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Further remarks on estimating genetic correlations 

BY CEDRIC A. B. SMITH 
Galton Laboratory, University College London 

1. INTRODUCTION 

In  a previous paper (Smith 1980) a method was suggested for estimating correlations between 
relatives. The purpose of this paper is to explore the matter further, with additional examples. 

2. CORRECTIONS AND EXPLANATIONS OF FORMUL89 

I first take the opportunity of apologizing for and correcting some errors in the previous paper. 
The most serious is in equation (64, which is clearly nonsensical as it stands. Suppose that we 
take as estimate of the population mean ,u a weighted sum of the meam in individual families; 
that is, 

pest = (X %%)IS w,. (2.1) 
B 

Here we introduce a convention, followed in the rest of the paper, that to simplify notation any 
suffix (such as F here) which is summed over is written with a capital letter. Here iZF is the mean 
in family number P, and w, is some arbitrary (positive) weight attached to ZF. We suppose that 
the weights w, attached to the different families are all of comparable order of magnitude, and 
we write s2 for their sum, Cw, (note that in equation (4.1) of Smith (1980) the bar over X, was 
accidentally omitted). 

Suppose also that, as in equations (5.1) and (5.2) of the previous paper we write 
AB = Z W F E ~  = c WF(ZF-/@)~, 

w = cw,,  

where the wf are another set of positive weights (which may or may not be different from the wf). 
Then if the wf and wf are constant, the correct formula for the expectation of AB is 

&(A,) = Z[(Ang1 + B )  (w,- 2Q-lwFw,+ Wi2-2w$)] (2.2) 

and not formula (5.5) of Smith (1980). 
Hero A and B are respectively the components of variance within and between families. If the 

sample contains a large number of families, the first term Z(Ang1 + B )  w, is the dominant one, 
and the remaining terms may be neglected without much error. 

If we take wf and wf to be equal, wf = wf, then (2.2) simplifies to 

&(A,) = Z[(Ani;.l+ B) (wp - W-lwg)]. 

&(A,) = (Nf - 1)  AN^^ Znj? + B], 

&(A,) = 1) +B(N,-N2/Ni). (2.6) 

(2.3) 
In particular, if we take wf = wf = 1, and the number of families is Nf, then 

(2.4) 
while if of = wf = nf,  the number of individuals in family f, and we write Zn, = N,, Cnj = N,, 
then 
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96 C. A. B. SMITH 
These are well-known formulas. If we have already calculated A, and found some reasonable 
estimate of A,  then they can be used to find an estimate of B by replacing &(A,) on the left hand 
side by AB itself and solving the resulting equation. 

The explanation of equations (6.8) and (6.9) of the previous paper is also confused andincorrect 
(although the basic idea is sound). The following argument seems better (but would need detailed 
examination to state the precise conditions under which it would hold). Suppose that the distribu- 
tion being considered depends on No parameters O,, forming a vector 8. The true value of 8 in 
the population will be called 8,. In each familyfintroduce a set of No random functions zfi(O, e), 
where the vector arguments 4, 0, to be specified more exactly later, have respectively N,,, and 
N~ components. Let z(@,0) be the vector with components 

z,(a, e) = z +,(a, e) (2.6) 
(summed over all families P). By the law of large numbers, this vector will (under suitable condi- 
tions) have a variance of the order of magnitude N ~ ,  the number of families. Let us suppose that 
there is some fixed vector 0, such that 4 - a, is of order NT). Then if 0 - 8, is also of order NT), 
we have on expansion in a Taylor series and neglect of second order terms (of order N T ~ )  

(2.7) 
Here a = d z / d 0  and b = d z / M  are, strictly speaking, random variables, but t o  the order of 
approximation used here they can be replaced by their expected values, and so treated as con- 
stants. Define G(4, 0, e) to be the expected value of the random variable z(@, 0) on the assump- 
tion that @ is held constant, and that the parameter of the distribution takes the value 8. On 
taking expectations in (2.7) we find 

(2.8) 
If (8 - 8,) is of order NT*, and we again neglect second order terms, we have 

