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Estimating genetic correlations 

BY CEDRIC A. B. SMITH 
Galton Laboratory, University College, London 

1.  INTRODUCTION 

It is approximately 100 years (1872) since Francis Galton first thought of the idea of ‘reversion 
towards ancestral type’ in connexion with the genetics of the sizes of sweet pea seeds, and ex- 
plained this idea later in a paper read to the Royal Institution (Galton, 1877). In  his Presidential 
Address to the Anthropological Section of the British Association (Galton, 1885a) he applied 
the idea to human stature, but then called it ‘regression’ towards the mean. In  his autobiography 
(Galton, 1908) he tells that he was worried for a time by the fact that if children appeared to 
regress towards the mean of their parents, it  was also statistically true that parents regressed 
towards the mean of their children. However, inspiration eventually came, in that Galton dis- 
covered the bivariate normal distribution (with assistance from a Cambridge mathematician, 
Hamilton Dickson), and saw that this apparently paradoxical result was a necessary consequence 
of the form of the distribution. In  1885 he was considering the further problem of expressing in 
the most appropriate manner the resemblances between characters, such as stature, cubit, head 
length, middle-finger length, etc., which had different ranges of variability. He saw that this 
could be done by first standardizing each character in terms of its ‘probable errors’, and then 
finding the regression of one on the other. In  essence, this is the modern idea of what Galton 
called ‘co-relation, or correlation of structure’ (Galton, 1885b), (although we would now use 
standard errors rather than probable errors), and the first co-relations were those calculated 
between various anthropometric measures. 

It was immediately evident to Karl Pearson (see Pearson, 1930) that Galton had produced a 
measure of resemblance between characters which did not depend on any specific assumption of 
causation, and thereby extended the applicability of statistical method in science, and Pearson 
(1895, 1896) refined the measure into the modern correlation coefficient. However, as Galton 
considered co-relation as a particular case of regression, he denoted it by the letter r ,  as the initial 
letter of ‘reversion’ and ‘regression’, and this has continued as the standard custom ever since 
(except in so far as Fisher (1925) changed it to the corresponding Greek letter p when considering 
the population value rather than the sample estimate). Further historical details of these matters 
are to be found in Forrest (1974) and Pearson (1930). 

The ideas of regression, correlation, and multivariate normality have therefore arisen very 
naturally from the study of genetics [and, incidentally, largely from human genetics, though this 
may be a historical accident (see, for example, Pearson & Lee, 1903)] and remain major elements 
of modern quantitative genetics. Since the time of Galton there have been many advances in 
the theory of genetic correlation. The most notable ones use Fisher’s (1918) classic paper, showing 
how correlations are influenced by dominance, epistasis, linkage and assortative mating and 
those of Wright (1921, 1922, 1923) introducing path coefficients, of Fisher (1925) showing the 
relationship between intraclass correlation and components of variance, and of Li & Sacks (1 954) 
greatly simplifying the theoretical background. 

0003-4800/80/0000-4328 $03.00 @ 1980 University College London 

17-2 



266 C. A. B. SMITH 
Unfortunately the practical problem of estimating correlations efficiently has advanced less 

rapidly than the theory. In  its original definition, correlation relates to pairs (x, y) of measured 
characters. For example, x = stature and y = arm length of an individual. Each individual then 
gives one pair (x,y) of values, and in any sample the obvious procedure is to estimate in the 
standard way the respective variances vxx, vxu of x and y, the covariance vzu, and then find the 
regression b = V,~/U~. or correlation r = vxu/.J(~zzv,y). In  a monogamous society we can similarly 
estimate, for example, the correlation between IC = husband’s stature and y = wife’s stature. 
But when we come to estimate mother-daughter correlation we have the complication of varying 
family size. In a family with, say, 6 daughters, we can form 6 (x, y) pairs, where in each pair 
.I! = the mother‘s stature and y = a different daughter’s stature. But then in this case the same 
value of x will occur in 6 different pairs, whereas in a family with only 2 daughters the mother’s 
stature will occur as IC in only 2 pairs (x, y). It is not clear that it is ‘fair’ that one value of x 
should be counted 6 limes over. More to the point, it  is questionable whether this gives the most 
accurate estimate of the correlation. The situation becomes even more dramatic with an intra- 
class correlation, such as that between sisters. We can form all possible pairs of values (x, y), 
where IC = one sister‘s stature and y = another sister’s stature, and calculate the correlation 
between all such pairs by the standard procedure. But a family of 6 sisters then gives 6 x 5 = 30 
such pairs, and a family of 2 gives only 2 pairs. It is evident to common sense, even without 
detailed mathematical analysis, that a family of 6 sisters does not give anything like 15 times 
the information given by a family of 2 .  

This kind of problem has long been known. Estimation of intraclass correlation is effectively 
the same problem as estimation of variance components, as noticed by Fisher (1925), and this 
gives an alternative approach. An estimate of variance components, using analysis of variance, 
was given by Brownlee (1949), and a more thorough investigation of the problem was undertaken 
by Fieller RS Smith (1951). 

An obvious approach to the problem is to consider the special situation in which all observed 
characters follow a joint multivariate normal distribution, in which the correlation between any 
two depends only on the degree of relationship. Thus if (x, y) denote a pair of values in 2 sisters, 
we suppose that the correlation pss between them has the same value, independently of which 
pair of sisters we take. A similar remark is assumed to apply to pMo = mother-daughter corre- 
lation, and for other degrees of genetic relationship. Using the standard formula for a multi- 
variate normal distribution, the likelihood of any observed sample can then be expressed as a 
function of the means, variances, and correlations (or equivalently, in terms of variance and 
covariance components). In principle, efficient estimation of these parameters is then quite 
straightforward, using the method of maximum likelihood. In practice, the computations become 
very heavy. They have been studied in various papers, including especially Hartley & Rao (1957), 
Cunningham & Henderson (1968), Nelder (1968), Lindley & Smith (1972), Rao (1971a, b,  1972), 
Patterson & Thompson (1971, 1974), Hemmerle 8: Hartley (1973), Corbeil & Searle (1976), 
Thompson (1977), Dempster, Laird & Rubin (1977), Schaeffer, Wilton and Thompson (1978). 
A good general account and bibliography is given by Harville (1977). However, a geneticist 
wishing to make use of these papers to analyse actual data will not find them too easy going. 

