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We review the conditions under which cross-sectional family data (e.g., data on twin 
pairs or ad'optees and their adoptive and biological relatives) are informative about di- 
rection of causation. When two correlated traits have rather different modes of inheritance 
(e.g., family resemblance is determined largely by family background for one trait and 
by genetic factors for the other trait), cross-sectional family data will allow tests of strong 
unidirectional causal hypotheses (A and B are correlated "because of the causal influence 
of A on B'" versus "'because of the causal influence of B on A")  and, under some 
conditions, also of the hypothesis of reciprocal causation. Possible sources of errors of 
inference are considered. Power analyses are reported which suggest that multiple indi- 
cator variables will be needed to ensure adequate power of rejecting false models in the 
presence of realistic levels of measurement error. These methods may prove useful in 
cases where conventional methods to establish causality, by intervention, by prospective 
study, or by measurement of instrumental variables, are infeasible economically, ethically 
or practically. 

KEY WORDS: Twins; reciprocal causation; genetics. 

I N T R O D U C T I O N  

It is widely acknowledged that the existence of  a 

correlation between two variables,  measured at a 

single point in time, has no necessary implications 

about causation (Fisher, 1958). There are many ex- 

amples in the behavioral sciences where the direc- 

tion of  causation underlying an association between 

two variables is uncertain, and where reciprocal 

causation must be suspected. The existence of an 
association between measures of  psychopathology 

(variable A) and perceived early childhood environ- 

ment (variable B),  for example,  might arise because 
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the early environment has a direct causal influence 

on risk of  psychopathology (B ~ A) or because 

current psychopathology is biasing recall of  early 

experiences (A ---> B), or alternatively, both these 

processes may be operating simultaneously (recip- 

rocal causation: A ~-- B) (Martin and Heath,  1991; 

Neale et  al . ,  1993). There may  even be no direct 

causal link between the two variables,  with each 
being influenced by  other, unmeasured variables 

(A ~-- C --> B): inherited temperamental  variables, 
for example,  might lead both to a disruption of  a 

child 's  early environment and to an increased risk 

of  later psychopathology (cf. Bell, 1968). In this 

paper, we explore the conditions under which even 
cross-sectional data, on family members,  can be 

used to test such causal hypotheses and review the 
limitations of  this approach. We also explore the 

sample sizes needed for adequate statistical power 

to resolve alternative causal hypotheses,  for a few 

instructive parameter sets, to determine how useful 
it is likely to be in practice. 
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Instrumental Variables 

To understand how family data can be used to 
test causal hypotheses, it is helpful to consider al- 
ternative research strategies, using observational (i.e., 
nonexperimental) data, that have been used. Instru- 
mental variable methods (Fig. 1), widely used in 
econometrics (e.g., Johnston, 1972), have been ad- 
vocated as one useful approach (Kessler, 1983). 
The path diagram (Wright, 1968) in Fig. 1 rep- 
resents a reciprocal causal relationship between two 
variables, A and B, which are also partly deter- 
mined by "instruments"/_4, and IB, respectively, 
plus residual factors UA and UB. The successful 
identification of instruments, i.e., variables which 
are related causally to one, and only one, of the 
two variables whose reciprocal causal influence is 
under study, is critical for this approach; and the 
mistaken assumption that a variable is an instru- 
ment when it in fact influences both the reciprocally 
interacting variables may lead to mistaken infer- 
ences about causality (Kessler, 1983). Also critical 
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Fig. 1. Path diagram (Wright, 1968) representing an instru- 

mental variable model for resolving reciprocal causal influ- 

ences of two variables, A and B, on each other. A and B are 

determined by exogenous instruments/A and 1B, plus residuals 

UA and UB. Two-headed arrows between/A and IB, and be- 

tween UA and UB, are used to denote the covariances of those 

variables. Two-headed arrows from a variable to itself are used 
to denote the variance of  that variable. Single-headed arrows 
are used to denote the effects of exogenous variables on the 
endogenous variables A and B, as well as of the endogenous 
variables on each other. Lowercase l e t t e r s  a r e  used to represent 

model parameters corresponding to the covariances and vari- 

ances of the exogenous variables, and path coefficients rep- 
resenting the direct effects on endogenous variables of exogenous 
and other exogenous variables, except in cases where these are 
fixed to particular numeric values. Path iBA represents the di- 
rect causal influence of A on B; path iA~ represents that of B 
on A. 

is the assumption that residual effects on variable 
A (UA) are uncorrelated with the instrument for 
variable B (IB), and likewise that there is no cor- 
relation between UB and/A. 

Under the full model in Fig. 1, the expected 
covariance of variable A with its instrument /A is 
S('yAVIA -I" iBA'YBqbAB), the covariance of B with IB 

is S(~/BVm a t- iBA~AqbAB), the covariance of A with IB 

is S(~/AqbAB + iAB'/BVm), and the covariance of B and 
/A iSS(~/Bd~AB + iBA~/AV~), wheres = (1 -- iAB/BA)--L 
In the absence of any direct casual influence of A on 
B or of B on A (/AB = iBA = 0) ,  these covariances 

reduce to "/AVIA, "yBVIB, ~/A~)AB, and "yB(~AB, respec- 
tively. In other words, in the absence of any direct 
influence of A on B or B on A, the covariance of A 
with 113, and of B with/A, can be predicted from the 
variances and covariance of the instruments/A and 
IB and the covariance of A with/A,  or B with 117, 

respectively. In the case of unidirectional causation, 
whereA is a cause o r B  (A ~ B, i.e., iBA =/=0, iAB 
= 0), the covariance of A with IB does not change, 
but the covarianee of B with/,4 changes to ("/B+AB 
+ iBA~/AV~A); and conversely, under unidirectional 
causation with B a cause of A, only the covariance 
of A with IB will change. Thus it is the cross-covar- 
iances between variable A and the instrument for var- 
iable B, and between variable B and the instrument 
for variable A, which provide critical information about 
the causal influence of A on B and B on A. 

The full model in Fig. 1 has 10 parameters 
and so will give a perfect fit to the 4 x 4 covariance 
matrix of variables .4, B, /,4, and IB. Thus there is 
a single degree of freedom available for testing the 
submodel with t~a B = 0, i.e., the hypothesis that 
there is no residual correlation between A and B, 

after allowing for both the correlation between the 
instruments for A and B, +AB, and the direct causal 
influence of A on B and B o n A ,  or for testing either 
unidirectional causal model and two degrees of 
freedom for testing the hypothesis of no direct causal 
influence of A on B or B on A. 

Despite the theoretical appeal of the instru- 
mental variable model, examples in the behavioral 
sciences where it can be applied in practice have 
proved to be rare. It is seldom possible to be con- 
fident both that an instrument for A has no direct 
causal influence on B and that an instrument for B 
has no direct causal influence on A. To take a con- 
crete example, we may be interested in the recip- 
rocal  causal  re la t ionship be tween  adolescent  
delinquent behavior and illicit substance use in a 
national survey. It might be possible to argue that 
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a measure of neighborhood or community "drug 
availability" would be a potential instrument for 
the illicit substances use variable. It is extremely 
difficult to conceive of a suitable instrumental var- 
iable for delinquent behavior which could be as- 
sumed, with any degree of  confidence, to have no 
direct effect on illicit substance use. Furthermore, 
it is easy to imagine that certain unmeasured neigh- 
borhood characteristics might lead both to increased 
drug availability and use and to increased risk of 
delinquent behavior, violating the assumption of no 
correlation between the residual for variable B and 
the instrument for variable A. 

It is sometimes possible to identify an instru- 
ment for only one variable, which at least makes 
possible a test of a unidirectional causal hypothesis. 
For example, if we are interested in the relationship 
between adolescent smoking and illicit substance 
use (e.g., Yamaguchi and Kandel, 1984) or be- 
tween smoking and depression (e.g., Breslau, 1991; 
Kendler et al., 1992), the assumption that regional 
differences in the sales tax on cigarettes will be an 
appropriate instrument for smoking, and uncorre- 
lated with the residual for depression (or illicit sub- 
stance use), may sometimes be justifiable, although 
not if both variables are influenced by local eco- 
nomic conditions. In these circumstances, the hy- 
pothesis of no direct causal influence of smoking 
on illicit substance use (or depression) predicts no 
covariance between sales tax and illicit substance 
use (or depression). However, in most examples in 
the behavioral sciences we must allow for the pos- 
sibility of reciprocal causation. Another problem 
confronts the practical application of the instru- 
mental variable model, even if instruments can be 
successfully identified: variables A and B and their 
instruments are unlikely to be measured without 
error (as is implicit in Fig. 1). However, this prob- 
lem can often be overcome, by using multiple in- 
dicator variables (Bollen,  1989) to assess the 
underlying latent constructs of the model. 

Panel Data 

Many investigators have explored the use of 
longitudinal data, most commonly two-wave panel 
data, to address issues of causality (e.g., Campbell, 
1963; Duncan, 1969) and have explored the critical 
underlying assumptions, violation of which may lead 
to errors of inference (e.g., Duncan, 1969; Kenny, 
1975; Rogosa, 1980; Locasio, 1982). In early pa- 
pers the relative magnitude of the cross-temporal 

cross-trait ("cross-lagged") correlations, i.e., the 
correlations of A measured at wave 1 (A~;) with B 
measured at wave 2 (Bt2), and of B measured at 
wave 1 (Ba) with A measured at wave 2 (A,2), were 
used to infer the relative strengths of the causal 
influence of A on B versus B onA: a higher absolute 
cross-correlation between A,I and B,2 than between 
Btl and A,2, for example, was taken to imply a pre- 
dominant causal influence of A on B. This approach 
can be seriously misleading (see, e.g., the critique 
by Rogosa, 1980), even when it is recast as a prob- 
lem of resolving alternative structural equation hy- 
potheses. Errors of inference may arise because of 
such issues as (i) differences in measurement error 
for the two traits, or the existence of correlated 
errors of measurement for the two traits; (ii) incon- 
sistency between the causal lags (i.e., the intervals 
between a change in A and the change in B which 
this produces, and vice versa) and the time lag be- 
tween waves of measurement; and (iii) partial or 
complete determination of the correlation between 
the two traits by a third unmeasured "mediat ing" 
variable, C. Such factors can lead to a higher cross- 
correlation between Aa and Bt2 even when the pre- 
dominant causal influence is B --* A. 