(2.9) 
where c is a square matrix, of order of magnitude NT*, which in general will be non-singular. On 
combining (2.7), (2.8) and (2.9) we get 

(2.10) 

Now choose for 0 some (reasonable) function 4 = (p(8) of 8, and set @, = (p(8,). Then, provided 
that (8 - 8,) is of order of magnitude N?), we will also have (4 - e,) of order NT*, as we required 
in deriving the above results. Let us choose for the equation of estimation of 8 the relation 

(2.11) 

In effect, this means that we are setting the random variable z(@, 8) equal to its expectation, 
except that the expectation is calculated assuming that ip is constant, and that the parameter 
of the distribution is the same as the argument 8 of the function z(4,  8). Then from (2.10) we get 

(2.12) 

But the expression in square brackets is, by definition, a random variable of expectation zero 
(in the actual population, which has parameter 8,) and order of magnitude NT~. Hence there is 
a solution of (2.11) which differs from 8, by a random variable which has order of magnitude N-), 
as was required in the derivation of these results. Also the expectation of 8 is, to  our order of 
approximation, equal to 8,, i.e. the estimate is unbiased. 

There are three other small errors in Smith (1980) which may also be mentioned here. On 

z(4, 8 )  = z(O,, 0,) +a(@ - 0,) + b(0 - 8,). 

w, e, e) = w,, e,, e) + a(* - a,) +we - 0,). 

w,, e,, e) = w,, e,, 0,) + c(e - e,), 

ZW, 0) - w, 8,e) = [Z(@O, 8,) - W O ,  80, e,)l+ c(fJ - el)). 

~ ( 4 ,  e) = w, 8, 0). 

8 = 8, - c-YW,, 8,) - W O ,  8,,&J)l. 
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page 272, line 6 up, the definition should read ‘[, = Z,-p’. On page 277, in (8.1) the second factor 
in the denominator should read ‘Aqq+ Bqq’. The data of Table 1 concern pattern intensity on 
soles, not on fingers. 

3. GENERAL THEORY 
We now consider the following situation. We suppose that we have collected from the popula- 

tion a random (or otherwise unbiased) sample divided into families, numbered off as 
f = 1,2, . . . , Nf. Two distinct families are supposed to have statistically independent 
measurements. 

Each individual in a family is assigned to some ‘position’ n in that family (such as ‘proband’, 
‘mother (ofproband) ’, ‘father’, ‘sister’, etc.). Oneach individual we measure a set of ‘characters’ 
yu (u = 1,2, . . ., N ~ ) ,  including possibly presence-or-absence characters which can be scored as 
1 or 0 respectively. To avoid complications, we insist that every individual is measured for every 
chara cter. 

The combination of a particular position, n, and a particular character yu measured on indi- 
viduals at  that position, will be called a ‘positioned character’, and will in general be denoted 
by a single suffix, as xp. Thus ‘father’s height’ or ‘mother’s arm length’ or ‘sister’s ridge count’ 
are positioned characters. Two positioned characters (n, y,) and (n, y,) sharing a position n will 
be called ‘co-positioned characters’. Thus, since we assume that every character is measured on 
every individual, co-positioned characters are those which are measured on the same individual, 
such as ‘sister’s height’ and ‘sister’s arm length’. We introduce a symbol spg which takes the 
value 1 when p and q are co-positional, and 0 otherwise. 

We make the following assumptions about the distributions of the characters: 
(3A) For any positioned character xp and family f, the nfp observed values of xp are a random 

sample from some distribution, with true mean p f p  and variance ufpp. This assumption might 
break down if, for example, there is a maternal age effect. We further assume that the mean p f p  
and variance vfpp are independent of the number of observations nfp. 

Further, ifx, and xq are co-positioned, we assume that the pairs of values (xp, xq) measured on 
the same individual are drawn from a bivariate distribution with covariance vfpq. If  xp and xq are 
not co-positioned, we assume that vfpq = 0. 

