara 7” Pp+e ~ (Qnive ~ Qnp» £

eR

We know "ppiM*“pprp+ and we can estimate eu , and BD x: In order to

estimate @ we need two further assumptions:

IV MZ and DZ twins have equally correlated exogenous
environments (Daye = Pp), and
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VY MZ and DZ twins have equally correlated interaction terms

(Qyj* = Ips):

If these assumptions are correct, equation 40 reduces to

(41) a” =

 

or with perfect diagnoses of zygosity,

(41a) d= Tppm ~ "Ppp

Assumption IV (Equally Correlated ExogenousEnvironments). This is

by far the most controversial assumption in twin research.

Environmentalists almost all argue that parents treat MZ twins more alike

than DZ twins. The fact that parents treat MZ twins more alike than DZ

twins is not, however, sufficient to prove that eonventional heritability

estimates are biased. First, parental treatment may have little impact on

twin resemblance. Loehlin and Nichols (1976) show, for example, that

while parents treated MZ twins in their sample more alike than DZ twins,

the degree of similarity in treatment had no consistent or significant

effect on the degree of resemblance between either MZ or DZ pairs on

test scores or personality measures. Second, even if parental treatment

does affect a given outcome,this need not bias our heritability estimates.

Project Talent, for example, asked each respondent how much education

he or she thought his or her parents expected her to get. MZ twins'

responses to this question are more alike than DZ twins' responses. But

parents’ preferences regarding a child's educational attainment are not

completely exogenous. They depend partly on the parents' perceptions of

the child's own characteristics. If a child has great difficulty in school,

for example, the parents are less likely to expect him to attend college

than if the child learns easily. If a child is female rather than male, the

parents are also less likely to expect him or her to attend college. This

means that the child's genotype can affect the parents' expectations. It

follows that parents will ordinarily have more nearly similar expectations

for MZ twins than DZ twins, simply because MZ twins' genotypes are

always the same whereas DZ twins' genotypes usually differ somewhat.

The question, then, is not whether the correlation between all

environmental factors (Top? is greater for MZ than DZ twins,but whether

the correlation between exogenous environmental factors (ryx0) is greater

for MZ than for DZ twins. This poses a difficult empirical problem, forit

is impossible to identify specific environmental measuresthat are clearly

exogenous and yet vary within the same family. Many sociological

measures, such as race, region, community size, parental income, father's

occupation, and mother's education, are clearly exogenous. But these



together. But a twin's genotype can affect all such measures, So wecannot be sure they are completely exogenous. Unless we have some way

experiment. Suppose we could actually measure genotypes for both testscores (GA) and education (G,). If we did this, we would inevitably find a
few DZ pairs with virtually identical predicted test scores. For thesepairs GAm A? even though the specifie genes involved are unlikely to be
the Same. But because the twins do not have the same genes, they are notlikely to have identical genotypic values for outcomes other thanthe test seores. Unless genes affecting education were precisely thesame as those affecting the test scores, DZ pairs with GA= Gy would not
usually have Gp = G',- If the pair were MZ, however, not only would
G

Now let us suppose we can also measure the environmental factors thataffect test scores (EAy We expect the environmentaldifference between
two members of a pair (Ey ~ EX) to depend on the genetie difference
with respect to test scores (GA” G',). The question is whether it willA
also depend on the genetic difference with respect to education (Gp - Gs)

At Gs but Gp = G'p- The same would hold for all genotypic outcomes.

_a , . oyeonce we control Ga Gls . If it does, TxA, xar is higher for MZ than for

DZ pairs, since any environmental determinant of A that is not
determined by GA is by our definition exogenous, even if it depends on

G

on a wide range of "irrelvant" genetic indices as well as on the relevant
index end up in more similar environments than twins who resemble each
other on the relevant index alone.

In order to illustrate the logie of this argument eoneretely, let us
consider the effects of sex differences. Sex has a statistically
insignificant effect on test scores in our sample, so G is virtually the same
for males and females. It follows that the expected value of aq is the

same for same-sex DZ pairs as for mixed-set DZ pairs. Yet it is easy to
imagine that parents, teachers, and others treat same-sex DZ pairs more
alike than mixed-set DZ pairs, especially if the same-sex pairs also happen
to look quite a lot alike. This similarity in treatment cannot be
endogenous since sex is not a component of test seore genotype. Let us
denote the observed phenotypic test score correlations for same-sex pairs
aS Tyaps and the observed phenotypic correlation for mixed-sex pairs as

B More generally, we can ask whether twins who resemble each other
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Let us denote the phenotypic correlation for same-sex pairs after

r hireAA'D For test scores,

correcting for errors in diagnosing zygosity aS Taain:

i = i a. ize, this
PAA'D = 0.689 while PAA'D" = 416. Despite the small sample S128,

difference is just significant at the 0.05 level using a one-tailed test.

Because the difference is only marginally significant, we also checked the

value of rAA'D for Schoenfeldt's larger sample of same-sex DZ twins.

This sample included 98 pairs with incomplete followup data who had been

excluded from our final sample. Taary Was 0.485 for the 98 same-sex

pairs with incomplete followup data. This is only slightly larger than the

eorrelation for mixed-sex pairs. The difference between Schoenfeldt's

entire same-sex DZ sample (rAA'D = 0.575) and our mixed-sex sample

(P4arp= 0-416) is, however, still just significant at the 0.05 level using a

one-tailed test. oe

Unlike test scores, educational attainment varies significantly by sex.

Since sex explains 1.6 percent of the variance in educational attainment,

the expected correlation between same-sex pairs (Tapp) is about (2)

(0.016) = 0.032 higher than the expected correlation for mixed-sex pairs

(Paprpw: After correcting for errors in diagnosing zygosity, 'upip = 0.546

and ppp!

between Tppin and Tepipr | therefore 0.079 - 0.032 = 0.047. This
= 0.467 -- a difference of 0.079. The unexplained discrepancy

diserepaney is in the expected direction, but it is far short of being

statistically significant.
Strictly speaking, one cannot draw conclusions about the true value of

Paap ~ Aap" from the observed value of app ~ "BBD" or vice

versa. We suspect, however, that if we had sufficiently large samples we

would probably find that rAA'D ~ TAA'D" and 'ap'p ~ "BBD" were quite

similar. Since our best estimate of this difference is 0.159 for test scores

(using Schoenfeldt's full sample of same-sex DZ twins) and 0.047 for

educational attainment(after correcting for the direct effects of sex on

education), and since there is no strong a priori basis for assuming that

test scores are either more or less susceptible to such influences than

educational attainment, it seems reasonable to assume that in general

lppip exceeds Ippipn by about (0.159 + 0.047)/2 = 0.10.

The implications of this tentative conclusion are a matter for

subjective judgment. Environmentalists are likely to argue that if sex

resemblance can inflate the correlation between twins by 0.10 above the

value expected on the basis of genotypic resemblance and erowing up

together, other equally "irrelevant" forms of genetic resemblance could

easily inflate the correlation between MZ twins by an additional 0.10 or

0.20. Since PAAN and BBM only exceed PyArpeand ppp" by about 0.20

in our samples, environmentalists are likely toconclude that heritability

could easily be zero. Hereditarians, in contrast, are likely to argue that

we have overestimated the difference between same-sex and mixed-sex







206
Jencks and Brown

he means for two families. If this» d would be reduced. Unfortunately, we have no evidenceas to the likelymagnitude of this bias. Indeed, we do not even knowitsdirection with certainty, sinee in theory society could do more thanfamilies do to equalize their children, In she absence of evidence we willassume that this bias does not force re / Sq below 0.40 or above 0.60.
These considerations suggest that if we use k to denote the presumed

ratio of sh to so we can estimate heritability using the formula:

  

2 2 2 2. 2 _43) BU = sq = SQ = Sq = do = types "PP'D*rr a = =S sh ks5 k K(1-Exe - Ene)

We expect k to fall between 0.49 and 0.60. With perfect diagnoses, this
formula reducesto:

9 "PP'M

~

"pptp(43a) h° = ——

Equation 43a is equivalent to Jensen's 1967 formula for heritability,
namely:

9 "PPM

~

"PPtp
(43b) ho = ——7___=_

‘acim ~ "aa'p
The equivalence can be demonstrated by recalling that with perfect
diagnoses:

  

(44) ‘com 7 1

and

9 2 2 2
(45) _ 88 _ 8a 7 §4 i. “G - ik

'GGiD 2 2 32
~ G G G

sO



Genes and Social Stratification 207

(46) 'aa'm ~ 'GG'D = 1 - (1 - k) = k

The sampling variance of h? in equation 43 depends on the sampling

variances of fppryx—pprps and 1-Eys-Ep*, Let us designate

~ ~ Eng as D, and 1/(1- Ey - Eps)
Pppmy* ~ lppip* as Ar, 1- Eu p*

as E. Thus E=1/D. Then: —

(47) kh? = (Ar) (E).

Taking variances yields:

(48) k? Var (n”) = Var (A rE)

Using Goodman's (1960) formula for the variance of a product weget:

(49) k?Var(h”) =( Ar) se + E's’ + s.Se We do not know s but

sy = Seue 7 sept

To express Sp in terms of Sp» we take the first derivative of D with

respect to E. Since D = Eo, d(E)/d(D) = -E’. This tells us that a one

standard deviation change in D near the meanof the distribution of D will

 

alter E by about s/(D)’. This suggests that s ~ s2By". Substituting,

we get:

2 2, . yoo y\2.2 2 2 2
(50) k°Var(h”) = (Ar) Sy + Sap + Srey

Bd? Dd *
9 9 9fo gt a : Tl) 7 - * L

where Sy, SEM* + SED* and our best estimate of D is 1

-

EM

Eps

The best estimate of “Ar iS Ypprja - Spprps The sampling

variance of Ar depends on the sampling errors of Pppry* and Pppip*

These are not normally distributed. But Fisher's z transformation of r,i.e.

z=0.51n |[(i+r)/(1i-r) | , is almost normally distributed with a variance

of 1/(N-3), where N is the number of pairs on which the original

correlation is based. Since 25piyix and Zppip) are normally distributed,Az

(i.e. Zppiy* ~ Zppip should also be normally distributed. Furthermore,

. _ . 2
since Zppix Nd Zppipx are independent, s’, 5= LANyy -3)+1ANp* - 3).

We can therefore caleuttiteAz/s, = ta. Togets ,., we assume that

Ar/s).= Az/s = th:
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2 2,42It follows that Sp = Ar)” /t,.

Substituting the foregoing values in equation 50

  

gives us:

(51) k*var(n2) = (Ar)? (Seas a ee,
= ti{ - Eyre - Eye)”

(A r)(s2Spyt t+ Spe)
t — 7

ta (L-Exga - Epy)

(th + D0)" Shape + Sapa) + (00)? (1 = Bye - Bye)”

 

te(1 -Eyy «7 Ex)

Taking square roots then yields:

(52) ks, = ar [(t + D(sauy + sty) + (1-Eyy-E rye

 

M* *ED* M*” “D*

t(1 - Eyiy - Exy)”

But Ar/(k) (1 - Ey - Ey,) = h?, so

_ 2 2 1/2(53) She = nh (t, + 1) (Sie SEp® 4

t 5

A (1 - Exp - Eps)

If, blood samplesare available and all twins are diagnosed accurately,

Eye Eps = Var(Ey + Ep,,4) = 0. Equation 50 then reduces to

_ 42
(54) She =hb

aN
Sehoenfeldt estimated Et and Ens from a sample collected by

Nichols rather than Talent in which Nvq= 83 and Nps = 41. We will use

his results to estimate the probable values of 5M* and Ey in our Talent

samples. Seu +SEDs works out to be 0.074” for Schoenfeldt's original
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2

Talent sample, 0.0837 for our sample with followup data, and 0.094 for

our subsample of pairs who both report career plans.

IV. Heritability Estimates for Single Traits

2
Table 4 gives our "maximum estimates" of h’, along with the

approximate standard errors of these maximums. Wepresent estimates of

hn? for three possible values ofk,i.e. k = 0.040, 0.50, and 0.60. The actual

Value of k depends on the degree of dominance and assortative mating for

each trait, and on whether families make more effort than society as a

whole to compensate individuals for genetic disadvantages. If assortative

mating is strong, if dominanceis unimportant, and if families engage in

effective compensation, k will be high. If dominant genes are important,

if assortative mating on genotype is weak, and if families compensate

genetic disadvantages no more than society as a whole, k will be low.

Because lyyt appears to be lower for mixed-sex than for same-sex pairs,

we have estimated hn by comparing same-sex MZ pairs to same-sex DZ

pairs, ignoring mixed-sex pairs.
Test Scores. Table 4 presents two sets of heritability estimates for

Talent test scores. The first series covers all same-sex pairs of known

zygosity in Schoenfeldt's original sample. The second series covers our

subsample of Talent twins with o-year followup data. As Table 2

indicated, the correlation between same-sex DZ twins' test seores is

appreciably higher in our sample with followup data than in Schoenfeldt's

original sample. Our sample therefore implies lower values of h’ than

Schoenfeldt's sample. Using what we regard as the mostlikely value of k,

namely 0.50, the estimate of h is 0.387 + 0.144 for our subsample,

compared to 0.581 + 0.125 for Schoenfeldt's initial sample. Since

Schoenfeldt's sample is larger than ours and is less subject to selection

bias, the 0.581 figure is clearly preferable. The estimates based on

Schoenfeldt's pemple are consistent with those obtained by most other

investigators.

Edueation. Table 4 also estimates the heritability of educational

attainment in our Talent sampl¢and in Taubman's much larger sample of

white male twins born 1917-27. The two sets of heritability estimates

are remarkably similar, despite the fact that they come from different

target populations.

The fact, that half the Talent sample is female has, two eontradictory

effects on h’. First, Table 2 showsthat if k = 0.50, h” = 0.540 for males

and 0.450 for females. This difference could be due to chance, but it

suggests that at least in this sample including females should lower h.

This bias is offset, however, by the fact that the variance for femalesis

restricted and the fact that sex itself affects education. As a result, the

heritability estimate for males is almost identical to that for the full

sample. In theory, the Talent sample also differs from Taubman's by

including non-whites, but in fact only two percentof our final sample was

non-white.
The similarity between our results for males and Taubman's therefore

suggests that there was very little change in the contribution of genetic
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k

9.60 0.50 0.40

Test Scores

Schoenfeldt Talent Sample -484 .581 .726(Same-Sex Pairs) (.104) (.125) (.156)

Jencks~Brown Talent Sample .323 . 387 484(Same-Sex Pairs) (.120) (.144) (.180)

Education

Taubman NAS-NRC Sample
611(White Males Born 1917-27) Cae) Coss) (069)

Jencks-Brown Talent Sample 432 518 648(Same-Sex Pairs)
(.173) (.207) (.259)

Career Plans at 23

Jencks-Brown Talent Sample 1.039 1.247 1.559(Same-Sex Pairs)
(.399) (.479) (.599)
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variation to educational inequality between the time Taubman's cohort

finished school (roughly 1931 to 1950) and the time the Talent eohort

finished (roughly 1960 to 1968). The mean level of education rose sharply

during this interval, and the variance fell. But the relative importance of

genetic and non-genetic factors apparently remained unchanged. This

eonelusion is consistent with Blau and Dunean's (1967) finding that the

correlation between educational attainment and parental status was stable

for cohorts born between 1897 and 1936. Hauser and Featherman (1975)

found that this stability persisted for the cohort born between 1937 and

1946.
Career Plans. Our "best" point estimate of h’ for career,plans is

1.247. This is embarrassing, because the population value of h” cannot

exceed unity. Given the large sampling errors of our estimates, some may

not take this difficulty too seriously. The illegitimate point estimate

does, however, point to one of the peculiar difficulties of heritability

estimation. Heritability estimates require us to combine data from two

independent samples of MZ and DZ twins. Yet they need not yield point

estimates that fall between those for the two samples. In order to see

that this is so, look back at Figure 3. The correlation between any given

pair is

2 2 2 2 2

(55) pp =a + b F ¢ + Qabm + nd” + pe + af

Since m, n, p, and q are virtually certain to be positive and since all the

squared terms mustbe positive, it is safe to assumethat:

(56) Tppr > a” + nd

For correctly diagnosed MZ pairs, n=1. For correctly diagnosed DZ

pairs, n= 0. For all pairs, a” + a’ = h’, Furthermore, if k = 0.50,

a? = 0.50h”. It followsthat:
2 <(57) h "PPM

and

(58) he << Qr= PP'D
After correcting for misdiagnosis,r P'M = 0.644 and ppp = 0.020 for our

sample. The implied maxima for h are thus 0.644 for MZ pairs, and 0.04

for DZ pairs. Nonetheless, we end up with a point estimate of h” = 1.247.

The reason is that no legitimate value of h? will,allow us to assume the

same between-family environmental varianee (b') for both MZ and DZ

pairs and then reproduce the observed phenotypic correlations between

MZ and DZ twins' career plans. The only way to seproduce these

correlations is to assume an unreasonably large value of h’ (e.g. 1.247) and

then assume a negative value for b (e.g. -0.603). This is plainly

unreasonable. The most realistic alternative is to assume that random
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We could estimate fan Gp using the same assumptions and notation

as in section III, but the estimation procedure will be elearer if we

simplify the earlier notation. Let:

a LG
(59) G,=G; + G,

and

y x + ; + U= + .(60) U,

=

X,+X,+U,+U;

It follows that:

(61) P.=G, + U;

and

- (1! t
(61) Pt; Gi + Ui

Taking variances, we have:

(62) VarP = VarG + VarU + 2CovGU

If we decompose CovGU_ into the covariances of the components of fa

with the components of U, these components are all zero except Covun,

whichis likely to be positive. Thus:
A

(63) VarP = VarG + VarU + 2CovGX

Multiplying equation 61 by 61', summing overall observations, and dividing

by the number of observations weget:

(64) CovPP' = CovGG! + CovUU! +2CovGU'

Writing variants of this equation for fallibly diagnosed MZ and DZ twins

and subtracting the latter from the former we have:

(65) CovPP')74 - CovPP!,,, = CovGG'4 ~ CovGG'), +

CovUU!»,4 — CovUU')» 4 2CoVGUix ~ 2CovGU')»

If the substantive assumptions discussed in sectionIII are all correct,

CovUUlis = CovUU')» and CovGU!\74 = CovGU')4 giving us:

(66) CovPPix - CovPP')x = CovGG'), _ CovGG'n.s
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or

(67) (r -r VarP = - |PP'M*

~

ppp) (rGGa'* "aap® VarG
We canrearrangethis as:

(68) h?- VarG _ "PP'M * ~ PP'D *

VarP "GG'M# _ "GG'D*

 

This is Jensen's (1967) formula. It ean also be written as:

"PP'M* ~ "ppp
,

(69) hCaS

where EM and Ens are the percentages of apparently MZ and DZ twins
that are actually DZ and MZ respectively. 1-Traoiy presumably falls
between 0.40 and 0.60. Equation 69 is identical to equation 43 (our earlier
estimate of h2) except that it substitutes 1-Taap for k. This
substitution involves no substantive change, since 1 -r iwn=l- sh /s =2,2, GG'D G'"G
Sq/Sq =k.

In order to extend this analysis to two outcomes, we denote the
phenotypic values as A and B, the genotypic values as GA and Gp, and the

combined effects of exogenous environment and genotype-environment
interactions as UA and U,- This allows usto write:

(70) A= Gait Uni
and

r-m !(71) B= Gin. + Up.