If we consider the instantaneous reciprocal 
causal influences of A on B and vice versa, we can 
view the two-wave panel as being a particular in- 
stance of an instrumental variable model, where 
measured of A and B at wave 1 function as instru- 
ments forA and B, respectively, at wave 2 (Kessler, 
1983): i.e., we can substituteAtl for/A and B,~ for 
IB, and A,2 for A and Bt2 for B, in Fig. 1. Thus a 
critical assumption is that there is no direct influ- 
ence of A at wave I on B at wave 2, and no direct 
infuence of B at wave 1 on A at wave 2 (Kessler, 
1983). Even if this assumption is satisfied, the ap- 
proach will break down i fA and B are perfectly or 
very highly stable over time or if there are serial 
correlations of errors in A, and in B, which can lead 
to seriously biased estimates of the reciprocal paths 
(Kessler and Greenberg, 1981). 

Behavioral Genetic Approach 

A third possible approach to testing causal hy- 
potheses in observational data, which is much less 
widely recognized, utilizes data on family mem- 
bers, for example, pairs of  monozygotic and dizy- 
gotic twins (Health et al., 198%; Neale et aL, 1989b, 
1993; Dully and Martin, 1993; Neale and Cardon, 
1992), or adoptees and their adoptive and biological 
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relatives. This approach does not require the suc- 
cessful identification and measurement of instru- 
mental variables and can be used with cross-sectional 
data. It can be used even when two associated var- 
iables are, except for any measurement error, com- 
pletely stable over time and, because even cross- 
sectional data are informative, avoids the problems 
of serially correlated errors in panel data. This ap- 
proach may be viewed as a special case of the in- 
strumental variables method, where we are using 
genetically informative designs to identify the ef- 
fects of latent instruments, i.e., the genotypes and 
environments which determine traits A and B. 

To understand the circumstances in which cross- 
sectional family data are informative about direc- 
tion of causation, it is instructive to consider a sim- 
plified, and somewhat extreme, example (cf. Heath 
and Martin, 1991a, b). Figure 2 represents a path 
diagram for two variables having a reciprocal causal 
influence, A and B, measured on pairs of relatives, 
with direct additive and nonadditive (dominance or 
epistatic) genetic influences on trait A, and shared 
environmental influences on trait B, as well as within- 
family environmental effects on each trait. In this 
simplified example, the only genetic influences on 
trait B are those mediated through the causal influ- 
ence of trait A on trait B, and the only shared en- 

vironmental influences on trait A are those mediated 
through the causal influence of trait B on trait A. 
Trait A, for example, might denote a heritable per- 
sonality variable (Eaves et al., 1989), and trait B a 
measure of perceived childhood environment (e.g., 
Parker, 1983, 1990). Differences in inherited tem- 
perament may elicit differences in childhood envi- 
ronment (personality ~ environment), which may 
in turn influence personality development (child- 
hood environment --~ personality). Latent variables 
E, G, and D can be thought of as representing re- 
sidual environmental and genetic influences on trait 
A, after allowing for the causal influence of B on 
A; and likewise, latent variables E'  and C' can be 
viewed as the residual environmental influences on 
B, after allowing for the causal influence of A on 
B. These latent genetic and environmental variables 
are all assumed to be mutually uncorrelated. 

We consider two submodels of Fig. 2: (a) iAB 
= 0, iBA 5~ 0, implying A is a cause of B (.4 --* 

B); and (b) iBA = 0,  iAB 4= 0, implying B --~ A. 
We may derive expectations for the variances and 
covariances of relatives, using the tracing rules of 
path analysis (Wright, 1968), modified to allow for 
the fact that some of our variables are nonstandar- 
dized; or equivalently, we may apply simple matrix 
algebra for deriving expected covariance matrices 
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Fig. 2. Path diagram illustrating reciprocal interaction between two variables, A and B, measured on pairs of relatives. Observed 

and latent variables are denoted by capital letters: endogenous variables A and B are the observed traits; exogenous variables E, 
G, and D represent within-family environmental effects, additive genetic effects, and dominance genetic effects on A; and E'  and 
C' denote within-family environmental effects and shared environmental effects on B. Subscripts are used to distinguish variables 

of first relative (PAt) from variables of second relative (PA2). Covariances c~, 13, and ~ denote the covariances of additive genetic 
effects, shared environmental effects, and dominance genetic effects, between relative pairs, which will vary as a function of 
genetic relatedness and rearing history. Omission of a two-headed arrow between exogenous variables indicates that covariance is 
fixed to zero ex hypothesi; omission of a two-headed arrow from an exogenous variable to itself is used to indicate that variable 
is standardized to unit variance. 
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[e.g., using the LISREL model of Joreskog and 
Sorbom (1988); see also Bollen (1989)]. For the 
expectation for the cross-covariance of trait A in 
relative j (Aj), and trait B in relative k (B~), in case 

(a: A ---> B) we have iBA ( O~hz "+" ~d2), and in case 
(b: B ---> A) we have iasf3c '2. Thus A --~ B, in this 
simplified example, predicts a positive cross-co- 
variance between Aj and B~ in biological relatives, 
the magnitude of which will depend upon their de- 
gree of genetic relatedness, but a zero cross-covar- 
iance in adoptive relatives; whereas B ---> A predicts 
a positive cross-covariance which does not depend 
upon genetic relatedness for collateral relatives reared 
in the same family (e.g., MZ twin pairs, DZ twin 
pairs, biological or step siblings) and a zero cor- 
relation for relatives reared in separate families (e.g., 
separated twin pairs, biological mother and adopted- 
away offspring). 

Although this example represents an extreme 
case, the same considerations will apply when the 
relative magnitudes of direct genetic and shared en- 
vironmental influences (or additive and dominance 
genetic influences) differ for the two traits. Thus if 
additive genetic effects are having a stronger direct 
influence than shared environmental effects on trait 
A, but shared environmental effects a stronger di- 
rect influence than genetic effects on trait B, then 
A ---> B predicts that the cross-covariance between 
Aj and B~ will be dominated by genetic effects, 
whereas B --~ A implies that it will be dominated 
by shared environmental effects. Similar to what 
we noted for instrumental variable or panel data, in 
family data we thus find that the cross-correlation 
between trait A measured in one relative and trait 
B measured in the second relative provides critical 
information about causality. However, we must note 
that in the case where the two traits have identical 
modes of inheritance (i.e., the proportions of the 
total variation accounted for by additive genetic, 
dominance genetic, shared environmental, and 
within-family environmental effects are identical for 
the two traits, so that correlations between relatives 
are the same for the two traits), then family data 
will be completely uninformative about direction of 
causation, as we discuss in greater detail later. 

METHOD 

Basic Genetic Models and Assumptions 

Having considered at a somewhat intuitive level 
how cross-sectional data may be informative about 

direction of causation, we now consider this ques- 
tion more rigorously. Figure 3 summarizes, in the 
form of a composite path diagram (Wright, 1968), 
two multifactorial genetic models for the analysis 
of bivariate data (observed traits YA and YB, which 
are measures of underlying latent variables or 
"'phenotypes'" PA and PB): (i) a "general bivar- 
iate" model, which makes no assumptions about 
causality [fixing to zero the causal paths i and i' 
(Eaves and Gale, 1974; Eaves and Eysenck, 1975; 
Heath et al., 1989a]; and (ii) a "direction-of-caus- 
ation" model (fixing to zero the correlations be- 
tween genetic and environmental effects on the two 
traits, rE=rG=rc=rD = 0), which specifies that 
the only causes of the correlation between PA and 
BB are the causal influence of Pa  on PB (path i'), 
or of PB on PA (path i), or the reciprocal causal 
influence Of PA and PB on each other (Heath et aL, 
1989a; Neale et al., 1992). We use primes to dis- 
tinguish genetic and environmental factors having 
a direct influence on trait B (PB) from those which 
have a direct effect on traitA (PA); and decompose 
the total genetic effects on each trait into additive 
(G and G') and dominance (D or D')  genetic ef- 
fects, and the total environmental effects into fam- 
ily environmental effects, which are shared by 
collateral relatives reared in the same family (C or 
C'), and within-family environmental effects, which 
reflect differences in environmental experience even 
between individuals reared in the same family (E 
or E')  (Jinks and Fulker, 1970; Eaves, 197'7; Loeh- 
lin, 1978). Under the direction-of-causation model, 
there will be additional indirect effects of E, (3, C, 
or D on trait B, mediated through the causal influ- 
ence of trait A on trait B (if i' :P 0), and of E', G', 
C', and D'  on traitA, mediated through the causal 
influence of trait B on traitA (if i 4: 0). The: general 
bivariate model, in contrast, allows for correlations 
between additive gene effects on PA and oP~ (rG), 
dominance gene effects on PA and PB (rD), within- 
family environmental effects on PA and PB (rE), 
and between-family or '%bared'" enviornmental ef- 
fects on PA and PB (rc) and, thus, allows for the 
possibility that the two traits are correlated because 
they are both influenced by other, unmeasured traits, 
or by the same ( "common,"  in the factor analytic 
sense) genetic or environmental risk factors. 

