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Bivariate Quantitative Trait Linkage
Analysis: Pleiotropy Versus Co-incident
Linkages

Laura Almasy, Thomas D. Dyer, and John Blangero

Department of Genetics, Southwest Foundation for Biomedical Research, San
Antonio, Texas

Power to detect linkage and localization of a major gene were compared in
univariate and bivariate variance components linkage analysis of three related
quantitative traits in general pedigrees.  Although both methods demonstrated
adequate power to detect loci of moderate effect, bivariate analysis improved both
power and localization for correlated quantitative traits mapping to the same
chromosomal region, regardless of whether co-localization was the result of
pleiotropy.  Additionally, a test of pleiotropy versus co-incident linkage was
shown to have adequate power and a low error rate.  © 1997 Wiley-Liss, Inc.

Key words:  linkage analysis, pleiotropy, quantitative traits, statistical genetics

INTRODUCTION

Increasingly, linkage analyses are being performed with suites of related traits.
Linkage between two correlated traits and a single chromosomal region is often taken as
further support that a major gene controlling both traits exists in that region.  While this
is certainly a parsimonious and sensible explanation, that related traits mapping to the same
chromosomal region represent pleiotropic effects of a single major gene in that region,
there is an alternative explanation which must be explored.

Banks of related genes are sometimes found tightly clustered in a single region,
presumably from duplication events involving a single ancestral gene.  Examples of gene
clusters in the human genome include the leukocyte antigens and the beta-hemoglobins.
Thus, when two or more traits show linkage to the same region, even if they are obviously
related, it is important to be able to differentiate between pleiotropic effects of a single
locus influencing all the traits and separate tightly clustered loci each influencing a single
trait.
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Toward this end, we present bivariate linkage analyses of the GAW 10 quantitative
traits Q2, Q4, and Q5 with the chromosome 8 region containing major genes MG2 and
MG4.  We chose these traits and this region because Q2 and Q4, while highly correlated,
share no major genes.  The correlation between them is due to shared environmental
influences and the co-incident linkage of each of these traits to the chromosome 8 region
is a result of separate closely placed genes.  (We use co-incident here in the sense of co-
occurring, not with the meaning of chance or coincidental.)  On the other hand, Q4 and Q5,
also highly correlated, provide an example of true pleiotropy as both traits are influenced
by a single gene in the region, MG4.  Our aims were to demonstrate the pleiotropic effects
of MG4 on Q4 and Q5, to exclude pleiotropic effects of a single chromosome 8 gene on
Q2 and Q4, and to compare the power to detect linkage and the localization of a major
gene or genes in bivariate and univariate multipoint variance component linkage analyses
in general pedigrees.

METHODS

In univariate linkage analyses, we used a variance component method designed for
use in pedigrees of arbitrary size and complexity [Blangero, 1995], which is an extension
of the strategy developed by Amos [1994].  This approach is based on specifying the
expected genetic covariances between relatives as a function of the identity-by-descent
(IBD) relationships at a given locus.  For a simple model in which a major locus and
residual  polygenes  influence  a  trait,  the  covariance  matrix for a pedigree is given by:
 S = JF  + 2MF  + I F  where F  is the additive genetic variance due to the major locus, andm
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J is a matrix whose elements (B ) provide the probability that individuals i and j are IBDmij

at a quantitative trait locus (QTL) linked to a marker locus; J is a function of the estimated
IBD matrix for the genetic marker itself and a matrix of the correlations between the
proportions of genes IBD at the marker and at the QTL.  In the above equation, F is theg

2 

genetic variance due to residual additive genetic factors, M is the kinship matrix, F  is thee
2

variance due to individual-specific environmental effects, and I is an identity matrix.  By
assuming multivariate normality as a working model within pedigrees, the likelihood of
any pedigree can be easily written and numerical procedures can be used to estimate the
variance component parameters.  Although multivariate normality is assumed, the
estimates of effect size are robust to deviations from normality [Amos, 1994; Beaty et al.,
1985].