Multiplying equation 70 by equation 71, summing over all pairs, and
dividing by the numberofpairs, we get:

!— 1 1 ' 1(72) CovAB CovG,G B + CovG,U', + GovU,G B + CovU,U',

If we write variants of equation 72 for MZ and DZ twins and subtract the
latter from the former, we have:

-_ = —_ t—(73) COV)4AB Cov,,,,AB' COViaGASp Cov4GAGpt COV4Gv's

Cov)4G,U', + CovigaUGi - COV«UAG'p + CoviUaUp - CovpjsU,U'p
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If we make the same substantive assumptions as before, we can show ‘hat
1 ~

COV»eG,U'p = CoVpxG,U'p: that Covel4S 3 COVH+UAG Ban

that Cov),4U4 ‘Bo COVHUAUR: Equation 73 then reducesto:

(74) Cov,,AB' - CovpAB! = CovyG,Gp - CovpySp

or

(75) ©apie” “appsass = “Ga, GBM* "GA, GB'D**GA°GB

2 2 _ 12 2 id _ 12 o.
But Sqa/Sa = na and Sqp/Sp = hp so:

(76) Papi” “appt” “Ga, cpt "aa, cppahs

In order to put equation 76 to use, we must express PCA CB!’ in terms of

°GA.GB? TGAGAY and 'GB.GB" Wefirst write:

A a

and

A ve
- ¢£: !(77')GR. = Gp + GR

Multiplying equation 77 by 77', summing overall pairs, dividing by N, and

dropping the zero terms weget:

AN A ow ~~

{ - 1 % 1
(78) CovGAGp CovGaS + CovGaSp

Rearranging, this yields:

= A ‘\ > N\ 7 ~ ~w ~

(9) Toagp "Ga,GpsGa $Gp , "Ga,an SGa_SGB
Sca SaGB Sca °GB
2 2 2 2 2

nd eh ~ - oY ~We now assumethat SASoa Ap/Sap 1 k, and Saa/Saa

2 Ise. ~ k. This is equivalent to assuming that the effects of
Sap!"

dominance, assortative mating and environmental compensation for

genetic disadvantagesare similar for the two outcomes. Then:

: AN _ , 7 ~

(80) rGacp ~ "Gap 4 *) + ToaGp K
Since the twins inherit random genes from. their parents,
‘ ;
rhA,SB rgA,GB° For correctly diagnosed MZ pairs, moreover,
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'Sa,GB = a,GB = GA,GB For correctly diagnosed DZ pairs,
ro, “pr = 0. With SA =
GA,GB' ith errors in diagnosis, "Ga,GB'M* = "oaGpEy»)
and "GA,GB'D# = ED*"GA.GB" Substituting into equation 80 therefore
yields: 7

(80M) 'Ga,cpM* ~ "gagpl-) + "aa,GBktl - Eyys)
and

80D80D) TGa.aptpt

~

"Gacall

-

») "Ga,GBeEp«

8) TGa,apim* ~ "Ga,cep* ~ "Ga,opk  - Eye - Eps)
Substituting into equation 76 gives us

82) Pape ~ Taps ~ gaap- Eye - Eps) baby
; 2But - - -

equation Js showed that hi AA’ Paatp»/kG Ewe
Epx) and he = “Beaim*“ppipe/kA ~ Eve ~ Eps), So equation 82

reducesto: - 7 7

= (r

1 1- - \ 2 - 383) Taps

~

Tape ~ "Ga,caaameAats “Bait” MBBDe
Rearranging,

84) Toa.GB ~ Tapim* 7 “aBID*
(p -_ yi 2 (r _ yt 2
AA'M* AA'D* BB'M* BB'D*

For test seores and education Table 2 implies:

GA.GB = 0.586 - 0.544 - 0.268

 

1/2 1/2(0.864 - 0.722)°°" (0.780 - vu.5¥0)
We could calculate the sampling error of this estimate using

maximumlikelihood procedures, but we have not done this. The sampling
error appears to be very large. (The implied value of 'GOA. GB for males

in this sample, is 0.283, for example, while the implied value for females
is 0.046.) We could also caleulate the likely bias in this estimate if one or
more of the assumptions stated in Section III were wrong. We have not
done this either, but the bias could be substantial.

Our final question is the extent to which genes account for variations
in educational attainment amongindividuals with similar test scores. This
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is not the same as our previous question, namely whether the same genes

affect both outcomes. One could, after all, imagine a situation in which,

say, the genes that determine skin color were the only genes that affected

either test scores or educational attainment. This would make

TGA GB 1. But this would not tell us whether skin color affected

educational attainment with test scores controlled.

In order to estimate genes' effects on education with test scores

controlled, we write two new structural equations,i.e.

\
(85) A = aG + BU, + Uy

ana

A
a ! 1! !(85')A' = aG,h + bLA + Uy

where A represents test erformance, G represents those genes that

affeet test performance, 6 represents the family's expected deviation

from its genotypic mean, and Uy represents an error term. a and b are

standardized regression coefficients. Note that a=hA in our previous

models. We now write:

(88) B = cA + dG, + eU, + UZ

and

(88)B' = cA' + dG, + eo, +
= —R —B B

where Gp represents the genes that affect education once we control

ability, U, represents the family's expected deviation from the value

predicted on the basis of 4 and Gp: and u,, is an error term. Note that
B

Gp is not the same as Gp since it does not inelude those asnects of
; /\

education genotype that operate through test scores. Likewise, Up is notA =

the same as Up. & d, and e are again standardized coefficients, but d is

not equal to h, in our previous models. Figure 4 presents this model

visually.
Using the basic algorithm of path analysis, one ean show that our four

"structural" equations imply the following relationships:

= + \ /\(89) rap € aangp t berdaOp * 5aapt2@Ga. Op
” ”_ A(0) Pag 28eagar * Bo + PabragOa

(91) r = 4+ N\ \ A
AB! Chaat ad?GAGB’ * bernOB * bdr:AGB * alGaUB
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_ 2 2(92) Tap

=

ofan # “Topas * & * 2Wergnjp +

acdr + /\ + A rAGAGB

*

2hGacp* 2Gpcar * beer gaGp
Before using these equations to estimate the parameter that interests us
oA Gp» three difficulties deserve comment.

(1) Equation 89 implies that the correlation between test scores
and educational attainment is the same for MZ and DZ pairs. Yet the
observed correlations are 0.621 for MZ pairs and 0.565 for same-sex DZ
pairs. This difference could easily be due to sampling error, but it must
Still be dealt with in some way. Wewill return to this problem below.

(2) Equation 91 implies that rp is larger for MZ twins than for DZ
twins. The observed values are 0.586 for MZ pairs and 0.544 for DZ pairs.
This difference is in the expected direction, but it is smaller than the
difference between rABM* and rABD*#? which is supposedly due to chance

alone. Sampling error will, of course, occasionally produce point
estimates that follow this inconvenient pattern. But erecting an elaborate
structure of inference on two such samples is unlikely to yield reliable
conclusions about the real world.

(3) ¢ is the coefficient of test scores when predicting educational
attainmentand controlling both genotype and common environment. One
way to estimate ¢ is to look at differences between MZ twins reared
together. ¢ is theexpected difference in educational attainment between
MZ twins whose test scores differ by one standard deviation. We ean
estimate this within-pair regression coefficient (b A) from the general
formula:

(93) Db, =Pap-lap

T-Paas

Table 2 indicates that with errors in diagnosis b, is 0.257 for apparently
MZ pairs and 0.076 for DZ pairs. The fact that b, is larger for MZ pairs
than for DZ pairs is somewhat surprising. Thewithin-pair regression for
MZ pairs in effect controls all environmental influences commonto both
twins plus all genetic influences. The within-pair regression for DZ pairs
controls all common environmental influences but only half the relevant
genetic influences. One would expect the correlations between education
genotypes and test scores to be positive even after controlling common
environmental influences. One would therefore expect the within-pair
coefficient for DZ pairs to be larger than the within-pair coefficient for
MZ twins. Since it is not,either (a) education genotype is negatively
correlated with test scores, after controlling exogenous environmental
influences common to both twins, or (b) the within-pair DZ coeffieient is
low simply because of sampling error. In order to assess the relative
likelihood of these two explanations, we used equation 93 to estimate the
standardized within-pair coefficients for mixed-sex DZ pairs, same-sex
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siblings, and mixed-sex siblings. These coefficients were all higher than

the coefficient for MZ pairs, just as theory implies they should be. We

therefore concluded that the same-sex DZ sample was aberrant. It

follows that inferences based on comparisons between the MZ sample and

In light of these difficulties we will not try to draw any substantive

eonelusions about the effects of genotype on educational attainment

among respondents with identical test scores. Wewill, however, present

the equations necessary for estimating such effects from more

representative samples. We begin by estimating ¢, the within-pair

coefficient for correctly diagnosed MZ pairs. This ean be derived from

equation 13 as

(94) c=b AM + Eye? AM* 7 b AD®

m*~ Eps

Next, we write variants of equations 90-93 for MZ and DZ twins, and

subtract the DZ equations from their MZ analogs. This gives us:

1-E

(95) TAA'M* - TAA'D* = agaGAM ~ 'GA,GA'D®

(96) Tape ~ Tapp* * 24"Ga,cpiu* ~ "Ga,cB'D®
Cl4any - TAA'D®

(97) "BBM - 'BBID* = ol?aBry -  ABID® + a 'oB.G BIM* _

'qp,cB'p» * 2¢¢ Gargpm* ~ "Ga,cBD*

Finally, we express r _

and , peess "GA,GA'M*

~

"GA,GA'D* ? "GA,GB'M* "GA,GB'M*?
"GB, GBIM* 7 "GB, GB'D* in terms of "GA,GB - To do this we

Tagips =-k- If k is approximately the same for A and B,set 'aGci*

the same will hold for k. Using the logic that led
then showthat: - 6 to equation 81 we can

(98) "GA,GB'M* - "GA,GB'D* ~ KTGA,GB

‘Equations 95 - 97 then become:

"AA'M* “"AA'D*

k
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100) draaGR = "ABM* ~ Tapp ~ Saaime ~ Paaipe)ee

2
TOD) ka" + aedreygpk + ltanie -  ABID®

BBs - 'BBIp®)= 0.

One can solve equation 94 for ec, then solve equation 99 for a, then solveequation 100 for drq, gpand then substitute this value of ran Gp into
equation 101 and solve for a’. Note that this routine does not requiremaximum likelihood methods. Anyone with a small calculator can getsolutions in ten minutes. We should note, however, that this routine forestimating the relevant parameters does not fully utilize rABD# (except in
correcting b A M* for errors in diagnosing zygosity). Instead, we implicitly
assume that TABD* — Tapyes: Had we not made this implicit assumption
we would have had an overidentified System and would have needed
maximum-likelihood procedures to obtain an efficient solution.

One can, of course, easily apply both equation 84 and equations 94,
99, 100, and 101 to Taubmanetal's twin data.

VI. Conelusions

(1) A high correlation between genotype and phenotype need not
imply a low correlation between environmentalinfluences and phenotype.

The estimated value of h? sets no limit on the percentage of variance
traceable to environmental inequality unless one can set some limit on the
likely correlation between genotype and environment. Since genotypes
can and do affect the environments human beings choose or have chosen
for them, the correlation between genotype and environment broadly
conceived may be as high as 1.00. Efforts at partitioning the phenotypic
variance of humantraits into hereditary and environmental components
Should therefore be abandoned. The most we ean do is partition the
variance into hereditary and non-hereditary components.

(2) Those who want to estimate the contribution of environmental
inequality to phenotypic inequality must begin by offering some
meaningful definition of what they mean by "environment". One possible
approachis to define "environment"as including only those features of the
environment that one has measured. If one fails to measure certain
crucial environmental influences, one will then underestimate the overall
impact of environment. But at least this possibility will be obvioustoall
concerned. The other possible approach to estimating the effects of
environmental inequality is to look only at those environmental influences
shared by children reared together. One can estimate the contribution of
such influences to phenotypic inequality by ealeulating the correlation
between the phenotypes of genetically unrelated children reared together.





twins andsiblings. This strategy would be legitimate if there were goodreason to suppose that same-sex DZ twins, mixed-sex twins, and siblingswere essentially similar. Unfortunately, our data strongly implied thatPyy: Was larger for same-sex twins than for mixed-sex twins or siblings.
This ruled out pooling the samples.

(6) Our best point estimates of nh? for both test seores andeducational attainment are in the neighborhood of 0.50, though bothestimates have large standard errors. Since test scores only explain about

between genotypic test performance and genotypic educational
attainment is 0.268. While this estimate may be biased downward and
certainly has a very large standard error, it suggests that the genes
affecting educational attainment are quite different from those affecting
test performance. This finding suggests that we should not think of
genetic advantages in one-dimensional terms. This conclusion is strongly
Supported by Taubman's twin data. Applying equation 84 to his 2000 pairs
of twins, the implied correlations between genotypic educational
attainment (Gp), genotypie occupational status (Go); and genotypic

22earnings (Gy) are r = 0.57, 94 = 0.48, Pr = 0.53.GE,GX GE,GY GY,GU

(8) Given the questionable assumptions required for extracting
information from twin samples, conclusions based on such samples should
be treated very cautiously unless or until they are confirmed using other
Samples as well. The most useful samples would cover genetically related
individuals reared apart. But with the exception of half-siblings, such
samples are hard to assemble without cooperation from adoption agencies,
and such cooperation is difficult to obtain. In the absence of data on
relatives reared apart, our estimates could be substantially improved by
collecting data on half-siblings and on adopted siblings reared together.

(9) From both a scholarly and a political viewpoint, the critical
question is not how much variance genes can explain in a given outcome,
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but how they explain it. Genes may affect an outcome by providing the

basisfor invidious racial or sexual discrimination, for example. Or they

may affect an outcome by affecting the body's ability to metabolize

sugar. Both the intellectual and practical implications of these two

phenomena aretotally different. If kinship research is to yield any useful

results, we believe that it will require causal modeling. We have tried to

illustrate this approach using data on IQ and education. Given our small

and probably unrepresentative sample, our results should not be taken very

seriously. They do, however, underline the importance of looking for

mechanismsrather than just patterns of association.
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FIGURE I

PATH MODEL OF RELATIONSHIPS BETWEEN PHENOTYPE (P), GENOTYPE (G),

ENVIRONMENT (E), AND EXEGENOUS ENVIRONMENTAL FACTORS (X)
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FIGURE 2

REDUCED-FORM MODEL OF DETERMINANTS OF PHENOTYPE

al [> | IC
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FIGURE 3

SOURCES OF PHENOTYPIC RESEMBLANCES BETWEEN TWINS REARED TOGETHER
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FIGURE 4

PATH MODEL OF THE SOURCES OF RESEMBLANCE BETWEEN TWINS'

EDUCATIONAL ATTAINMENTS
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FOOTNOTES

-Unwary investigators often treat Puza 2S an estimate of h’, But
IMZA 7 h? only if the total variance for separated twins is the same as
the total variance for the population. If adopting parents provide childrenwith more uniform environments than natural parents, or if randomassignment reduces the extent to which genetically advantaged individualsare also environmentally advantaged, the variance for separated wins willbe less than the population variance, and IMZA will exceed h”. For a
more detailed analysis see Jencks et al. (1972), Appendix A.a8ee seet

4See Project Talent (1972).

 

°Some time after retrieving the present sample, we used a computer
routine to search Talent's files for 11th and 12th grade twins with 11-year
followup data. We found 33 mixed-sex pairs that met Schoenfeldt's
criteria for inclusion. Only 28 of these pairs appeared on his list. Thisimplies that the full 1960 sample included (33/28) (1959) = 2309 pairs who
met Schoenfeldt's criteria for inclusion. We did not scan for missing
Same-sex pairs, since we had no way of determining the zygosity of a pair
unless Schoenfeldt had identified it and had sent the twins a zygosity
questionnaire. Nor did we have Schoenfeldt's list of same-sex pairs of
unknown zygosity, so such a sean would not have helped us assess his
search procedure.

“Bulmer (1970).

SShaycoft (1967) deseribes this 12 percent subsample in considerable
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detail. For additional data see Jencks and Brown (1975).

parents’ first names, we did not require absolute agreement on spelling.

We listed all near-matches. Most were clearly true matches. We

excluded doubtful cases, on the grounds that inclusion of non-siblings

would bias the results more than the exclusion of a few genuinepairs.

10ralent labels this composite C-002. Flanagan et al. (1964)

describe it in more detail.

11these results are described in more detail in Jencks and Brown

(1975). They are based on a Talent subsample retested in 12th grade.

Retest scores are only available for a handful of twins and siblings.

* Because of the way Talent conducted its retesting program, one

cannot compute composite C-002 scores at the time of retesting. For

correlations between 9th and 12th grade scores on various subtests, see

Shayeoft (1967) and Jencks and Brown (1975). Note that changes between

9th and 12th grade may be correlated across pairs of twins and siblings,

making the intraclass correlation for twins tested at the same age higher

than for siblings tested at different ages. The eorrelation between

changes over time may beeither genetic or non-genetic in origin. It could

be genetic if, for example, changes between 9th and 12th grade depended

on differing rates of physical maturation. It could be non-genetie if, for

example, certain homes stressed mastering the higher school curriculum

while others did not.

13 por evidence that parental IQ exerts a positive effect on adopted

children's IQ, see Jencks et al. (1972, Appendix A). Jencks et al. estimate

lax at about 0.3, but see the correction in Loehlin et al. (1975). We have

no analogous data for educational attainment.

This is not strictly true, since certain genetic abnormalities such as

Downs! syndrome are not inherited in the ordinary Mendelian sense but

instead result from chromosomal damage. The risk of such abnormalities

increases with maternal age and other environmental factors. Thus, if

maternal age affected a given phenotype, ray eould be non-zero. Such

non-random events are not likely to explain much of the phenotypic

variance, however, So we will ignore them.

aot principle, a 2x2x3 ANOVAhas 12 cells and needs 11 dummies.

But there are no male-female or female-male MZ pairs so we are left with

10 cells and 9 dummies.

16hop exact formulae see Crow and Felsenstein (1967).

Ll or an explanation of why this is so, see Falconer (1960) or any

other standard text on populetion genetics.
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18 ; ; ,For a bit of Supporting evidence, see Eaves (1975):

**Jencks et al. (1972) estimated h? at 0.45, but after correcting anerror in Jencks et al.'s procedure for estimating covariance, Loehlin et al.(1975) obtained results implying that h” =0.61. When Eaves (1975)assumed no covariance between genotypeand family environment, he gotan implied value of 0.68 for h.

20raubman reports that his method of diagnosing zygosity was"almost 95 pereent" aecurate. So while we assume that 1-E,,. -M*
Ene = 0.733 + 0.083 in our Talent sample, we assume that 1- Eve 7
Eps = 0.90 for Taubman's sample. In the absence of evidence, we also

2 ~.2  _ 2 2 asassumed that Som *~ Spp« = 9- In fact, See and Spp* must be positive,
so Table 4 slightly understates the sampling error of h” for Taubman'ssample. ~

21op examples of this assumption see e.g. Burt (1943), Young and
Gibson (1963), Eekland (1967), Herrnstein (1971), and Jenckset al. (1972).

22computed from the correlation matrix in Behrman, Taubman, and
Wales' chapterin this volume.