We represent in Fig. 3 only the phenotypes 
and genetic and environmental deviations for a sin- 
gle individual: we do not attempt to represent pairs 
of relatives, since the resulting diagram is too com- 
plex to be useful. We use subscripts, m and n, to 
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Fig. 3. Composite path diagram representing (i) general bivariate genetic model and (ii) "direction-of-causation" submodel. YA 

and YB denote observed variables (measured on a single individual), PA and PB denote the underlying latent traits which these are 

measuring, and ~,  and ~a are the measurement errors for the observed variables. Covariances rE, to, rc, and r~ denote covariances 
between within-family environmental effects on PA and PB, between additive genetic effects, between shared environmental effects, 
and between dominance genetic effects. See Fig. 2 and text for definition of other model variables and parameters. 

distinguish latent or observed variables of the mth 
and nth relatives, e.g., with m = 1 and n = 2 for 
first and second twins from twin pairs of a given 
zygosity type. In terms of structural equations (e.g., 
Joreskog and Sorbom, 1988), from Fig. 3 we have 

P,v,, = hGm + dD,,, + cC~ + eE~ + iPBm (1) 

PB~ = h'Gm' + d'Dm' + C'Cm t -~- e'Er'  

+ i ' P ~  (2) 

YAm = MPA,,, + eA (3) 

YB~ = h'Ps~ + eB (4) 

with corresponding equations for the variables for 
the nth relative. Here latent genetic and environ- 
mental variables (G, D, C, E, etc.) are standardized 
to unit variance, and all variables scaled as devia- 
tions from zero. Genetic and environmental coef- 
ficients h, d, c, e, etc., and causal paths i and i ' ,  
are assumed to be the same in relatives of different 
types (e.g., MZ versus DZ twin pairs). The models 
in Fig. 3 include measurement error explicitly (er- 
ror terms CA and eB, with residual variances 0,A and 
0,A, respectively), since failure to allow for differ- 
ences in error variance can easily lead to errors of 
inference about causality. In applications where we 
have only a single indicator variable corresponding 
to each phenotype, we will further fix X = X '=  1, 

but this constraint can be relaxed if we have mul- 
tiple indicator variables, i.e., multiple measures for 
our constructs. 

In order to derive expectations for the within- 
trait and cross-trait covariances of relative, we need 
values for the covariances of additive genetic, dom- 
inance genetic, shared environmental, and within- 
family environmental effects for each trait (Gin, etc., 
and G,, etc.), for different types of relationship. 
By definition, within-family environmental effects 
(E or E') are uncorrelated between relatives and, 
also, uncorrelated with familial effects (C, G, D, 

C', G', or D')  for the same individual. Under the 
simplest model, the covariances between shared en- 
vironmental effects (C or C') for the same trait (which 
we denote by 13) will be unity for collateral relatives 
reared in the same family (e.g., monozygotic or 
dizygotic twin pairs or biological or adoptive sib- 
ling pairs) and zero otherwise, and correlations be- 
tween relatives for shared environmental effects 
across traits will be 13rc under the general bivariate 
model and zero under the direction-of-causation 
submodel. More elaborate environmental models 
may also be tested, provided that appropriate con- 
stellations of relatives are studied (e.g., Eaves et 

aL, 1978; Fulker, 1982, 1988; Heath et aL, 1985), 
models which could incorporate such complications 
as differences in similarity of environmental ex- 
posure of twins versus sibling pairs, parent-to-off- 
spring environmental transmission, offspring-to- 
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parent environmental  transmission, nonrandom 
placement of adoptees, and reciprocal sibling en- 
vironmental influences (Cavalli-Sforza and Feld- 
man, 1981; Cloninger et al., 1979; Eaves, 1976; 
Eaves et al., 1978; Carey, 1986; Fulker, 1982; 
Heath, 1983; Heath et al., 1989a). 

From genetic theory (Fisher, 1918; Falconer, 
1960; Mather and Jinks, 1971; Bulmer, 1980), the 
correlation between the additive genetic deviations 
of relatives, within traits, which we denote a ,  will 
be equal to the coefficient of relationship, under 
random mating, i.e., unity for monozygotic twin 
pairs, 0.5 for first-degree relatives, 0.25 for half- 
sibling pairs, etc., and zero for genetically unre- 
lated individuals; and the correlation of dominance 
genetic effects (8) will be unity for monozygotic 
twin pairs, 0.25 for dizygotic twin pairs, and zero 
for most other relationships; while the correlation 
between the additive genetic effects in one relative 
and dominance effects in the same relative or in 
another relative, will be zero. The corresponding 
correlation between additive genetic effects (or 
dominance effects) on trait A in relative m and ad- 
ditive genetic effects (or dominance effects) on trait 
B in relative n will be c~r a (and 8rD) under the 
general bivariate model but, again, zero under the 
direction-of-causation submodel. The assumption 
of random mating, i.e.,  that there is no tendency 
for like to marry like with respect to the variables 
under study, is easily relaxed (e.g. Fisher, 1918; 
Rice et aL, 1978; Cloninger et al., 1979; Eaves et 

al., 1978; Heath and Eaves, 1985; Fulker, 1988; 
Cardon et al., 1991) but is retained here to simplify- 
presentation. For the representation of the additive 
genetic variance (h 2) and the dominance genetic 
variance (d 2) in terms of allele frequencies and av- 
erage allele effects at individual loci, see Mather 
and Jinks (1971). In principle, terms for epistatic 
interactions between genetic loci [additive x ad- 
ditive, additive x dominance etc. (Mather and Jinks, 
1971; Bulmer, 1980)] could be included in Eq. A. 
(1) and (2), but in practice resolution of the effects 
of genetic dominance and genetic epistasis for mul- 
tifactorial traits, in human populations, requires ex- 
tremely large sample sizes (Heath, 1983). In what 
follows, we make the additional simplifying as- 
sumptions of no genotype-environment correlation 
and no genotype x environment interaction, noting 
that these assumptions, too, can be relaxed if ap- 
propriate experimental designs are used (Eaves et 
al., 1977; Fulker, 1982; Heath et al., 1989a; Plomin 
et aL, 1977). 

Hypothesis Testing 

The application of methods of structural equa- 
tion modeling to testing genetic and environmental 
models, using twin and other family data, has been 
reviewed extensively elsewhere (Martin and Eaves, 
1977; Eaves et aL, 1978; Fulker, 1982; Heath et 

al., 1989a; Neale et al., 1989a). In the simplest 
case where data are available on collateral relative 
pairs (e.g., monozygotic and dizygotic twin pairs 
reared together and twin pairs reared apart), sepa- 
rate summary covariance or correlation matrices are 
computed for each group of relatives, and a series 
of nested models is fitted, in a multiple-group 
analysis, by maximum-likelihood (Joreskog and 
Sorbom, 1988), asymptotic weighted least-squares 
(Browne, 1984), or other fitting functions, yielding 
efficient estimates of model parameters. Expected 
covariance matrices will differ for different groups 
of relatives because of differences in the covari- 
ances of genetic and environmental factors (i.e., 
constants oL, 13, and 8), but genetic and environ- 
mental parameters h, h', d, d', and etc., are con- 
strained to be equal across different relative groups, 
as well as between first and second members of 
same-sex relative pairs. A chi-square statistic is used 
to assess the overall goodness of fit of a model, 
and likelihood-ratio or chi-square difference tests 
are used to compare the fit of a general model with 
nested submodels, in order to identify the most par- 
simonious model consistent with the data (Jores- 
kog, 1978; Eaves et al., 1978; Neale et aL, 1989b). 
When more elaborate experimental designs are used, 
such as studying adoptees and their biological and 
adoptive siblings and parents (e.g., Fulker and DeFries, 
1983), or twins reared together and their siblings and 
offspring (e.g., Eaves et al., 1992), the number of 
different family structures may be almost as large as 
the number of families, requiring that models be fitted 
directly to the observed raw data by max~mum-like-- 
lihood (e.g., Lange et al., 1976; Eaves et aL, 1978, 
1989). In such analyses likelihood-ratio comparisons 
of the fit of a general model and submodels are made 
in the usual fashion. 

We have described the full model in Fig. 3 as 
a "composite model ,"  in order to recognize that 
the full model is indeterminate. In fact, i~ can be 
shown that the direction-of-causation model is a 
submodel of the general bivariate genetic model. 
To avoid confusion, we use subscripts a and b for 
genetic and environmental parameters under the 
general bivariate model (i.e., ha, etc., to replace h, 
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etc., and hb, etc. to replace h ' ,  etc.,  in Fig. 3). 

Table I summarizes expected covariances of  rela- 

tives under the two  models.  If the " t r u e "  model  is 

the reciprocal causation model ,  our estimates of  ge- 

netic and environmental variance components  un- 

der the general bivariate model  will be of  the form 
ha 2 = (h 2 + i2h'2)(1 - i i ' ) -2 ,da 2 = (d 2 + i2d'2) 

(1 - i i ')  -2, Ca 2 = (C 2 + i2C'2) (1 -- i i ')  -2, and 

ea 2 = (e 2 + i2e '2)(1 -- i i ')  -2 and hu E = (h '2 + 

i'2h2) (1 - i i , ) -2,  db 2 = (d,a + i2d 2) (1 - i i ' )  -2,  

etc.; and estimates of  correlations between gene 

effects or environmental  effects will be 

r G 

r D =  

r e =  

r E =  

(i 'h z + ih'Z)(h 2 + i2h'2) -~ 

(h 'z + i'2h2)-o.5 

( i 'd  2 + id '2) (d 2 + i2d'2)-o-5 

(d '2 + i'2d2)-~ 

(i 'c 2 + ic '2) (C 2 + i2c'2)-~ 

(c '2 + i'2c2)-~ 

(i 'e z + ie '2) (e z + i~e'Z) -o.5 

(e 'z + i'2eZ) -~ 

For the reciprocal causation model ,  by  simple al- 

gebraic manipulation of  the above equalities, we 

find 

(h~i' + hZui) (d~i' + d~i) 

rG --  hahb(1  + i i ' ) '  rD --  dadb(1  + i i ' ) '  etc. 

these expressions simplifying, in the case of  uni- 

directional causation, to r o = i 'ha/hb,rD = i 'da/d b, 

etc. (if A --~ B), or alternatively, if B ~ A, r o = 

ihb/ha, r D = idb/da, with similar expressions for rc  

and rE. In other words,  if the true model is the 

reciprocal causation model,  and we fit the general 

bivariate model but estimate genetic and environ- 

mental parameters ha, etc., and hb, etc.,  together 

with parameters i and i ' ,  correlations r e ,  rD, rc ,  

and rE can all be derived as functions of  the other 

parameters,  i .e . ,  are constrained parameters.  Thus 

the unidirectional and reciprocal causation models 

are submodels of  the general bivariate model.  In 

the specific case where two traits have identical 

modes of  inheritance, i .e . ,  ha = hb, da = db, ca = 
Cb, and ea = eb, we will obtain the same estimates 

for rG, etc.,  regardless of  whether we assume A --~ 

B or B --~ A, confirming that in this particular in- 

stance there is no information about direction of 

causation. Likewise,  if the direct genetic and en- 

vironmental  effects on each trait are identical, i .e . ,  

h = h ' ,  d = d ' ,  c = c ' ,  and e = e ' ,  we will again ob- 

tain the same estimates for r G, rD, r o  and rE, re- 
gardless of  whether  we assume A --~ B or B ~ A. 