It is the purpose of this paper to present a rather simpler method of tackling the practical 
prohlern of estimating correlations and components of variance, mostly using the normal model 
described above. It is certainly not claimed that this method is entirely new, indeed, several 
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remarks made below d l  be found also in the papers quoted above. The computations may not 
be as rapid as in the other methods. However, the scheme presented here is a unified one, covering 
most cases arising in practice, and using only straightforward rules of procedure. (Even so, 
except in very simple cases, it is reasonably practicable only with the use of a computer.) 

One further remark seems in order. Various devices are used by statisticians to distinguish 
between population and sample values, e.g. Fisher’s use of Greek and Latin letters, p = popu- 
lation correlation, r = sample estimate, or Fisher’s use of a circumflex, p^ = maximum likelihood 
estimate of p. The present paper is on estimation, hence usually a symbol will denote an estimate. 
To use a circumflex consist,ently would be logically correct, but typographically rather a burden 
and probably not too helpful to the reader. Instead, I will in most cases rely on context to make 
the distinction. For example, the symbol ‘B’ will be used to denote (i) the population within- 
family component of variance, (ii) a sample estimate of this, or (iii) the corresponding dummy 
variable in the likelihood function. In  principle, this is a serious breach of good behaviour by 
using one symbol with many meanings; in practice I hope that no confusion will arise here (no 
more than it does in everyday language, where context is an essential clue to meaning). 

2. THE MATHEMATICAL MODEL 

Consider first the situation in which we have one measured character x (e.g. stature), and we 

In a family Ef we will find a ‘sistership’ of nf sisters, numbered from 1. to nf. The observed 

We make the following assumptions: 
(a) The population under study is large enough to be treated as infinite. 
(p) In  any one given family 4, the observed values xf$ of the nf sisters are nf random values 

independently drawn from some distribution, whose mean we denote by ,uf and whose variance 
by uf. Thus ,uf is the ‘true mean of sistership f’ and uf the ‘true variance within sistership f’. 
This assumption is quite often plausible, but it could break down if there is a maternal age effect, 
or if different sisters were brought up in different environments, e.g. by a change with time in 
the economic status of the family. 
(7) The distribution within a sistership is statistically independent of its size nf; that is, 

large families do not produce different distributions from small ones. In  particular, ,uf and uf are 
independent of nf. This assumption is again often plausible, but not invariably so. 
(6) The sisterships themselves, number k in all, can be considered as a random independent 

selection of k sisterships from the whole population. Thus the ,uf will be a selection of k indepen- 
dent values from some distribution, with mean denoted by (= the general mean of the popu- 
lation) and variance B (= the ‘component of variance between sisterships’). The uf will also 
have a distribution. Its mean, A ,  is the (average) component of variance within sisterships. 

Besides this, the distribution of the uf will have some variance, and there will be a covariance 
between the p f  and vf .  Most investigators in population genetics have ignored the variance of 
the uf, the covariance of the,ufand uf,  and moments of higher orders, such as skewness and kurtosis, 
and we will do so here. But note that ignoring these could be ignoring important genetic infor- 
mation, especially should a character be influenced mainly by few alleles at  few loci, 

(6 )  In the normal model, already referred to, all distributions are supposed (multivariate) 

wish to find a sister-sister correlation. 

value of sister number i in family P’ will be denoted by xfi .  



268 C‘. A. B. SMITH 
normal, and all the variances u, within families are equal, having coniinon value A. Hence the 
variance of uf and covariance of / i f  with uf are both zero, and higher moments are irrelevant, 
being determined by the means, variances and covariances. This model will apply if the character 
is determined additively by genotypes at  a large number of loci. It is conceivable that several 
quantitative characters, such as stature, approximate reasonably well to the normal model. 

Consider the value xfi of the ith sister in family f. Write Sfi = xfi-,uf, deviation from the true 
mean p f  of that sistership. Kithin the sistership, the expectation 

4Sf,  If) = 0 (2.1) 

by definition, hence (since p f  is a constant when f is given) €(pfufsrl I f )  = 0. Averaging over all 
families, we have by the relation €(x) = gf (G(x  1 f )), 

(2 .2)  W f i )  = 4 P f  Sfit = 0, 

(here these are expected values in the whole population) and hence 

(2 .5 )  

(2.6) 

we have, using (3), (4) and (d), that the populat’ion variance is 

l-ar ( x f i )  = var (pf) + var (Sf i )  = A + B. 
Furthermore, if xfi, xfj (i $5 j) are the values of the sisters, their covariance is, on using (2.3), 

COV (Zfi,Xfj) = cov (pf +Sfj,l.f+Sfj) 
= cov @f,Pf) + cov Vfi, &). 

But cov (/hf,pf) = varpf = B, by definition. And using (2.2) 

since, given f, Sfi and Sfj are independent random variables with mean 0. Hence the covariance 
of sisters is 

( 2 . 8 )  cov (Xfi, X f j )  = B. 
The correlation between sisters is thus 

cov ( X f i ,  Zfj) B =- 
Jvar (q,) var (x fr)]  A +B’ Pss = (2.9) 

Notice that we do not assume here either that the distributions are normal or that the variances 
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uf are the same within the different sibships. In  fact, we only need assumptions (a), (p) and (8) 
above. Thus the finding of the correlation pss is effectively equivalent to finding the components 
of variance, A within families and B between families. 

Since the theoretical treatment by Fisher (1918)) Li & Sacks (1954) and others directly relates 
t o  the correlations, it would seem that i t  is natural and appropriate to estimate correlations in 
Ohis way, at  least in the first place, before going on to consider other aspects such as the variance 
of the uf or other higher moments. 