235, M. Horn, et al (1976) are assembling IQ data on a new sample of
adopted children in Texas—the first since the early 1930's.
Unfortunately, the variance of IQ in this sample is quite restricted, and no
data are available on adult outcomes.
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CHAPTER 7

AN INSTRUMENTAL VARIABLE INTERPRETATION

OF IDENTIFICATION IN VARIANCE-COMPONENTS AND MIMIC MODELS

Gary Chamberlain*

Harvard University

1. Introduction

Elsewhere I have attempted a general treatment of identification in

variance-components models (Chamberlain [1976] ). This paper is

intended to clarify those results by giving them an instrumental variable

(IV) interpretation. Although not all of the results fit easily into the IV

framework, in many cases it gives the clearest indication of where the

identification is coming from. Also it will often indicate quickly whether

a new modelis identified. Another advantageis that the IV identification

is based on solving linear equations; hence there is no danger of multiple

solutions.
The other new result is that our analysis of the variance-components

model carries over directly to the Multiple-Indicator, Multiple-Cause

Model (MIMIC) of Joreskog and Goldberger. We extend their model by

allowing the indicators to be jointly determined. Then we show thatthe

identification conditions are identical to the conditions in the

corresponding variance-components model. In the MIMIC model the

observable "causes" substitute for the group structure of the variance-

components model.

2. The Instrumental Variable Interpretation

 

One-Factor Model. We begin with the simplest version of the

problem, a three-equation, one-factor model:

Yij ~ Te ij

Yoij ~ 14213 * S93;

Y3ij ~ 143513 * Yo3Veij * © siz"
The subscripts refer to the jn individual in the ith eroup. For example,

*] am grateful for discussions with A. Goldberger, Z. Griliches, J.

Hausman, J. Heckman, J. Medoff, and P. Taubman. Financial Support was

provided by the NI# and NSF.
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the group could be a family, with observations on sibs within afamily. WeShall confine ourselves to triangular models in order to simplify theexposition and because these models are widely used with micro data onIndividuals. We shall also simplify the exposition by not earrying alongany exogenous variables. This allows us to concentrate on the non-standard aspects of our identification results,
The availability of the group structure raises interesting possibilitiesfor structuring the residuals. We assume that residuals from differentgroups are uncorrelated; but westill have to model the correlations withina group, both across equations and, for a given equation, across distinctmembersof the group.
A convenient way to model both types of correlation is to postulatelatent variables connecting the residuals. A natural starting point is theone-factor model:

= AR + ow, k = 1,2,3, 2© kij kK ij ij 2)
where the u's are uncorrelated across equations (k) and across individual
observations (j) within a group. So the correlations across equations are
all generated by the common omitted h variable. The group structure of
the residuals can be generated by assigning h a variance-components
structure:

hi = f. + Sip (3)

where f. is independent and identically distributed (i.i.d.) across groups,

and ij is i.i.d. within groups and uncorrelated with f. Balestra and

Nerlove (1966), Wallace and Hussein (1969), Nerlove (1971), Madalla
(1971), and others have dealt with the single-equation version of this
variance-components model.

A commoncriticism of these models is that the random effects are
unlikely to be uncorrelated with the explanatory variables (see Mundlak
[ 1976]). A good example, due to Z. Griliches, is a combined time-series,
cross-section analysis of an agricultural production function. Then

efficiency. Assuming that the farms on better quality soil (or the better
managed farms) are aware of this, then under competition with decreasing
returns to the other inputs, those farms will use more of the other inputs.
Hence the farm effects will be correlated with the explanatory variables.

More generally, the conventional random effects specification has
two parts. The first part assumes that the marginal distribution of the
effects is a random sample distribution. One way of judging this is
deFinetti's (1937) exchangeability criterion. If the indices (ij) have no
Substantive content and are purely a labeling device, then permuting them
Will leave the form of the (subjective prior) distribution of the effects
unchanged. In that case the distribution must be a random sample
distribution. This criterion is most likely to be met in samples of
individuals, for then there is often no natural ordering. Or in working
within families, a two-level exchangeability may be appropriate; the
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random sample distribution of the f corresponds to exchangeability across

families, and the random sample distribution of the ij corresponds to

exchangeability within families.
The second part of the random effects specification is a conditional

distribution of the effects given the explanatory variables. Here the

conventional assumption of independence is often inappropriate, as the

production function example illustrated. But our model is not subject to

this criticism, for we have built in explicitly the correlation between the

random effects and the explanatory variables.

One application of our model is the estimation of earnings functions,

controlling for an unobserved “ability” variable. The version of the model

that is easiest to identify has y, = an early (pre-school) test score,

Yo = years of schooling, and Yo = (log) earnings. Then if h is interpreted as

early ability, it is plausible to exclude Vy from the other equations

( Y19 = 7137 0). For we interpret y, as measuring ability subject to an

error (4). The simplest interpretation of My is a pure test-retest error

which is uncorrelated with everything but Yi Then excluding Vy from the

other equations says that the measured score has no effect given the true

score. This captures the standard errors-in-variables model. In some

cases it may be reasonable to include both the measured score and the

true seore—the measured score may have a credential or signalling effect.

But then the modelloses its errors-in-variables flavor and could be better

classified as a general unobservables model.
With Y19 = 1437 0, the model can be identified by a simple

instrumental variable (IV) argument, which shall be referred to as the

proxy-IV approach. Use y, a8 a proxy for h in the Ys equation:

_ » d

M4 M1
 

Now we have an errors-in-variables problem. A solution is to use the

value of Vy for some other member of the group as an IV. Assume that

there are at least two members per group, say j=a, 8. Then use Via 8

the proxy:

- 3
Y3qa ~ Y93%2a ——Yia *

M4
3

Me ~KBle? (5)

3a Xj
1

and use y, B as an IV. This is legitimate since Y1 8 is uncorrelated with

Mey and Mie? but it is correlated with Vig as long as \ if - 0.
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. Next we shall examinea slight variation of this model, for which the
Simple proxy-IV argument doesnot hold. Suppose that the only restriction
is Yog = 0:

y, = Naht wy (6)

Yo = Yy9¥y + Agh + wg

Yg = ¥43V7 * Agh + wy.
For example,let Yy, = years of schooling, Yo =a late test, which depends

on schooling, and V3 = earnings. We interpret HM, as a test-retest error

which is uncorrelated with everything except the test: The measured
score is excluded from the third equation since the true score
components—y, and h—are included.

Another application is for Yo and Ys to measure earnings in different

years. Then

h

is the initial stock of human capital, which is augmented by
schooling (y,)3 Mo and , are transitory income; and the Yo = 0

restriction says that there is no correlation between transitory incomein
the two years.

A related possibility is y,= schooling, Yo = consumption, and

Y3 = earnings, with h still interpreted as initial human capital. Then the

Yog = 0 restriction says that transitory income is uncorrelated with

transitory consumption.
Underall three interpretations, the model is formally equivalent to

the one used in Chamberlain and Griliches (1975), They examined directly
the reduced form of the model, and showed that in generalit is identified.
Although straightforward, their approach is somewhat cumbersome. My
initial efforts to find an IV interpretation were guided by the previous
example. Hence I looked for a proxy variable for h, together with a
suitable IV to treat the measurement error. But this approach does not
work here. Instead the trick is to leave h in the residual and construct an
IV that is uncorrelated with h. This will be referred to as the purged-IV
approach.

It requires two stages to identify the ¥'s and a third stage to
identify the A's. The reduced form of the modelis

Vk = dh + a k = 1,2,3, (7)

where

I

it O
o

b
o

li >
b
o

+ “
p
o

i
] »

fo
od
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and e M4

e=

|

&s =}Ho * Mg Hy

e3 ug * Pig My t+ Poglug * Pig Ma]

The first stage is to use y, as a proxy for h in the reduced form equation

for Yo:

dy or)
Yo = y + e - C1. (8)

2 a 1 2 a 1

1 1

The resulting errors-in-variables problem can be solved by using Yyg asan

IV for Via? provided that A, o ¢ # 0. Then form the residual, thereby

purging yo of its dependence onh:

Z= Yo - do vy en - 4 ey (9)

dy 1

The second stage is to use z as an IV for yy in the structural Ys

equation in (6). z is an appropriate IV since it is uncorrelated with h and

with j.,, butit is correlated with y, if A El WD z 0. So we requirethat

h appear directly in the Yo equation, and that Yi is not proportional to h—

otherwise we could never separate the effects of Vy and h. In order to

identify Pio» we can interchange the Yo and Ys equations and repeat the

two stages.
With ?,., identified, in the third stage we form the residual

13

WF Yg — Py3¥y = Ash + M3. (10)
Then use y, as a proxy for h:

Ae Ag
Ww = V4 + M2 ~ fey: (11)

Ay Ay

 

 

Now *3 ean be identified by a third application of instrumental

Ay
variables, using Yzp_ as an IV for Yiae (Note that only the ratio of the

 

A's is identified, due to the indeterminate seale of the latent variable.)

Interchanging the second and third equations, we can identify Ag! Ay by

repeating this procedure.

Extension to Larger Systems. In larger one-factor models it is still true
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that identification requires at least one restriction in addition to those
implied by the triangular structure. Say that the restriction excludes Yo

 

from the th equation. The reduced form is y, = dh + ep. Using Vy
aS a proxy gives

Ck qy, = vy + e. - e,, k=2,..., t-. (12)a aq}1 1

Then qd,/d, is identified by using Y45 as an IV for Yia- Given d/d,, we

ean form the residuals
d d_ _ k _ k _ _Za. = Y,. , y, = ae _ , ey k=2,..., t-1.

1 1 (13)

Now there are t-2 IV's for the t-2 variables that remain on the right hand
side of the t™ equation after Yo has been excluded.

Having identified the coefficients in the th equation, we form the
residual

x = _ _ _ _
Me Ve Tey Tee PeaYee

=

Ah tee (14)

Then we can identify the Koh equation, with k < t, by using Yy> ces Veg

together with yf to form k-1 purged IV's. Note that we must use Yt and

not y, since (in general) Yt is correlated with u K

The identification of the equations that follow Yt is not, however, as

Straightforward. We can illustrate by adding an equation to our three
equation example:

=
+ .Yg

=

Pyg¥y + Po4q Vo a¥3 * Agh

+

Hy (15)
Assuming that the previous equations have been identified, we can replace
Yo by Yo =Yq ~ Vy9 Vy and replace Ys by ys =Yg - 13 yy, 7 Po3 Yo:

Vg

*

Ya= Pig y+ % 5493 * %3q¥3  F Ag h +My, (16)
- _ * ;

whereY34 = Yoa * Y3q ¥o3 Md vty = Yq *%3q M43 *Y 24712

Note that Y., is unaffected by this transformation. Now use y, asa

proxy for h:

Yg = ¥5q YR * ¥3q YZ thy Vy Ft Mg my OD
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d
where ™, = 14 + _— Since uu, is uncorrelated with V5 and y3 ,

1

we can use V5 a and Ye 4 together with yy B as instrumental variables.

This will identify y,,, allowing us to form V4 = ¥4~%a4 Y3° Then the V4

equation excludes Y3, and so we can use Yy; Yo; and Y3 to form two

purged-IV's for Vy and Yoo thereby identifying yy P and You

The generalization to additional equations proceeds in a similar

fashion. We rewrite the fifth equation in terms of Ya Yo ; y3 , and YA .

The coefficient of y4l 45) is unaffeeted by this. Then with y, as a proxy

for h, only y, requires a cross-memberIV since wu , is uncorrelated with

* . e e os _ _

the YF j =2,344. Thus we ean identify Yas and form y 5 Ye Yas Yq

Now the Ye equation has an additional restriction, and so it can be

identified by the purged-IV technique.

SomePitfalls. Before treating the multi-factor case, I want to point out

some possible misuses of instrumental variables. Going back to ourfirst

example, say that 7,4 = 0 but ¥19 #0. As before, use y, as a proxy for h

in the Ys equation: ,

A3 3
Yg= Yog Vg *dq M

 

Sinee Yo is now correlated with u LP instrumental variables are needed for

both yy, and You" A possibility is to use Yip and Yop . But then the IV

normal equations require the inversion of a singular matrix (note that we

are suppressing the intercepts and assuming that all means are zero):

2
Yip Y1a Yip Yea dy dydy

E = a (19)

dd. @
Yop Va Yop Yaa, 1°22

where the d's are the reduced form coefficients of h. So this misuse of

instrumental variables violates a rank condition.

A related pitfall could arise if there were three or more members

per group. Then we might consider using, Say, V4 B and Yi5 as IV's for

Via and Yoa in (18). But once again the IV normal equations would be
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Singular:

”
Yip %ia Vag Yea dy dydy

E = of (20)
9

L%15%e M5 Yea dy dydy
Our second, more novel, application of instrumental variables also

has a potential pitfall. Say that there are no restrictions on the Y 's in the
three-equation model. Then in order to follow the Strategy of allowing h
to remain in the residual, in the third equation we need IV's for Yi and Yo

that are uncorrelated with h. We have already indicated how to purge Yo

do

“4
ean be applied to Ys We use Y. aS a proxy for h, with Yo p as an IV for

Cy

Cy

of its dependence on h to form z = Yo - yy: A similar procedure

You: Then we form the residual z* = yi 7 Vos This z* meets the

d
criterion of being uncorrelated with h and Me. But z* = - i Z , and so

d:
2

an attempt to use both z and z* as IV's will fail the rank condition.
Although obvious here, this error can take a more subtle form in the
multi-factor models.

Multi-faetor Models: Errors-in-Variables. We shall begin with an
extension of the one-factor errors-in-variables model. The key property
of an errors-in-variables model is that at least one variable is excluded
from all of the other equations. Consider the following two-factor model:

y, * Avy By t Ag) BQ * HY

YQ * hig My t Aan By + Uy (21)

Y¥3 * Yo3 2 + Ags hy + AQ3 by + Ug

A, h, + A, hYa Yaa %2.* Yzq %3 * “ng M1 Ang 22 * Mg

Since Ys is excluded from the other equations, we can use it as a

proxy variable:

yy = hf + wy, (22)
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= 1 t tructure in the
where hf Aa hy + pd o1 hy. Then rewrite the factor s

other equations as

rj ; Ao
* * * = - .

os hy + YD 23 Nos with 2 23 x 2j Ayj

Aq Ai

,j = 2,3,4, and

 

r51 = 0. This illustrates how easy it is to transform the factor structure

and indicates that the A's will not be identified unless there are prior

restrictions on them.

If Yo3 = Yaa

Y9 = h5 + 9?
(23)

* = ]
where h5 Xd 12 hy + 2 99 ho. Then rewrite the factor structure of

the other equations using hf and hg.” The objective is simply to give the

problem a more standard errors-in-variables appearance. The important

point is that some combination of Vy and Yo will measure

= 0 also, then we can use y, as a proxy variable:

Aya ny + 2 94 No subject to an error that is a combination of My and

Moe

Using y, and yy as proxies in the y, equation gives (with

Yo3 = Yoq = 0
= * 3 _ *

V4

=

%3a¥3 * Ata ¥1 “Aga Yo "Mg “Aa Ba Apalta: (24)

The errors-in-variables problem with Vy and Yo can be treated by using
' ; ,

Yip and Yop as IV's for Via and You Since the Y3 equation excludes Vy

and Yo, we can use y,,, as an IV for itself. If we had to use ¥3 2 , then the

rank condition would fail, for the rank of the ecross-member qovariance

matrix (E La yp! ) eannot exceed the numberof group factors.
Now Suppuse that Yo is not excluded from the Y3 and yA equations.

For example, we could have y, =an early test score; Yo = years of

schooling; Y3 =a late test score, which depends on schooling; and

Y4= earnings, which also depends on schooling. The factors hy and ho are

interpreted as different types of "ability," with M and wu 3 interpreted as

measurement errors. Then a plausible additional restriction is Ys47 0.

This exeludes the late test score from the earnings equation CY,47 0

excludes the early score) since the true score components—yp, ny» and no-

-are included. Estimates of such a two-factor model are presented in
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Chamberlain and Griliches (1976).
This model is a combination of the two previous one-factorexamples. y, ean be used as a proxy for h* , but there is no direct proxy

for hs » Suggesting that one additional restriction is needed. This is
correct, and we shall impose Y94 = 0. The appropriate strategy, however,
is not to use y; aS a proxy in the y4 equation. Rather we follow the
purged-IV approach, allowing hy and No to remain in the y4 residual and
purging Yo of its dependence on the factors.

First set up the reduced form for Yao Yoo and Yq:
= *vy hs + My (25)

= *¥9 nyt hy
= * * * *¥3

~

ATs bE + OSs + Yog)hR ++ YQ, Ho:
Then use yy and Yo as proxies for hF and hs in the Ys equation:

= \x * _ -¥3

=

Mis ¥y + OSs + Y93) Yo + Uy

-

Ms Hy

-

ASS Hy + (26)

This equation can be identified by using Vig and Yop as IV's for Vig and
Yoq: it is permissible to use two cross-member IV's since this is a two-

factor model. / Then form the purged residual:

= _ * _ * -

z= V3 13 ¥y “~A33 + ¥%93) Vo

- * -P37 Aig Py 793 Bae (27)
Now z ean be used as an IV for Yo in the V4 equation. It is uncorrelated

e . ° ° ° 2. *with hy> ho, and Ma but it is eorrelated with Yo if A 59 E (Ho) x 0.

| 393 # 0 requires that hs enter directly the Y3 equation; equivalently,it

requires that A 11/A 91 t d13/Ag2) so that the factor coefficients in the

first, and third equations are not proportional to each other. In addition,
E( Ma) # 0 requires variation in Yo that is uncorrelated with hy and No. |

Interchanging the Ys and V4 equations, we can identify Yog by

repeating this purged-IV approach. The identification of the rest of the
model, however, it not always so easy. As in the one-factor model, the
problem is with the equations that follow the one with the extra
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restriction. We can illustrate by adding a fifth equation to the model (the

proxy variable Vy is still excluded from all of the equations):

_ x he +
Ys = Yo5¥q * %3593 * Yas V4 * At

* aU 28
Ags hg +P; (28)

First we identify the y's in the third and fourth equations (as above) and

form the residuals:

_ * =ye = Aw ne + QR WE + My, k= 34. (29)

Then rewrite the Ys equation using the y*'s:

a * * *

Y5= ¥35¥2 * 73593 * Yas V4

* * * *

Ais ht * Ags M2 7 M5" (30)

8
Note that the Yas coefficient is not affected by this transformation. Use

] * * .Vy and Yo as proxies for hF and hj :

-  * Vk * x yok
Ys 35 Y3 * Yay Yd * AISI: * 6795 *AR52

- * - *

* os

7

Ais wy

>

Ags Ho BL)

Since }# yp Ho and H.. are uncorrelated with y3 and Yap we can use yea

* ' , Lo ps
and Yaa &s IV S together with Y1p and Yo gr_thus Ys 18 identified, and

so we can form Ys = Ys a5 Yq: Then the Ys equation excludes 4 (and

Vy); hence we can form two purged-IV's from Yprro Vy in order to

identify the two remaining parametersin the Ys equation, Vos and Pace

Another Multi-Faector Example. The errors-in-variables models required

one restriction in addition to the proxy exclusions. In the four-equation,

two-factor model there were four restrictions. In fact,depending on their
placement, only three restrictions may be needed.” For example, consider

the following model:

+ J (32)
Vy Noi hg * HyAa Dy

hYo Aya * Agog * Bg
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Y3 = Yo3¥q *  Aqg hy F Agg hy * by.

V4 = ¥4 94 "%34 Vt Aya hy + Agg hy + Bg

This model is interesting because it requires a combination of the proxy-IV
and the purged-IV approaches. In this respect the identification problem
is similar to the one presented by the equations following the restricted
equation in the previous examples.