In general,  however,  this will not be the case. 

Because the unidirectional and reciprocal causal 

models are submodels of  the full bivariate model,  

their goodness of fit can be compared to that of  the 

T a b l e  I .  Expected Variances and Covariances of Relatives Under General Bivariate 
and Reciprocal Causation Models: Parameters Are Defined in Fig. 3 and Text 

General bivariate model 

Variances 

Trait A 
Trait B 

Covariances 
Aj, Bj; Ak, Bk 
Aj, Ak 
Bj, Bk 
Aj, Bk; Bj, Ak  

A2(h~ + dZ~ + c2~ + e~) + 0A 
A'2(h~ + d~ +c~ + e~) + 0B 

AA'(h~ht~A + ddtc'D + c~c~rc + e~ev"E) 
A2(ah 2 + ~d~ + 13c~) 
A ' ~ ( ~  + ~d~ + 13c~) 
AA'(e&fld'A + 8dflbrD + 13c.Cd'c) 

Reciprocal causation model 

Variances 
Trait A 
Trait B 

Covariances 
Aj, Bj; Ak, Bk 
Aj, Ak 
Bj, Bk 
A],Bk; Bj, Ak  

A 2 ( 1 - i i ' )  -~ [hZ+d2+ca+e2+i2(h'2+d'2+c'2+e'Z)] + 0A 
A ' 2 ( 1 - i i ' )  -z [h'2+d'2+c'2+e'2+i'2(h2+d2+cZ+e2)] + OB 

A A ' ( 1 - i i ' )  -z [i '(h2+d2+c2+e 2) + i(h'2+d'2+c'2+e'2)] 
A z ( 1 - i i ' )  -e [tx(hZ+i2h '2) + ~(d2+i2d'2) + f3(c2+i2c'2)] 
A ' 2 ( 1 - i i ' )  -2 [tx(h'2+i'2h 2) + ~(d'2+i'2+d 2) + ~(c'2+i'2r 

A A ' ( 1 - - i i ' )  -2 [ct(i'h2 +ih '2) + 6(i'd2 +id '2) + f3(i'c2+ic'2)] 
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full bivariate model by likelihood-ratio chi-square 
test, with the numbers of degrees of freedom equal 
to the number of genetic and environmental corre- 
lations estimated in the bivariate model minus the 
number of causal paths estimated in the causal model. 
An important implication of this is that in order to 
test the reciprocal causation model against the gen- 
eral bivariate model, we need to have at least three 
"sources of variation" [in the traditional terminol- 
ogy of quantitative genetic (Mather and Jinks, 1971; 
Jinks and Fulker, 1970; Eaves, 1977)] influencing 
the two traits, either directly or indirectly, counting 
within-family environment, additive genetic ef- 
fects, dominance genetic effects, and shared envi- 
ronment each as one source of variation. (It is not 
necessary that each trait be directly influenced by 
three sources of variation, for example, the genetic 
influences on B may be those mediated through the 
causal influence of A on B, as in Fig. 2). If there 
are only two "sources of variation" in the two traits, 
e.g., if both traits are influenced by additive genetic 
and within-family environmental effects, the recip- 
rocal causation model will give the same fit to the 
data as the general bivariate model, and no test of 
the model will be available. 

An Important  Limitation 

The fact that the reciprocal causation model is 
a submodel of the general bivariate model empha- 
sizes an important difference between the infer- 
ences about causality which can be drawn using 
instrumental variables and the inferences which can 
be drawn from family data. Using an instrumental 
variable approach, in addition to the direct effects 
of A on B and B on A, it is possible to estimate a 
residual correlation between the reciprocally inter- 
acting variables (~aB in Fig. 1). Thus it is possible 
to test the hypothesis that the correlation between 
A and B arises solely because of the reciprocal causal 
influence of A on B and of B on A, plus the cor- 
relation between the instruments forA and B (qbAB), 
i.e., that "IraB = 0. In family data, in contrast, at 
least in the bivariate case, we are restricted to test- 
ing hypotheses of the form "the ONLY cause of 
the correlation between PA and PB is the causal 
influence of PA on P~ (or the reciprocal causal in- 
fluence of PA and PB on each other)." In what 
follows, we use the phrase "testing the causal hy- 
pothesis A ~ B (or A ~ B) "  as a short-hand for 
these strong causal hypotheses. If A and B are cor- 
related, both because of their reciprocal causal in- 

fluence and also because both variables are influenced 

by other unmeasured variables, this will cause fail- 
ure of the reciprocal causation model (if the latter 
influences are sufficiently important). The latter case 
cannot be distinguished from the general bivariate 
model in family data on a single pair of variables 
but may still be tractable if our hypothesis specifies 
a causal chain (A ~ B ~ C ~ D, etc.) with an 
additional contribution of other unmeasured varia- 
bles to correlations between variables A, B, C, D, 
etc. The same problem is encountered in trying to 
draw inferences about causality from panel data, 
where partial determination of A and B by an un- 
measured latent variable, C, can again lead to errors 
of inference about causality. 

The Problem o f  Measurement  Error  

In general, we cannot assume that our varia- 
bles are measured without error. The example of 
smoking status, i.e., whether or not an individual 
ever smoked (Heath et aL, !993), and age at death 
provides a rare counterinstance where measurement 
error effects may be minor. Under the general bi- 
variate model, if we ignore measurement error when 
it is present, and if errors of measurement are un- 
correlated between family members (and therefore 
contribute to within-family variance but not to fam- 
ily resemblance), this will inflate estimates of ea 2 

and eb z and lead to an underestimate of rE (Eaves 
and Eysenck, 1975), but other parameters will be 
unbiased. Similarly, in the context of the reciprocal 
causation and unidirectional causation submodels, 
ignoring measurement error will lead to inflated es- 
timates of e 2 and e 'z. However, since the expec- 
tation for the within-person ( i .e . ,  phenotypic)  
covariance of traits A and B (Aj with Bj and Ak with 
Bk in Table I) includes terms in i 'e  2 and ie '2 (see 
Table I), ignoring measurement error will also lead 
to biased estimates of all the other parameters of 
the direction-of-causation model. 

In the case of unidirectional causal models, 
only a single error term is critical, namely, the error 
variance for trait A i fA --~ B or the error variance 
for trait B if B ~ A. If the direction of causation 
is A --~ B (with i = 0, i'=P 0), then the expectation 
for the phenotypic covariance of A and B will in- 
clude only the expression i 'e  z. Omitting the error 
term for B will inflate the estimate of e '2 by the 
error variance for B, but other parameter estimates 
will be unbiased, provided that an error variance 
for trait A is included in the model. Omission of 
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the error variance for A will, however, lead to biased 
parameter estimates, even if an error variance is 
estimated for B. 

We reported above expectations for the genetic 
and environmental correlations of the general bi- 
variate model for the case where the true model is 
the reciprocal causation model, for example, 

(e2i ' + e~i) 

rE = eaeb(1 + i i ' )  

with similar expressions for ra, rD, and rc. Thus 
even in the case where we do not have data about 
measurement error, it is possible to test a unidirec- 
tional causal model allowing for measurement error 
("unidirectional causation with error" model), pro- 
vided that we have at least three "sources of vari- 
ation" influencing the two traits, either directly or 
indirectly. Including a single error variance in a 
unidirectional causation model has the effect of re- 

laxing the equality constraint relating r E to param- 
eters e,, eb, and i (or i '). If there are three sources 
of variance for each trait, e.g., both trait A and trait 
B are influenced by additive gene action, shared 
environmental effects, and within-family environ- 
mental effects, there will remain one degree of free- 
dom for test ing the goodness  of  fit of each 
unidirectional causation with error model against 
the fit of the general bivariate model, which in ef- 
fect is testing whether the equalities rG = i ' h J h b  

and r c  = i ' c j c b  (ifA --> B) or, alternatively ro = 
ihu/h ,  and r e = icu/c ,  ( i fB --> A) are both satisfied, 

and two degrees of freedom if there are four sources 
of variation. If there are only two sources of vari- 
ation for traits A and B, e.g., within-family envi- 
ronmental effects plus additive genetic effects on 
both traits or within-family environmental effects 
plus shared environmental effects on both traits, 
however, the general bivariate model will include 

only two correlations, rE and either r G or rc. Re- 
laxing the constraint on r z ,  by estimating an error 
variance for one variable, will be equivalent to fit- 
ting the general bivariate model. If there are only 
two sources of variation, therefore, the two "uni- 
directional causation plus measurement e r ror"  
models will, in general, give identically good fits 
to the data and will give the same fit as the general 
bivariate model. In this case we can proceed to test 
causal hypotheses only if we know that both traits 
are measured without error or if we have additional 
information about error variances for the two traits 
and can exploit this in a multiple indicator causal 
model. 

