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Abstract It is not well known whether genetic markers
identiWed through genome-wide association studies
(GWAS) confer similar or diVerent risks across people of
diVerent ancestry. We screened a regularly updated catalog
of all published GWAS curated at the NHGRI website for
GWAS-identiWed associations that had reached genome-
wide signiWcance (p · 5 £ 10¡8) in at least one major
ancestry group (European, Asian, African) and for which
replication data were available for comparison in at least
two diVerent major ancestry groups. These groups were
compared for the correlation between and diVerences in
risk allele frequencies and genetic eVects’ estimates. Data
on 108 eligible GWAS-identiWed associations with a total

of 900 datasets (European, n = 624; Asian, n = 217; Afri-
can, n = 60) were analyzed. Risk-allele frequencies were
modestly correlated between ancestry groups, with >10%
absolute diVerences in 75–89% of the three pairwise com-
parisons of ancestry groups. Genetic eVect (odds ratio)
point estimates between ancestry groups correlated mod-
estly (pairwise comparisons’ correlation coeYcients:
0.20–0.33) and point estimates of risks were opposite in
direction or diVered more than twofold in 57%, 79%, and
89% of the European versus Asian, European versus
African, and Asian versus African comparisons, respec-
tively. The modest correlations, diVering risk estimates, and
considerable between-association heterogeneity suggest
that diVerential ancestral eVects can be anticipated and
genomic risk markers may need separate further evaluation
in diVerent ancestry groups.
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NCBI National Centre for Biotechnology Information
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Introduction

Technological advances have greatly increased the availabil-
ity and reduced the cost of genetic information (Ashleyet al.
2010; Janssens et al. 2008). Genome-wide association stud-
ies (GWAS) addressing a variety of common human diseases
have found many hundreds of associations with robust statis-
tical support heightening the expectations for a substantial
contribution of genomics to personalized medicine (HindorV
et al. 2009, 2011; McCarthy et al. 2008). Most GWAS have
been performed on European descent populations, but
increasing numbers of such investigations are now performed
on other ancestral groups. In the currently available GWAS
literature, there are occasions where the observed genetic
eVects seem to exhibit eVect consistency across ancestral
groups, either in terms of eVect direction or comparability of
the magnitude of the eVect (Waters et al. 2010). On the other
hand, there are other occasions where GWAS-derived sig-
nals point to a pattern of diVerential ancestral eVects (Rosen-
berg et al. 2010).

Identifying patterns of observed genetic eVect variability
or consistency across populations of diVering ancestry (Ioan-
nidis et al. 2004) can support our understanding of the
genetic architecture of complex diseases. The risk conferred
by GWAS-identiWed markers may vary in people of diVerent
ancestry (Rosenberg et al. 2010; Helgason et al. 2007) due to
variability in allelic frequencies and to diVerences in linkage
disequilibrium (LD) between the identiWed variants and the
true functional variants that underlie disease risk. Alterna-
tively, if common variant associations are consistent across
major ethnic groups, the causal variants they presumably tag
are also likely to be common, arguing against the synthetic
association model in those instances (Waters et al. 2010). It
is also possible that the true functional variants may not be
the same in diVerent ancestry groups (Ioannidis et al. 2004;
Manica et al. 2005; Tang 2006). An unequal distribution of
disease-associated alleles between diVerent ancestry popula-
tions has been described for several recessive mendelian dis-
orders, e.g., hemochromatosis, and for some complex
disorders (e.g., inXammatory bowel disease or cardiomyopa-
thies) (Burchard et al. 2003; Dhandapany et al. 2009). Typi-
cal reasons for this are population-speciWc mutations,
diVerent LD patterns and recombination events, or even
diVering selective pressures in the areas of origin or residence
of these groups. Furthermore, individuals of European and
African ancestry diVer signiWcantly in the expression of
many genes which could contribute to some of the observed
diVerences in susceptibility to common diseases (Spielman
et al. 2007; Zhang et al. 2008). Finally, diVerences in risk-
allele frequencies may aVect the power to detect genome-
wide signiWcant associations across populations of varying
ancestral origin (Moonesinghe et al. 2008), and may also
aVect the transferability of disease-risk prediction across

major populations. Such diVerences might require consider-
ation of ancestral origin to control for unmeasured allele fre-
quency diVerences as well as measured allele frequencies and
LD diVerences in developing personalized prediction models.