The trick is to use Yo and Yo as proxies for hy and hy:

Ya = %4¥1 "11 YQ * me V3 t Hg thee +2 ug: (33)

(7, includes Vag) sinee V4 is uneorrelated with u9 3° and H 4, we

can use y, , as an IV, along with Yop and Yo B° (The exclusion of Yi from

the Yo and Ys equations is necessary, for otherwise the errors in Yo and Ys

as proxies for hy and ny would be correlated with Vy: requiring a cross~

member IV for Yq But we are allowed only two such IV's in the two-

factor model.) So we ean identify Yu and form the residual V4 = Y4 7

¥14 9; Now the y, equation excludes yy (and V4); hence, we can use

Yy> Yoo and Ys to form a purged IV for the remaining variable, Yo

3. The MIMIC Model

The following is an example of the Jéreskog-Goldberger Multiple-
Indicator, Multiple-Cause (MIMIC) model:

(34)

t
e
t

~

ll >
B
S >

Ki =

H >
©

>

_ !

m= XGk + fp
The unobservable h is partitioned into a projection onto observable x's (the
causes ) and a residual (f) that is uncorrelated with x by construction.
The y's are indicators of h, with residuals # that are uncorrelated with f
and with each other.

We shall extend the MIMIC model by allowing the indicators to
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depend upon each otherin a recursive fashion:

Vii = + hy iF + Ba

Yor ~ 712 Mi F Ag hh F Pai (35)

Ygi = 13 Vy + 73% * AG Dt Pai -

This is our one-factor model except that there is no grouping device, and
so h has only a single subscript. We shall see, however, that the
observable x's can substitute for the group structure. For example, in the
models of income determination, x could consist of observable family
backgroundvariables. ~

Consider first our original errors-in-variables example, with
Y19 = 743 7 0. Then as before we use y, as a proxy for h:

A »3 3
Yg = Yq3¥q *3. *h3 ~ —__ Py: (36)

Ay ry

The measurement error in yy is treated by using x (or rather somelinear

combination of the x's) as an IV for Yy- Yo. can be used as an IV foritself.

So the solution is identical to the variance-components case, except that
the instrumental variable is based on x instead of using yy for some

other memberof the group.
Note that if "19 # 0 then Yo is correlated with Hy and cannot be

usec as an IV. Then it is tempting to use the x's as IV's for Yi and Yoo

provided that there are at least two variables in x . But yy and Yo depend

on the same linear combination of the x's (up to a seale factor); hence the
IV normal equations do not have full rank.

Consider next our second one-factor example, in which only
Yo9 = 0. As before we construct a purged IV by using y, as a proxy for

h in the Yo equation:

 
 

d d
2 2

Yo = ¥4 + fo ~ C1 ’ (37)

qd, dy

where dy = Ay d, = A» + Y 49 r . ey = pl V and

@n =H, + Y490 BY We identify d,/d, by using xX as an IV for Yi

Then form the residual

Z=Yoy - VY, =& - ey (38)

 

Z is a Suitable IV for yy in the Y3 equation. So the approachis identical to
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the one used in the variance-components model, except that x__ is used to
form an IV for the proxy. Once the proxy coefficient (d,/d,) has been

identified, the remaining steps are exactly the same.
For a multi-factor example, consider the one-proxy, two-factor

model: |
= rdyy i] hy + oy h, + Hy 9)

Yo = Aya Ry * Aon by + Uy

“
<

w
w

WW

Yox Yo + Aqg hy + Agg hy + by

Ya = Yog Yo + Ayg Dy t Agg Dg + Uy
Instead of a variance-componentsstructure for the factors, we have

- !

mT Xb. Fa (40)
— !

hoe = XB og tf oie
As before we rewrite the factor structure so that y, = hF + op 1

= h* + - tj i * * ijand Yo np #3 then use y, and Yo aS proxies for hy and hp in the Ys

equation:

- \* A ¥* ~-\* -
yg ATs Yyt (493+ Yo3)¥q tg ~ATgHr Aggue (4D

This equation can be identified by using the variables in x as
instrumental variables. If the IV normal equations are to have full rank,
there must be at least two variables in x , and 8, must not be

proportional to Bo. Then we ean form theresidual Ze Y3~ AF4 Yi 7
~~

(AF, + Yo3)¥9 and use Zz as an IV for Yo in the V4 equation. Inter —

changing the Yo and yP equations we can identify Yo by repeating this

purged-IV approach. The identification of additional equations followsthe
procedure that was used in the variance-componentscase. 11

4, Summary and Extensions

We have provided an instrumental variable interpretation for a

number of results on the identification of variance-components models.

The IV interpretation clarifies where the identification is coming from.

Also an appropriate combination of our proxy-IV and purged-IV techniques

will often indicate quickly if a new model is identified. Another

advantage is that the IV identification is based on solving linear equations;

hence there is no danger of multiple, locally isolated solutions.

The other principal new result is that our analysis of the variance-

components model earries over directly to a simultaneous equations
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version of the MIMIC model. The general caseis a simultaneous equations

model in which the residuals have a factor analytic structure. Each factor

is partly determined by a set of exogenous variables. We have

concentrated on the triangular case, but the correspondence between the

two models holds in general.

As for future work, it will be useful to extend the results to

models that inelude both discrete and continuous endogenous variables.

Consider a triangular model relating Yy> Yoo and Yo, where V4 and Y. are

continuous, but yo takes on only the values zero or one. In addition, there

is an omitted (continuous) random variable h that affects all the y's. Then
following Lazarsfeld (1968) and Heckmanand Willis (1975, 1977), we might

use the following model:

Y, > A, be hy

<
<

h
o

|

= 12% + Ag h + Uy (42)

oY¥3 = Yi3 %1 * Yo3 Yo * Az Bt Ug >
where Yo is an unobservable continuous random variable such that Yo = 1 if

Yo > 0 and Yo = 0 if Yo < 0. It seems plausible that the identifi-

eation conditions forthe continuous case, when Yo = Yo is observable, will

suffice to identify the model. In fact, this type of model may be
identifiable under weaker conditions, by exploiting non-normality.

For example, consider the following M'MIC model:

h, =x, B+ €,
i1 1

Yat Ah, tu, (43)

Yon = Yy2 ¥yg FAQ DG Ft Moye

where y, = lif Vy 2 0 and y, = 0 if y,< 0. Asan application, say that is

an unobserved ability variable, x is a family background variable such as
family wealth, Vy is a dummyvariable for college completion, and Yo is

earnings. This one-factor model is not identified from the covariances,
since one restriction is needed in addition to the triangular structure. We
shall see, however, that it is identified from higher order moments.

The regression function is

E(y5 |x) = Yy5 E(y, |x) + XBA,. (44)

If f and My have normal distributions, then

E(y,|*) = Prob(y, > Ox) = Pix n), (45)
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. 1 ean be identified by a probit analysis of

yy conditional on x. Then we have

E(yg|x) = xBA, + Yio P(x n); (46)

thus BA, and Y 19 are identified by the linear regression of Yo on x and
12

O(x nN).

If the original specification had allowed background to have a
direct effect on college completion and on earnings, so that~ ;

Y, = 6 oF h + H

(47)
Yo = X71 + Yi2 44 + dy h+

then 1» would be
2?

2 21/2 and the coefficient of x in

1

2
(Oo + Ay BY / (A, Oo; +6

the regression of Y. on x and ®(x 1) would be 7 + 8AgQ instead of

B Ao. But the coefficient of @(x 7) in that regression would still
identify y 12°

There is a simple instrumental variable interpretation of these
results, which helps to assess their usefulness. Let

A. + :Y5 x(1 + B dy) + Y12 Vy + Ao f Hy (48)

Now use x and x? as instrumental variables for x and Yi Stated in this

way the procedure seemsrather contrived, for we ean always manufacture
additional instrumental variables from higher order terms.

There are two objections to such a procedure. One is that the
partial correlation between yy and x4, partialling on x, may be zero. This

objection is less valid when yy is binary, for then its regression on x is

unlikely to be linear. The second objection relates to the exclusion of x?
from the Yo equation. This exclusion requires that the direct effect of x

on earningsis linear, and that the regression of h on x is linear. We are
often satisfied with linear specifications as reasonable approximations;it
seems questionable, however, to let the identification of the model rest

solely on the exclusion of x? and higher order terms. Nevertheless, it will
be useful to make comparisons with our other approach, which does not
rely on higher order momentsfor identification.
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FOOTNOTES

tWe are abstracting from birth-order effects.

2This sort of model has been dealt with by Wiley (1973). For errors-

in-variables models without a group structure, see Geraci and Goldberger

(1971) and Geraci (1974, 1975).

Chamberlain (1976) derives the following condition to ensure that

the IV normal equations have full rank:
t-1

; 200 OS 2
TAMAS oS ae Ysk A /o,) #0,

where 0 2 E( He). In order to interpret this rank condition, we shall say

that equation k is connected to the rest of the structure if A, # 0. Then

the condition requires that the exclusion occur in a connected equation. If

d, = 0, so that the excluded variable (yJ) is actually exogenous, then y,

must appear (with a non-zero coefficient) in a connected equation

preceding the one it is excluded from. This condition is almost surely

satisfied if there are no a priori constraints on the factor coefficients.

+The problem is that the covariances across different members of a

group are all generated by a single common factor(f); henee no cross-
membercovariance matrix can have a rank greater than one.

> This transformation of the factor structure requires that Ayy/doy?

A 19/ Mao: so that the factor coefficients in the first and second

equations are not proportional to each other.
6
Note that the identification argument is unaffected if ? 19 # 0.

This is equivalent to allowing the measurement errors in the two proxies
to be correlated with each other.

We assume, of course, that the two factors are not perfectly

e-orrelated.

8 , . . —
In this particular example, Y,, is also unaffected (Y 5, =¥ 35)

since Yo4 = Q.

31t is shown in Chamberlain (1976) that we need at least n(n + 1)/2

restrictions for the n-factor model. Conditions on the placement of the

zeros are also presented.

107 might appear that we could fit the variance-components
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specification into the MIMIC framework by setting x equal to a set of
group indicator dummy variables. Then in the one-factor case we wouldset B' = (fi see t This is the fixed effects version of the model. The

misleading if the sample expands by adding more groups, for then the
number of parameters expands also. In fact many applications of the
varianece-components model have a large numberof groups with only a few
observations in each one. In that case using the group dummyvariables to
form IV's gives inconsistent estimates. For example, with

d d

Yo = yy * &y - C1»

  

the use of group dummies ina two-stage least square calculation gives

Zy Vo: ¥ y where y:y,.is the sample average over theMiVai Yi Vj p g
observations in the jth group. This averaging does not eliminate the bias
due to the measurement error in Yi unless there is a large number of

observations in each group.

lithe general results in Chamberlain (1976) on the identification of
variance-components models also apply to the simultaneous MIMIC model.

Lethis procedure is similar to the one used by Heckman (1976) to
correct for sample selection bias. See also Madalla (1976) and Lee (1976).
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CHAPTER8

ON THE EFFECTS OF FAMILIES AND FAMILY

STRUCTURE ON ACHIEVEMENT*

William H. Sewell and Robert M. Hauser
The University of Wisconsin-Madison

Information on the family and socioeconomic characteristics,
ability, and achievement of members of the same sibship may be used to
address two distinct questions: (1) How and whyaresiblings different
from one another?, and (2) How and whyare siblings morelike one another
than unrelated persons?

in attempting to answerthe first question it is convenient to rermove
the effeets of shared environment and heredity and to look at the
influence of variables on which siblings do not have common values: birth
order, birth year, and birth interval (spacing). These variables are
logically related to the size of the sibship and mayinteract withit, so size
of the completed sibship must be taken into aceount in an adequate
research strategy. Finally, siblings may be of the same or of opposite
sex, and this, too, will affect the differentiation of life-chances among
family members.

In the strategy for answering the second question it is convenient to
ignore the factors tending to diversify the achievements of siblings, while
attempting to measure and interpret their shared background. Siblings
have a partly overlapping genetic heritage. Excepting the possibility of
temporal change within the family of orientation, siblings share a set of
parents (and other relatives) with whom they each interact in ways which
partly reflect the social and cultural divisions in the larger society. Some
of these shared characteristics include education, occupation, and income
of the parents, religion, ethnicity, and family size. There are other parts
of the social environment, too, which do not involve the functioning of
families in a narrow sense, but whose nature and influence varies from
family to family. For example, the neighborhood and community in which
the family resides and the schools attended by their children are of this
character.

Ultimately, the division between the purposes of studying the
Similarity of siblings and of studying differences among them is strained
and artificial. We have already noted that family size enters both
analyses, as will sex. Ideally one would hope to construct a comprehensive

This work was supported by grants from the National Institute on
Mental Health (M-06275) from the Spencer Foundation. We thank Michael
Olneck and Arthur S. Goldberger for comments on an earlier draft of this
paper. They are in no way responsible for its remaining faults.
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model of family influences on achievement which would render the

distinction unnecessary. For the moment we think the distinction is a

useful heuristic device; it breaks the research problem into two parts,

neither of which is especially simple when takenbyitself.

Our discussion of family effects on achievementis in three parts.

First, we briefly review research on the effects of families and of family

structure. In this review we have deliberately avoided an elaboration of

the effects of socioeconomie background variables, and we have equally

neglected the methods and results of twin studies. Each of these topics is

well-covered in the review paper by Leibowitz or by others of the papers

in this volume. Second, we describe the content and nature of a unique

body of data on family structure and the achievementof siblings which we

have obtained or are presently obtaining for a large and heterogeneous

panel of Wisconsin high school graduates. Last, in the context of our

research design, we review issues in the analysis and interpretation of

family effects on achievement when data are available for full sibships

and for selected pairs of siblings.

Family Structure, Sibling Resemblance, and Achievement

At least since the time of Galton (1874), scholars have studied the

effects of birth order on eminence, educational attainment, occupational

achievement, aspirations and motivation, various aspects of deviance,

including mental illness, delinquent behavior and alcoholism, and selected

personality characteristics, such as anxiety, dependency, affiliation,

achievement orientation, conformity, and measured intelligence. In the

last ten years, this massive literature has been competently reviewed by a

number of writers, including Sampson (1965), Altus (1966), Warren (1966),

Bayer and Folger (1967), Bradley (1968), Sutton-Smith and Rosenberg

(1970), Adams (1972), and Schooler (1972).
Adams has summarized a number of post-hoc theories that have

been used as explanations of birth order effects, including physiological,
psychological, socialization, and economic explanations. He, and many of

the other writers, have pointed out that the findings to date are seriously

flawed by small samples, selection bias, and failure to control for

variables known to be related to sibling position and to the dependent

variables under study. Moreover, none of the past studies has had

adequate information to examine the influence of family structure in a

sufficiently comprehensive and systematic way to permit definitive

conclusions regarding the influence of sex, age, sibling position, sibship

size, and spacing on career achievements.
The influences of family structure on achievement may be studied in

samples of persons, as in the research of Blau and Duncan (1967), where

structural variation between families is correlated with achievement

variables. Also, family influences may be studied in samples of families

(minimally, in at least one sib-pair from each family), as in the research

of Lindert (1974), where structural variations within families may be

correlated with achievement variables. The first design risks the

confounding of family structural characteristics with other characteristics

of the family of orientation, as in the correlations between completed
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attainments were ascertained in that study.
Jencks (1972, Appendix B) undertook an ambitious interpretation of

sibling resemblance data for males in the U.S., which attempted to model
occupational and economic as well as educational achievements. In many
respects this analysis serves as a methodological template for future
research, but Jencks' analyses highlight the paucity of complete or
representative sibling resemblance data. He had to draw on a variety of
source materials, many of which are not strictly comparable. Jencks'
analyses highlight the data needs for studies of sibling resemblance.
Minimally, measures are needed on social background, cognitive ability,
educational attainment, occupational achievement, and earnings for
sibling pairs drawn from single representative sample. Michael Olneck's
(1976) study of brothers in Kalamazoo, Michigan, is an exemplary effort to
bring together the required data in a local sample.

Background of the Wisconsin Study

Before elaborating the design of our research on siblings, a brief
review of our study of the influence of social and psychological factors on
the educational, occupational and economic careers of the men and
women in our sample is in order. The basic data with which the project
began were obtained from a statewide survey of the post-high school plans
of all seniors in public, parochial, and private high schools in Wisconsin in
1957. The questionnaire contained information on a numberof aspects of
(a) the student's social background, ineluding the occupation, education,
financial status, and place of residence of his/her parents, and the extent
to which parents encouraged education beyond high school; and (b) the
Student's educational background, including the pattern of high school
courses, the educational plans of friends, general attitudes toward
education, and educational and occupational plans. A random sample of
10,317 cases was drawn from the 1957 survey and data from school
records, the census, and other public sources were added to the files of
each student. The latter included measuredintelligence, high school rank,
and a four-year average of parental income.

These data provided the basis for a great deal of work on the effects
of such social background variables as sex, socioeconomic status,
community origins, and neighborhood contexts, and of such social
psychological variables as measured intelligence, rank in high school class,
and the student's perception of the expectations of significant others
(parents, teachers, and peers) on the educational and occupational
aspirations of youth. This analysis led to several papers which examine
the effects of the variables in question on educational and occupational
aspirations, usually controlling for sex, socioeconomic status, and
measured ability (Sewell, 1964; Sewell and Orenstein, 1965; Sewell and
Armer, 1966; Sewell and Shah, 1968).

One of the original aims of the Wisconsin study was to determine not
only the effects of social background factors on aspirations but also on
actual educational, occupational, and economic attainments. With this
end in view, we launched a follow-up study in 1964, seven full years after
the students in our sample graduated from high school. In this survey we
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sought information from the parents of the sample members on the
educational histories, occupational attainments, military service, marital
Status, and current geographical location of each student. We obtained
data for 87.3 percent of the members of the sample. We later obtained
the earnings histories of the males in our sample from the Social Security
Administration, using linkage techniques guaranteeing the anonymity of
the information. A number of publications addressing central issues in
social stratification have resulted from our analyses of these data.

We were especially interested in learning more about how social
origins affect educational attainmentparticularly because of the crucial
role that education plays in all later attainments. The first major study
we did after obtaining the follow-up data involved a thorough examination
of the effects of socioeconomic origins on the attainment of higher
education (Sewell and Shah, 1967). We assessed the influence of family
socioeconomic status controlling for measured intelligence, for males and
females separately, as they progressed through the process of higher
education: from college plans, to college attendance, to college
graduation. Our results indicate that, for each sex, socioeconomic status
is an important determinant at each level of educational attainment, even
when intelligence is controlled. For both sexes intelligence becomes more
important than socioeconomic status as progress is made through the
educational system, but at no point does one's socioeconomic status cease
to be an important determinant of the attainment of the next step in the
process.

During the past several years the major thrust of the analytic work
on the project has been directed toward the development of causal models
of the status attainment process. In our earlier work we had identified a
number of experiences that young people undergo in their formative years
which have an important bearing on post-high school educational
outcomes. These include level of performance in high school, whether
significant others encourage or diseourage high educational and
occupational aspirations and whether the students actually develop these
aspirations. All of these experiences are affected by the social origins,
academic ability, and sex characteristics of the individual and become the
mechanism through which these background characteristics transmit their
influence. In addition, these same social psychological experiences have
direct and indirect effects of their own, quite independent of the person's
background characteristics.