(3B) With certain positions n there is at  most one individual occupying this position in each 
family. For example, if one individual is identified as ‘proband’ in each family, there is at  most 
one ‘proband’s mother’. If xp and xq are positioned characters both associated with such 
position n (with possibly p = q),  then we will set conventionally 

pfp  = 2fp; pfq = Z f q ;  Vfpp  = U r p q  = Ufqq  = 0;  (3.1) 

which is not unreasonable since there is no way of defining a within-family variance or covariance 
for such a character. 

(3 C) For fixed p ,  the family true means pfp  are assumed to be drawn from a distribution with 
mean ,up and variance Bpp.  Similarly, the pairs of means pfp,  pfq are assumed to be drawn from 
a bivariate distribution with covariance Bpq. The Bpp, Bpq are the ‘between family components 
of variance and covariance ’. 

(3 D) Similarly the within family covariance urPq (or variance if p = q)  may vary between 
7 HGB 44 



98 C. A. B. SMITH 
families f, and is assumed to be drawn from a distribution with true mean A,,, the ‘within 
family component of covariance (or variance) ’. The covariance between xp and x, in the popula- 
tion as a whole is then (A,, + B,,), so that the correlation between xp and x, is 

(3E) We can sometimes assume that there are relations between the means of different 
positioned characters zp, x,, and also between their components of variance and covariance. 
Thus suppose that daughter’s height is denoted by x,, and mother’s height by x5. Then in the 
absence of selection or secular change it would be reasonable to assume that the true mean of 
each in the population was equal to the mean for females in general, so that p1 = ,us. Even if we 
were not willing to assume this for heights, we could assume it for finger-ridge counts, a t  least 
until there is evidence to the contrary. Similarly, we could assume that the total variance is the 
same in daughters and mothers, 

+ B1l = A66 + B65 = BS5, 

since there is no intra-family variability in mothers, so that A,, = 0. In  any case, since the 
matrices A,, and Bpq are symmetric by the way they are defined, we must have the relation 

To accommodate these relations, we introduce a set of independent ‘mean parameters’ Mi such 
that any population character meanpp can be expressed as a known linear combination of the Mi: 

Bl, = BSl. 

P p  = zmIP (3.3) 

(recall that by the summation convention previously established, the use of a capital suffix I 
means that the summation is over all possible values of I ,  say from I = 1 to N ~ ~ ) .  For example, we 
might take p1 = mean daughter’s height = ps = mean mother’s height = N,, so that we would 
have 

m,,= 1, mi,= 0 for is: 1; 

ml, = 1, mi, = 0 for i s: 1. 

Similarly we take a set of independent variance parameters, C, ( j  = 1 to N ~ ) ,  such that each of 
the A,, and Bpq can be expressed as known linear functions of the Cj: 

= zaJpqCJ; Bpq = C b J p q C J -  (3-4) 

Thus if, as above, we assume that B,, = A,, + B,, and A,, = 0, we have on setting C, = A,, and 
‘2 = B1lJ 

a111 = 1, a211 = 0, b,,, = 0, b,,,= 1, 

a156 = O J  a265 = O ,  b155 = b,,5 = 1. 

4. PRELIMINARY ESTIMATES OF p p  ,Apq, Bpq 
A simple method of finding preliminary estimates o f p p ,  Apq, Bpq is as follows. Let 7~ denote any 
position in the family, and let zp, x, be positioned characters associated with this position (with 
possibly p = q). Let nf,, = nfp = nfq be the number of individuals in family f in position 7 ~ .  If 
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nf, > 0, we calculate the following, where in each case the summation is over these individuals in 
family f and position n: 

total, Tfp = Ex,, 
crude sum of products, ufpq = Xx,x, (4.1) 

( = crude sum of squares when p = q). Then in the usual way we find, within the family f, the 
sample values of the following: 

- 
mean, X f P  = TfPInfP, 

codeviance, 
degrees of freedom, vf,, = vfp = vfq = nf,- 1 = n f P  - 1. 

A,,, = UfP, -TfP Zf,, 

When nf, = 0, we cannot find Z f p  or Afpq in this way, but we will conventionally set Z f p  = 0, 
vf, = 0, and Afpq = 0 for all p ,  q associated with ?T. We also set AT,, = 0 whenever x,, x, are not 
co-positioned. Summing over all families we then get for positioned characters x,, x,, the following 
values, 

total number of observations, n, = E nFp, 
grand total, T p  = X T F p  

total codeviance, ' p q  = 'Fpq" 

If p ,  q are co-positioned, this codeviance has total degrees of freedom 

v,, = v p  = vq  = VF,. 