Use of the variance component linkage method requires an estimate of the  IBD
matrix for each pedigree.  For ease of calculation, genotypes of <dead’ individuals were
retained and exact IBD matrices were calculated at each marker using a recursive
algorithm developed by Davis et al. [1996].  For multipoint analysis in these extended
pedigrees, we used an extension of the sib-pair approach of Fulker et al. [1995], using
relative pairs’ IBD sharing at genotyped loci to estimate sharing at arbitrary points along
the chromosome [Almasy et al.,1996].  This method, which has been implemented in the
program SOLAR [Blangero and Almasy, 1996], generates estimates of the IBD
probabilities at any point on a chromosome using a constrained linear function of observed
IBD probabilities at genetic markers at known locations within the region.  Using IBD
probabilities for all 50 chromosome 8 markers simultaneously, IBD sharing was estimated
every 1 cM along the chromosome for all relative pairs.
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Using the variance component model, we tested the null hypothesis that F  equalsm
2

zero (no linkage) by comparing the likelihood of this restricted model with that of a model
in which F  is estimated.  The difference between the two log  likelihoods produces a lodm         10

2

score that is the equivalent of the classical lod score of linkage analysis.  Multipoint
univariate analyses were performed with quantitative traits Q2, Q4, and Q5 every 2 cM
along chromosome 8 for 50 replicates of the data set.  Within the 10 cM on either side of
MG2 and MG4, which were located between 51 and 52 cM, multipoint linkage analysis
was performed every 1 cM for all 200 replicates. Two-point univariate analyses were
performed at the loci flanking MG2 and MG4, D8G26 and D8G27, for Q2, Q4, and Q5 in
all 200 replicates.  Covariates were included in the analyses on a trait-specific basis, given
knowledge of the generating models.  The environmental factor (EF) was used in all
analyses of Q2, but not Q4 or Q5.

Extension to multivariate analysis is straightforward.  The analogous covariance
matrix for the pedigree is: S = MqJ + Gq2M + EqI , where q is the Kronecker productn

operator, M is the t × t additive genetic covariance matrix due to the QTL, G is the residual
additive genetic covariance matrix, and E is the environmental covariance matrix.  Testing
for linkage involves the examination of the diagonal elements of M for deviation from
zero.  For the bivariate case considered here, we obtain trait-specific estimates of F ,m

2

F , and  F   as  well  as  the  three  associated  correlations                   D  , D  , and D .                  D  and D  g     e
2    2

represent the extent of shared residual additive genetic and environmental influences on
m  g   e g e

the traits.  D  is a measure of shared major gene effects near the region for which linkagem

is being assessed.  Using this model, we tested the null hypothesis that F  equals zero form
2

both traits by comparing the likelihood of this restricted model to that of a model in which
F  was estimated for the traits.  The lod score produced by this method is not equivalentm

2

to the classical lod score of linkage analysis, as there are two degrees of freedom involved.
Both univariate and bivariate linkage analysis routines have been implemented in the
program SOLAR [Blangero and Almasy, 1996] using estimation procedures from FISHER
[Lange et al., 1988].  Multipoint bivariate linkage analyses were performed on all 200
replicates for Q2 with Q4 and Q4 with Q5.  Lod scores were calculated every 1 cM
between 40 cM and 60 cM on chromosome 8.

To test pleiotropy versus co-incident linkage, likelihoods for the linkage model in
which D  was estimated were compared to models in which D  was constrained to 0 (nom         m

shared major gene effects in the region, i.e.: co-incident linkage) and constrained to 1
(complete pleiotropy).  This comparison was made at the location showing the maximum
lod score for the replicate.   In the case of D  constrained to 0, the difference between thesem

likelihoods is distributed as a chi-square with 1 degree of freedom.  When D  is constrainedm

to 1, a boundary, the difference in likelihoods is distributed as a 1/2:1/2 mixture of P  and1
2

a point mass at 0 [Self and Liang, 1987].