3. WITHIN FAMILIES VARIANCE A 
As is well known, the obvious estimate of A is the ' within families mean square' in the analysis 

of variance. Within each family f we calculate a total Tf = &xfi ,  sample mean Zf = q/nf ,  sum 
of squares of deviations, or 'deviance', 

Af = (Xfi - Zf)2, 

and degrees of freedom vf = nf - 1. We then sum over families to get the total deviance and total 
degrees of freedom 

A = 2 A,; v = C vf. (3.1) 
f f 

The mean square within is then by definition 

msqA = A / v ,  (3.2) 

and provided that assumption (7) holds, as well as (a), ( p ) ,  (a), it is a consistent estimate of A .  
One at-fist-sight pedantic comment is in order. If there are no sisters in a family, i.e. nf = 0, 

the formulas given above break down. The obvious course is to ignore such families, i.e. set 
A, = 0, vf = 0 (instead of vf = nf- 1 = - 1). This is trivial when we are considering only sister- 
ships, since families with no sisters would then not be recorded. But when we come to sister- 
brother correlations there will be recorded families with some brothers but no sisters (or vice 
versa) and they must be counted (especially in a computer program) as giving zero deviance 
and zero degrees of freedom where there are no observed values. 

4. POPULATION MEAN ,!A 

The obvious estimate for the population mean p is a mean of the separate observed family 
means 'cf. However, with varying family size, the Zf will not be of equal accuracy, and hence it 
seems preferable to use a weighted mean. If we give to Zf some (non-negative) weight uf, we 
would have the estimated population mean 

P = (xufxf)/(cwf). (4.1) 

(Note: since ,u here is an estimate, and not the population value, we should according to the usual 
convention distinguish it as j ,  or m, or in some such way. But, as already explained, we here 
rely on context to ma,ke the distinction.) 

The question arises of what values to take for the weights wf .  If the family f is empty, nf = 0, 
we must give it zero weight, uf= 0; the mean Zf is then indeterminate, but can conveniently also 
be set equal to 0. Otherwise, if we choose any (fixed) positive values for wf ,  we will get an estimate 
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,u of the population mean which is consistent, and unbiased (in the sense that its expected value 
is the true population mean). It is well known that the most accurate weighted mean is that in 
which the weight wf is chosen as the reciprocal of the sampling variance of 5, easily found to be 

var ( i f f )  = b y / n f  + B. (4.2) 

We discuss later the choice of a suitable value of B. The estimation of uf in this formula presents 
more serious problems, If t he situation is such that we can plausibly assume that the true mxiances 
u, within sibships are all equal, with common value A ,  then we will have 

var ( F f )  = d/n, + B, (4.3) 

and hence the appropriate 'semiweight' wf is 

OJf = (A/n,+B)-'. (4.4) 

We have already found an estimate (myA) for A .  This weighting is due to  Cochran (1954) and 
independently to  Lee Crump (see Smith, 1957). Unfortunately, if uf varies from family to family, 
we cannot reliably estimate it in the usual genetic situation as A f / v f ,  the variance within the 
individual familyf, because families are too small for such an estimate t o  be reliable (but the 
situation could be different in organisms with large families). It seems a reasonable conipromise 
to  use the formula (4.4) in any case for the weight w f ,  even though withvarying wf it is not strictly 
optimal. 

3 .  \-ARIASCE COXPONEST BETWEEN CLASSES, B 
Smith (1957) suggested the use of a 'weighted deviance between classes' as a means of esti- 

mating B. With some modification, the argument proceeds as folloms. Let 

tf = Zf - I ' L  (5.1) 

be the deviation of the sample mean Zf of familyffrom the estimated population meanp. Assign 
to  each family a weight wj (zero for empty sisterships). Form the 'weighted deviance' 

AB = czcrg. (5 .2 )  

I n  a large sample the variance of the estimated ,u is small. Since [? has zero expectation, we 
hare approximately 

4% = d(vartf)  
N b(varii$) 
= €(Uf/TL,+B) 
= A/n,+B, (5.3) 

(5.4) 

and hence 
&(A,) N A Z(mf777') + BEN?. 

More exactly, setting W = C zij and k = no. of sisterships, 

&(AB) = A4c[n7' ( l -~ , /~~)2]+B[k-2+kCw~/Tl i2] ,  (5.5) 

but in large samples the difference between this and (5.4) is usually not important. Smith (1957) 
suggested that this led to  a method of estimating ,u and B. We replace the expectation € ( A B )  
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on the left-hand side of (5.4) or (5.5) by its actual value AB, which will not be greatly different, 
getting an equation 

AB = A Z(~fn7') + BXwf. (5 .6)  

Smith (1957) also suggested (in the paragraph following equation (30)) that it would be optimal 
to choose the wf to be the same semi-weights of as defined in (4.4) for estimating the mean p. 
But as Alan Robertson pointed out (in a personal communication) the argument for optimality 
is fallacious. However,this does not prevent us setting wf = wf if we so wish, and it is not an un- 
reasonable choice. Assuming that we have already estimated A ,  the equations (4.1), (4.4), (5.1), 
(5.2) and (5.6) together can then be solved in principle to give the values of mf, u, Ef, A, and B. 
Unfortunately, these equations are troublesome to solve directly. But their solution can be found 
iteratively as follows. Begin by guessing some provisional value for B;  e.g. B = A will usually 
suffice. (**). Use (4.4) to find of, (5.1) to find Cf, (5.2) to find AB (with wf = mf), and then solve 
(5.6) to get a new and improved estimate of B. Go back to (**) and repeat the procedure with 
this new value of B as 'provisional' value, to get a further improved value, and so on iteratively 
until the provisional and improved values agree sufficiently well. For further details see Smith 
(1957). 

In essence, what we are doing here is as follows. We consider some expression, F, involving 
observed measurements (and possibly also parameters), and find its expected value, E,  which 
will involve the unknown parameters. We then set F = E ,  providing us with one equation 
connecting the parameters. By repeating this device if necessary, we end up with as many 
equations as there are parameters to estimate, and then solve these. We might reasonably expect 
that this would lead to consistent and nearly unbiased estimators. 