This complex process has been the focus of much of our recent
research, and we have been developing and testing structural equation
models to further explicate the process of attainment. Building on the
work of Blau and Dunean (1967), we have devised and published a linear
recursive model that attempts to elaborate and explain the effects of
socioeconomic origins and academic ability on educational achievements
and occupational attainments as these influences are mediated by social
psychological processes (Sewell, Haller and Portes, 1969; Sewell, Haller
and Ohlendorf, 1970). This model links socioeconomic status and

academic ability with educational and occupational attainment by means
of the social psychological variables previously mentioned. The model
demonstrates that socioeconomic status has no effect on performance in
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high school independent of academic ability, but has strong direct and

indirect effects on significant others' influence, educational and

occupational aspirations, and through these on educational and

occupational attainments. The role of academic ability is somewhat

different in that it has strong direct effects on high school performance,

independent of socioeconomic status, and direct and indirect effects on

significant others and on educational and occupational attainments. This

model succeeds in explaining 57 percent of the variance in post-high

school educational attainment and 40 percent of the variance in early

occupational attainment for the boys in our sample. |

Recently we have further elaborated and extended our model by

disaggregating socioeconomic status into its component parts--parents'

income, mother's education, father's education, and father's occupation—

and by decomposition of significant others' influence into parental

encouragement, teachers' encouragement, and peers' plans and by adding

son's earnings in 1967 as the final dependent variable. This enables us to

obtain estimates of the individual role of each of the independent

variables in the educational and occupational, and economic attainment

process. Because this analysis is quite complicated, we shall not present

our detailed findings in this review. A complete summary and discussion

of our findings is given in our recent book (Sewell and Hauser, 1975).

Perhapsit is sufficient to say that although we were very pleased with the

power of our model not only to explain educational and occupational

achievement in the early career but also to interpret the influences of

family backgroundin the achievementprocess, we were quite disappointed

with its lack of power in predicting earnings: It explains less than 10

percent of the variance in the 1967 earnings of employed males.

We believe that its poor showing in explaining earnings is in part due

to the facet that our data pertain to an early period in the earnings careers

of our sample. For those who have gone on to college and professional

schools, it will take several years for their earnings to reflect their high

levels of education (see Hauser and Daymont, 1976). Another factor is
that we need more proximate and pertinent information about career

experiences, including current jobs, labor market areas, on-the-job

training, graduate and adult education, family formation, and military

service, if we are to explain earnings more adequately.
To obtain this and other necessary information on the careers of our

sample, at approximately age 35, we carried out an extensive follow-up of

a 45-minute telephone interview. The interview schedule was modeled

after that used in the 1973 National Mobility Survey by Featherman and

Hauser (1975), but it is longer and more intensive and it includes women as

well as men regardless of marital status. It covers regular and non-

regular schooling histories; selected occupation reports from first job
through current job; military service and training; current labor force

status, work experience, and earnings; job characteristics, satisfactions

and aspirations; social participation; marital and fertility experience;

women's job histories; aspirations for children; sibling characteristics (see
below); and retrospective reports and addenda to our earlier information

on social background, aspirations, and peer influence.

A tracing operation carried out in 1974 suecessfully located 97.4
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pairs which has value independent of the 1975 panel survey. For example,
we need someopposite-sex sibling pairs in order to assess the effects of
sex on proxy reports of siblings’ characteristics. Also, from opposite-sex
pairs we can assess the sex-specificity of global family influences. We
know that families do induce substantial resemblance in at least the
educational achievement of brothers. There is less evidence about women
and their sisters and womenand their brothers, and we suspect there may
be less resemblance as well. If so, measures of filial resemblance, taken
alone, may overstate the conservative force of the family in American
society. At the same time opposite-sex pairs are less likely than male-
male pairs to yield paired data on current occupations (because many
women are not in the labor force), nor will opposite-sex pairs give us the
detailed data on family formation processes which we can obtain from
female-female pairs. We plan to obtain interviews with 750 same-sex
designated sibs of each sex (total of 1500 interviews) and 250 opposite-sex
designated sibs of each sex (total of 500 interviews). In addition we will
interview all twins of sample members who were not interviewed in the
1975 survey or selected into one of the subsamplesof designatedsiblings.
Within the four strata defined by sex of the respondent and of the
designated sibling, the sample is stratified by size of the sibship and by
ordinal position and educational attainment of the designated sibling.
Thus, we expect our sampling design to be considerably more efficient
than a simple random sample.

In the 1977 survey of designated siblings, we will measure educational
attainment in detail; additional information about secondary schooling will
help us in locating test scores. We will ascertain current labor force
Status, occupation and other job characteristics, work experience and
earnings in 1976, and other variables drawn from the 1975 instrument,
including military service and vocational training, first and 1970
occupations, marital and fertility histories, aspirations for themselves and
their children, and levels of social participation. In addition to these
replicate items we shall ascertain whether the designated siblings were
full, step, or adoptive Siblings of our 1975 respondents and whether the
sibling pair were reared in the same household.

Because of its possible importance as a component of sibling
resemblance, we are obtaining the designated sibling's Henmon-Nelson
score, or other mental ability test score (which we already have for
members of the original samples). These are accessible through the
Wisconsin State Testing Program, whichis affiliated with the University
of Wisconsin. Test seores are stored on campus in bound volumes for each
semester and by locality, school, and grade-level within volume. Listings
include identification of the test on which the score was obtained. In
virtually every case test scores on the full sample were obtained from the
Henmon-Nelson test administered in the 11th grade, but in more recent
years (than 1956, the full sample's junior year) coverage has declined, and
we may have to use scores on other tests. Also, because of variations in
test coverage (and because some siblings did not reach the junior year in
high school) in some cases we shall ascertain test scores at other grade
levels.

We have carried out a very preliminary pilot effort to ascertain test
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scores for a sample of over 200 designated siblings about whom

information was reported by our respondents, using only the files of the

Wisconsin State Testing Service, and we have found, without exhaustive

effort, test scores for almost two-thirds of those in the sample. We

believe that we can improve considerably on this record by using

additional information from our interviews with the designated siblings.

We will also be able to organize and systematize our search procedures

more effectively once we get into production. We do not think it over-

optimistic to expect to obtain test scores for 75 to 80 percent of the

designated siblings.

Effeets of Families and Family Structure

The structure of the completed or proposed Wisconsin data is complex,

and the potentials and problems in analyzing the data depend on which

persons and variables are involved. In the completed, cross-sectional

survey of Wisconsin high school graduates we have a complete roster of

the living siblings of each 1975 respondent. We know the labor force

status and occupation of one randomly designated sibling of each

respondent, and wepropose to find an ability measure for each designated

sibling as well. In the subsample of designated siblings we will have self-

reports of education and occupation, as well as other variables drawn from

the instrument used in the original sample. Thus, there is an inverse

relationship between the size or scope of the sample—full sibships, all

respondent-random sibling pairs, and a subsample of respondent-sibling

pairs--and the scope of the data available for both members of the pair.

What are the main analytic problems in the analysis of family or

sibling-pair data? The first problem is to describe the data in a way that

mirrors the effects of family structure and family membership in a full

sibship of selected families. Second, we discuss the use of data on

selected pairs of sibs, rather than full sibships, and the selection of a

sample of families in which at least one sibling completed 12 years of

school. Finally, we consider the inclusion of other variables in the

analysis, which may be additional factors in a single-equation model or

intervening variables in a multi-equation causal model.

In brief, how does one analyze sibling or family data? The effects of

family structural variables may be measured using statistical models for

the analysis of variance or (equivalently) dummy variable regression

analysis. Variables like size of the sibship, birth order, sex, birth year,

spacing between births and prior achievements enter the models as

explanatory factors or regressors. Most importantly, the main effect of

family membership enters the design as a separate factor in the analysis

of variance or as an additional regressor in the dummyvariable regression

analysis. It is the use of family membership as a factor in the design

which distinguishes our analysis from those which might be carried out in

a cross-section of persons. Whether we use data on sibling pairs or full

sibling rosters, this design eliminates confounding of family size and birth

order with other characteristics of families. These analyses might be

carried out in other ways, e.g., by taking deviations of individual outcomes

from family averages (see below), by taking differences between outcomes
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in selected sibling pairs, or by taking differences between weighted
averages of outcomes in different birth orders. All of these schemeswill
produce equivalent results, if used correctly. However, we believe the
analysis of variance design is easiest to communicate, while a regression
set-up is the most convenientandefficient in practice.

The effects of family membership may be analyzed by measuring the
resemblance of siblings. A gross measure of intra-family resemblance
may be obtained by averaging differences between siblings in respect to
an outcome measure. The variability in average deviations between
siblings will differ from that in average deviations between non-siblings as
a mathematical function of the correlation between siblings on the
outcome in question. That correlation reflects a balance between the
factors which make siblings alike and different from one another. Sibling
correlations may be analyzed in detail using structural equation models
which explicitly or implicitly represent the processes which make siblings
resemble each other or differ from one another. Thus, the statistical
analysis of sibling correlations ultimately explains and interprets the
observed differences between siblings (see equation 7 below).

Without attempting to exhaust either the problems or potentialities in
the Wisconsin data we shall describe some possible analyses of family and
sibling-pair data. This description is not very refined or rigorous, and we
intend it merely to indicate the feasibility and the style of the analyses.

Size and Ordinal Position in Full Sibships

We begin with a very simple model of the effects of birth order and
family size on a single outcome variable in a full sibship. Consider a
single outcome, X, e.g., educational attainment, whose, value may be
denoted by Xia for the memberof the ith family in the jh birth order in
families of sibship size k. Assumethat in each of k family sizes, k>1, we
have observed all of the Xiay in a sample of families. That is, the

situation resembles that of our full roster of siblings' educational
attainments. For the moment weignore the effects of all variables not
explicit in the design, e.g., sex, birth year, social background, or whether
the observation pertains to a respondent or to one of his or her siblings.
Families are nested within sibship sizes, and persons within families.
Within each sibship size the design is a complete crossea and balanced
two-way layout with one observation per cell. However, because 0< j< k
for all k, the overall design looks like a staircase. There is variation in
the number of sibships of each size and, depending on the latter, in the
number of persons in each birth order, even though there is a uniform
distribution of birth orders within any family size. We may write the
model as

Migr lh Fat BE TY tO t Cig (1)

where y= grand mean of X
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a; = effect of the jth family, a random variable with E(a,) = 0

8, = effect of the jn birth order, #n., 8 =0

- th «pe ce, E _
Yue effect of the k™ sibship size, 7m, Y,, = 0

6. =effect of the jx birth order-family size combination,
J

ik = a random disturbance, Ele) = 0

Note that this is a mixed model, since birth order and sibship size have

fixed effects, while family is a random variable. We include possible

interactions between birth order and sibship size, but nesting of families

within sibship sizes precludes an ik interaction, and with one observation

per cell the ij interactions within levels of k are assumedto reflect error.

To avoid the normalization problems imposed by the staircase design,

we specify the model for fixed k as

Ri = Hy FOE t Bit eiiR- (2) .

= = = =— d —SO HL eH + Ye B aK B + 6 ik? and E(a,) Ble;i) Pix 0

n

Further, let X ix = mean achievementin the jn birth order = 2 Xi/My
. / Th

n, k k
S . . . . . kK

= = 2 2d = xX . kK.and Xx mean achievementin sibships of size k i 4 Xa/kny, rd

We may estimate 8 as
jk ny. nk

8 =X. -xX = y + e.. /n_ )
Bi Xe Rt aMTP FB RKB)
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- ; + +
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+

2 Bak aae
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sinee K = Q, and y 3k a./kn, = kok /kn,, = sk a./n That is, even
SR ee ,

though the family effect is a random, variable, it does not bias, nor

contribute to variance in our estimator, Big? of the birth order effect.
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Finally, E (By) = Bik ; that is the difference between mean achievement

in a birth order and the mean forall birth orders is an unbiased estimator
of the effect of the birth order.

If the model of equations 1 and 2 were correct, with minor
modifications it could be applied to outeomes measured only for sibling
pairs as well as to the full sibling rosters in the Wisconsin data (for which
we have measured educational attainment). That is, if we had first
sampled sibships and then random pairs of persons within sibships, we
would only have to deal with a problem of randomly deleted measurements
of achievement. Of course we always know the structural characteristics
of the full sibship--which may be obtained from birth order, sex, and birth
year.

However, as we argue below, the model of equations 1 and 2 cannot be
applied to the Wisconsin data (for full sibships or for respondent-sibling
pairs) because respondents will not be uniformly distributed across birth
orders within sibships of any size and because there is a lower bound on
the schooling of respondents, but not on the schooling of other membersof
their sibships. It is convenient to pursue these and other analytic
problems in a regression framework rather than in the notation of models
1 and 2.

Practicalities and Elaborations

As a practical matter there is no need to treat each family as an
explicit level in an analysis of variance design. There are too many
families to make this convenient. It is similarly impractical to enter a
dummy variable for each family in a regression equation which also
includes other explanatory variables. However, exactly the same result
may be achieved by the simple procedure of regressing individual
deviations in achievement about the sibship mean on deviations in each
regressor about the sibship mean (see Hauser, 1971; and Hauser, Sewell
and Alwin, 1976 for applications of this idea in the measurement of school
effectiveness). That is, the within-family regressionswill give exactly the
same effects of birth order and its interactions with family size as will
the models of equations 1 and 2. The same procedure may be applied to
data for individuals in full sibships or in respondent-sibling pairs. Of
course the degrees of freedom in the standard regression output will have
to be adjusted to reflect the fact that we will have used a degree of
freedom in computing each family mean.

The effeets of sibship size may be modeled in an auxiliary regression,
to which we may add other variables affecting both family size and mean
family achievement. For example, parental socioeconomic standing,
ethnicity, or religion may account for part or all of the association
between family achievement levels and sibship size. This part of the
analysis can be carried out as a separate operation because these other
explanatory variables do not vary from sibling to sibling within the same
family. It may be desirable to estimate adjusted family achievement
levels at some point in the analysis, where the adjustments are for
differences in family composition on variables which vary both within and
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between families, like birth-year and spacing.
Once family has been eliminated as an explicit factor in the design, itbecomes easier to look at the effects of other variables. Several variablesmight be added to the design, e.g., a respondent designator, sex, priorachievement, or birth-year. Throughout the following discussion it shouldbe understood that we are always referring to within-family regressions,even wherethat is not stated explicitly.
By construction, at least one memberof each sibship in the full siblingroster must have been a senior in a Wisconsin high sehool in 1957.Obviously, this affects the characteristics of families in the Wisconsin

sample as compared to other possible samples of familes. For example,one might expect the Wisconsin sample of families to be better off on the
average, say, than the families of a sample of sixth graders in Wisconsin
schools in 1951. Moreover, within the Wisconsin family sample the
achievement of respondents in the 1957 sample might differ from those of
their siblings. Respondents, but not their siblings, must have reached the
end of the senior year of high school. If respondents are selected on
achievement, and respondents are not randomly distributed over birthorders for sibships of each size, the effects of birth order will be
distorted.

In faet there are demographic reasons why the distribution of
respondents over birth order may not be uniform within any given family
size. That is, families were classified by sibship size after the fact, whilethe occurrence of a birth in a given year is a funetion of family
characteristics and general social and economic conditions, including thedistribution of potential mothers by parity. For example, in 1947, 43
percent of births werefirst-born, so a Sample of persons in that cohort
would include a disproportionate number of first-born respondents(Schooler, 1972). Moreover, even if births in 1938-39 (when most of theWisconsin respondents were born) were uniformly distributed by parity
within completed sibships, we would expect the distribution of survivors tohigh school graduation in 1957 to be different if there are any effects of
birth order on achievement. That is, because there is a lower bound on
the schooling of those in the original sample, respondents should berepresented disproportionately in birth orders favorable to high levels of

respondent effeet may vary from one sibship size to another. If the effectis substantial, we

_

shall carry out a post hoe adjustment of meanachievement levels at each sibship size. We take some comfort in thefact that selection of the respondents is explicit on education. That is,respondents should differ from the larger pool of siblings only because ofthe floor on their educational attainment. In analyzing achievementssubsequent to schooling there should be no effect of respondent statusonce schooling is entered as a regressor. There is no problem inrepresenting the effects of sex in the within-family regressions. Wesimply add a variable for each individual which is the deviation of adummy variable for his/her sex from the proportion of one sex in thesibship.
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in the ease of first-borns, for whom there will already be a birth-order

dummy variable, regardless of completed sibship size.

Sibling Resemblance

In studying the effects of family structural variables we have

attempted to free our observations of the main or common effect of

family membership. The object in studying sibling resemblance is to

measure and interpret the main effect of family membership. From

existing theories and data we would expect that commonalities of

measured socioeconomic background and ability will not fully account for

the resemblance of siblings in respect to achievements like schooling,

occupational standing, or earnings. That is, families have coherent and

persistent patterns of interaction and organization which influence the

life-chanees of their members and which do not merely reflect their

position in the hierarchies of social or intellectual standing. With data

like those we have collected or will collect for the Wisconsin sample, we

ean specify the relative importance of observable and not directly-

observable family characteristics, and we can measure the relationships

between observable and unobservable characteristics. In this way we may

obtain some clues about the content or meaning of the unobserved family

characteristics.
In this exposition we shall, for the most part, ignore the possible

influence of family structural variables which tend to induce variation in

the achievementof siblings. However, such variables may be brought into

the analysis at some points to help us to specify models in which the

effects of unobserved family characteristics can be estimated from

empirical data. Moreover, it should be kept in mind that structural and

temporal differentiation within families (as well as genetic

differentiation, including that by sex) place an upper limit on the degree

to which siblings can resemble one another.

How does one measure and interpret sibling resemblance? Let Xpi be

the achievement, say, the educational attainment, of the jth respondent,

and let x Sj be the achievement of a randomly selected sibling. As a gross

measure of sibling resemblance, we might take the differences between

siblings, Xpj 7 Xgj Over all respondents (families) in the sample, say, XY

How do we know whether this average difference indicates a lot of

resemblance amongsiblings? By definition,

Var (Xp; - Xq,) = Var (xp) + Var (x,.) - 2Cov(xp., Xgi)

= Var (Xp) + Var (Xo) - 2rag Var(x,) Var(x,.), “

where Var(xp; - Xg:) = the variance of the inter-sibling difference in

achievement,

Var (xp); Var(xg,) = variances of respondent's and

_

sibling's

achievements, respectively,
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Cov(x X:) = covariance of the two siblings' achievements,
Ri’

and Ppg = Pearsonian correlation between the achievements of the two

siblings. Variances are inherently positive quantities, and we expect the
covariance (and correlation) between siblings' characteristics to be
positive as well. If siblings' achievements were uncorrelated, the variance
of intra-pair differences would be just

Var(xp; - Xo.) = Var(x,;) + Var(x,.), (5)

and if both respondents and siblings were drawn randomly from full
sibships, we would have Var(xp) = Var(x,.), so equation 5 would become

Var(xp; - Xq:) = 2Var(xp,5) = 2Var(x,.). From equation 4 it is obvious that

the variance of the intra-pair difference decreases as the correlation
between siblings' achievements takes on larger positive values. In the
limiting case where the correlation is unity, the variance of the intra-pair
differences falls to zero. Thus, the variance of inter-sibling achievement
differences is an equivocal measure of sibling resemblance, except where
it can be compared with the sum of the variances in the achievements of
each sibling. In turn the outcome of that comparison depends on the
correlation between siblings' achievements. For this reason our analysis
will focus on the measurement and interpretation of correlations between
the achievementsof siblings.