RESULTS

Power to detect MG2 and MG4 at a lod of 3.0 for any given replicate in the
multipoint univariate analyses was excellent for Q4, mediocre for Q2, and poor for Q5
(Table I).  At less stringent, suggestive significance levels (lod of 1.5 or 2.0), power in the
multipoint univariate analyses was acceptable for Q2 but still low to moderate for Q5.
Mean two-point lod scores for D8G26 and D8G27 over the 200 replicates were 60 to 70%
of those seen in multipoint analysis and the percentage of Q2 and Q5 maximum lod scores
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over 3.0 was approximately halved in the two-point analyses as compared to multipoint.
Localization of QTLs in the multipoint univariate analyses was excellent throughout (Table
II), with even Q5 giving a maximum lod score within 10 cM on either side of MG4 in
nearly 90% of replicates.  The range of locations of maximum lod scores was quite large
for  the Q2 and Q5 analyses.  However, the outlying values of these ranges occurred in
replicates with low maximum lod scores.  In replicates with maximum lod scores of at least
3.0, the locations of these maxima ranged between 39 and 65 cM. 

In assessing lod scores obtained in the bivariate and univariate analyses, it is
important to remember that the bivariate analyses generally contain 2 degrees of freedom,
while the univariate analyses have only 1.  Thus lod scores are not directly comparable
between the two analyses.  However, we may associate each lod score with an appropriate
p-value.  A bivariate lod score of 3.5 is equivalent in p-value to a univariate lod score of
3.0.  More generally, the p-value for the 2 degree of freedom lod can be obtained by
transformation of the test statistic to 2*ln(10)*lod which is distributed approximately as
a mixture of P  distributions with the mixing frequencies being (1/2) for a one-degree of2

freedom P  and (1/4) for a 2-degree of freedom P  [Self and Liang, 1987].2        2

Bivariate analyses (Table III) dramatically improved the power to detect linkage of
Q5 to the MG4 region, with 85.5% of replicates having a lod score over 3.5 in the Q4Q5
analyses.  Unexpectedly, detection of Q2 was helped by the inclusion of Q4 and vice versa.
The maximum lod scores in the Q2Q4 bivariate analyses ranged from a low of 5.97 to  a
high  of  21.87.  Localization  was  also  improved  with 97.0% of replicates now showing
a maximum lod score within 5 cM on either side of MG2 and MG4 for the Q2Q4 analysis,
and 88.5% for the Q4Q5 analysis.  

Tests of pleiotropy versus co-incident linkage were also highly successful.
Likelihoods for the model in which D  was estimated were compared to likelihoods for them

models in which D  was constrained to 0 or to 1.  Power to reject the inappropriate modelm

was excellent in both cases, with over 90% of replicates rejecting at the 0.05 level and
approximately 70% of replicates still rejecting at the more stringent 0.01 level (Table IV).
Conversely, the appropriate constrained model was rarely wrongly rejected.  In the case
of Q4 and Q5, there were no false negatives; the true model of complete pleiotropy was not
rejected in any replicate.  In the Q2 and Q4 analysis, there was only one incorrect rejection
of the co-incident linkage model at a p-value of 0.05.

TABLE I.  Power to Detect QTLs in Two-point and Multipoint Univariate Analyses in 200 Replicates
of the Data Set

     Multipoint                   D8G26                            D8G27
Trait %$1.5 %$2.0 %$3.0 Mean Mean %$3.0 Mean %$3.0
  Q2 83.5 70.0 43.5 2.92 1.85 20.5 1.84 18.0
  Q4 98.0 96.5 87.0 5.57 3.24 49.5 3.93 68.5
  Q5 56.0 40.5 15.5 1.82 0.97 3.0 1.22 7.0

TABLE II.  Location of Maximum Lod Scores in Univariate Analyses, in cM from p-ter, and
Proportion Showing Localization within 5 cM or 10 cM on Either Side of MG2 and MG4

All 200 reps                           Reps w/ max lod $ 3
Trait       Mean       Range      ± 5 cM               ± 10 cM                       ± 5 cM                      ± 10 cM
  Q2       51 cM       34-92      79.0%                 94.5%                         83.0%                         97.5%
  Q4       52 cM       41-64      90.0%                 99.0%                        93.0%                        99.5%
  Q5       51 cM       2-80      68.0%                 88.0%                       77.5%                        93.5%
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DISCUSSION