In the case of the reciprocal causation model, 
within-family environmental variances for both traits 
occur in the expectation for the within-person co- 
variance of the two traits. If no other data about 
error variances are available, estimation of an error 
variance for one trait will relax the equality con- 
straint on rE. Regardless of how many sources of 
variation are influencing the two traits, no further 
information is available to estimate an error vari- 
ance for the second trait. Thus it will be possible 
to test reciprocal causation models only if we are 
prepared to assume that the error variances for the 
two traits are either zero or equal in absolute mag- 
nitude [it appears that relatively small differences 
in the magnitude of the error variances for A and 
B will produce only a minor bias to estimates of 
other parameters, if the error variances are assumed 
equal (Neale and Cardon, 1992)] or if additional 
information is available to estimate the effects of 
measurement error for each trait, for example, by 
fitting a multiple indicator model. If error variances 
can be assumed to be zero, the reciprocal causation 

model will be just identified if there are only two 
sources of variation, and at least three sources of 
variability will be required in order to permit a like- 
lihood-ratio chi-square test, on one degree of free- 
dom, against the general bivariate model. If error 
variances are nonzero but can be assumed to be 
equal, four sources of variability will be required 
to permit a test of the reciprocal causation plus error 
model against the general bivariate model. The se- 
quence of causal models that can be tested and de- 
grees of freedom for testing each model against the 
general bivariate model are summarized in Table 
III. 

Multiple Indicator and Multivariate Genetic 

Models 

In studies of samples of unrelated individuals, 
generalization of the instrumental variable or panel 
models to allow for multiple measures ("indica- 
tors") of traits A and B and their instruments is 
comparatively straightforward and is illustrated in 
standard texts on structural equation modeling (e.g., 
Bollen, 1989). The use of multiple indicator vari- 
ables in family studies enjoys the same advantages 
as in the more traditional approaches to testing causal 
hypotheses, i.e., it allows the formulation of ex- 
plicit assumptions about measurement error and 
testing of at least some of these assumptions; for 
example, depending upon how many indicator var- 
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iables are assessed, it may be possible to allow for 
correlated errors of measurement between certain 
indicators (Costner and Schoenberg, 1973). In fam- 
ily data, the use of multiple indicator variables also 
makes it possible to allow for correlated errors of 
measurement between family members for each in- 
dicator variable (Martin and Eaves, 1977). We have 
noted in the previous section that multiple indicator 
data are needed to allow estimation of reciprocal 
causal effects, except in cases where error variances 
are known precisely from external sources. In this 
section, therefore, we first present a multiple in- 
dicator generalization of the direction of causation 
model for family data and then compare this model 
to less restrictive multivariate genetic models. 

Multiple Indicator D O C  Model  

Figure 4 represents a simple extension of the 
direction-of-causation model in Fig. 3, allowing for 
multiple indicators of traits A and B. The path dia- 
gram illustrated in Fig. 4 assumes that we have 
three observed variables which are hypothesized to 

E G C D 

EAj ~ ~j  

�9 ,t- (~AI ~ to I 

PB 4 1 

e' 1 c : - -  eBp,~I ~p  

E' G' C' D' 

Fig. 4. Multiple indicator direction-of-causation path model. 
See Fig. 3 and text for definition of variables and parameters. 

be measures of trait A and three observed variables 
which are hypothesized to be measures of trait B. 
Structural equations for PA and PB will remain un- 
changed, but now we will have, in addition, for the 
ruth relative, 

Yajm = Xm.Pa,, + EAjm ( j  = 1,3) 

}"B/on = X'BkPBm + eBk m (k =4,6)  

In the terminology of factor analysis (Harman, 1976), 
the parameters kay and k'Bk are common factor 
loadings of manifest variables Aj and Bk (i.e., the 
jth and kth indicator variables for traits A and B) 
on latent factors PA and PB, respectively. The terms 
eAj m and eB~ will include both "specific factor" 
effects and measurement error effects. We may fur- 
ther decompose eaj~ and e ~  into variable-specific 
genetic and environmental effects, e.g., 

e~. = hjGj,,, + djDjm + cjCjm + ejEjm 

where @'m, Ds'm, Cj,o and Eim denote additive and 
dominance genetic and shared and within-family 
environmental effects specific to the jth indicator 
variable, i.e., which contribute to its variance but 
not to its covariance with other variables, and the 
term Ej,, will include measurement error (Eaves, 
1977; Martin and Eaves, 1977). Alternatively, and 
less parsimoniously, we may allow for correlations 
between relatives for the e's which will differ for 
different classes of relatives. To identify the model, 
we have fixed e = e' = 1 in Fig. 4, but note that 
alternative constrain% such as fixing the total var- 
iances of underlying traits PA and PB to unity, could 
be applied instead. 

Multivariate Genetic Model  

A general "two-factor" multivariate genetic 
model (Eaves, 1977; Martin and Eaves, 1977; Heath 
et aL, 1989a, b) provides one baseline against which 
the fit of the multiple indicator direction-of-causa- 
tion model can be compared. The general multi- 
variate genetic model, like the general bivariate 
model, makes no assumptions about direction of 
causation. A generalization of conventional behav- 
ioral genetic (Jinks and Fulker, 1970) and factor 
(Harman, 1976) models, the general multivariate 
genetic model estimates orthogonal common and 
specific additive and dominance genetic and shared 
and within-family environmental factors (Eaves, 
1977; Martin and Eaves, 1977; Heath et aL, 1989a). 
In terms of structural equations, under the general 
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model we will have (omitting subscripts for rela- 
tives) 

YAj = hjaGa -Jr- hjbG b "AI- 4aDa -1- 4bDb "4- CjaC a 

+ 9bCb + ey,E, + esbE b + eAj 

where Ga and Gu denote the first and second ad- 
ditive genetic common factors, D, and Db the first 
and second dominance genetic common factors, and 
so on; hjo, hj~, djo, djb, etc., are the additive and 
dominance genetic loadings of the jth item on the 
first and second additive and dominance genetic 
common factors; and eAj. denotes the sum of the 
specific factor and measurement error effects for 
thejth item. The issue of factor rotation which arises 
in conventional factor analysis (e.g., Harman, 1976) 
will apply equally to factors estimated under the 
multivariate genetic model, except that factors 
corresponding to different sources of variability 
cannot be rotated jointly, i.e., we must rotate sep- 
arately additive genetic common factors, domi- 
nance genetic common factors, shared environmental 
common factors, and within-family environmental 
common factors. Covariances of the genetic and 
environmental factors between relatives may be ex- 
pressed in terms of constants cx and ~ (which de- 
pend upon genetic relatedness) and B (which depends 
upon rearing experience), as before, with the as- 
sumption of orthogonal genetic and environmental 
factors implying no cross-covariances between the 
first additive genetic factor in one relative and the 
second additive genetic factor in the second rela- 
tive, etc. In terms of the parameters of the general 
multivariate genetic model, the expectation for the 
variance of observed variable Ym. will be 

Var(YAs-) = h~ + hj 2 + h~ + d~Za + d~Zu + d~ 
2 + c~ + cYb + c 2 +  e~ + e j~b + e j 

the expectation for the within-person covariance of 
observed variables Y~ and Yak will be 

CoV(YAjYA.k) = hjahka -[- hjbhkb "1- 4adka -I- 4bdkb 
+ c.i~c~, + CybCkb + ey~ek~ + ejbeku 

the expectation for the covariance between the ruth 
and the nth relatives for YAj will be 

Cov(Y .mYAj-n) = cr + hj 2 + 

+ + dJ b + d}  + + c j \  + 

and the expectation for the covariance between Ym. 
measured in relative m and YAk measured in relative 
n will be 

Cov(Y, jmY .) =  (hjahka + h uhkb) 
+ a(4ad a + 4bd  ) + t3(cj.c . + cj c, ) 

As in the single indicator case, we also give (in 
Table II) expressions for the parameters of the gen- 
eral multivariate genetic model in terms of the pa- 
rameters of the multiple indicator reciprocal causation 
model, which will apply when the latter is the "true" 
model, 

The general multivariate genetic model im- 
poses no constraints on the genetic and environ- 
mental common factor structures; it does not 
constrain the pattern of genetic factor loadings to 
bear any relationship to the pattern of environmen- 
tal factor loadings. A more restrictive version of 
this model, which has been variously described as 
the "psychomet r ic"  (McArdle and Goldsmith, 
1990), "common pathway" (Kendler et al., 1987), 
or "latent phenotype" (Heath et al., 1989a, b) 
model, while still making no assumptions about di- 
rection of causation, imposes the constraint that ge- 
netic and shared environmental loadings on each 
factor differ from the corresponding within-family 
environmental factor laodings only by a scale factor 
(Martin and Eaves, 1977). This is the pattern that 
we would expect to observe if indicator variables 
load on " 'phenotypic"  factors (e.g., personality 
factors), which in turn are determined by orthogo- 
nal genetic and environmental effects. In Table II 
we present common factor loadings, in the form of 
additive genetic, shared environmental, and within- 
family environmental factor pattern matrices, for 
the general multivariate and psychometric genetic 
models. As in the case of the multiple indicator 
direction-of-causation model, the psychometric 
model may be identified by fixing e = e '  = 1 or by 
constraining the variances of the underlying phe- 
notypic factors, PA and PB, to unity. In contrast to 
the general multivariate model, factor loadings un- 
der the psychometric model cannot in general be 
rotated (e.g., Hewitt, unpublished): the constraint 
that the genetic and environmental effects (G or G', 
C or C', etc.) on intervening latent phenotypes PA 

and PB are uncorrelated identifies a unique factor 
solution. Finally, we may note that by combining 
the general bivariate model in Fig. 3 (with i = i' = 0) 
with the multiple indicator variable component of 
the model in Fig. 4, we may also derive a correlated 
factors version of the psychometric model (Mc- 
Ardle and Goldsmith, 1990). Under this model, 
loadings of indicator variables for trait PA on ge- 
netic and environmental common factors II, and 
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Table II .  Genetic and Environmental Factor Pattern Matrices Under (a) General Multivariate Genetic and (b) Multiple Indicator 
Direction-of-Causation Models ~ 