It is convenient to describe the analysis of sibling correlations using
the method of path coefficients (even though we will ultimately depart
from several of the conventions of that method in the estimation of
effects and the presentation of results). Consider the simple path diagram
in Figure 1, which represents the following structural equation model:

Y4 = aX, + bX, + CX4 + Pyyu

= * * *and Y,. a*x, + b¥*x, + ¢ Xy + Dev, (6)

where Y4 and Ye are measures of the same achievement variable, say,

years of schooling, for members of a sibling pair, and X1> Xo, and X. are

measures of family background characteristics shared by the sibling pair,
e.g., mother's education, father's occupational status, and family income.
For convenience of exposition the variables are understood to be
expressed in standard form (as deviations from sample means, divided by
sample standard deviations), but this is not intrinsic to the method.

As indicated by the straight, unidirectional arrows, the achievementof
each sibling is taken to depend on all 3 background variables, and in
addition some variability in the achievement of each sibling may be
attributable to random disturbances (u,v), whose meaning we cannot
specify directly, but which are taken to be uncorrelated with the
background variables. As indicated by the curved, bi-directional arrows
connecting X1> Xo: and Xo, there are presumably correlations among the

background variables, but these are taken as observed and not further



Figure 1: A path modelof the effects of measured family
background variables on the achievementofsiblings
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Figure 2: Effects of family background variables on the
schooling of OCG respondents and their best living brothers:

U.S. men aged 35 to 39 in March 1973 (N 1800)
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interpreted in the model. There is a symmetry of structure between the
top and bottom halves of the diagram, but we need not assume equality in
the coefficients of the background variables between the two siblings.
Thus, in general a # a*, b # b*, ec #4 c*. However, if sibling pairs were
drawn at random from a population of families, one might wish to impose
a restriction of equality between coefficients in the upper and lower
portions of the diagram. Weshall see below that the assumption of
equality (or some other determinate relationship) between certain
coefficients of variables affecting each memberof a sibling pair must be
invoked in more complex models of sibling resemblance.

Finally, it is evident from the diagram that u and v may becorrelated.
That is, whatever affects the achievement of persons beyond measured
background variables, it may be the same thing, or at least partly the
same thing, for members of the same sibship. The assumption that the
correlation of disturbances (ry) reflects the functioning of unmeasured

family background characteristics is basie to the specification of more
complex models of sibling resemblance.

By repeated application of the basic theorem of path analysis we may
write the correlation between the observed y-values of siblings as

Pyg5 APy5 * Ogg Ferge + DalyyP5y
* * *a(a*¥ +b Poy +@ ro,)

+ bla*ro, + b* + e*P, 9)

(7)

= [aa* + bb* + ec*]

+ [ (ab* + ba*®)r.. + (ae* + ea*)r.. + (be* + eb*)r
12 13 23!

* PauluyP5y! °

The term in the first pair of brackets gives the componentof thesibling
correlation attributable to the direct effects of common causes. The
term in the second pair of brackets involves the effects of correlated
common causes, and the last term gives the contribution of the
disturbance correlation, i.e., unmeasured shared aspects of family
baekgrouna.

In general we cannot expect the effect of unobserved family
background variables to be negligible. For example, Figure 2 shows
regressions of the schooling of 35-tc-22-yearold U.S. men and their oldest
(not necessarily older) brothers on four socioeconomic background
variables (father's occupational status, numberof siblings, broken family,
father's schooling). The data pertain to about 1800 respondents in the
1973 Occupational Changes in a Generation survey carried out by the U.S.





Figure 3: A path model of the effects of measured and unmeasured

family background variables and sibling characteristics

on the achievementof siblings
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NOTE: xy and y, are characteristics of a respondent; xX, and ¥g»Fespectively, are the same character-
istics of a sibling; Wo and Wa are common measured background variables; F is an hypothetical construct
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coefficients are known.) There are two interesting cases in which to

consider the identification of the model of Figure 3. In the first case all

of the 15 correlations among the six observed variables are taken to be

distinet; that is, we impose no conditions of symmetry or equality between

the non-zero coefficients pertaining to the two membersofa sibling pair.

In this ease three correlations among the exogenous variables are fixed as

observed (Tyo, Tia Pog): and we estimate six effects of the exogenous

variables (a, b, e, a*, b*, e*) and four other correlations involving F (d, d*,

e, f). There are a total of 13 correlations or effects to be estimated from

"15 correlations among observed variables. The excess of observed

correlations is not a sufficient condition for there to exist a solution for

each unknown parameter, but in the present case such a solution does

exist. (In faet there is more than one solution; the model is

overidentified.) In the other interesting case we assume a population of

sib pairs drawn strictly at random from a sample of families, so there

must be perfect symmetry (equality) in the results for each memberof a
pair. That is, a = a*, b = b*, e = c*, and d = d*. While we have fewer

parameters to estimate in this case, we also have fewer distinct observed

eorrelations. Thatis, Tis = Pag? Tig = Pass Tig = Page M13 = Page leo = Peo:

and Peg = Teg, SO there are only nine distinct elements in the correlations

among the six measured variables. However, there are not only two
distinct unanalyzed correlations among exogenous variables (15 = Togs

Pigs three distinet effects of the exogenous variables (a = a*, b = b*¥, ¢ =

e*), and three distinet correlations involving F (d = d*, e, f), Again, in
this case there is more than enough information to permit estimation of
each of the parameters of the model. We shall not pursue this example
further, but simply close by reiterating that the model of Figure 3 raises
issues of specification and identification which will recur throughout our
analyses of sibling resemblance.

Just how elaborate are these models of sibling resemblancelikely to
become? Figure 4 shows a path model of the achievements of U.S. men
and their brothers which Hauser and Dickinson (1974) constructed from a
set of correlations assembled by Jencks, et al. (1972) from diverse data
sources. Neither the specification of the model nor the numbers should be
taken seriously except as an indication of the degree of elaboration
toward which we shall be aiming in our analyses of sibling resemblance.
Because of limitations in the available data, the model of Figure 4
assumes the identity of corresponding coefficients of brothers throughout
the model. We shall not have to be quite so restrictive to obtain

estimates in the Wisconsin data. Also, the model of Figure 4 does not
permit the measured common family background characteristics (x, and

 

1 Xo and Xe are each

unobserved variables. As indicated above, we shall permit both measured
and unmeasured family characteristics to affect outcomes directly. At

the same time weplan to be less ambitious in offering interpretations of
the relative importance of heredity and environment. That issue is

Xp) to affect any measured outcome variables; x
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treated explicitly in the model of Figure 4, but we do not believe there is

any relevant information about it in the Wisconsin data.

One substantive observation about the model in Figure 4 seems

appropriate. Even after such intervening outcomes asrealized ability and

schooling have been taken into account, the family of orientation has

persistent effects on occupation and income. Such fundamental

tendencies toward the stratification of opportunities across generations

are likely to escape detection in a sample of persons, but not in a sample

of families. In a cross-section of persons one could not estimate the

effect of family of orientation, nor even discover the limits of a proposed

explanation which did not inelude that effect. For example, the typical

"status attainment" model looks like the upper or the lower half of Figure

1 or Figure 2, and half the model would not tell you that the model could

not account for the resemblance of siblings. This is the reason efforts to
measure and interpret sibling resemblance are of such great importance in
the study of social stratification and inequality.
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COMMENTSON W. SEWELL'S AND R. HAUSER'S

"ON THE EFFECTS OF FAMILIES AND FAMILY STRUCTURE"

Ann P. Bartel
Assistant Professor of Economies, University of Pennsylvania

In this paper, William Sewell and Robert Hauser discuss several
methods by which the Wisconsin Data can be used to measure the effect
of family background on an individual's educational attainment and post-
school achievement. This data set has several features which makeit
quite attractive for studying the effects of families. First, it contains
information on parental income at the time the respondent was a high-
school senior. This figure was obtained directly from tax records andis,
therefore, relatively free of reporting error. Second, there is information
on both male and female siblings. It is therefore possible to separately
estimate family effects for same-sex and cross-sex pairs. Finally, the
collection of data on the Wisconsin siblingsis still in progress and we have
the rare opportunity of ensuring that all the necessary variables are
obtained. |

In my discussion, I would like to suggest some additional waysin
which the Wisconsin Data can be used to study the effects of families as
well as to point out the additional sibling variables that should be
obtained. Following Sewell and Hauser's format, I will first discuss the
problem of explaining sibling differences and then handle the question of
why siblings resemble one another.

Sibling Differences

As Sewell and Hauser suggest, within-family regressions can be usec
to estimate the effect of birth order, net of the family effect. This
procedure would enable us to determine if, for example, the first-born in
the family acquires more schooling and if, holding schooling constant, he
does better in the labor market than a youngersibling. Sewell and Hauser
do not, however, mention the importance of holding certain variables
constant in order to obtain the true birth order effects in these
regressions. For example, in the schooling equation, one should
standardize for the differences in ability between the respondent and his
Sibling. The first-born child could have a higher pre-school ability because
his parents spent more time with him and this higher ability could explain
his higher educational attainment. In order to examine whether birth
orcer has an effect on earnings, one needs to hold eonstant differences in
education, differences in labor foree experience, and differences in hours





CHAPTER 9

ARE BROTHERS AS GOODAS TWINS?

Gary Chamberlain*
Harvard University

1. Introduction

We shall try to determine whether twin data can identify more
general models than can be identified just using brothers. The issue is not
whether a twin sample will give more precise estimates (for a given
sample size), but whether it will allow us to answer different questions.
We want to know if the twin data is more useful in controlling for omitted
variables—for example, in controlling for unobserved "ability" in order to
obtain unbiased estimates of the effects of schooling on earnings. If the
only omitted variables are either genetic or common family background,
then within-pair regressions using the monozygotic twins will identify
models that cannot be identified using sibs. But if the omitted variables
have non-genetiec components that vary within families, then a modelis
identified using data on twins only if it is identified using data just on
brothers.

2. The Main Results

The following one-factor model provides a simple illustration of our
results:

Vij = I ha + "a

Y2ij ~ Y1 Y 14; * Ag AG t UQa;

Y¥3ij ~ Y2 Mig * Vs Yoig. * 43 Pag * Usigt

The subscripts refer to the jth individual in the ith family. The common
omitted variable h is the only source of cross-equation correlation in the
resicuals, since the u's are assumed to be uncorrelated with each other.

 

*I am grateful for ciseussions with A. Goldberger, Z. Griliches, and P.
Taubman. Financial suppert was provided by the NIE and NSF.
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Sinee h is correlated with Vy and Yoo estimates of the Y's based on

regressions that do not include h are biased. The u's are assumed to be

uncorrelated across members within a family: E(usy Unig ) = 0 if

a # 8 ;hence the cross-sib correlations are generated solely through h.

We shall model these correlations by assigning h a variance-components

structure:

where the f. are independent and identically distributed across families
2

and the Si are independent and identically distributed within families.

Hencethe correlation on h between a pairof sibs is

2
).Pr g

An example of the model has Y, = years of schooling, Yo = 8 late

_ 2 _ 2 2

(post school) test score, which depends on schooling, and Ya = earnings.

The unobservable h ean be interpreted as early "ability" Then we can

interpret U, as measurement error in the test, in which case a plausible

restriction is Y 3 = 0. This excludes the measured seore from the

earnings equation since the true score components (y, and h) are

ineluded.®

This model ean be applied to sibs, dizygotic (DZ) twins, or

monozygotic (MZ) twins. We shall link these three populations by

assuming that the structural y's, A's, and ©'s are the samein all of

them. We assume, however, that the sibs and DZ twins differ from the

MZ twins in, the decomposition of h into betweeen- and within-family

components.

We ean model these differences by decomposing

h.. = G.. + N.
ij ij ij’

where G is the genetic component and N is the non-genetic or

environmental component. So the family effects f. include both common

genes and common environment. A convenient simplification is to assume

a zero correlation between G and N. This can be achievedby interpreting

G as the part of h that is (linearly) predictable from genes, with the

residual N uncorrelated with G by construction. If instead we carry along

a correlation between G and N, then the twin model will be even less

identified, strengthening our results.

With G and N uncorrelated, the cross-sib correlation on h

decomposesas follows:
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Py = veg t+ A-¥)e,X,

where 0 G and Px are the cross-sib correlations on G and N, and

yo = onK of + a4). For the MZ twins, p = 1. If there is noG
dominance, epistasis, or assortative mating, then fC. = .5 for the DZG
twins.” Also we might constrain op N and | to be the samefor both twin

types. But ?P h will still remain unconstrained for both MZ and DZ twins,

since in general 0N and ¥ are unknown.

The reduced form of the modelis

y Fd hot &,, k = 1, 2,3,

where

qi ry
d - -g d., r, + Y; 5

d. As * Y Apt ¥30) + YY Ap >

and

1 | "4

~ {© = Uy * ¥) Yy

©; Us * Yo Uy * ¥z(uy + ¥; 4)

Under normality, or limiting ourselves to second order moments, the
distribution of y' = (y,> Yo: Ys) is completely characterized by the
following covariance matrices (we .are suppressing the intercepts and
assuming that all means are zero):

Q = Ey... vi
~ ~ IJ Al

dd' + V
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and we have set the scale of the unobservable by the normalization

ohne 1. @ is the cross-sib covariance matrix, generated by the family

effects fs » is the within-family covariance matrix, generated by the
nw

individual effects Si; and by the disturbances Ui and 2 = ore is
~

the total covariance ‘matrix, including both family and individual effects.

The identification problem in the sib model is to solve for the

structural parameters from Q and Q (or y ). A simple count of the

unknown parameters gives 3 Y's, 3 As, 3 O's, and a for a total of 10

parameters. The symmetric matrices {& and 9 eontain 12 distinct

elements, and so they appear to generate enough equations. @ , however,

is constrained to have rank 1, implying that it has only 3 free ‘elements.

So there are 10 unknown parameters and only 9 equations; hence the sib

model IS, not identified without an additional restriction, such as

Y 3 = 0.

In the twin model there is a eross-sib covarianee matrix for the DZ

pairs:

_ !

Qn d d P HD’

a eross-sib covariance matrix for the MZ pairs:

= !

Oy

=~

22 nw
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and a total covariance matrix:

Q = dd! +V,

which is the same for both twin types. The two twin types differ only in
the decomposition of Q into between- and within-family components.

The additional set of cross-sib covariances might appear to provide
enough degrees of freedom. Even given the rank = 1 constraints on the
@ 's, three additional equations would be more than enough, since thereis
only one additional parameter,due to a separate o0 hD and Pom for the

 

DZ and MZ twins. But there are constraints across On and © Mi
0 Mo o nM o Dp? hence the additional set cf cross-sib covariances
~" o hD

generates only a single additional equation, giving 10 equations and 11
unxnowns. Thus the twin mocelis just as underidentified as the sib model;
in this example they each need one additional restriction.

An exception to this result occurs if P, = 1 for the MZ twins.

Then there are only 10 unknowns, and the model ean be identified by using
the MZ twins to form the differences within the pairs on each of the
variables: Yea 7 ‘Nig: Regressions based on these within-pair

differences will give unbiased estimates since genetic variables are
eliminated. But in general we should not impose a pricri that there is no
within-femily variation in the omitted environmental variables. If we do
not make this assumption, then the conditions for identification in the
twin model are identical to the conditions in the sib model.

3. Extensions

“ne extension to more equations is straightforward. In the sib model
with m equations, there are m(m-i)/2 y's (still assuming, for the
moment, a triangular structure), m A's, m O's, and op A for a total of

m(m+1)/2 + m + 1 structural parameters. Counting up the unrestricted
elements in the reduced form gives m(m + 1)/2 from Q and m from the
rank one 9 =d d' Pip for a total of m(m+1)/2 + m; hence one~~ ON 1

additional restriction is still needed for identification.
In the twin model there are m(m+1)/2 + m+ 2 parameters, due

to the separate p 4's for DZ and MZ twins. In the reduced form,
O5 = dd PD iS proporticnal to QO yr d dip HM?

accitional set of cross-sib ecvariances adds only one more equation. So
there are m(m+1)/2 + m+ J equations, and once egain the degree of
uncericentification is precisely the same es in the sib model.

In the non-trianguler case, it is still true that the reduced forre of
the twin mocel has only one more free parameter than the reduced form
of the sib model. For the reduced form ean still be written as
y =d h +e, and so 0 = d a Pam is still proportional to~ ~ ~ ~ ivi

hence the
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d d'! Since the twin model still has one more structural
8p ~ RA Pnp’
parameter, the degree of over- or underidentification is the same as in the

sib model.

Finally, we want to extend our results to the general n-factor case.

The notation is

. = Ah. + u..
DNs ~~) ~ I

h
wows = . + es

ij L 1 g ij’

where I is an m x m matrix of structural eoefficients (the y's), y is an

m x 1 vector of endogenous variables, A is an m x n matrix of factor

coefficients, h_ is an nx vector of unobserved factors, andu_ is an m x

1 vector of structural disturbances; f is ann xl vector of family

effects, including common family background and common genes, and g

is ann x1 vector of individual effects. Let

E(f f' = Dra, E ' = ,(f f") Op Ee g') es

and

» + p = ?
~T ~y ~n’

We assume that 9 h is the same for both twin types, whereas the

decomposition into Qe and ¢_ is different for the DZ and the MZ twins.
~

The reduced form is

where Dj = Ir” A is a matrix of reduced form coefficients, and
e = TT u is a vector of reduced form disturbanees. The reduced

MN -™

form covariances are

0 = t

~~ PR eep B
- 1

Oy =D Ley D>

where V = Ble ©e ') = ct Ur“Land U = E(u u') = diag

Jo peo? OM ~The additionalinformation in the twin model comes

from the additional set ofcross-sib covariances. If, however, there are no

restrictions on Oy ep or 9 eM? then we can show that the additional

set of eross-sib covariances does not help to identify the Y's.
In order to consider the potential restrictions on 4 7 o fp and
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Pen we decompose h_ into h =G + _N , where G is a vector of~w

genetic effects and N_ is a vector of environmental effects. As before
we assume that G “and N are uncorrelated; allowing for correlation
would only strengthen our results.

Then the factor covariances are

—
1

ob - E(G Qi) + E(N y Nu?

Qe = E(G, G's) + EN, N's ), a# sp.

For the MZ twins, we have KG, G'.) = E(G q Gio). A very restrictive
assumption on the genetic”components for fhe DZ twins is that
K(G q Gin) = 5 E(G

4

G', ); a less restrictive assumption would only
strengthen our results.

These assumptions imply that

pp 5 BGa Ga) + Bq Nig)
Pen =  EGa Gy) + E(Nq Ny).

Since ¢ h? ? op and py depend on different linear combinations of
! ATT a 'K(G G'); E(N Ni), and E(N, N's), we conclude that ? and the

@ ,'s are unconstrainedif there are no restrictions on the’decom ositionf~~!

of the environmental covariances into between- and within-family
components. In general there will not be any restrictions of this kind, and
so g h d ep? and ? fM will be uneonstrained.