Empirical assessment of consistency of genetic eVects
for GWAS-identiWed markers in populations of variable
ancestral origin can thus shed light on the genetic architec-
ture of common diseases as well as potential for generaliz-
ability of Wndings across population groups. Here, we
evaluated whether frequencies of the genetic markers of
interest and the genetic eVects that they confer are diVerent
across populations of diVerent ancestral origin for 108
GWAS-discovered markers with robust statistical support.

Methods

Eligible associations

We evaluated GWAS-discovered associations for any phe-
notype or trait that (a) have had robust statistical support in
at least one major ancestral group and (b) had been Wnally
replicated in at least two of the three diVerent major ances-
tral groups (see below for ancestral origin and Wnal replica-
tion deWnitions).

Ancestral origin

We used the following categorization of self-reported ances-
tral origin that is in accordance with a previous empirical
evaluation of ancestry diVerences for candidate gene associa-
tions (Ioannidis et al. 2004). ‘European ancestry’ was
assigned to native populations of Europe and to people of
European origin living in Oceania, North America and South
America, excluding Hispanics (Spanish speaking people liv-
ing in the Americas). As ‘African ancestry’, we considered
populations native to or with origin in sub-Saharan Africa,
and self-identiWed African Americans. ‘Asian ancestry’ was
assigned to native populations of China, Japan, Korea, and
Taiwan, excluding India, Indochina, and Philippines. In Hap-
Map terms, CEU, YRI, and CHB + JPT panels would belong
to our European, African, and Asian groups, respectively
(The International HapMap Project 2003). We excluded
upfront populations not included in the groups above.

Robust statistical support

Robust statistical support was deWned as having p · 5 £ 10¡8

(genome-wide signiWcance, GWS) in a meta-analysis combin-
ing with Wxed eVects all available datasets from a speciWc
ancestry group in at least one genome-wide association study
publication. We included both agnostic discovery and replica-
tion data in the calculations for attaining GWS.
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Screened GWAS publications and selection of associations 
and datasets

We screened a regularly updated list of all GWAS publica-
tions curated at the NHGRI website (HindorV et al. 2011)
through January 19, 2010 when 2,659 associations at
p values ·10–5 had been entered in the database. The
NHGRI database includes GWAS that have attempted to
genotype 100,000 SNPs or more. Full-text articles were
obtained and further scrutinized, including all the supple-
ments of each publication.

We considered GWAS that evaluated more than one of
the previously deWned ancestry groups at a Wnal replication
stage in the same publication; or compared their data
against previously published data from one or more GWAS
that had investigated the same phenotype in populations of
diVerent ancestry (see Supplementary Methods). DiVerent
associations were deWned by diVerences in gene variant,
phenotype, or both, but not just by diVerent genetic models
of inheritance (e.g., allele-based vs. genotype-based);
whenever highly linked markers were detected (r2 > 0.8),
we kept the one with the lowest p value. Further details on
selection of associations appear in Supplementary Methods.
Most GWAS use data from diverse pre-existing studies in
the discovery and/or replication phase. We a priori
endorsed the deWnition of distinct population datasets as
reported in the original papers. To avoid the inXation of
eVect sizes due to the winner’s curse (Ioannidis 2007; Zoll-
ner and Pritchard 2007), we only selected datasets that per-
tained to the Wnal replication stage.

Statistical analysis

Risk-allele frequencies

For each eligible association, we recorded the frequencies of
the risk allele in the European (CEU), African (YRI), and
Asian (CHB + JPT) descent populations in HapMap phase 2
data release 27, February 2009 (The International HapMap
2003), on NCBI B36 assembly, dbSNP b126. We estimated
the Pearson correlation coeYcient between the risk-allele fre-
quencies in the CEU population and the respective frequen-
cies in the CHB + JPT or YRI populations. We used an
inverse-variance weighted summary estimate for the com-
bined Asian datasets (CHB + JPT) after an arcsin transfor-
mation. Less than a third of the GWAS provided genotype
counts in each dataset and group to allow using the risk-allele
frequency information from these studies, but data reported
were generally compatible with their respective HapMap
estimates. To evaluate population diVerentiation, we also
extracted information on Fst estimates for all assessed genetic
variants as provided at HapPlotter (Voight et al. 2006).