However, there is one complication. In  the equation 

AB = A X(wfn7') + B X(wf) (5.7) 

the right-hand side ( E )  is the expectation of the left-hand side (F) when the weights zuf are held 
constant. But in the semi-weighted method we allow the values of the wf = wf to depend on the 
parameters A and B being estimated, so this is no longer quite obvious. To deal with this kind 
of situation in general terms, suppose we have h unknown parameters, 8, to Oh, forming a (column) 
vector 8. Let x denote the measurements in the sample (of size n),  and w a set of quantities, for 
the moment arbitrary, used in the estimation procedure. Choose a set of h functions F'(x, w, O), 
forming a vector F(x, w, e), and let E(w, 8) be the expectation of F(x, w, 8) for fixed wand fixed 8. 
We will not attempt to present the argument in completely rigorous form, which could lead to 
considerable complication, but we will note that it is important that all functions used should be 
expansible in Taylor series up to at least the quadratic terms. But that will almost always hold 
in practical applications. 

We will denote the actual population value of 8 by 8,, and the expected value of x (when 
8 = 8,) by x,. Thus 6x = x - x, will usually be of order of magnitude n-4. (The 'usually' means 
that, here and subsequently, we suppose excluded from the argument ' exceptional' samples 
with large deviations from expectation, which occur only with low probability.) Let w, be some 
value, to be defined more precisely later, such that 6~ = w - W, is 'usually' anticipated to be 
of order of magnitude n t ,  and let 8 be such that 68 = 8 - 8, is also O(n-4). Then, neglecting 
quantities of order n-l, we have 

F(X, W, 8) = ~ ( x , ,  w,, 8,) + a6x + b h  + CH, (5 .8)  
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where a, b, c are matrices of partial derivatives. The matrix c is square, and will be assumed 
non-singular. Let E(w, 8) denote the expected value of F(x, w, 8) calculated on the assumption 
that w is fixed and that the true value of 8 is in fact 8,, i.e. 68 = 0. Note that we are not asserting 
either that  w is fixed or that  8 = 8,; we are merely saying that E(w, 8) is a function of w and 9 
obtained by taking expectations as if these assumptions were true. From (5.8) we therefore have 

E(W, e) = F~x,,, w,, 8,) + bsw. 15.9) 

If, therefore ~ v c  take our estimation equations to  be 

F(x, w, 0) = E(w, e), 
then, from (3.8) and (5.9), these become a&x+c68 = 0, or 

(5.10) 

8 = e,+a = 8,-c-lasx. 

Since &(ax) = 0, we have a(8) = 8,, i.e. 8 is an unbiased estimator, on neglecting terms of order 
n-1. I n  deriving this we hare assumed that 8w is of order n-4. This is certainly true if w is fixed. 
But i t  is also true if we set w = some function o(x,  8) of x and 8, and correspondingly 

wo = 4x0, 8 0 ) .  

This guarantees that estimates obtained in this way, including virtually all the estimates con- 
sidered in this paper, will be unbiased when quantities of order n-1 are neglected, and, if neces- 
sary, rare ‘exceptional ’ samples excluded. U7e call this the ‘unbiasedness principle’. 

The fact that the maximum-likelihood equations for estimating components of variance are 
of this type has been noticed by various authors, but they do not all seem to have drawn the 
concInsion that the equations are therefore robust, in the sense of giving nearly unbiased (though 
ineKcient) estimates even when the distributions are not normal. 

6. ~IAXISIG~€-LIKELIHOOD ESTIXATIOX OF NORMAL INTRACLASS CORRELATION 

The method used above of estimating the within family component of variance A as the mean 
square within families is easily seen to be less than optimal, even when all within family true 
variances L )  are equal to A. For the family mean Zf has variance (AnF1+ B )  = uf (say) and this 
implies that (n-hen the n, vary from family to family) the values of the Zf by themselves would 
give information about the values of both B and A ,  even if we were not told anything about 
variation within families. An optimal method of estimation should take this into account. 

The ‘nortiial’ model, with all within family variances uf equal to A and all distributions normal, 
will often approximate closely t o  real life. It has the advantage that estimates can be found 
using maximuni likelihood. I n  fact, the method turns out to  be not much more complicated than 
the semi-weighted method. 

In a large sample Cf = Tf-- u has expected mean 0 and variance nearly equal to uf = Af ln  + B, 
ignoring a small correction dne to  the variability of p .  Hence 
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where for the moment a is a constant. Then we have, nearly enough, 

cY(8,) = A ( 2 w ; n ~ 2 + a 2 y ) + B Z w 2 n - 1  
€(a,) = AZw?nFl+ B C w ;  f f l  ,j* (6.3) 

If we replace the expectations on the left-hand side by the actual values of S,, S,, this gives 
two linear equations to solve for the values of A,  B :  we can write them as 

where T is a 2 x 2 symmetric matrix. If T was constant, i t  would follow that the solutions 

[t] = T-IS = tS 

say, where t = T-l, would be consistent unbiased estimates of the true values of A ,  B. However, 
this is not quite true, because wf depends on A and B,  and we will now put 

01 = A-l, (6.6) 

also dependent on A .  But the equations (4.1), (4.4), (5.1), (6.2), (6.5) and (6.6) give a set of simul- 
taneous equations which we can solve to find p, A ,  B, wf and tf. This is not difficult to do itera- 
tively. We first begin with ‘provisional’ values for A ,  B, for these we could conveniently take 
A = the mean square within families and B = A. (**). Then we set a = A-l, find uf from (4.4), 
p from (4.1), Cffrom (5.1), S,, SB from (6.2), T from (6.4), T-I = t by matrix inversion and new 
improved values of A,  B from (6.5). We now take these improved values as preliminary values, 
repeat from (**), getting still better values, and so oniteratively until the provisional andimproved 
values agree sufficiently closely. The final values can then be shown to be the maximum likelihood 
estimates under the normal model. In addition, the error variance of p is R-l, where CI = X wf, 

and hence its standard error is slb. The error variance matrix of the vector is [:I 
var [i] = 2t. 

Hence the standard errors of A ,  B are respectively 4(2tl1) and J(2t22). 
Because of the way in which these estimates have been found, the ‘unbiasedness principle’ 

shows that they are robust in the sense that p, A ,  B will be consistent and nearly unbiased esti- 
mates of the corresponding population values as long as the assumptions (a) ,  (p), (y) ,  (6) of 
Section 2 hold good, even if the distributions are not normal. They will no longer be optimal 
estimates, but they can usually be expected to be reasonable ones. The formulas for the 
standard errors given above will only apply to the normal case, but they can be expected to  
indicate roughly the values of the S.E.’S in other cases. 