In that case, the availability of On in addition to &, and ©
~

(which distinguishes the twin model from the sib model) does not help toidentify the vy 's. At most On allows us to solve for ¢ eM? without
helping us to extract I from % and @x ~ ~D

Note first that QO Dd and Out have the same column spaces. Soro!

given a Gcecompcsition of 9. into » D> S S' ,whereS ismxn, we
ean find an n x -n matrix A such that 9 Mt =SA A' s' . Thus 0 M adds
only n(n + 1)/2 degrees of freedom to the reduced form, corresponding tothe n(n + 1)/2 free elements in the symmetrie matrix A A!The n(n + 1)/2 degrees of freedom in ~ yy Will at’most allow us to solve
for the n(n + 1)/2 elements in oeng So if the & 's are unrestricted, then
© y, Provides no information on 2 ep or 9 nh Lhe problem of extracting

re

I from £& and Oy is unaffected by Op since the additional set of
Cross-si'} covarianees does not provide any of the structural parameters
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that determine ©& and O p- We conclude that the additional cross-sib
ww

covariances do not add to the identifiability of the Y 's.
As in our initial example, an exception to this result occurs if the

only non-genetie omitted variables are common family background. In

that ease E(Ny Ni) = E(Ny N'z), and so the $'s are restricted. Then the

Y 's ean be identified through regressions based on the within-pair

differenees for the MZ twins. But in general we should not impose a priori

that there is no within-family variation in the non-genetie omitted

variables.

4. Conclusion

Our framework has been a simultaneous equations model. Its novel

feature is the structure of the residuals. This structure combines factor
analysis with a variance-components specification. Common left-out

variables motivate the factor analysis approach; the availability of family
groupings allows us to impose a variance-components structure on the

left-out variables. The problem is to combine these residual covariance

restrictions with the more conventional slope restrictions in order to

identify the structural coefficients.
Our question is whether the identification conditions in the twin

model are less restrictive than in the sib model. Vie are able to answer

this without specifying fully the identification conditions, although a
complete analysis is available for the triangular case.

The apparent advantage of the twin model is that it has an

additional set of cross-sib covariances. These reduced form covariances
appear to generate more than enough equations to solve for the structural

parameters. But there are constraints connecting the cross-sib

covariances for the DZ and MZ twins. In the one-factor case the two

covariance matrices are proportional to each other; in general they have

identical column spaces. These constraints reduce the effective degrees

of freedom in the twin model so that tne degree of over- or

underidentification is precisely the same asin the sib model.
An exception to this result occurs if the only omitted variables are

either genetic or common family background. ‘Then the within-pair

regressions for the MZ twins will identify models that cannot be identified

just using sibs (provided that there is genetic variation in the omitted

variables). In general, however, we should not assume a priori that there

is no within-family variation in the left-out environmental variables. If

we do not make this assumption, then brothers are as good as twins.
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FOOTNOTES

lWe have suppressed any exogenous variables in order toconcentrate on the novel feature of these models—namely that part of the

2Balestra and Nerlove (1966), Wallace and Hussein (1969), Nerlove
(1971), Madalla (1971), and others have dealt with the single-equation
version of this variance-ecomponents model.

>See Chamberlain and Griliches (1975, 1976) for empirical
applications of such models using data on brothers. |

4or a critical discussion of twin models, see Goldberger (1976a, b).There are empirical applications in Behrman and Taubman (1976),
Taubman (1976), Behrman, Taubman, and Wales (1976), and Jencks andBrown (1976).

See Jeneks (1972), Appendix A.

°Necessary and sufficient conditions for identification in variance-components models with a triangular structure are given in Chamberlain(1976a). For an instrumental variable interpretation of these conditions,see Chamberlain (1976b).

"See Chamberlain (1976a,b).
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CHAPTER 10

TWIN METHODS: A SKEPTICAL VIEW

Arthur S. Goldberger
Professor of Economies, University of Wisconsin-Madison

\. INTRODUCTION

On observed variables, MZs (identical twins) are more similar than
DZs (fraternal twins). On the latent variable, genotype, it is known that
MZs are more similar than DZs. On the latent variable, environment,it is
not known whether MZs are more similar than DZs. Assumethat they are
not. Then attribute the excess observed resemblance of MZs to their
excess genetic resemblance, thus estimating therole of heredity.

That is the gist of the twin method. Since the equal-environmental-
correlation assumption is questionable, the estimates produced by the
method should be viewed skeptically.

(2. A UNIVARIATE MODEL

Consider first the model for a single observed variable. An
individual's observed phenotype Y is determined as the sum of two
unobserved components, genotype X and environmentU:

Y=X+ U.

The two componentsare uncorrelated so that total phenotypic varianceis

2 _ 2 2
Oy = oy + Oy

He is paired with another individual for whom Y* = X* + U*. Their
phenotypie covarianceis

Ovyye = Sxxe * Soy
on the assumption that Oyyx = 0. Standardizing all variables we write

An earlier version of this paper was presented at the MSSB

Kinometries Conference,held at Williamstown, MA, on May 24-26, 1976. My

research has been facilitated by grants from the Institute for Research on
Poverty and the Graduate School Research Committee at the University of

Wiseonsin, the National Science Foundation, and the Center for Advanced

Study in the Behavioral Sciences. I have drawn freely on discussions and
correspondence with Gary Chamberlain, John Conlisk, Christopher Jencks,

Richard Lewontin, Michael Olneeck, Paul Taubman, and Terence Wales.

Computational assistance on Section 7 was provided by David Stapleton. I

am grateful for all this ::elp but retain responsibility for errors.
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y = hx + eu

(1) leh + e°
2

c = gh” + pe

where _ _ _
y = Y/oy , x = X/o, ; u = U/o,, ,

2 2,_2 4
ho = O/o, = heritability

e” = oF/o, = environmentability

c= 0 lor = phenotypic correlation
yy* Y

= 0 /o° = genotypi relatigZ xxx! Fy genotypic correlation

=O lor = enviro tal latiPp UU* U ronmen correiat1ion.

Note that the observed correlation ¢ is a weighted average of the

unobserved correlations g andp, the weights being nh? and e” =l]- h?,

Introduce the subscripts 1 for MZ and 2 for DZ. Since g, = 1, we

have

2 2
(2) c,) = h + Py e

(3) _ 2 2
Cy B5 h + Po e.

Thus

_ 2 _ 2
C,- Cy = (l-g,) h” + (0, Po) e,

or, more compactly,

(4) Ae =Ag - he + dpe,

Note that the excess phenotypic correlation of MZs is a weighted average

of their excess phenotypic correlation and their excess environmental

correlation, the weights again being h? and e” =l- h’, Solving (4) for h?,

we get

(5) h2 = (Ae -Ap)/(Ag -Ao).

On the right-hand side, there are two unknowns (Ap & Ag) along with the

one datum (Ac), so that h2 is not identified.

Now assume that the environmental correlation for MZs is the same
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as for DZs, that is Ap = 0. Then

(6) h? = Ac/Ag.

Equation (6) was obtained by Jensen (1967). Assigning alternative
values to Ag,he calculated alternative estimates of h” for a number of
traits for which MZ and DZ correlations had been reported. Martin (1975,
p. 225) provides a more recent illustration. For a sample of approximately
25 MZs and 35 DZs, 15 years old, in South Australia, he takes Ag = 1/2,
and obtains estimates of heritability for various school subjects, which we
report below. [ Actually Martin works with variances and covariances, but
the essence of his calculation is captured by (6}]. Equation (6) is also
Jeneks & Brown's (1977) formula (44), which they obtain via a tortuous
route. (They reject the notion that Ac/\g measures heritability, so they
redefine heritability to be that which Ac/A g does measure).

HERITABILITY ESTIMATES FROM MARTIN(1975)

Subject Estimated h?

English 0.79 + 0.05
French 0.83 + 0.07
History 0.47 ¢ 0.13
Geography 0.81 + 0.06
Mathematies 1 0.81 + 0.05
Mathematies 2 0.81 ¢ 0.06
Physics 0.77 + 0.09
Chemistry 0.89 += 0.05
Science 1 0.76 ¢ 0.09
Science 2 0.77 + 0.08
IQ 0.79 += 0.06

Obviously, equation (6) makes it easy to grind out numbers. We can
apply it to the correlations in Behrman, Taubman,& Wales (1977, Table 3).
We do so for three alternative values of Ag, which correspond to 85 = 1/3

(approximately one of their estimates), So = 1/2 (random mating) and So

= 2/3 (strong positive assortative mating).

UNIVARIATE HERITABILITY ESTIMATES FROM BTW DATA

Initial Current Log
Schooling Occupation Occupation Earnings

Observed Ac 222 -20 ~23 ~24

Estimated h?

Assuming Ag=2/3: .33 . 30 34 - 36

Assuming Ag=1/2: .44 - 40 46 48
Assuming Ag=1/3: .66 . 60 69 ~72
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How sensitive are the results of the twin method to the assumption

that Ap=0, i.e., that MZs have no more environmental resemblance than do

DZs? A partial answer can be gbtained from (5). We take Ag = 1/2 and,
for selected values ofAp, plot h” as a function of Ae. As the figure shows,
the sensitivity is substantial. For example, with Ac = .2, h” falls from .4
to 0 asAprises from 0 to .2. That is, we can account for the excess
observed resemblance of MZs by a (modest?) excess in environmental
similarity.

Presumably weare also unsure about the value of Ag, about the
systematic and the random errors in Cy and Cos and indeed about the

absence of correlation between X and U in the first place. If enough
arbitrary assumptions are made, we canidentify a heavily underidentified
model. Then we can grind out numbers. But why should we?

3. THE TAUBMAN VARIATION

The univariate model can be extended to allow for gene-environment
correlation. In standardized form we have

(7) 1 = h2 + e” + 2r he

_ 2 2
(8) Cy = h + pie + ar, he

= 2 2 + or he
(9) Co 9 h + Po e€ 2

where the new symbols r, Pye Po denote the correlations of an individual's

genotype with the environments of, respectively: himself, his MZ twin,
and his DZ twin. Thatis:

= * = = . =For MZs, X X*, so that Tyye Txaye yy? consequently, rrr

automatically. .
Jensen (1975) takes Po = ry =r; assigns alternative values to r,Ap, and

Ag; allows for, measupement error in (7); and traces out alternative
estimates of h” and e’, using his empirical IQ correlations c, = 87, Co

= .56. Goldberger (1976) shows how sensitive his estimates are to the Py =

ry specification. Hogarth (1974) had previously demonstrated the

sensitivity to r,Ap, and Ag.
Taubman's (1976) model offers another variation. He takes r, =r

1
but ry = Pot; the latter is equivalent to °,44 = 0. At this point,

substituting (7) into (8) and (9), we have

(10) eq oF a- e”) + a e”
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Figure 1: Heritability Estimates from Observed Excess
Correlation for Alternative Assumed Values of

Environmental Exeess Correlation
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2
(11) Cc, = gph + p , (I1-h’).

Here the observed MZ correlation is a weighted average of 1 and Pye the

weights being i-e” and e’: the observed DZ correlation is a weighted
9

average of So and Pos the weights being h? and 1-h?. If r = 0, then h” +

@ = 1, and (10)-(11) will reduceto (2)-(3).

Solving (10)-(11) for h and e” we get

2 -
(12) e = (1-e,) / (1-p vp

(13) nh = (cy - P,) / (Bo - Po).

Taubman (1976) takes 5 = 1/2 and assumes P= Po (=p, say); that is,Ag

= 1/2 and Ap= 0. His variation thus boils down to

(14) ef = (1-c,)/(1-p)

(15) h” = (ec, -p)/(/2-p).

This model is not identified, since p is unknown. For twin correlations on

several variables, Taubman tabulates h2, e” as functions of e>0, confining

attention to the region r 0. He interprets the extreme values of h4

obtained in this region as upper and lower bounds on heritability, and

sirmnilarly for e”.

Goldberger's (1935) analysis of (14)-(15) raised several issues. First,

the upper bound on h” in Taubman's variation never exceeds A c/Ag; this

must reinforce our skepticism about (6). Second, the bounds are not

confidence intervals, and give a misleading impression of precision. For

example, with C1 = .6 and Co = .4, Taubman's bounds give .60 < e2 < .66;

while if ¢, =.7 and ¢, = .4, his bounds will jump to .40 < e2 < .49. For

another example,if c, = .6 and Cy = .1 we'd be sure that .12 < h? < .20 and

40 < e < .42; while if Cy

was wrong, for no admissible solution would exist. Also if Cy = .o, then

= .7 and Cy = .1, we'd be sure that the model

oo. . . 2. 2
the only admissible solution for p is .5 and fore’ is 2(1 - C,)-

4, THE JENCKS-BROWN VARIATION

Another variation is provided by Jencks & Brown (1977), who

introduce gene-environment covariance, and then reparameterize to

eliminate it. Their construction in effect runs as follows. Start with Y =

X + U where X and U have correlation r. Then
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oxy!xx = (yy + Pyy)/ oxy =1t ren,
so the conditional expectation of Y given X is

E(Y|X) = (1+ re/h) X =Z, say.

The deviations from this conditional expectation are

Y - E(Y|X) = U - (re/h) X = W, say.

Then Y = Z +

+

W, where "environment" W jis uncorrelated with
"genotype" Z. In standardized form this is

(16) y = h* z + e*w

where z and v are uncorrelated unit-varianee variables, and

* = * = V 2h* = h +ere e= = V1 - re,

This brings us back to the model of section 2 in which genes and
environment were uncorrelated. It would bring JB back there too except
that they entertain the possibility that an individual's z ean be correlated
with his twin's w. As it happens, they eventually make a series of
simplifying assumptions (ineluding mr, Ft, and P, = Po, which brings

them to Ac/Ag as their estimate of heritability, or rather of he,
Assigning 4g in turn the values .6, .5, .4 they tabulate ne? for several
traits from several data bases.

Mote that JB have changed the traditional definition of genotype.
Instead of representing the expected phenotype, for individuals of a given
genetic constitution, raised over the full range of environments(or in the
average environment), they tale it to represent the expected phenotype,
for individuals of a given genetic constitution, raised in the environments
in which they are presently found (ef. Faleoner (1960, pp. 132-133)). This
is one way to eliminate bias: just announce that the parameterof interest

9

is the expectation of your estimator. It is unclear why h*” is an
_ interesting parameter: to what question is it the answer? JB hardly help

2 .
matters by referring to h* as "broad heritability."

De A MULTIVARIATE MODEL

We now consider a mocel for several observed variables. An
individual's observed vector of phenotypes is determined as a linear form
in three unobserved vectors representing genotypes, environments, and
errors. In standardized form we write

y= Hx+Eu+Fy
where
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y (m x 1) is the phenotypic vector

x(p x 1) is the genotypic vector

u(q x 1) is the environmental vector

Vv (m x 1) is the error vector

and

H (m x p) is the heritability-loading matrix

E (m x q) is the environmentability-loading matrix

F (m x m)is the diagonal error-loading matrix.

It is assumed that all elements of x, u, V are uncorrelated, so that the m x

m phenotypic correlation (= covariance) matrix is

(17) S=HH +E E+ F,

The individual is paired with another for whom y* = H x* + E u*® +

F v*. Their m x m phenotypic cross-correlation (= eross-covariance)

matrix is

C=H GH +ER E'!

where

G = > y« (p x p) is the diagonal genotypic

eross-correlation matrix

5ut (q x q) is the diagonal environmental

eross-eorrelation matrix,

on the assumption that the only nonzero eross-correlations are those

between corresponding elements of x and x*, and those between

corresponding elements of u and u*.

Introduce the subscripts 1 for MZ and 2 for DZ. We now have

(18) C, = H H'! + E R, E'

! t

(19) C, = H G,H + ER, E

since x* =x for MZsso that G, =I, Thus

C, - Cy = H (I- G,) H' + E (R,- RQ) E,
1
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or, more compactly,

(20) AC = H (AG) H' + E(AR) E',

The multivariate formulas (18)-(20) resemble the univariate formulas (2)-
(4). If p + q < m, then AC is short-ranked, which is a testable
restriction. But to identify parameters, further assumptions arestill
required.

Assume that the environmental correlations for MZs are the same
as for DZs, that is AR = 0. Then

(21) AC = H (AG) H',

i.e., all the excess observed resemblance of MZsis attributable to their
excess genetic resemblance. If p < m, then AC in (21) is short-ranked,
which is a testable restriction. This seemsto be the specification of Boek
& Vandenberg (1968, pp. 246-248), who fit m = 8 test scores with p = 3
genetic factors, using samples of about 100 pairs of MZs and 80 pairs of
DZs. A similar approach was applied to another data set by Bock (1973).

When the objective is to determine the number of distinct genetic
factors, there is no need to further specify the structure of AG. But the
procedure may be pushed further by assuming that the diagonal elements
of G, are all equal. Then AG reduces to AG = (4g)I, say; and

(22) AC = (4g) HH' = H* H*,

say, where H*¥= VAg H. With adequate normalizations—-e.g. triangularity
or orthogonality of H and hence of H*--one may then in principle
determine H* from AC. If the scalar Ag is also given, H itself is
determined. Observing that the diagonal elements of S are unities, one
may take the diagonal elements of H H' as estimates of the heritabilities
of the respective traits, or for that matter, take tr (HH')/tr(S) = tr(HH')/m
as a scalar measure of heritability for the set of phenotypes.
Furthermore, the ratio of an off-diagonal element of HH' to the square
root of the product of the corresponding diagonal elements of HH', could
be interpreted as the correlatjon between the genetic factors which
impinge on a pair of phenotypes.

But why do all this when AR = 0 wasan arbitrary assumption in the
first place? Skepticism about the multivariate twin method seems to be
justified. On the other hand, it may well be interesting to study the
dimensionality of AC without dramatizing the results in terms of heredity
vs. environment.

6. THE BEHRMAN-TAUBMAN-WALES VARIATIONS

An elaboration of the multivariate model is employed by Behrman,
Taubman, & Wales (1977), who analyze the schooling, initial occupation,
current occupation, and log earnings of 1019 MZ pairs and 907 DZ pairs,
all white males. The reduced form of the typical BTW structural model,
in standardized forn, is
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(23) y=HxteutFy,

where, withm = 4, p = 4, q = Il:

yis4x1,xis4xi,uislxi,vis4x1l

H is the 4 x 4 triangular heritability-loading matrix

e is the 4 x 1 environmentability-loading vector

F is the 4 x 4 triangular coefficient matrix.

Note that F is no longer diagonal, since the reduced-form disturbances are

permitted to be correlated. Indeed Ft is the coefficient matrix of their
recursive structural model for the observable variables.

Assuming that all elements of x, u, and v are uneorrelated, the

phenotypic correlation matrix is

(24) S = HH' + ee! + FF.

The individual is paired with another for whom y* = H x* + e u* + F

v*, Their phenotypic cross-correlation matrix is

C = gHH' + Pee'

where

g = genotypic cross-correlation

P = environmental eross-correlation,

on the assumptions that the only nonzero cross-correlations are those

between corresponding elements of x and x* (all being equal) and that
between u and u*. For MZs, subscripted 1, and DZs, subscripted 2, we
have

-a -— t5) C, = HH' +P, ee'

(26) Cy = g,HH' + Py ee’,

since g, = 1.

Thus

_ =_ _ t - t
(27) Cy Cy (1 g,) HH! + (P, Po) ee'"

Also, multiplying (25) by g, and subtracting from (26):

(28) Cyo- 8 Cy = (Pg - Be p,) ee".
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Subtracting (25) from (24) we also have

(29) S - C, = (l-0,) ee + FF.
1

Equations (27)-(29) contain the same information as (24)-(26). Without
further restrictions, the parameters are not identified.

Now turn to the series of models in Sections VII-IX of the BTW
article, which we label by their table numbers. The main objective of the
BTW study is presumably the estimation of the structural coefficient

matrix Ft They also emphasize the estimated allocation of variance
among genetic, environmental, and disturbance factors: in our notation
this allocation is given by the diagonal elements of HH', ee', and FF’. We
critically.examine how the various parameters are determined fromS, Cy:

and C,.°

Model 5. It is assumed that So 1/2 and that Py = Po = 1. So (27)

gives Cy - Co = 1/2 HH' which determines the triangular matrix H, and

(28) gives Cy - 1/2 C,

(29) gives S - C, = FF! which determines the triangular matrix F.