Genetic eVect sizes

We used the odds ratio (OR) for binary outcomes and the
standardized mean diVerence (SMD) for continuous out-
comes. For consistency in the analyses, genetic eVect esti-
mates were always presented so as to have OR > 1 or
SMD > 0 in the ancestry group reaching overall GWS. We
synthesized eVect sizes (OR or SMD) for datasets in each
association separately for each ancestry group (Supplemen-
tary Methods). Many GWAS did not provide eVect size
information per dataset, and had already combined data
under Wxed eVects models. Therefore, for consistency we
also combined all remaining data with Wxed eVects models
(Mantel and Haensel 1959; Cooper and Hedges 1994, Der-
Simonian and Laird 1986). Fixed eVects models have better
power for discovery, but random eVects are more appropri-
ate for estimating the typical eVects and their expected vari-
ability across diVerent populations (Pereira et al. 2009).

We evaluated how often eVect sizes diVered more than two-
fold between the compared ancestry groups. This includes
cases where eVect estimates were in the opposite direction
(e.g., OR 1.20 in Europeans and 0.90 in Asians), and cases
where eVect estimates were in the same direction, but the OR-
1 was more than double in one ancestry group than the other
(e.g., OR 1.20 in Europeans and <1.10 in Asians). We also
evaluated whether the eVect sizes diVered beyond chance in
populations of diVerent ancestry, using the Z score as described
previously (Cappelleri et al. 1996; Ioannidis et al. 2001). Since
point estimates alone do not account for the uncertainty sur-
rounding them and testing eVect sizes for signiWcant diVer-
ences depends on whether there is limited (underpowered) or
extensive (overpowered) evidence for the compared ancestry
groups, these analyses oVer complementary information. We
also estimated the Pearson correlation coeYcient between the
eVect sizes for a speciWc association in European ancestry pop-
ulations and the respective eVect sizes in Asian or African
ancestry populations. This was done separately for ORs
(n = 68) and for SMDs (n = 40). Combined analyses translated
SMDs to OR equivalent using the conversion factor 1.81, as
previously proposed (Chinn 2000). The conversion (1.81 = �/
q3) works well for normally distributed eVects (as assumed in
OR and SMD calculations in general). We also sought to
explore whether very small eVect sizes could dilute the
observed correlation estimates due to simple stochastic varia-
tion or whether associations involving uncommon and rare
variants could exhibit a diVerent pattern of correlation due to
their diVering evolutionary characteristics. We thus performed
a sensitivity analysis limited to associations where the eVect
size in the ancestry group that reached GWS corresponded to
an OR > 1.2 and another sensitivity analysis limited to associa-
tions where the assessed variants were rare (maf · 0.01) or
uncommon (maf · 0.05) in at least one of the compared
ancestral groups as estimated in the HapMap phase 2 data.
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Additionally, for each association we calculated the pair-
wise relative odds ratio (ROR) for every pair of ancestry
groups, by dividing the summary ORs or the OR-translated
SMDs of the corresponding ancestry groups. For example, an
association with a European–Asian ROR > 1 means that the
genetic eVect estimate observed in the combined European
datasets was larger compared to the eVect estimate observed
in datasets of Asian ancestry. We then calculated the sum-
mary ROR (sROR) across all associations combining the nat-
ural logarithms of all individual RORs for each ancestral
between-group comparison, using a random eVects model to
allow for the large heterogeneity in ROR estimates and then
re-exponentiating the derived summary log ROR. Heteroge-
neity in the ROR estimates was estimated with the Q test
(considered signiWcant for p < 0.10) and the I2 metric and its
95% CI (Higgins et al. 2003; Ioannidis et al. 2007).

Adjacent hotspots

Since the observed diVerences in the genetic risk estimates
across ancestral groups could be explained by diVerences in
linkage disequilibrium (LD) between the identiWed variants
and the true functional variants that underlie disease risk, we
looked for the presence of recombination hotspots in vicinity
to the GWAS-discovered genetic markers. For every
assessed SNP, the current mapping position was retrieved
through the 1000 Genomes browser (1000 Genomes 2011).
We then identiWed 1000 Genomes hotspots within a 200-kb
distance around the SNP under study and captured the num-
ber of nearby hotspots as well as the distance from the SNP
under study to the closest end of the most adjacent hotspot.
Univariate logistic regression analyses were further per-
formed to evaluate whether the numbers of adjacent hotspots
or the distance to the nearest hotspot could predict the
observed ROR estimates or the occurrence of risk estimate
diVerences (statistically signiWcantly diVerent ancestral esti-
mates, opposite direction genetic ancestral eVects or more
than twofold diVerences across ancestries). For the risk esti-
mate diVerences’ logistic regression analyses, separate analy-
ses were performed to predict the occurrence of diVerences in
all pairwise comparisons and the occurrence of any kind of
risk estimate diVerence across all ancestral groups for every
assessed association.