Within-family 
Additive genetic factors Shared environmental factors environmental factors 

I II I II I II 

(a) Multivariate genetic model 
Trait A, 
indicator variable j h~. h.m Cja Cdb ei~ gjb 

Trait A, 
indicator variable k hk~ hkb Cka Ckb eka ekb 

Trait B, 

indicator variable m hma hmb era. Crab e., .  e,.b 

Trait B. 

indicator variable n h.a hnb Cna Crib en a en b 

(b) Multivariate genetic model iI 
(psychometric submodel) 

Trait A. 

indicator variable j Aj.h. Ajbhb Ajac a AjbCb Aj.e. Ajbe b 

Trait A, 

indicator variable k Ak.h. Akbh b Ak~c. Akbc~ Ak.e. Akbeb 

Trait A. 

indicator variable m A,..h a A , . ~  AmaC a hmbC b A,..ea A,~beb 
Trait B. 

indicator variable n A.~ha A.~b A.~c. AnbC b A.~ea A.beb 

(C) Direction-of-causation model 
Trait A, 

indicator variable j (1 - i i ' ) - l A j h  (1 - i i ' ) - I A ~ d h  ' (1 - i i ' ) - X A F  (1 - i i ' ) - ~ A j c  ' (1 - i i ' ) - X A ~ e  (1 - i i ' ) - ~ A f i e  ' 

Trait A. 

indicator variable k (1 - i i ' ) - A k h  (1-i i ' ) -~Akih ' (1--ii ')-~Akc (1--ii ')-~Akic ' (1--ii ')-~Ake (1 - - i i ' ) -~Ak ie  ' 

Trait B ,  

indicator variable m (1- i i ' ) -~Ami 'h ( 1 - i i ' ) - l A ~ h  ' (1--ii ')-lAmi'C (1 - i i ' ) - lAmc ' (1 - i i ' ) - lAmi ' e  ( 1 - i i ' ) - I A ~ e  ' 
Trait B,  

indicator variable n (1-ii ' )-XA~i'h ( 1 - i i ' ) - l A . h  ' (1 - i i ' ) - lA~ i ' c  (1 - i i ' ) - lA~c  ' (1- i i ' ) -~A~i 'e  (1 - i i ' ) - IA~e  ' 
u l  i 

l 

a Loadings on dominance genetic common factors will exhibit the same patterns as the additive genetic and within-family envi- 
ronmental loadings, so are not reproduced here. 

loadings of indicator variables for trait B on genetic 
and environmental common factors I, are fixed to 

zero, but correlations rA, rD, rc, and rE are esti- 
mated between first and second additive genetic, 
first and second dominance genetic common fac- 
tors, etc. 

Relationships Between Models 

The same algebra which we used to show that 
the reciprocal causation model is a submodel of the 
general bivariate genetic model in the single indi- 
cator case applies equally when we compare the 
multiple indicator direction of causation model and 
the correlated factors psychometric model. How- 
ever, if we consider the factor pattern matrices pre- 

dicted under the direction-of-causation model (also 
given in Table II), then we see that this model is 
also a submodel of the less restrictive psychometric 
model, as well as of the general multivariate genetic 
model. Comparing factor loadings under the psy- 
chometric model to those under the general multi- 
va r ia te  gene t ic  mode l ,  gene t i c  and shared 
environmental common factor loadings on the first 
and second common factors are hie and c/e and h'/ 

e' and c'/e' times the loadings on the first and sec- 
ond within-family environmental common factors, 
respectively. In addition to this constraint, under 
the multiple indicator direction of causation model, 
for indicator variables for trait A, loadings on the 
second common within-family environmental fac- 
tor differ from those on the first common factor by 
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a factor of (ie'/e), while for indicator variables for 

trait B, loadings on the first common within-family 
environmental factor differ from those on the sec- 
ond common factor by a constant multiple (i'e/e'), 
with similar constraints applying to genetic and 
shared environmental common factor loadings. As 
a submodel of the psychometric model, the multiple 
indicator direction-of-causation model will also de- 
fine a unique factor solution. Expectations for the 
variances and covariances of relatives under the 
psychometric and multiple indicator direction-of- 
causation models may be derived from those for 
the general multivariate genetic model by making 
the appropriate substitutions for common factor 
loadings from Table II; specific factor effects will 
be parameterized identically under these models. 

Measurement Error 

From these considerations we can see how the 
use of multiple indicator variables will reduce the 
problem of measurement error, including correlated 

errors of  measurement ,  in test ing causal hy- 
potheses. If measurement error is variable specific, 
application of the multiple indicator direction-of- 
causation model to cross-sectional family data will 
provide statistical tests of the goodness of fit of the 
reciprocal causation model (A ~e B) compared to 
correlated factors, psychometric, or general multi- 
variate genetic models, provided that there are at 
least three sources of variability, and also tests of 
the unidirectional causal models (A ~ B or B --~ 
A), even when there are only two sources of vari- 
ation (e.g., additive genetic plus within-family en- 
vironmental effects) in A and B. If there are only 
two sources of variability, the reciprocal causation 
model will be confounded with the correlated psy- 
chometric factors model, the same result that we 
noted in the single indicator case. Measurement er- 
ror correlations for the same indicator variable be- 
tween family members will bias estimates of the 
variable-specific genetic and environmental param- 
eters but will not affect estimates of common factor 
loadings and, hence, will not bias inferences about 
direction of causation. If measurement errors are 
correlated across indicator variables, but the cross- 
variable error correlations between family members 
are zero, it will still be possible to test the reciprocal 
and unidirectional causal models if there are at least 
three sources of variability (or four in the case of 
the reciprocal causation model). In this case, in- 
stead of constraining additive and dominance and 

shared environmental common factor loadings to be 
multiple of within-family environmental common 
factor loadings, we will estimate, say, dominance 
genetic and shared environmental common factor 

loadings to be multiples of the additive genetic 
common factor loadings but impose no constraints 
on the within-family environmental common factor 
loadings. Finally, if there are correlations between 
measurement errors across different indicator vari- 
ables between family members, as well as within 
persons, then we may be able to incorporate these 
in our model, following the approach of Costner 
and Schoenberg (1973), provided that we have as- 
sessed a sufficiently large number of indicator var- 
iables and that the number of indicator variables for 
which such cross-indicator familial correlations oc- 

cur is small. 

Hypothesis Testing 

Table III summarizes the series of models which 
may be tested using single indicator variable and 
multiple indicator variable data, together with the 
degrees of freedom for the likelihood-ratio chi-square 
test of each submodel against the most general model. 
In the case of multiple indicator variable models, 
many of these degrees of freedom are testing as- 
pects of the measurement model relating the indi- 
cator variables to the underlying traits A and B. 
Thus, even if a unidirectional or reciprocal causa- 
tion model does not give a significantly worse fit 
than the general multivariate genetic model, its fit 
must still be compared to that of the correlated fac- 
tors psychometric model. The degrees of freedom 
for the latter comparison will be the same as for 
the corresponding comparison, in the single indi- 
cator case, of the general bivariate model and the 
causal submodel, with no measurement error (since 
errors of measurement are included at the level of 
the indicator variable in the multiple indicator var- 

iable case). 
Models may also be simplified by dropping 

out sources of variability for each trait, so that, in 
principle, for each of the models in Table III, sub- 
models could be fitted which assume (i) no genetic 
effects, (ii) no shared environmental effects, (iii) 
no dominance effects, or (iv) no dominance or shared 
environmental effects. In practice, the number of 
models which must be fitted is rather less than this, 
since evidence that a source of variability must be 
retained in the most general model indicates that it 
will be needed in all submodels. A source of var- 
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Table III.  Nested Models to Be Compared When Testing Direction-of-Causation 

Models a 
| |1 

Degrees of freedom 

V S .  

general modeP 

Single indicator variable models 

1. A --'- B, no measurement error 

2. A ~ B, measurement error in A 

3. B ---* A, no measurement error 
4. B ~ A ,  measurement error in B 

5. A ~ B, no measurement error 

6. A ~:~ B, identical error variances for A, B 

7. General bivariate model 

Multiple indicator variable models 
1. A "+ B 

2. B --+ A 

3. A ~ e B  

4. Correlated factors psychometric model 

5. Orthogonal psychometric mode/ 

6. General multivariate genetic model 

s - I  

s - 2  
s - 1  

s - 2  

s - 2  

s - 3  

2(2k - 1)(s - 1) + 2k - 1 
2(2k - 1)(s - 1) + 2k - 1 
2(2k - 1)(s - 1) + 2k - 2 
2(2k- 1)(s- 1) +2k-s  
2 ( ~ -  1)(s- 1 

a s denotes the number of sources of variability, counting additive genetic, dominance 

genetic, shared environment, and within-family environment effects each as one source; 

k denotes the number of indicator variables per trait, with the total number of  manifest 
variables = 2k. 

b Degrees of freedom for likelihood-ratio chi-square test versus general model. 

c All models estimate variable-specific genetic and environmental factors. 

lability which is nonsignificant in the most general 
model, however, may nonetheless be significant in 
a submodel. Models which estimate dominance ge- 
netic effects but not additive genetic effects have 
no sensible biological interpretation (Mather and 
Jinks, 1971) and, so, are not fitted. Although, in 
principle, it is possible to fit multiple indicator models 
which include no common factor within-family en- 
vironmental effects, these imply (in the case of the 
psychometric and direction-of-causation models) 
completely heritable traits, an unlikely result for 
behavioral variables. 