Multipoint analysis greatly improved power over two-point analysis for these traits,
more than doubling the proportion of maximum lod scores over 3.0 for Q2 and Q5.  Power
to detect linkage of Q4 to MG4, which accounted for 28% of the phenotypic variance in
this trait, was excellent, with over 85% of replicates showing a maximum lod score over
3.0.  Power in the multipoint univariate analyses to detect linkage with the other traits was
acceptable, given that MG2 accounted for only 21% of the variance in Q2 and MG4 only
14% of the variance in Q5.  Although power to detect linkage for Q2 and Q5 on their own
was poor, with fewer than 45% of replicates showing maximum lod scores over 3.0, Q2
and Q5 did show sufficiently high univariate lod scores to suggest their inclusion in a
bivariate analysis.  Localization was excellent in the univariate analyses, even when power
was lacking, with over 85% of replicates showing a maximum lod score within 10 cM on
either side of the major genes for all three traits.

Bivariate analysis improved localization and power, with over 85% of replicates
showing lod scores of at least 3.5 for linkage of Q5 (analyzed with Q4) to the MG4 region
and over 85% of maximum lod scores falling within 5 cM on either side of the major gene.
This increase in power is promising as it would be very difficult to detect linkage to this
region with Q5 alone.  There was also a vast improvement in lod scores in the Q2Q4
bivariate  analyses,  which  was  somewhat unexpected,  but  is  not  inexplicable.  When
pleiotropy is present, the information provided by a trait with weak major gene influences
in the region (Q5) is supplemented by the stronger signal of the second trait (Q4).
However, the weaker trait provides no additional information over the stronger trait and
thus the power of the bivariate analysis is no more than the power of univariate analysis
in the stronger trait.  When major locus pleiotropy is not present (Q2 and Q4), but the traits
are correlated through another mechanism, each trait provides additional new information
about the other, greatly increasing power over what was seen in either univariate analysis.
Preliminary analysis of the first 50 replicates of the data set indicates that a similar effect
is seen in bivariate analyses of Q2 and Q5.  Averaging over the 50 replicates, the maximum
bivariate lod score for Q2 and Q5 was 5.53 at 51 cM, while the maxima in the averaged
univariate analyses were only 2.60 and 1.55 for Q2 and Q5 respectively.

Power to differentiate between pleiotropy and coincident linkage was excellent in
all cases.  The incorrect model was rejected a substantial portion of the time, depending

TABLE III.  Power Over 200 Replicates to Detect MG2 and MG4 and Location of Maximum Lod
Scores in Bivariate Analyses, with D  Unconstrainedm

                                Maximum lod scores                               Localization
Traits Mean % $ 3.5 Mean  ± 5 cM 
Q2 Q4                         13.72 100 52 cM   97.0%
Q4 Q5  6.02 85.5 52 cM   88.5%

TABLE IV.  Power to Reject the Incorrect Bivariate Model in 200 Replicates of the Data Set
p-value Q2Q4 (rejecting D =1) Q4Q5 (rejecting D =0)m   m

0.05 93.0% 94.0%
0.02 83.0% 86.5%
0.01 69.5% 76.5%
0.001 38.5% 34.5%
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on how stringent a p-value was employed.  On the other hand, false negatives were rare and
the correct model was rejected only once over both bivariate analyses combined, an error
rate of 0.25%.  The nature of the true model, pleiotropy or co-incident linkage, did not
seem to affect either power to reject the incorrect model or false rejection of the true
model.  These analyses suggest that a chi-square p-value of 0.05 is a sufficiently
conservative cut-off for the rejection of either pleiotropy or co-incident linkage.  

There are, however, some situations which would complicate the interpretation of
pleiotropy versus co-incident linkage in these bivariate analyses.  Had there been linkage
disequilibrium between MG2 and MG4, Q2 and Q4 would have shown some genetic
correlation, in proportion to the strength of the disequilibrium, which would have reduced
power to reject pleiotropy.  Conversely, had there been epistatic or gene by environment
interactions affecting the action of MG4 on one of Q4 or Q5, but not both, the genetic
correlation between Q4 and Q5 would have appeared incomplete, reducing the power to
reject co-incident linkage.  Thus intermediate, indeterminate results are possible in these
bivariate analyses and results indicating strong pleiotropy must still be scrutinized for
confounding linkage disequilibrium within the region.
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