Analyses were performed in Stata SE 10.0 (College Sta-
tion, TX, USA). All p values are two tailed.

Results

Characteristics of the eligible associations

We screened 365 GWAS reports published through January
19, 2010. Of those, we considered eligible for our analysis,

all the GWAS literature on associations that had been
assessed in at least two of the three major ancestry groups
(Europeans, Asians, Africans) with GWS in at least one
ancestry group. Forty-one publications qualiWed for inclusion
in our study and they assessed 151 potentially eligible associ-
ations. Eighteen associations pertaining to 13 publications
were further excluded due to lack of available data for analy-
sis (eVect size estimates and standard errors or p values) and
4 associations were also excluded because meta-analysis per
ancestry group did not reach GWS in any ancestry group.
Finally, 21 associations were excluded due to the presence of
another highly linked marker with a lower p value.

The 108 eligible associations of 105 SNPs with various
outcomes were published in 33 papers [Table 1, Appendix A
(Supplementary Methods)]. Binary disease outcomes were
assessed in 68 (63%) associations and 40 associations
assessed continuous traits (mostly height [n = 29], but also
body mass index, eosinophil count, and uric acid). After
excluding discovery and trimming down datasets (see Sup-
plementary Methods for deWnitions), there were 900 eligible
Wnal replication datasets. These datasets, where variants sur-
viving the previous stage(s) were assessed without other sub-
sequent validation, would be least likely to be aVected by the
“winner’s curse” phenomenon (Campbell et al. 2005; Yang
et al. 2008; Tang et al. 2005) that tends to inXate the esti-
mates of newly discovered associations passing a given dis-
covery threshold of signiWcance. The median number of
analyzed Wnal replication datasets per association tested was
6 (range 2–27) and the median number of participants per
association in these datasets was 23,321 (IQR 4,400–52,886)
for all three ancestry groups combined.

Non-European populations were under-represented among
the populations assessed in the 108 GWS associations. All eli-
gible associations had been evaluated in populations of Euro-
pean ancestry (including 68 associations evaluated in a non-
European study and contrasted with a previously published
European genome-wide association study). A total of 97 asso-
ciations were evaluated in both European and Asian popula-
tions; 24 in both European and African populations; and 13 in
both Asian and African populations (these 13 associations had
been evaluated in all three groups). Likewise, most Wnal repli-
cation datasets included individuals of European ethnic origin
(n = 624), while populations of Asian or African ethnic origin
were represented by only 217 and 60 datasets, respectively.
Log-additive models were reported in 35 (32%) associations,
while in the rest 73 (72%) associations the eVect size was cal-
culated under an additive model assumption.

Risk-allele frequencies

As shown in Figure and Supplementary Table 1, risk-allele
frequencies had a modest correlation between diVerent ances-
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Table 1 Characteristics of the 108 robustly replicated associations

Outcome Chr. region Gene locus SNP N participants (N datasets)

Total European Asian African

Asthma 1q31.3 DENND1B, CRB1 rs2786098 6,175 2,463 (3) 0 3,712 (2)

Asthma 1q31.3 DENND1B, CRB1 rs1891497 6,175 2,463 (3) 0 3,712 (2)