(Throughout we use "determines" as shorthand for "determines uniquely
apart from irrelevant signs.")

Model 5a. Here it is assumed that So

= 1/2 ee' which determines the vector e. Finally

1/2 and Py = Pos but their

common value (p, say) is not fixed a priori. We have H from (27) as
before, and (28) gives

C, - 1/2 C, = 1/2 p ee' = qq,

Say, where q =/o/2 e. That determines q. Then (29) leaves us with

(30) S - C, = (2(1-p)/p) qq! + FF

Evidently neither p nor F are yet cetermined. An additional restriction is

required. What BTW assumeis that p42 = 0. That suffices to determine
2(1-:)/o, henee pe and e, and (the remaining unknown elements of) F in
(30).

What pt? = 0 says is that there is no direct path from initial
occupation to log earnings. This restriction, introduced with little
explanation at the beginning of Section II, is employed throughout BTW.
Without it, Model 5a—and some of their other models--would not be
identified. But Model 5 is identified without that restriction, so it could
have been tested there. It's unclear why BTW failed to do so, noris it
clear why they excluded initial occupation from even the log-earnings
regressions reported in their Tables 4 and 4a. From the observed
correlations given in their Table 3, we ean compute the (standardized)
multiple regression of log-earnings on all three prior observed variables.
Our results are tabulated below.
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STANDARDIZED LOG-EARNINGS REGRESSIONS IN BTW DATA

Dependent variable: Log earnings

Independent variables

Data Schooling Initial Oee. Current Occ.

MZ Individuals 30 13 13

DZ Individuals 29 215 14

Within MZs ll 02 12

Within DZs 23 12 10

The beta-weight is as large for initial occupation as for current

occupation, within-DZs as well as across individuals. The case for p42 = 0

may rest on the within-MZ regressions.
Model 5b. Here it is assumed that So = 1/2, that 0 9 = 8 Py while

P, =P, say, is free. Equation (28) gives Cy - 1/2 C, = 8p ee' =qq',

say, where q =’ .30e. That determines q. Equation (27) gives

C, “Cy = 1/2 HH' + 2/3qq',

which determines the triangular matrix H. Finally, (29) gives

S - C, = (-p)/.3p) qq + FF’.

The restriction f#2 — 9 determines (1 - p)/.3p, hence p and e, and F.
Here, as in Taubman (1976), theAp= 0 assumption is replaced by a

fixed ratio of Po to Py: Now BTWpoint out that the fit of model 5b is the

same as that of 5a, and that the estimates of disturbance variances and

structural coefficients are unchanged. What do change are the estimated

loadings on the latent variables, and consequently the allocation of

phenotypic variances into genetic and environmental components.

Evidently Po = Py and Py = 8p 1 are observationally equivalent.

To clarify this point, refer back to (24)-(26). Let H, e, F, gS = 1/2,

denote the true parameter values. Let A be an arbitrary positive
P 4P»

sealar. Then let

e*# =  (iWhie

* _ _Xr -oF 1 (1-0 D
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p> == 1/2 + 005 - 1/2)

M = HH! + (1 - 5) ee’

H* = triangular matrix such that H*H*' = M.

Replacing the true values in (24)-(26) by their starred counterparts, while
retaining F and Bo = 1/2, and collecting terms, one finds that the

equations are preserved. Thus the pseudo-values are observationally
indistinguishable from the true values. And the choice of A is limited only
by the requirements that the ps remain in the unit interval and that M
remain nonnegative definite. In 5a, the indeterminancey was resolved by
equating the two environmental correlations; in 5b it was resolved by
setting the DZ environmental correlation at eight-tenths of the MZ
environmental correlation.

The estimates in 5b are simple translations of those in 5a. In
particular, we can move from the Py = Po = .86 estimates in 5a to the pF

= .91, P% = .728 estimates in 5b by choosing 4 = .64. For that matter,

we can move from the P, = Py = -86 solution to a pa= 94, 5 = .66

solution (call it Model 50) by choosing A = .44., Doing so leaves the
goodness of fit, the disturbance variance estimates, and the structural
coefficient estimates untouched. It does change the loadings on the latent
variables, and consequently the allocations of variance. We calculate the
latter and tabulate them below.

ALTERNATIVE VARIANCE ALLOCATIONS FOR BTW DATA

Model 5a Model 5b Model 50

Genetics 46 33 31 47 26 21 25 43 1 7 17 36

Environment 35 21 11 9 25 33 17 13 80 47 25 20

Disturbance 19 46 58 44 19 46 58 44/19 46 58 44

Total 100 100 100 100 100 100 100 1001100 100 100 100

percentages.

Observing the sensitivity of the variance allocations to the changes
inAp, for observationally equivalent models, hardly restores one's faith in
heritability estimates produced by the multivariate twin methods.
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Model 5c. Here Eo is free and it is assumed that Pp = Po = 1.

From (29) we get S - C, = FF' which determines F, even without the

42
restriction f-~ = 0. Equation (28) gives us

Co - 85 C= (1 -g,) ee’,

which determines Bo as the sealar which makes Cy - So Cy a rank-one

matrix. Along with it, we get V1-g5 e, and thus

e

itself. Finally (27) gives

Ci - Cy = (1 - g) HH'; with g, in hand, this determines H.

Model 5d. Here g, is free, and 01 = Pg but their common value p

is not fixed a priori. From (28) we have

_ = - !Cy 85 Cy p(1-g,) ee’,

which determines So as the sealar which makes Co - Bo Cy a rank-one

matrix. Along with it we get v1l-g5 q, where now q = p e, and thus q is

determined. With g, in hand, (27) determines H as before. Finally (29)

givesS - C, = ((1-9)/e) qq + FF’.

The restriction p42 = 0 determines (1-p)/p, henee p and e, and F.

For 5d as well as 5c, BTW estimate So to be .34. They rationalize

this low value rather casually in terms of negative assortative mating and

dominance. But they do not consider the extent of negative assortative

mating and/or dominance which are needed to drive g, down so far from

its random-mating—no-dominance value of .50. A little arithmetic

suggests that quite exotic values are required. In the elassicial genet.c

model, the genotypic correlation between DZs may be written as

(31) So = 1/2n (1 + mnh2) + 1/4 (1-n)

where 9

h’ = ratio of total genetic variance to total

phenotypic variance

n = ratio of additive genetic variance to total

genetic variance

m = phenotypic correlation of parents.

(Cf. Burt & Howard (1956, pp. 113-116)). With random mating (m = 0) and

no dominance (n = 1), this gives So = 50. The BTW estimates are

approximately So = .o0 and h? = .35. Inserting these values into (31) gives

(32) m = (4 -10n)/(7n”).
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Unless they believe in very strong negative assortative mating, BTW must
believe in very weak additive genetic effects: from (32), m > - 1/2

requires n < 48. !
A skeptical interpretation of the free So parameter is that it is

proxying for a difference in environmental correlation which was assumed
away in these models by forcing Ap= 0.

Models 5e, 5f. Diseussion of these two models is omitted here
because it would require extending our framework. In any event, both
models impose Ap= 0.

Model 5g. This, too, requires extending the framework, but we
discuss it because it represents BTW's only version of a  pure-
environmentalist model. The genetic components are dropped, and are
replaced by three additional environmental components. The reduced
form for an individualis

 

y= Eut+tFy
where

yis4x1, uis 4x1, vis4x1

E is 4 x 4 triangular

F is 4 x 4 triangular (with p42 - 0).

The individual is paired with another, for whom y* = Eu* + Fv*, It is
assumed that the only nonzero correlations among latent variables are
those between corresponding elements of u and u* (all equal to p, for
MZs, all equal to Po for DZs). Thus the phenotypic correlation matrices
are

_ _ _ !S = EE' + FF’, Cy =Py EF'," Co = P, EE’.

Identification is verified by noting that the triangular matrix E is
determined up to a sealar multiple from either C, or Co; the sealar is

then determined along with F from S and the restriction p42 = 0.
Returning to Cy and Co then determines p 1 and Pos

We note that the ratio Po/P4 is determinable without the restriction

p42 = 0. Indeed a key implication of this model is that DZ phenotypic
correlations are proportional to those for MZs: Cy = (po/p ? C,- (Of

course, if the four elements of u were permitted to have different cross-
correlations, this implication would vanish.)

BTW report that 5g fits worse than the preceding models: "the log
of the likelihood function is smaller than our previous best estimates by
16." They neglect to mention that 5g uses at least 3 fewer parameters.
An instructive way to examine the fit is to compare the predicted (i.e.,
"reproduced") correlation matrices with the observed ones. We tabulate
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COMPARISON OF TWO MODELS FOR BTW DATA

Correlation Matrices

Observed Predicted Model 5e Predicted Model 5g

Individuals*

1.00 .53 03 =. 44 1.00 .53 252 44 1.00 .52 252 44

1.00 .44 .36 1.00 44 035 1.00 44 035

1.00 .35 1.00 035 1.00 035

1.00 1.00 1.00

Cross-MZ

.76 47 44 .40 77 AT 43 41 .76 47 42 -40

.93 35 632 293 34 33 ol 33 32

43°  .27 41 227 239 .27

.54 257 03

Cross-DZ

04 37 29 .29 03 =. 36 30 29 250 231 28 226

233 22 622 033 23 22 £33 22 221

20 .19 223 17 225 17

30 227 34

Variance Allocation (percentages)

Genetics 36 30 28 45 0 0 0 0

Environment 41 22 13 12 81 54 41 56

| Disturbance 23 48 59 43 19 46 59 44

Total 100 ~=100 100 100 100 100 100 100

* For individuals, the observed figures are averages of correlations for MZ individuals & DZ
individuals. In each panel, the four columns refer respectively to Schooling, Initial Occupation,

Current Occupation, and Log Earnings.
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the results for 5e and 5g; the underlined entries are those which
differ by .03 or more from their observed values. This informal
comparison indicates that 5e does fit better than 5g, and that the
superiority is not overwhelming.

At the bottom of our table are the variance allocations implied by
the two models. Recall that in 5¢ o 17 29> 1; in 5g BTW estimate Py =

94, Po = -61. Broadly speaking, the heritability estimates fall from about

.33 to 0 asApis allowed to rise from 0 (in 5e) to .33 (in 5g). This is
strikingly reminiscent of our arithmetic in the univariate model of Section
2. Again the sensitivity of heritability estimates to assumptions about Ap
continues to justify skepticism. In the present ease, to be sure, the
elimination of heritability is accompanied by a worseningof thefit.

BTW, at the end of Section IX, report that they also added a single
genetic factor (with B= 1/2) to Model 5g. That new model gave

"approximately the same"likelihood as their earlier "genetic" ones. They
do not tabulate the estimates, so we are left to wonder whether
"approximately the same" means "slightly better" or "slightly worse". And
we are left to wonder about the variance allocations in the new model. In
any event, a skeptical interpretation of the new factor is that it is
proxying for an environmental factor whose cross-correlations differ from
Py? Poe (Recall that in 5g all four environmental factors are forced to

have the same Oy Po)

q. AN AGNOSTIC PROPOSAL

It appears that heritability estimates produced by the twin methods
are quite dependent upon assumptions about differential environmental
correlations. We are left with the data which show MZs more highly
correlated on observed variables than DZs, but have nobasis for allocating
these differences between genetic and environmental factors.

As an agnostic alternative to the BTW heredity-environment
specifications we propose the following reduced form for an individual:

y= AztFy

where

y (m x 1) is the observed vector

z (m x 1) is the latent-variable vector

v (m x 1) is the structural disturbance vector

and

A (m x m)is triangular

F (m x m)is triangular.



316 Goldberger

All elements of z and v are uncorrelated, so that the phenotypic

correlation matrix is

S = AA' + FF,

The individual is paired with another for whom y* =A z* + F v*. Their

observed cross-correlation matrix is

C = AQA'

where Q is the diagonal latent-variable cross-correlation matrix, on the
assumption that the only nonzero cross-correlations are those between
corresponding elements of z and z*. The diagonal elements of Q are not
necessarily equal to one another. Furthermore they differ as between the
two twin types. For MZs and DZsrespectively we have

~ ! _ 'Cy = AQ,A , Co = AQ,A °

Thus AC = A(AQ)A': the observed differences between MZs and DZs are
accounted for by the differences between their correlations on the latent
variables.

Since F and A are unrestricted apart from triangularity, S is
essentially uninformative about the parameters, The levels of Q, and Q,

are also indeterminate, so we reparameterize by normalizing on MZs
rather than on individuals:

S= A*Q°A* + FF!

= * *!C1 A*®¥A

= *KC)* #tCo A*Q*A

where

z O -1 -3 -3* = = * =A*=AQ,, @=Q], QF=Q) Q@Q,’-

Fitting A* (triangular) and Q* (diagonal) to the BTW cross-
correlation matrices Cy and Cy gives the AG Model results in the

following table; again the underlined entries are those which differ by .03
or more from their observed values. We don't bother to extract F from S$
since the elements of Q (diagonal) can be chosen fairly arbitrarily, so
that F is fairly indeterminate. The AG Model uses 14 parametersto fit
the 20 cross-correlations. In terms of predicted correlations, the fit is

somewhat worse than the BTW models. The estimated diagonal elements
of Q* simply indicate that on the latent variables DZs are less highly

correlated than MZs, the differences being different for the several latent
variables.

In the lower right-hand corner of the table are our A*-estimates
translated into natural units of the observable variables. The columns
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AGNOSTIC MODEL FOR BTW DATA

Correlation Matrices

Cross-MZ

76 47

.03

Cross-DZ

04 37

33

Parameter Estimates

Observed

47

-39

43

.29

22

20

A* (standardized form)

87 0

.58 49

48 14

46 14

Q* (diagonal elements)

201 232

39

14

225

-40

32

27

204

29

222

19

- 30

.96

39

.04

2.68

1.42

1.02

- 26

Predicted AG Model

 

 

ol 42 -40

58 35 134

"4030
xe

36 -30 29

32 222 21

21 18

29

A* (destandardized)

0 0 0

1.20 0 0

31 83 0

08 08 31
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here bear a striking resemblance to those in BTW Tables 5, 9a-og,

especially if one views our first latent variable as a weighted sum of their
G and N variables.

8 CONCLUSION

Heritability estimates produced by the twin methods are shaky. Is

this a cause for concern? The answer would be yes if the estimates served

some useful purpose. Do they?
Suppose that unmeasured family background variables play an

important role in the socioeconomic achievement process. To get

unbiased estimates of the effects of measured variables, we would want to

eontrol for the unmeasured variables. Suppose further that the

unmeasured variables are more highly correlated for MZs than for DZs.
Then within-MZ regressions might provide the most effective control. But
there is no need to sort out the background into genetie and environmental

components.
Then is the allocation needed for some other purpose? The rationale

offered by BTWis:

We think that a portion of the equity criteria within and
between generations is related to the extent to which a
person's earnings are due to his own efforts versus those
of the parents who bore and reared him.

But here again the distinction between genes and environment (between

bearing and rearing)is irrelevant.®

BTW go on to say that

It is of some interest to see how unequal the [income]

distribution would be if just family environments were

equalized. |

And towardsthe end oftheir article, BTW state that their substantial

estimates of heritability

imply that even extreme policies to assure equality of
opportunity by eliminating all differences in
environments (including those dueto the family) would
not eliminate much of the family contribution to the
welfare of offspring.

It is surprising to find economists using current variance allocations to pre-

diet the outcomes of extreme policy changes.

Then why do quantitative geneticists measure heritability? As far

as I know, they do so not becauseheritability is informative about the out-

comes of environmental changes, but because it is informative about the
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outcomes of selective breeding programs under constant environmental
conditions. If this reading is correct, economists and sociologists would do
well to abandon heritability estimation, and accept Jenckset al.'s (1972,
p. 76) remark

 

Indeed our main conclusion after some years of work on
this problem is that mathematical estimates of
heritability tell us almost nothing about anything
important.
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FOOTNOTES

trom an informal sketch of the twin method given by P. Mittler

(1971, Chapter 3), we select the following passages:

Reduced to its simplest form, the twin
method assumes that any difference within
identical pairs must be due_ to
environmental or at least non-genetic
causes, whereas differences within

fraternal pairs are due to both
environmental and genetic factors. The
extent to which identical twins resemble
each other more than fraternal twins is
held to reflect the strength of the genetic
contribution to a characteristic. ..

(p. 45)

The classical twin study method is open to
criticism for confusing the genuinely
greater physical and genetic similarity of
MZ twins with the greater environmental
Similarity to which they might be exposed
as a result of parents, siblings and peers
treating them in the same way. Any
environmentally created similarities,
would, of course, tend to inerease the

similarities between identical twins, and

lend spurious support to a_= genetic
interpretation of the data...

(p. 52)

. . «I]t is probably reasonable to conclude

that there is little empirical justification

for the basic assumption of the twin

method to the effect that the
environmental contribution to the within-
pair variance of a characteristic is the
samefor identical and fraternal twins...

(pp. 52-53)

Bounding procedures for underidentified models have been used by

others, e.g. Chamberlain & Griliches (1975). Perhaps similar issues should
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be raised there.

‘The origins of the multivariate twin method date back earlier.
For example, Kempthorne & Osborne (1961) wrote: |

Just as we can develop an analysis of
variance for one measurement, we ean
develop an analysis of covariance for two
measurements. . . The same general
considerations will then be found to hold as
for components of variance. . .

(pp. 330-333)

Amongthose considerations were

- . Jn theory at least, an efficient method
for appraising the heredity-environment
problem in man,particularly with respect to
complex or quantitative inheritance, is by
the study of twins. . . This formulation. . .
assumes... . .that the environmental forces
whieh affect within-pair character
differences are comparable within the two
types of twins.

(pp. 320-321)

. . « The same adolescent environment will
be largely shared by monozygotic twins,
probably to a lesser extent by like-sexed
dizygotie twins, and may be quite different
for unlike-sexed pairs. . . Consequently,
assumptions as to shared environment
becomeless certain.

(p. 325)

They went on to write that

The existence of many possible explanations
with the limited data at our disposal is a
part of our general theme. . .One may
expect that the closer the genetic
relationships, the closer will be the
environmental covarianee. If, of course,
both changed in the same

_

proportion,
Separation of genetic and environmental
causation will bé difficult. . .

(pp. 336-337)
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More recent examples of the multivariate twin method can be found in

Eaves & Gale (1974).

4This approachis, in effect, used by Jencks & Brown (1977) in their

analysis of education and test score. With p = 2 = m,the correlation

between the genetic determinants of the two phenotypesis, from (22):

 

Ae._A
AG,Whe, 1 Co0

where the subscripts now label observed variables. This is formula (84)

derived by JB. It can also be found in the discussion on p. 300 of

Vandenberg (1965). See also Falconer (1960, pp. 311-318).

5

(1977).
Our identification analysis is closely related to that of Chamberlain

6Readers of Taubman (1976), Behrman & Taubman (1976), and
Taubman & Wales (1976) may have thought that assumptions on Py VS. Py

weretestable.

“purthermore, negative assortative mating and weak additive
genetic effects dampen the intergenerational implications of high
heritability: in the classical genetic model, the genotypic correlation
between parent and child is given by

g, = 1/2n (1 + m).

8Nor does the accompanying footnote help:

If some people are born or reared to be lazy,
this criteria suggests that they are still
entitled to transfer payments.
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