One obvious unbiased estimate of p, is then the grand mean, ??p = T,/n,. (One could also use the 
unweighted mean of the Z f p ,  taken over those families f for which nfp > 0.) An unbiased estimate 
of A,, is Apq/v,, the 'mean sum of products within families' of an analysis of covariance. 

It is a complicated matter to find formulas giving a strictly unbiased estimate of B,,. But if 
the object is mainly to find a preliminary value to be improved by further calculation, strict 
unbiasedness is not important, and any reasonable estimate wil l  do. Consider therefore only those 
families for which nfp and nfq are both positive; suppose that there are "pQ such families in all. 
Calculate the ' unweighted codeviance ' 

(4.3) 

(4.4) 

(4.5) 

A:, = ~ ( Z F ,  - Z,) (z~, - Z,), 

&'(A:,) = E nFi s,, A,, + N Y ~  B,,, 

Bzt  = (A& - 2 n-l FP s ~q A 9, 

summed over these families. To a first approximation 

(where, as defined above, s,, = I when p ,  q are co-positioned, otherwise 0). Hence 

is a reasonable (consistent and approximately unbiased) estimate of B,,. 

5. ITERATIVE IMPROVEMENTS OF THE ESTIMATES 

We now proceed as in the previous paper (Smith, 1980) but with minor modifications. 
We suppose that we have already found from the sample the values of nfp (= number of 

measurements of positioned character p in family f = number of individuals of position n in 
family f, where p belongs to n), so that nfp = nfq if p and q are co-positioned; Zf, = mean of 

7-2 
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positioned characterp in family f; Afpq = codeviance (sum of products of deviations) of positioned 
characters xp,  xQ within family f ( = 0 when p ,  q are not co-positioned); vfp = number of degrees 
of freedom of Afpq ( = nfp - 1, except that it is 0 when nfp = 0); Apq = ZAFpq; vp = EvFp. We also 
have obtained preliminary estimates of A,, and Bpq. The symbol A will denote the matrix with 
components Apq, js, the vector with components Z f p ,  and similarly wherever applicable. We will 
write a = A-1. 

We suppose that in the model we are considering, p p ,  the true (population) mean of positioned 
character xp, is a known linear function of some ‘mean parameters ’ Mi: 

~p = X ~ I ~ M I ,  (5.2) 

(summed over I ,  in accordance with our convention that summation is over suffixes denoted by 
capital letters), where the mip are known by hypothesis, and similarly there are ‘variance para- 
meters’ C, such that for the population values (though not necessarily for sample estimates) 

= xaIpQ BpQ = EbIpq (5.3) 

U f m  = n 2  Spq APQ + BPP 

For each familyf we would now like to calculate the matrix uf with elements 

and then invert it to get a matrix w,. However, if nfp = 0 for some p (as will often happen) this 
means that some elements of uf will be inhite. The inverse will still be finite, but the calculation 
may not be entirely simple on a computer, which is not equipped to deal with infinite elements. 
We can overcome the problem by dehing the ‘generalized reciprocal’ rfp of nfp as 

and then perform a ‘controlled inversion’ of uf as follows: 

(a) for all p for which nfp = 0, delete the pth row and column, 
(/3) invert the matrix which remains, 

( y )  in the places where rows and columns were deleted under (a), reinsert rows and columns 
with all elements zero. The resulting matrix is of. 