Asthma 2q13 IL1RL1 rs1420101 52,886 51,177 (8) 1,709 (1) 0

Atrial Wbrillation 4q25 Intergenic rs2200733 20,979 17,810 (3) 3,169 (1) 0

Atrial Wbrillation 4q25 PITX2,ENPEP rs10033464 20,979 17,810 (3) 3,169 (1) 0

BMI 16q12.2 FTO rs9939609 28,266 19,424 (7) 8,842 (1) 0

BMI 18q21.32 MC4R rs17782313 69,194 60,352 (21) 8,842 (1) 0

Breast cancer 16 TNRC9/LOC643714 rs12443621 43,246 37,318 (19) 5,928 (3) 0

Breast cancer 16 TNRC9/LOC643714 rs8051542 34,374 32,668 (16) 1,706 (2) 0

Breast cancer 10q26.13 FGFR2 rs2981582 45,246 37,318 (19) 7,928 (4) 0

Breast cancer 11p15.5 LSP1 rs3817198 39,024 37,318 (19) 1,706 (2) 0

Breast cancer 16q12.1 TNRC9 rs3803662 34,479 28,551 (15) 5,928 (3) 0

Breast cancer 2q35 Intergenic rs13387042 2,227 1,101 (1) 1,126 (1) 0

Breast cancer 5q11.2 MAP3K1 rs889312 43,246 37,318 (19) 5,928 (3) 0

Breast cancer 8q24.21 Intergenic rs13281615 34,479 28,551 (15) 5,928 (3) 0

Colorectal cancer 11q23.1 LOC120376 rs3802842 23,321 15,747 (6) 7,574 (1) 0

Colorectal cancer 18q21.1 SMAD7 rs4939827 23,839 16,270 (6) 7,569 (1) 0

Colorectal cancer 8q24.21 POU5F1P1/DQ515897 rs7014346 23,790 16,216 (6) 7,574 (1) 0

Eosinophil count 3 GATA2 rs7635061 9,618 7,660 (6) 1,958 (1) 0

Eosinophil count 5 IL5 rs2079103 9,618 7,660 (6) 1,958 (1) 0

Eosinophil count 2q12.1 IL1RL1 rs1420101 12,872 7,660 (6) 5,212 (2) 0

Eosinophil count 2q34 IKZF2 rs12619285 12,872 7,660 (6) 5,212 (2) 0

Eosinophil count 3q21.3 GATA2 rs4857855 12,872 7,660 (6) 5,212 (2) 0

Eosinophil count 5q31.1 IL5 rs4143832 12,872 7,660 (6) 5,212 (2) 0

Gout 4p16.1 SLC2A9 rs16890979 26,714 22,871 (1) 0 3,843 (1)

Gout 4q22.1 ABCG2 rs2231142 26,714 22,871 (1) 0 3,843 (1)

Height 12q14.3 HMGA2 rs1042725 23,064 13,604 (4) 9,460 (3) 0

Height 12q22 SOCS2 rs11107116 25,942 16,482 (4) 9,460 (3) 0

Height 13q14.3 DLEU7 rs3116602 25,942 16,482 (4) 9,460 (3) 0

Height 15q25.2 ADAMTSL3 rs10906982 25,942 16,482 (4) 9,460 (3) 0

Height 19p13.3 DOT1L rs12986413 14,222 13,604 618 (1) 0

Height 1p12 SPAG17 rs12735613 25,942 16,482 (4) 9,460 (3) 0

Height 1p34.2 SCMH1 rs6686842 25,942 16,482 (4) 9,460 (3) 0

Height 1q42.13 ZNF678 rs1390401 25,942 16,482 (4) 9,460 (3) 0

Height 20p12.3 BMP2 rs967417 6,135 5,517 (1) 618 (1) 0

Height 20q11.22 GDF5–BFZB rs6060369 48,209 34,889 (10) 9,460 (2) 3,860 (1)

Height 2p16.1 EFEMP1 rs3791675 38,626 30,147 (10) 8,479 (2) 0

Height 2q35 IHH rs6724465 25,942 16,482 (4) 9,460 (3) 0

Height 3q23 ZBTB38 rs6440003 38,626 30,147 (10) 8,479 (2) 0

Height 4p15.32 LCORL rs16896068 25,942 16,482 (4) 9,460 (3) 0

Height 4q31 HHIP rs1812175 6,135 5,517 (1) 618 (1) 0

Height 4q31.22 HHIP rs6854783 25,324 16,482 (4) 8,842 (2) 0

Height 6p21.31 HMGA1 rs6918981 43,198 35,337 (5) 7,861 (1) 0

Height 6p21.31 C6orf106 rs2814993 25,324 16,482 (4) 8,842 (3) 0

Height 6p22.1 HIST1H1D rs10946808 25,832 25,214 618 (1) 0

Height 6p24 BMP6 rs12198986 6,135 5,517 (1) 618 (1) 0

Height 6q16.3 LIN28B rs314277 14,222 13,604 618 (1) 0
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Table 1 continued