7. EXAMPLES O F  ESTIMATION OF INTRACLASS CORRELATION 

For illustrative purposes, a small sample of 14 families has been chosen from a large mass of 
Polish dermatoglyphic family data, kindly made available by Dr D. Z. Loesch. The families con- 
sisted of sisters and brothers, together with their fathers and mothers. (We could have used the 
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Table 1. Dermatoglyphic family data : values of pattern intensity on fingers 

Fain. (I) Sisters’ values (2) Brothers’ values 
no. \ ------- (3) (4) 

f 
I 
2 

3 
4 
5 
6 
7 
8 
9 

I 0  

I 1  

1 2  

I 3  
I4 

- 
nfl Zfl 4 1 1  

2 I 2‘0 0 

2, 2 2 2’0 0.0 

2,2,2. 2 4 2’0 0‘0 

4 I 4.0 o 
2 , 2 , 3  3 2‘33 0.67 
294, 7 ? 4 .  4 
5 I 5 ‘ 0  0 

4 I 4.0 o 

- o - -  

o - -  

5 4.2 12.8 

o - -  
o - -  

- 
__ 

4. 3.  3 3 3‘33 0.67 
2. 2 . 2  3 2‘0 0‘0 

- 
nj2 xt2 Arz2 Mother Father 

2 I 2’0 0 2 3 
2, 3 2 2.5 0.5 2 3 
2 I 2’0 0 2 3 

I 2’0 0 

2 6-0 0-0 

2 3.0 0.0 

4 4‘5 5’0  
2 7’5 0 .5  
I 6.0 o 
2 4‘5 0.5 
4 4.0 2.0 
2 3.0 2-0 
I 3.0 o 
o - -  

2 
6 
4 
4 
3 
5 
5 
5 

6 
2 

2 

4 
7 
3 
3 
7 
5 
4 
6 
4 
3 
3 

Total 71 24 30’87 14’14 I02 25 50’0 10.5 50 55 
Mean 2.96 9b1 3’09 1’01* 4.08 nB 3.85 0%8* . 3.57 3-93 

* Mean square within = (total deviance Afi)/(total d.f. v i ) .  

terms ‘daughters’ rather than ‘sisters’, but i t  is customary to speak of ‘sister-sister’ rather 
than ‘ daughter-daughter ’ correlation. Similar remarks apply to ‘brothers’ or ‘sons’; indeed, 
statements made below for one sex will be taken to imply similar ones for the other, when appro- 
priate.) The data is presented in Table 1 .  Where there are no sisters in a particular family, a 
dash ’-’ is used to show that the mean 5, and deviance are indeterminate. Where there is 
only 1 sister in a family, the deviance Afll is necessarily exactly 0; elsewhere the means and 
deviances are given in the table to 1 or 2 decimal places. The actual calculations which follow 
were done to at  least 4 significant figures, and so may not agree exactly with the sometimes 
rounded-off ralues in Table 1. This 4 figure accuracy is well beyond practical needs (2 or 3 
significant figures mould be ample), but was used here to see how quickly the iterations approached 
the final answer. 

The suffixes 1, 2, 3, 4 mean respectively ‘sisters’ (or daughters), ‘brothers’, ‘mothers’, and 
‘fathers’. We begin by estimating the sister-sister correlation. Because no other position in the 
family is involved, we drop the suffix ‘ 1 ’ in this calculation, as superfluous. We can conveniently 
delete from the data all ‘empty’ sisterships containing no sisters; there remain I% = 10 non- 
empty sisterships. The mean square within sisterships, ?nsqA, is found by dividing the total 
deviance A = C Af = 14.14, see Table 1, by the total degrees of freedom, 

Y = total no. of sisters -no. of non-empty sisterships 
= Zn,-k = 24- 10 = 14, 

getting msg, = A / v  -- 1.01. This serves as a preliminary estimate of A .  

popiilation mean: 
p 2: Ei?f/k = 30*87/10 = 3.087. 

To find a preliminary estimate of B, we could if we wished start off by assuming B = A = 1.01 

\\-e take the (unweighted) mean of sistership means Zf as a preliminary estimate of p, thc 
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this is only a very rough value to start the iterative process going. But apart from its crudeness, 
this estimate has the disadvantage that in some situations (which we come to later) there may be 
no ‘A’ value to use for ‘23’. A better, more universally applicable method is as follows. We cal- 
culate AB, the sum of squares of deviations of sample means 2, from the estimated population 
mean p, that is 

AB = Z;(Z~-,U)’ = 11.92. 

We set this equal to Z(nF1) A + kB. We readily h d  X(nF1), summed over non-empty sisterships, 
to be 5.950. We already have k = 10, and an assumed value 1.010 for A,  so we have to solve the 
equation 

giving B = 0.592. 
11.92 = 5.950.A + lOB, 

We improve these estimates iteratively, as follows. 
(**) For each family, calculate a weight wf = (B+A/nf)-l  (so that w1 = 0,6246, w2 = 0.9120, 

etc.). Calculate 
C(W,) = 9.0863, 

Z(~&2f) = 27.1116, 

whence we get a new and better estimate of the population mean, 

,U = Z(ufZf)/Z(uf) = 27.1116/9.0863 = 2.9839. 

We have already found v = 14 and A = 14.124 to be the respective total degrees of freedom and 
deviance within sisterships. We now calculate 

v /A2  = 14/1*0092 = 13.75, 

A/A2 = 14*124/1*0092 = 13.87. 

For each family f we calculate the deviation cf = Zf-p of its (sample) mean from the estimated 
population mean; for example, 6, = 2.0 - 2.9838 = - 0.9838, 5, = - 0,9838, etc. Then find 
(always excluding empty sisterships) 

T,, = X(OJ?T~?~)  +y /A2 = 16.0564, 

T,, = T,, = Z(w?nT1) = 3.8049, 

T22 = WJ;) = 8.8635, 

8, = S, = 2(w?nF1@ +A/A2 = 18.4360, 

s, = SB = E(u;g) = 9.0355. 