Now find (for all i, j = 1 to N ~ ,  where N~ is the number of mean parameters Mi) 

MeBt is then an estimate of the mean parameter vector M, and from it we find 

pt = mTMest (5.7) 
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(T denoting transposition), which is an estimate of the population mean vector p. Let 

E f p  = 3fp-rUFt, 

#,", = 

sp", = 

si = 
A A  - 

Tpq, kl - vp spq 

T i f k l  = 

T&! kl = I: rFk 'kl "Plp "Fqk 

Ti[kkl = I: "Flp "Fqk, 

AQP aQp aqP -k 

"SQp "FqP CPP EFQ, 

U i p Q  S$Q + z b i p g  Sgg, 

"FQp @FqP rFp spq EFP EFQ, 

-k r, rFp rFk spq "FZp "Fqk, 

rFp spq "Flp "Fqk, 

qj = ajEL T$:, K L  + %PQ bjKL T$G, K L  

f r, biPQ a5KL Tg$, K L  -k r, biPQ bjKL Tg; ,KL,  (5.8) 

t = T-1, Ce8t = t S .  (5.9) 

Then Ceat is an estimate of the variance parameter vector C. From it we can find new estimates 
of A and B using equation (5.3). The whole calculation can be repeated taking the previous 
estimates as new provisional values and obtaining new estimates of M, p, C, A, B. These can in 
turn be taken as provisional values, and so on iteratively. It seems that in general, in large 
samples, the process will converge rapidly to some final estimates. A later example shows that 
occasionally troublesome samples can occur with no obvious convergence. Leaving such 
exceptional cases aside, the arguments of Section 2 show that such estimates are nearly unbiased. 
For since 8 ( Z f q )  = ,up = 2 mlqMI, a substitution of this in the expressions for Xi, Qij in (5.6) gives 

&(X) = QM, (5.10) 

provided that the of are kept constant, i.e. provided that A and B are held constant. Hence the 
equation Mest = YX, which is equivalent to X = PMeat, amounts to setting X equal to its 
expectation. (Formally X corresponds to z of (2.11), A and B to 9, and M to 0.) Thus we conclude 
that Mest is a nearly unbiased estimate of M. Similarly, if p is held fixed we find that 

4 C f p  Efq) = U f p p  

and hence that & ( S )  = TC. Hence the equation Ceat = tS ,  equivalent to S = TCWt, sets S equal 
to its expectation, and hence its solution Cest is a nearly unbiased estimate of C. Furthermore, if 
we assume that the distributions are homoscedastic and normal, then an argument like that of 
Smith (1980) shows that Meat, Cest are the evaluates (maximum likelihood estimates) of M and C. 
In fact, the efficient score vectors for M and C are UM = X- PM,  Ua = &(S - TC) respectively, 
with corresponding expected information matrices P and &T, and error variance matrices Y and 
2t. Apart from the use of 'expected' rather than 'observed' information, the successive estimates 
Meat = YX, Cest = t S are those got by the Newton-Raphson solution of the maximum-likelihood 
equation. 

6. EXAMPLES OF VARIANCE COMPONENT AND CORRELATION ESTIMATES 

Example 1.  Daughter-mother correlation for the data of Table 1 of Smith (1980) (there called 
' sister-mother correlation'). Let positions p = 1, 2 correspond to daughters ('sisters') and 
mothers respectively; since these are different, A,, = 0. Since each family has only one mother, 
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Table 1. Successive estimates relating to pattern intensity on soles in daughters and mothers 

Iteration = MI 4 1  = Ql Bl1 = a, BIZ = G B22 

1'010 0.830 I .og2 2.424 
I 3.21 0.931 I '042 0.960 1.972 
2 3'31 0.962 1.173 1'102 2.135 
3 3'32 0.953 1.190 1.115 2.146 
4 3'32 0.953 1.193 1'119 2.146 
5 3'32 0.952 1'194 1'119 2.146 

PI = Pa 

- 0 

Table 2. Data on PIP and PIF in sibships 
Skters Brothers 

I 
.A L , 

Family 
number 

f 
I 
2 

3 
4 
5 
6 
7 
8 
9 

I0 
I 1  
I 2  

I3 
I4 
15 

Total 
(grand 
mean) 

No. 

nt1 = nfa 

4 
4 
I 
2 
3 
I 
I 
2 
2 
3 
4 
2 
2 

3 

34 

- 

Mean 
PIP 

Zfl 

2.5 
475 
3'0 
3 '0 

3'33 
3'0 
2'0 

4'5 
3'5 
4'33 
2.75 
8.0 
3'5 

3'0 
- 

(3.68) 