Outcome Chr. region Gene locus SNP N participants (N datasets)

Total European Asian African

Height 6q22.32 LOC387103 rs4549631 25,942 16,482 (4) 9,460 (3) 0

Height 6q24.1 GPR126 rs3748069 6,135 5,517 (1) 618 (1) 0

Height 6q24.3 GPR126 rs4896582 14,908 14,290 618 (1) 0

Height 7p22 GNA12 rs798544 6,135 5,517 (1) 618 (1) 0

Height 7q21.2 CDK6 rs2282978 25,324 16,482 (4) 8,842 (2) 0

Height 8q12.1 PLAG1 rs13273123 44,346 35,337 (4) 7,861 (1) 1,148 (1)

Height 9q22.32 PTCH1 rs10512248 25,942 16,482 (4) 9,460 (3) 0

Height 4p15.32 NCAPG, LCORL rs2011603 14,359 5,517 (4) 8,842 (2) 0

PD 4 BST1 rs11931532 30,311 13,625 (5) 16,686 (1) 0

PD 4 BST1 rs12645693 30,311 13,625 (5) 16,686 (1) 0

PD 17 IMP5 rs17690703 28,600 8,208 (3) 20,392 (3) 0

PD 17 NSF rs183211 28,600 8,208 (3) 20,392 (3) 0

PD 1q32.1 PARK1/NUCKS1 rs823128 30,311 13,625 (5) 16,686 (1) 0

PD 1q32.1 PARK1/NUCKS1 rs708730 30,311 13,625 (5) 16,686 (1) 0

PD 1q32.1 PARK1/SLC41A1 rs823156 30,311 13,625 (5) 16,686 (1) 0

PD 1q32.1 PARK1/SLC41A1 rs947211 30,311 13,625 (5) 16,686 (1) 0

PD 4p15.32 BST1 rs4538475 30,311 13,625 (5) 16,686 (1) 0

Prostate cancera 11p15.5 IGF2, IGF2AS, INS, TH rs7127900

Prostate cancera 22q13.2 rs5759167

Prostate cancera 2q31.1 ITGA rs12621278

Prostate cancera 4q22.3 PDLIM5 rs17021918

Prostate cancera 4q22.3 PDLIM5 rs12500426

Prostate cancera 4q24 TET2 rs7679673

Prostate cancera 8p21.2 NKX3.1 rs1512268

Prostate cancera 8q24 Intergenic rs1447295 4,400 3,655 (3) 0 745 (1)

Prostate cancera 8q24 Intergenic rs16901979 4,400 3,655 (3) 0 745 (1)