Choice of a particular experimental design may 
limit the ability of a study to resolve certain sources 
of variability, which in turn may influence the range 
of submodels which can be compared. These issues 
can be particularly tricky in the multivariate case. 
Most applications of direction-of-causation models, 
for example, have used data on monozygotic and 
dizygotic twin pairs reared together, the "classical 
twin design," in which the effects of  genetic dom- 
inance and shared environment are confounded 
(Eaves, 1969, 1970; Martin et aL, 1978): genetic 
dominance (in the absence of shared environmental 
effects) generates dizygotic twin covariances which 

are less than one-half the monozygotic covariances, 
while shared environmental effects (in the absence 
of genetic dominance) will produce dizygotic twin 
covariances which are greater than one-]half the 
monozygotic covariances. Thus the effects of ge- 
netic dominance and shared environment on the same 
trait cannot be resolved using only data on twin 
pairs reared together, except in the case where there 
is no genetic variance at all (implying identical 
monozygotic and dizygotic covariances). A single 
indicator direction-of-causation model in which there 
are direct additive and dominance genetic effects 
on one trait (A) and direct shared environmental 
effects on the second trait (B), with unidirectional 
causation or reciprocal causation between the two 
traits (see Fig. 2), is identified in classical twin 
data. The general bivariate model, however, would 
require estimation of correlated dominance and 
shared environmental effects for both traits and, so, 
will not be identified in classical twin data[ In this 
example, therefore, the appropriate likelihood-ratio 
comparison of the reciprocal causation model to the 
most general model is not available. The two uni- 
directional models likewise cannot be tested against 
the general bivariate model but are both submodels 
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of the reciprocal causation model, so that likeli- 
hood-ratio comparisons with that model can be made. 
For the same example, but assuming multiple in- 
dicator variables, the correlated factors psychomet- 
ric model will not be identified, by the same 
reasoning that applies to the general bivariate model 
with single indicator variables. The orthogonal fac- 
tors psychometric model, with one factor allowing 
for genetic dominance and the second for shared 
environmental effects, will be identified and, thus, 
permits a test of the reciprocal causation model as 
well as of the two unidirectional causal models. 
Using multiple relationships to ensure that the ma- 
jor sources of variability are unconfounded (Fulker, 
1982; Heath, 1983; Heath et al., 1985) will help 
avoid such complications. 

Power Analyses 

Demonstration that it is feasible, in principle, 
to test strong causal hypotheses using cross-sec- 
tional family data need not imply that it is feasible 
in practice. We present in this section details of 
power analyses using the noncentral chi-square dis- 
tribution (Martin et al., 1978; Heath and Eaves, 
1985; Heath et al., 1985; Matsueda and Bielby, 
1986; Satorra and Saris, 1985), which were con- 
ducted for a limited range of parameter values, and 
considered only the power of the most widely used 
experimental design, the classical twin design. These 
suffice to demonstrate the conditions under which 
resolution of hypotheses about direction of causa- 
tion is likely to be most feasible. For a given true 
model (e.g., A --+ B), and given population param- 
eter values, we generated numerical values for the 
expected covariances for monozygotic and dizy- 
gotic twin pairs reared together. Genetic and en- 
vironmental parameter values were chosen to give 
total variances for PA and PB,  in the absence of 
any causaul influence of PA on PB,  or vice versa, 
of unity. (We have taken this approach, rather than 
standardizing parameter estimates after allowing for 
the causal effects of B on A, or vice versa, since it 
simplifies presentation of results for the case of re- 
ciprocal interaction: see below.) A false model (e.g., 
B ~ A or B ~ A with measurement error in B) 
was fitted to the data, assuming equal numbers of 
monozygotic and dizygotic twin pairs and an arbi- 
trary total sample size, N, and the goodness-of-fit 
chi-square, C, was recorded. Since the true model, 
and all models of which the true model is a sub- 
model, would give a perfect fit to the observed 

data, the statistic C is also a likelihood-ratio chi- 
square for testing the false model against a more 
general model of which both the true and the false 
models are submodels, with degrees of freedom, x, 
equal to the number of parameters of the more gen- 
eral model which have been fixed to zero or unity 
under the false model. The sample sizes required 
for 80% probability of rejecting the false model, at 
the 5% significance level, given the population pa- 
rameters used under the true model, were compared 
(see Martin et al., 1978; Satorra and Saris, 1985) 
as 

NC' /C 

where C' is the noncentral chi-square parameter 
C(o.05.so.~) obtained from the table of noncentral chi- 
squares (Pearson and Hartley, 1972). 

In our analyses of statistical power, we con- 
sidered first the case where only a single indicator 
variable is used for each trait. We considered both 
the case where both traits are measured without 
error and then the more realistic case where 20% 
of the observed variance in trait A, and also 20% 
of the observed variance in trait B, is attributable 
to error variance. In model-fitting, however, in every 
case the models fitted included a false unidirec- 
tional model with measurement error, since in some 
cases this required larger sample sizes to reject than 
the false model assuming no measurement error (e.g., 
cases 1 and 2 when the true model was A ~ B). 
We examined four cases: (1) direct effects of ad- 
ditive and dominance gene action on trait A and of 
shared environment on trait B but with no direct 
shared environmental influence on trait A and no 
direct genetic influence on trait B; (2) direct addi- 
tive genetic effects only on trait A and direct shared 
environmental effects only on trait B; (3) direct ad- 
ditive genetic and dominance effects on trait A and 
direct additive genetic and shared environmental ef- 
fects on trait B; and (4) direct additive genetic and 
shared environmental effects on both traits A and 
B, with genetic effects having a relatively greater 
impact on trait A, and shared environmental effects 
on trait B. In each case we compared the statistical 
power when nonshared environment is accounting 
for 25% of the variance and also, in the case of 
true models without measurement error, 50% of the 
variance. 

Illustrative power analyses were also con- 
ducted under the multiple indicator model, assum- 
ing three indicator variables for each trait. These 
used the same sets of parameters values as under 
the measurement error analyses and assumed that 
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measurement error variance is the only source of  

specific factor variance for the indicator variables, 
accounting for only 20% of the variance. These are 
very strong assumptions, since empirically it has 
usually been found that variable-specific genetic and 
shared environmental influences are also found (e.g., 
Martin and Eaves, 1977; Eaves e t  a l . ,  1989). 

R E S U L T S  

Table IV summarizes the number of twin pairs 
required, assuming equal numbers of monozygotic 
and dizygotic twin pairs reared together are used in 
a study, for 80% power of rejecting a false unidi- 
rectional causal hypothesis, at the 5% significance 
level, when the true population model is the alter- 
native unidirectional causal model. It demonstrates 
very clearly that the power of the twin design to 
falsify unidirectional causal models is greatest when 
the two correlated traits have very different modes 
of inheritance. To provide some perspective for the 
sample sizes reported in Table IV, a sample size of 
200-500 twin pairs is achievable for a laboratory 
study in which twin pairs are participating in an 
experimental protocol (e.g.,  Martin e t  a l . ,  1985a, 
b; Scheiken e t  a l . ,  1989), 1000 or more twin pairs 
in an interview-based study (e.g.,  Kendler e t  al . ,  

1991), and as many as 5000 or more twin pairs in 
an mailed questionnaire survey (e.g., Eaves e t  a l . ,  

1992; Eisen e t  a l . ,  1991). We consider first cases 
where measurement error is negligible. The worst 
case is that where both traits are influenced by both 
additive genetic and shared environmental effects, 
albeit to differing degrees (case 1.4). For this case 

our ability to reject the false unidirectional causal 
model even in questionnaire survey data depends 
upon within-family environmental effects having a 
relatively modest impact (e 2 = e '2 = 0.25) and 

the causal influence being at least moderately strong 
(1 > 0.25 or i '  > 0.25) or, if there is a stronger 
influence of within-family environmental variance 
(e 2 = e '2 = 0.5), requires that the causal influence 
be very strong indeed (i > 0.5 or i '  > 0.5). In the 
first two cases, where there are no direct genetic 
influences on trait B, and direct genetic but no di- 
rect shared environmental effects on traitA, if within- 
family environment effects are weak, required sam- 
ple sizes are within a range that can be achieved in 
laboratory studies if i or i '  >_ 0.3 and are certainly 
achievable in interview studies if i or i '  -> 0.15. In 
the third case, where there are direct additive ge- 
netic effects on both traits, but direct nonadditive 

(dominance) effects on trait A and direct shared 

environmental effects on trait B, sample sizes are 
within the feasible range for interview-based stud- 
ies if e 2 = e '2 = 0.25 and i -> 0.25 or i ' -> 0.25, 
or if e 2 = e '2 = 0.5 and i _> 0.4 or i '  _ 0.4. hi 

all cases, increasing the proportion of variance ac- 
counted for by within-family environment (and 

therefore decreasing twin pair resemblance) greatly 
increases the required sample sizes. 

Once we allow for levels of measurement error 

that are realistic for many psychometric traits (or even 
optimistic!), i.e., with 20% of the observed variance 
in each trait being explained by measurement error, 
sample sizes move beyond the level that would be 
feasible for laboratory-based experimental studies. 
When the two traits have essentially similar modes 
of inheritance (case II.4), but with differences in the 
relative magnitude of genetic and shared environ- 
mental effects, even for large-scale questionnaire sur- 
veys the required sample sizes are impractically large 
unless the unidirectional causal influence is very large 
(i _> 0.4 or i '  >_ 0.4). However, when modes of 
inheritance are somewhat different (cases ILI- IL3) ,  
sample sizes are well within the feasible range for 
mailed questionnaire studies and, at values of i or i '  

>- 0.3 (cases II.1 and II.2) or 0.4 (case II.3), are 
feasible for interview-based studies. 