By a simple matrix inversion, t = T-l is 

16-0564 3-8049 0.0693 - 0*0298] 
-0.0298 0,1256 ’ 

I-’= [I [I 3.8049 8.8635 

so that the improved estimates of A ,  B are given by 

0.0693 - 0.0298 18,436 1.0093 [t] = *‘ = [ -0.0298 0-1256] [ 9.0361 = [0.5861]* 
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Table 2. Estinzates ofp,  A ,  B for brothers 

7 

Iteration P 
0 3.846 
I 3.8980 
2 3.8999 
3 3 ’ 9 0 0 0  

> 4  3’900 1 
Y.E. (approx) 0.47 

Estimates of 

A 

0.875 
0.S872 
0.888 2 

0.8886 
0.8886 
0.36 

.A 

B 

2‘327 
2’252 3 
2.248 2 
2,247 8 

0’79 

2‘247 8 

We go back to (**) and repeat the whole process, using the new improved estimates of A and B. 
This leads to the still better estimates 

p = 2.9834, A = 1.0092, B = 0.5862. 

A and B only differ from the previous estimates by 1 in the fourth decimal place, and hence are 
clearly the final estimates correct to 4 places. Thus, it seems that the first improvement had 
already provided estimates correct to almost 4 decimal places (in the sense of agreeing with the 
final values to this a.ccuracy), though we could hardly have known that without calculating the 
second improved estimates. 

Although dermatoglyphic distributions are usually distinctly non-normal, standard errors 
calculated as if me had a large sample from a normal distribution may be a useful indication of 
the approximate accuracy of our estimates. The error variance of p is l / X  of = 1/9.0863 = 0.110, 
whence its standard error is J0.110 = 0.33. The error variance of A is 2t,, = 0.1386, whence 
S.E. ( A )  = 40.1386 = 0-37. Similarly, the error variance of B is at 2t,,, giving standard error 0.50, 
and the error covariance is 24,. Note that, in the normal case, ,u is statistically independent of 
A andB. 

The estimated sister-sister correlation is 

p = B/(A+B) = 0.586/(1*009+0*586) = 0.37. 

The standard error of p is given by the formula (applicable, really, only to large samples) 

S.E. @) = (p2/B2))[B2varA +A2varB-2ABcov(A,B)], 

where varA means the error variance of A (=  0.1386), and so on. This gives S.E. (p) = 0.22. 
The results of a similar calculation on brothers are summarized in Table 2. The convergence 

is again extremely rapid, aIthough not quite so rapid as with sisters. After only one improvement, 
the estimates differ from their final vahes by Iess than 1 yo of their standard errors, which is more 
than ample accuracy. 

8. CORRELATIONS BETWEEN RELATIVES OF DIFFERENT TYPES 

The technique described above readily extends to correlations between different classes of 
relatives, such as sister-brother, mother-daughter, and so on. Let p denote a ‘position’ in a 
family, among the &a1 generation p = 1 meaning ‘sister’, p = 2 ‘brother’, and in the parental 
generation p = 3 (mother’ and p = 4 ‘father ’. 
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We suppose that there is one character, x, measured on all members of the family: thus xfpi 
means the measurement of individual i of position p in family f (and x,,, = measure of f i s t  
sister in family number 2) .  We make assumptions analogous to (a), (p), (y), (6) of Section 2. 
Within any one family f and position p the character is distributed with true mean ,ujp and true 
variance ufpp. The mean, among all families f, of ,ufp is ,up, the population mean of individuals 
in position p ;  and the mean of the ujpp is A,, the within-families component of variance. The 
covariance among different families of ,ujp and,ujq is the between families covariance (or variance 
i fp  = q ) .  

In  a sample of individuals, suppose there are njp individuals in family f and position p.  The 
values xjpi of these individuals will have sample mean Z f p ,  deviance Afpp with degrees of freedom 
vfpp, except that when nfp = 0 we set Zjp, Ajpp and vfpp all equal to zero. 

Note that in this context, there is no within-family covariance ufpq for p =+ q, and hence no 
A,, and no Afpa. However, with a view to later applications, it is convenient to bring in the 
symbols ufpq, Apq, A,,, and vfpq but to take them all to be zero. (The reader can simply omit these 
symbols). With this convention the true covariance between individuals of positions p and q, 
with p + q,  is A,, + B,,, the (true) variance of individuals of position p is A ,  + Bpp, and hence 
the correlation between positions p and q is (for p $- q) 

Let App = XjAfpp,  v,, = Xfvjpp.  Then App/vpp,  the within family mean square, is a suitable 
preliminary estimate of A,,. Let 

ABpq = c @ j p - P p )  @jq-pq), 

summed over all kpq families for which njp + 0 =+ njq, and let Rp = I@&,), summed over all f for 
which nfp 4= 0. Then (ABpp - Rp A,,)/kpp is a suitable preliminary estimate of Bpp, and A,,,/TC,, 
is a preliminary estimate of Bpq when p =k q. 

We est,imate the population means ,up as a weighted mean of the family sample means Zjp. 
Let the matrix uf have elements 

f 

UfPP = AP,~D$G +BP,, (8.2) 

where spp = 1 and spq = 0 when p =+= q. Then the inverse matrix uj = u ~ l  is the ‘semi-weight’ 
matrix for family f. Set 8 = Cf wj, and Y = 8-l. Then the appropriate weighted mean estimate 
for t,he populat,ion mean is 

p = y D j Z f ,  (8.3) 
f 

in the sense that the component ,uj is the estimate of the mean character in individuals of position 
P. 

An apparent difficulty arises when nfp = 0 (as can frequently happen in practice) when the 
matrix uf will have an infinite diagonal element ujpp. But uf will have a finite inverse, of, found 
as follows: 

(i) for each infinite diagonal element ujpp, delete the corresponding row and column (row p ,  
column p )  from the matrix uj. When all such deletions have been performed, let u; be the 
resulting matrix, which in general will be non-singular, 
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(ii) invert u; to give a;-* = (uT)-1, 
(iii) whenever the pth row and column have been deleted from uf, put back into of* a pt,h 

row and column consisting entirely of zero elements. Thus (using ? to denote an indeterminate 
or arbitrary element), 

Having found of, the rest of the calculation proceeds as above. I n  programming this for a com- 
puter, we are unable to set ufpp = co, there being no such number in computer code. But the 
probIem is not too difficult to overcome. We have only to note that the rows and columns which 
are to be deleted, and subsequently reinserted as zero rows and columns, are marked by nfp = 0. 