Mean 
PIF 

% 
13'5 
11.75 
9.0 
15.0 

10.33 
I 6.0 
18.0 
13.0 
12'0 
11'0 
11'0 
15.0 
11.5 

9'0 
- 

(12.12) 

No. 

nfl = nJ4 

2 
I 
2 
I 

3 
I 
2 
2 
3 
I 
2 

3 
I 
I 
I 

26 

Mean 
PIP 
ZP 
1.5 
2'0 

5 ' 0  
4'0 
2.33 
4'0 
2.5 
4.0 
3 '0 
8.0 
4'0 
3.67 
3 '0 

3'0 
3 '0 

(3.39) 

Mean 
PIF 

Z,4 

13'5 

15-5 

6.0 
16-0 
10.5 

11'0 

10'0 

12'0 
10'0 
15.0 
10.5 
15-67 

14.0 
16.0 

(11.58) 

11'0 

0 1'49 0.83 
o o 0.83 9-47 

35'33 9'92 0 0 20 1'77 0.50 0 

9'92 98.92 0 

0 o 16.33 9'17 0 
1; v = [ :i 1; A N  [ o'50 4'94 

0 0 9'17 104.17 

1 1-09 0.15 0.38 1.07 
0.15 4-20 -0.66 0.23 

BE[ 0.38 -0.66 1.19 1.79 
1.07 0.23 1-79 2-15 

we set A,, = 0. In our model we assume, as seems reasonable, that daughters and mothers have 
the same mean, p1 = p,, and the same total variance, A,, + B,, = A,, + B,, = B,,. Thus there is 
just one mean parameter, M, = p1 = p,, and three (co)variance parameters, C, = A,,, C, = Bll, 
C3 = B,, = B,,, with B,, = Cl+C2. Hence the mip, aipq and b,, take the values 

ntll = m12 = 1 = all, = b,,l = b31, = b321 = b,,, = b,,,, 

all others being zero. As first provisional estimate of A,, we take the mean square within 
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Table 3. 
Iter- 
ration pl P2 

- 0 -  

I 3.69 12.78 
2 3'70 12.32 
3 3.70 12.30 
4 3.70 12.29 
5 3.70 12.28 
6 3-70 12.28 

Successive estimates relating to sisters' PIP, PIE" 

4 1  4% = A21 A22 Bll B12 = B2, 
1'77 0.50 4'94 1.09 0.15 
I .78 0.43 5'23 1'10 0.27 
I .78 0.40 5'43 1'10 0.32 
I .78 0.39 5-52 I '09 0.34 
1-78 0.38 5'57 I '09 0.35 
1.78 0.38 5'58 1.09 0.36 
I .78 0.38 5'59 1'09 0.36 

B2* 
4-20 
2.62 

2.04 
1'97 
1'94 
1'93 

2'20 

sisterships, 1.010. Equation (4.5) gives provisional estimates B,, = 0.830, B,, = B,, = 1.092, 
B,, = 2.424. (Note that the relationship B,, = All+B,, does not hold for these first provisional 
estimates, but it will do so for all subsequent ones.) The sequences of successive estimates obtained 
using our iterative method is shown in Table 1. Clearly after 5 iterations we have found the final 
values to 3 places of decimals. Also we find 

1 0.081 -0.055 0.003 

Y = [0.11]; t -0.055 0.223 0.166 , [ 0.003 0.166 0.203 

so that the standard error of M, = p1 = p, is JO.11 = 0.33, while the standard errors of C,, C,, C, 
(assuming normality) are respectively 

4 ( 2  x 0.081) = 0.40, J(2 x 0.223) = 0.67 and J(2 x 0.203) = 0.64. 