It is instructive to consider the case where the 
true model involves reciprocal causation between 
the two traits and where, under the true model, the 
two traits are measured without error. It turns out 
that for the parameters given in Table IV for the 
case of no measurement error, which were chosen 
so that (e z + h a + d a + c 2) = l a n d  (e' a + h,2 

+ c '2) = 1, the goodness-of fit chi-square for re- 
jecting the simpleA -~ B model, or the same model 
allowing for measurement error, does not depend 
upon the value of i ' and is the same as the chi- 
square for rejecting the simple A --~ B model when 
the true model is B ~ A; and likewise, the good- 
ness-of-fit chi-square for rejecting the B --~A model 

does not depend upon the value of i and is the same 
as the chi-square for rejecting the simple B --~ A 
model when the true model is A --~ B. Thus the 
sample sizes required for rejecting either simple un- 
idirectional causation model, allowing for the pos- 
sibility of  measurement error, can be read directly 
from Table IV; for example, under case 1.1, with 
e 2 = 0.25 and i = i '  = 0 . 3 ,  313 pairs are required 
to reject the false unidirectional model A --~ B, and 

248 pairs are required to reject the unidirectional 
model B --~ A. 
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Also given in Table IV are illustrative power 
analyses under the multiple indicator model (III. 1- 
III.4). These show that, under the strong assump- 
tions used here, the power of the multiple indicator 
model in the presence of moderate levels of mea- 
surement error is not much reduced compared to 
that of the single indicator model under the ideal- 
ized conditions of no measurement error. These 
analyses again confirm the finding that direction of 
causation analyses of two correlated traits have a 
relatively high power of resolving unidirectional 
causal hypotheses if their modes of inheritance are 
very different, even if their association is relatively 
weak, but a rather low power if their modes of 
inheritance are rather similar, even when their as- 
sociation is rather strong. They also confirm the 
importance of using multiple indicator variables. 

DISCUSSION 

There are many cases in the behavioral sci- 
ences where the direction of causation underlying 
an association between two variables is uncertain, 
and the possibility of a reciprocal causal influence 
of each variable on the other must be considered a 
possibility. Despite the theoretical appeal of meth- 
ods using instrumental variables (Kessler, 1983) or 
panel data (e.g., Duncan, 1969; Kenny, 1975), 
practical application of these methods is often prob- 
lematic. We have explored the conditions under 
which even cross-sectional data on family members 
(for example, monozygotic and dizygotic twin pairs 
or adoptees and their biological and adoptive par- 
ents and siblings) may be used to test hypotheses 
about direction of causation. When two correlated 
traits have somewhat different modes of inheri- 
tance, as would be the case if one trait is strongly 
influenced by family environmental effects and the 
other by genetic effects, the cross-correlations be- 
tween one trait in one relative and the second trait 
in the second relative may provide important infor- 
mation about direction of causation. However, in 
contrast to instrumental variable methods, it is pos- 
sible, when using family data on pairs of variables, 
only to test strong hypotheses of the form "'4 and 
B are correlated solely because of the causal influ- 
ence of A on B (and/or o fB  o n A ) . "  When applied 
to pairs of variables, this approach does not require 
that there be no other unmeasured causes of B than 
A, or vice versa; but it does require that there are 
no other unmeasured causes of A that are also causes 

of B. Thus, to give a concrete example, these meth- 
ods can be used to falsify the hypotheses that the 
correlation between retrospective self-reports of early 
rejection by parents and history of depression (e.g., 
Parker, 1983, 1990) arises (i) solely because of a 
recall bias in those with a history of depression 
(depression --, parental rejection) or, alternatively, 
(ii) solely because parental rejection is a risk factor 
for depression (rejection --~ depression); but rejection 
of these two simple hypotheses does not preclude the 
possibility that, for example, parental rejection is a 
cause of depression, and in addition, certain temper- 
amental and personality traits predispose both to pa- 
rental rejection and to depression. This restriction no 
longer applies if our model consists of a causal chain 
or simplex of the form A --~ B --~ C ~ D, with at 
least four variables (e.g., Treloaar and Martin, un~ 
published), but cases of such precise a priori hy- 
potheses are rare in the behavioral sciences! 

Although we are limited to testing strong causal 
hypotheses using family data, even this limited ca~ 
pability may be very useful. Strong causal hypotheses 
are commonly used when assessing (or asserting) the 
importance of risk factors for psychopathology, and 
the ability to demonstrate that an association is in part 
"'spurious" (Kenny, 1975; Kessler et al., 1992), i.e., 
not due solely to the causal influence of the risk factor 
on risk of psychopathology, is an important advan- 
tage. Retrospective reports of early experiences (Yar- 
row, 1963) or even ratings of an individual 's  
contemporary environment (Brown and Ha~is, 1978) 
may be expected to show spurious associations with 
psychopathology, arising through such mechanisms 
as the impact of psychopathology on selective recall 
or the biasing influence of knowledge of an individ- 
ual's psychiatric history on ratings by other inform- 
ants. Prospective longitudinal studies, using sample 
sizes sufficiently large to ensure adequate numbers of 
cases of psychopathology in adulthood, are rarely 
economically feasible, and their interpretation is ren- 
dered problematic by the cumulative effects of attri- 
tion. Such longitudinal studies are also fraught with 
eithical difficulties, since the moral responsibility to 
provide information about treatment options (e.g., if 
cases of untreated hyperactivity or of adolescent sub- 
stance abuse are detected) may interfere with the sci- 
entific interest of obtaining natural history data in 
untreated subjects. The capability of using retrospec- 
tive data on genetically informative family members 
to reject the extreme hypotheses of (i) no spuriousness 
(e.g., early experience ~ psychopathology) and (ii) 
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a purely spurious relationship (e.g., psychopathology 
--~ perceived environment) is therefore a very impor- 
tant one. 

The conditions under which family data are 
informative about direction of causation, at least 
for studies using realistic sample sizes, are quite 
restricted. In the case of pairs of variables, there is 
no information about direction of causation if the 
two variables have identical patterns of familial 
transmission, i.e., if additive and nonadditive ge- 
netic and shared and within-family environmental 
variances are identical for each trait. If only single 
measures (indicator variables) are used for each trait, 
and no other information is available about error 
variances, it is not possible to test reciprocal caus- 
ation models; and unidirectional causation models 
can be tested only if there are at least three sources 
of variation in the two traits (e.g., within-family 
environment, additive gene action plus dominance 
or within-family environment, shared environment, 
and additive gene action). The latter restrictions no 
longer apply if we are able to fit multiple indicator 
direction-of-causation models, and these actually fit 
the observed data. However, unless there are at 
least three sources of variation, it will not be pos- 
sible to test the hypothesis of reciprocal causation. 

Our analyses of statistical power confirm that 
samples sizes required to reject a false unidirec- 
tional causal hypothesis with a given probability are 
lowest (and therefore statistical power is greatest) 
when two correlated traits have very different modes 
of inheritance. Since the power of resolving addi- 
tive and nonadditive genetic effects for multifac- 
torial traits is rather low, at least as far as concerns 
human studies (Heath, 1983), in practice these 
methods will be most useful in cases where family 
resemblance for one trait is determined largely by 
genetic factors (additive genetic or, preferably, ad- 
ditive plus nonadditive genetic effects), and the sec- 
ond trait shows a strong influence of shared family 
environment. These will include cases where we 
are attempting to test causal hypotheses regarding 
the association between family background varia- 
bles and a partly heritable disorder (cf. Parker, 1990; 
Plomin and Bergeman, 1991) or between such be- 
haviors as smoking or alcohol use [which exhibit 
influences of both genes and shared environment 
(Heath, 1992; Heath et al., 1992)] and heritable 
personality traits, heritable differences in drug reac- 
tivity, or other variables which exhibit a strong ge- 
netic influence: Thus, in principle, many of the 

conditions where questions about direction of caus- 
ation are difficult to address using conventional 
methods are precisely those where methods using 
cross-sectional family data will be most powerful. 

Application of these methods is likely to be 
most trustworthy when multiple indicator models 
are used. Reciprocal causation models can be tested 
only if multiple indicators are used or if measure- 
ment errors are absent or known to be equal for 
both traits. We have emphasized that if a single 
variable is used to assess each construct, then in- 
ferences about direction of causation will be sens- 
tive to the assumption that measurement errors are 
uncorrelated between relatives. While it is possible 
to design experimental protocols to minimize this 
problem, including such necessary precautions as 
testing family members independently, it is not al- 
ways possible to ensure that this ideal is achieved 
in all cases, particularly in large-scale (e.g., mailed 
questionnaire) survey research. When multiple in- 
dicators are used, it will no longer be a problem if 
measurement errors for a given observed variable 
are modestly correlated across relative pairs; but 
measurement error correlations between relatives 
across indicator variables will still cause problems. 
Consideration of statistical power also indicates that 
in the presence of measurement error, the use of 
multiple indicator models is important. 

As with all behavioral genetic analyses, esti- 
mation of the genetic and environmental parameters 
of unidirectional and reciprocal causation models 
in any particular application rests upon strong as- 
sumptions: the assumptions of equal environmental 
correlations in studies of monozygotic and dizy- 
gotic twin pairs reared together or of random place- 
ment and representative sampling of genotypes and 
family environments in separated twin and adoption 
studies. Thus the validation of research findings 
obtained using one experimental design in a second 
study using a very different research design is crit- 
ical. This is no less the case when we are trying to 
make inferences about direction of causation. Al- 
though most discussion of applications of direction 
of causation models to family data has occurred in 
the context of studies of twin pairs reared together 
(Heath et al., 1989a; Neale et al., 1989; Duffy and 
Martin, 1993), these methods can and should be 
applied in a variety of other experimental designs. 
Indeed, since separated twin designs, and adoption 
designs (e.g., Heath et al., 1985), are generally 
much more powerful means of resolving genetic 
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and shared environmental influences on behavioral 
variation, it is likely that they will provide more 
powerful tests of causaul hypotheses. 
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