An additional complication can arise here. In  our example, we have supposed that the 'posi- 
tions' p = I ,  2, 3, 4 in the family were respectively sisters, brothers, mothers, fathers. Now we 
could suppose that sisters and mothers, both being female, would have the same population 
mean, ,ul = p3, and similarly for brothers and fat,liers, p, = p4. This would not be plausible for 
a charact'er such as height, which would be influenced by a change in environmental conditions 
between successive generations, and probably also has appreciable selective value (even though 
it is difficult to demonstrate that experimentally). But it could be true (nearly enough) for some 
dermatoglyphic characters. We can easily modifYv the calculation to take this into account. Note 
that the equation (8.3) is the equivalent matrix form, of the equation SZp = wf Zf. Written out 

in full this is a set of linear equations for ,up 
f 

(8.4 

What we now do is to replace p3 by pl, and at the same time add together the first and thirc 
equations. Similarly we replace p4 by p2, and add together the second and fourth equations 
More formally, we proceed as follows. Because ,ul = p3, we do not have two separate parameter, 
,ul, p3,  to estimate, but only one, which we will call M,. Similarly we replace,u2, p4 by a single para 
meter M,. 

Define the symbol mip to have the value 1 when the population mean value ,up of individual 
of positionp is equal to the parameter ilfi, and to be zero otherwise. (Thus in our case, m,, = mI3 = 

showing that sisters (1)  and mothers (3) are assumed to have the same true mean, and m2, = 
m24 = 1. )  
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Find 

Y = a-1, 

M = YX. (8.5) 
Then the components Mi of M are improved estimates of the parameters. Each parameter Mi 
represents the assumed value of one or more means ,up, and hence in finding an improved value 
of Mi we find at the same time an improved value of ,up. For the purpose of computer program- 
ming, this can be done by setting 

p p  = P miP Mi. 7 
Similar considerations arise in the estimation of the variance components A,, and B,,; in 

general, there will be more of these than parameters to be estimated. For one thing, we neces- 
sarily have A ,  = A,, and Bqp = Bpq. For another, we have seen that in the situation a t  present 
being considered, Apg = 0 when p + q. Furthermore, since each family has only one mother, 
there is no within family variation for mothers, so A,, = 0, and similarly for fathers A,, = 0. 

We will therefore rename the separate variance and covariance components which are to be 
estimated as C,,C,, .... Each Ci will represent either the value of one or more within family 
variance or covariance components Apq, in which case we set a,,, = 1, or else the value of one or 
more between family variance or covariance components Bpq, in which case we set b,, = 1. 
Otherwise, we set aiPq and b.tPq to zero. As before we will write 

t f P  = Z f P  -,up, 

the deviation of the mean of position p in family f from the corresponding estimated population 
mean. We will denote the matrix inverse to A by a. And, to avoid infinite values, it  will be useful 
to introduce the symbol 

rfp = n$ (when nfp + 0), 0 (when nfp = 0). (8.6) 

If the parameter C, represents a within family component, we set 

If Ci represents a between family component, set 

Since, for any given i, either the right-hand side of (8.7) or the right-hand side of (8.8) is zero, 
we could formally define Si for all i as the sum of the expressions on the right-hand sides of 
equations (8.7), (8.8). This could simplify computer programming. In  the same way, (at most) 
one of the following four expressions will be non-zero, depending on whether C, and Cj represent 
within family or between family components. We define l& to be this non-zero value, or, equiva- 
lently, as the sum of the four expressions: 

p.q z P,Q (a$pqajPQ [ ~ r f p r f P w f P p w f q Q + v p ~ ~ ~ a q ~ l ) ,  

18 
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The !& form a square sj-mmetric matrix. Let t = T-l be its inverse. Then 

c = tS (8.10) 

is a vector of improved estimates of the Ci. These, of course, immediately give improved esti- 
mates of the A,, and Bpq, which can be written 

(8.11) 

As before, the process can be repeated to get still better estimates. We go back to (8.2) to 
define a new matrix uf, and hence wf = uyl. We recalculate X, 8, Y, and M from (8.5), and 
hence p. K e  then find S from (8.7) and (8.8),  T from (8.9), and new C from (8.10). The iteration 
is halted when provisional and improved values agree sufficiently closely. 

Under assumptions of a large sample and normal distribution, the error variance matrix of 
M is Y, i.e. the standard error of Mi is JYii. The C parameter estimates are statistically inde- 
pendent of the M, and the error variance matrix of the C is 2t. 

This procedure is again justified by the unbiasedness principle. In  any familyf, taking p to 
be fixed, 

4 g f p t , q )  = B, ,q+rf i? ,3pq  = Ufpq.  (8.12) 

By iising the fact that. by definition, uf = my1, it is not difficult to show that a(S) = TC. Hence, 
by setting S = TC, or C = T-1S = tS, we get, nearly unbiased estimates of the C. The method 
of Section 6 is a particular case. Later we sketch a proof that in the normal case these are maxi- 
mum-likelihood estimates. 

Unfortunately, this method can lead in practice to the inversion of large matrices. Applied to 
brother-sister correlation, it needs the inversion of 5 x 5 matrices T. Applied to the simultaneous 
estimation of components of variance and covariance for sisters, brothers, mothers, fathers, it 
~voulct give rise to 12 x 12 T matrices, which, however, would still be practical on a computer. 
For more complicated problems, it would seem wise not to try to estimate everything simul- 
taneously, even at the cost of a slight loss of efficiency. There is also the point that we might 
reasonably require the variance of mothers to be the same as that of sisters, leading to a relation 
B,, = A,, + Bll. I intend to show how to deal with such a problem in a further paper. 