The estimate of daughter-mother correlation is therefore 

As p,, is here a function of A,,, B,, and B,,, its approximate standard error can be obtained by 
the usual 'delta method' from the error variances and covariances of All, B,, and B,,. It comes 

Example 2. Cross-correlation between pattern intensity on palms (PIP) in one female and 
pattern intensity on fingers (PIF) in her sister. Some values of x, = PIP andx, = PIP in sisters, 
2, = PIP and x4 = PIF for brothers in a sample of 15 sibships extracted from Loesch's data are 
summarized in Table 2, in the forms of numbers of sisters and brothers and their sibship means. 
This table also gives the deviance matrix A (sums of squares and products within sibships), the 
vector Y of corresponding degrees of freedom, and the first provisional estimates of A and B. 
As we are interested only in sisters in this example, rows and columns relating to brothers (i.e. 
to x ,  and x4)  can be ignored. Because x ,  and x ,  are measured on the same individuals, we have 
non-zero A,,, and therefore 6 variance parameters, A,,, A,, = A,,, . . . , which we can number off 
as C, to C,. The successive estimates are given in Table 3. After 6 iterations the values have 
stabilized to 2 decimals. The correlation between x1 in one individual and x, in her sister is 

to S.E. (p,,) = 0.19. 

whereas the correlation between x ,  and x ,  in the same individual is 
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Table 4. 

Iteration P1 
- 0 

I 0.88 
2 3.01 
3 3.58 
4 3.02 
5 2'49 

Successive estimates relating to pattern-intensity on soles 
in sisters and brothers 

Pa All 4 s  Bii Bia = Ba 
- 1'01 0.83 0.83 I '40 1.36 

5'5 I 7'24 485 10.80 1-66 - 9.89 
3 '70 1'02 0.85 0.56 1.69 2.32 
3.28 0'11 - 0.73 0.76 1.48 3'5 1 
3'52 0.94 - 0.05 0.59 I '27 2.17 
3.76 1-30 0.87 - 0.52 0.38 2'34 

Example 3. Sister-brother correlation for one character, e.g. PIP, such as the correlation 
between x, and x, in Table 3. Since sisters and brothers have Merent  positions, A13 = 0, and 
we have only 5 variance parameters. Otherwise the calculation proceeds very much aa in the 
previous example. After 6 iterations we find 

1.79 0 1.07 0.33 .=[%::], * = [ o  i -w] ,  '=[,a 0.54]9 
p = 0-33/,/[( 1.79 + 1.07) (1.79 + 0.54)] = 0.13. 

Example 4. Sister-brother correlation for the data of Table 1 of Smith (1980). This might be 
expected to behave just like Example 3 above, but instead successive estimates fluctuate wildly; 
the first five iterations are shown in Table 4. This seems to be related to the fact that for the first 
provisional estimates (iteration 0) Bf, > B,, B,2, which cannot happen in a true variance matrix. 
Presumably this is a random fluctuation due to the smallness of the sample, and convergence 
would be restored in a sufficiently large sample. Otherwise one would have to question the 
correctness of the assumed model. 

7. DISCUSSION 

Although in all our examples we have for simplicity considered only two characters at one 
time, there is no difficulty of principle in dealing with many characters simultaneously, e.g. those 
of Table 1 of Smith (1980) or Table 2 of this paper. But the calculations become considerably 
heavier. It is also possible in principle to include cousins. In  the simplest one-character model in 
which sex-differences are ignored there are 3 variance parameters, C, = A = the variance within 
sibships, C, = B = the component between sibships within cousinships, C3 = r = the com- 
ponent between cousinships. Thus i f p p  denotes the true mean of a sibship p ,  we have 

Bp,=cov(pp,p,) = B + r w h e n p = q ,  

= I' when p and q are distinct sibships within the same cousinship, and 0 otherwise. Since the 
Bpq are known linear functions of the C,, the method described here can be directly applied. 
The correlations are then: 

sib-sib correlation = (B + I')/(A + B + r), 
cousin-cousin correlation = r / ( A  + B+ I?). (7.1) 

The references given in the previous paper are relevant here, but it does not seem necessary 
to repeat them in detail; the reader can find the list in Smith (1980). But since that paper went 
to press an extensive (but still incomplete) bibliography of about a thousand related papers has 
been published (Sahai, 1979). 
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SUMMARY 

A method of estimating correlations between relatives given in a previous paper in Annals of 
Human Genetics has been further explored, explained, and illustrated by examples. 

I am indebted to Dr Danuta Z. Loesch for permission to use her data. 
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