9.  CROSS-CORRELATIONS 

In addition to correlations between, say, sister’s height and brother’s height, there are ‘cross- 
correlations ’ between sister‘s height and brother’s forearm length. These can readily be covered 
by our scheme, by using the following formal device. We call ‘sister’s height’, ‘sister’s forearm 
length’, ‘brother‘s height’, ‘ brother’s forearm length’ different ‘positions’ in the family, say 
positions numbers 1 ,2 ,3 ,4 .  It is as if in imagination we replaced each sister by a pair of identical 
twins, indistinguishable except for order of birth. On the first-born twin we measure only the 
height, on the second only the arm-length, so that ‘first-born sister’ and ‘second-born sister 
do occupy different positions in the family, and are represented by different measurements. Bui 
me assume that on each individual all relevant measurements are taken; no real sister has he1 
height measured but not her arm length. Otherwise complications arise. We now proceed exactlj 
as before, with one slight modification. Because the measures of sister’s height (position 1) an< 
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arm length (position 2) are in fact measured on the same individual, they will be associated in 
pairs, so there will now be a codeviance A,,, within families, and a corresponding non-zero co- 
variance component A12. The formulas given above allow for these. 

In principle, this would enable us to estimate simultaneously correlations and cross-correla- 
tions between any number of characters in any number of ‘positions’ in a family. But the size 
of matrices to be inverted rises very rapidly indeed with the number of characters and positions 
used. 

10. JUSTIFICATION OF THE METHOD 
. 
estimate, or ‘evaluate’, in the case of a multivariate normal distribution. 

case with some A,, =I= 0 follows in a similar way, with suitable modifications. 

be the sum of the support functions of the separate families, 

We now sketch a proof that the method described above does give the maximum-likelihood 

We will consider here the case without cross-correlations, i.e. with A,, = 0 when p =!= q;  the 

Let L denote the support function, that is, the natural logarithm of the likelihood. This will 

L = E L f .  (10.1) 

Now it is a property of the normal distribution that it factorizes into two independent parts. 
One ‘between families’ part represents the distribution of the sample means of families. Since 
the ff have population mean p and variance matrix uf, as defined above, the formula for the 
normal distribution shows that this gives a contribution to the support (with wf = uf-l) 

LfB = -&[lndetuf+ (Zf-p)Tcof(ff-p)]. (10.2) 

The second part of the support relates to variability within families. Let a = A-l. When A is 
diagonal, so also is a, with diagonal elements a,, = A;:. By suitable rotation of axes it is not 
difficult to show that the contribution to the support is 

(10.3) 

(When A has off-diagonal elements, LfA takes a slightly more complicated form. But note that 
we suppose that the sampling is such that vfp = vfq whenever A,, + 0.) The total support is 
accordingly 

(10.4) L = ZLfA+XzfB = ~ [ ~ , , ~ , p + ~ , ~ p p 1 ~ ~ ~ C [ ~ ~ ~ ~ ~ ~ ~ +  X afpp(zfp-pp) ( z f q - ~ q ) l *  
f f P. P 

The efficient scores are U y  = aL/8Mi, U: = aL/aCj, considered as functions of the Mi, Cj, and 
the maximum likelihood estimates are solutions of the equations 

UT(M, C) = 0, UB(M, C) = 0. (10.5) 

Now we have immediately from the definition 

h,/aMi = mi,, 
aA,,p, = a i p p ,  

aB,,/aci = bipq. 
Since ufpq = B,, + rz$ A,,, we have 

aufpn/aBpO = I when p = P,q  = Q, otherwise 0;  
aufp, f aA,, = n$ when p = P, q = Q, otherwise 0. 

18-2 
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If u, w are any two inverse matrices, the relation uw = I gives du . w +udw = 0, whence 

2w,,l%-vJ = - W p P W Q q .  

Also an expansion of det u by a row (or column) shows that a(det u)/auPq is the cofactor of up,, 
whence 

2(ln det u)/2upq = wqp. (10.6) 

We can thus find C:T, UF by straightforward differentiation. We can easily find (see equation 
(8.3)) 

(10.7) 

Hence setting t7f1 = ct for all i amounts to setting X = 8 M ,  or M = S-IX = YX, in accordance 
with (8.5). 

Analogously we find, after some algebraic manipulation, that 

77,. = -&(CTjkCk-Sj ) ,  (10.8) 

valid n-hether Cj represents a within family or between family component. Hence to set all 
5: = 0 amounts to setting TC = S, or C = T-1S = tS, in agreement with (8.10). 

The information matrix J can as usual be found as the matrix of the negative second deriva- 
tive of the support, i.e. first derivatives of the scores U. From (10.8) we readily find that 

k 

(10.9) 

For the mixed second 
(10.8) that this must be 

derivatives of the form J$" = - aU$/aC,, we see from the top line of 

i.e. a linear function of the ( Z ~ ~ - , U , ) .  But (zfq-pq)  has expectation zero, hence J$" also has 
expectation zero, and can be put equal to 0 accurately enough. Thus we see that the J matrix 
partitions in the form 

J = [  0 Jcc] ' 

The error variance matrix of M is accordingly (JJfM)-l = 8-l = Y, as previously asserted. 
When me come to evaluate JgC = - au? /BCk, we obtain rather complicated algebraic expres- 

sions involving products tfPEfQ arising from the sj term. However, EfpEfQ has expectation U f p Q .  

If w e  replace the E f Q E f Q  by these expectations, it will be found that JFt reduces to &Tjk. Hence 
the error variance matrix for the C is (JCC)-1 = (tT)-l = 2t, as previously stated. 

JMN 0 

wllerc JJf31 = a. 
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SUMMARY 

A method is proposed for simultaneous estimation of genetical variance and covariance 
components €or quantitative characters and hence correlations and cross-correlations between 
relatives. It proceeds by successive approximations, which are not difficult to compute. Judging 
by examples, they appear to converge rapidly in practice. When distributions are normal and 
homoscedastic, the method gives the maximum-likelihood estimates and their error variances 
and covariances. It can be readily modified to take into account assumptions such as that means 
and variances are equal in fathers and sons. But the amount of calculations required goes up very 
rapidly with the number of characters and relatives considered simultaneously. 

I have to  thank Dr Abdulbari Bener for interest and help in this problem, and for tracing other work in 
this field. 
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