Schizophrenia 2q32.1 ZNF804A rs1344706 9,100 5,453 (2) 3,647 (2) 0

SLE 11p15.5 KIAA1542 Rs4963128 16,125 3,671 (2) 12,454 (3) 0

SLE 16p11.2 ITGAM rs9888739 16,125 3,671 (2) 12,454 (3) 0

SLE 16p11.2 ITGAM rs1143678 16,125 3,671 (2) 12,454 (3) 0

SLE 16p11.2 ITGAM rs4548893 16,125 3,671 (2) 12,454 (3) 0

SLE 2q32.3 STAT4 rs3821236 13,194 740 (1) 12,454 (3) 0

SLE 2q32.3 STAT4 rs7574865 16,503 6,301 (5) 10,202 (2) 0

SLE 3q14.3 PXK rs6445975 16,125 3,671 (2) 12,454 (3) 0

SLE 4q24 BANK1 rs10516487 15,390 2,936 (4) 12,454 (2) 0

SLE 5q33.3 rs2431697 16,125 3,671 (2) 12,454 (3) 0

SLE 6p21.33 MSH5 rs3131379 16,125 3,671 (2) 12,454 (3) 0

SLE 6q21 PRDM1-ATG5 rs6568431 16,125 3,671 (2) 12,454 (3) 0

SLE 6q23.3 TNFAIP3 rs2230926 16,115 5,913 (4) 10,202 (2) 0

SLE 7q32.1 IRF5/TNPO3 rs729302 16,125 3,671 (2) 12,454 (3) 0

SLE 7q32.1 IRF5/TNPO3 rs12537284 16,125 3,671 (2) 12,454 (3) 0

SLE 7q32.1 TNPO3 rs10239340 16,125 3,671 (2) 12,454 (3) 0

SLE 7q32.1 IRF5/TNPO3 rs10279821 16,216 3,671 (2) 12,545 (3) 0

SLE 8p23.1 BLK rs13277113 14,104 1,650 (1) 12,454 (3) 0

SLE 8p23.1 BLK rs2248932 16,930 6,728 (4) 10,202 (2) 0
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try groups. CHB and JPT minor allele frequencies were highly
correlated, as expected (correlation coeYcient = 0.98,
p < 0.001), and therefore merged into a combined CHB + JPT
group. The Pearson correlation coeYcient was 0.63
(p < 0.001) for frequencies in the CEU versus CHB + JPT,
0.53 (p < 0.001) for CEU versus YRI, and 0.31 (p = 0.01) for
CHB + JPT versus YRI ancestry. DiVerences in the minor
allele frequencies of >10% in absolute frequency were com-
mon and occurred in 77 (72%), 75 (69%), and 89 (83%) of the
CEU versus CHB + JPT, CEU versus YRI and CHB + JPT
versus YRI comparisons. Most of the variants were common in
at least one ancestral group (minor allele frequency >5%).
According to HapMap data, 7, 20, and 15 genetic variants
were uncommon in CEU, CHB + JPT and YRI samples,
respectively, while 2, 9 and 8 rare variants were observed in
the aforementioned ancestral groups, respectively. The risk
allele was the minor allele in 49, 60, and 54 of the assessed
associations in CEU, CHB + JPT, and YRI samples, respec-
tively. Of the assessed genetic variants, 8 and 8 had Fst > 0.25
for the CEU populations compared to the CHB + JPT and YRI
samples, respectively. These were variants associated with
breast cancer, schizophrenia, height, uric acid, systemic lupus
erythematosus, Parkinson’s disease (Supplementary Table 2).

Genetic eVect sizes

As shown in Table 2 eVect sizes showed notable variability
across diVerent ancestry groups, particularly for compari-

sons with African ancestry groups. Among the European
and Asian ancestry genetic eVect size estimates, 17 (18%)
had estimates in the opposite direction and another 31
(39%) were in the same direction, but diVered from more
than twofold; eVect size estimates diVered beyond chance
in 21 of the 97 (22%) comparisons. The frequency of dis-
crepancies between European and African eVect size esti-
mates was 5 (21%), 11 (58%) and 10 (42%), respectively.
The frequency of discrepancies between Asian and African
eVect size estimates was 5 (39%), 4 (50%) and 3 (23%),
respectively.

Regarding the potential eVect of the underlying LD on
the observed eVect concordance patterns, there were 7
SNPs with no recombination hotspot nearby. Overall, a
median of 2 (range 0–6) hotspots were found in vicinity to
the assessed SNPs and the median distance to the closest
hotspot was 23.8 kb; neither the number of identiWed hot-
spots nor the distance to the closest hotspot seem to be a
statistically signiWcant predictor of Wnding risk estimate
diVerences in any of the three aspects studied (statistically
signiWcant diVerences; opposite direction of eVects; oppo-
site direction of eVects or same direction but with more
than twofold diVerence). In a pairwise fashion, the number
of nearby hotspots had a nominally statistically signiWcant
inverse weak relationship with the occurrence of more than
twofold genetic risk diVerences (OR 0.70; 95% CI 0.51–
0.97; p = 0.031) for the European–Asian comparison, but
this should be interpreted cautiously given the number of
analyses (Table 3).

Table 1 continued

BMI body mass index, PD Parkinson’s disease, SLE systematic lupus erythematosus, T2D type 2 diabetes
a Exact sample size not provided

Outcome Chr. region Gene locus SNP N participants (N datasets)

Total European Asian African

SLE 8p23.1 XKR6 rs6985109 16,125 3,671 (2) 12,454 (3) 0

SLE 8p23.1 XKR6 rs4240671 16,125 3,671 (2) 12,454 (3) 0

SLE 8p23.1 XKR6 rs11783247 16,125 3,671 (2) 12,454 (3) 0

SLE 8p23.1 XKR6 rs6984496 16,125 3,671 (2) 12,454 (3) 0

SLE 8p23.1 C8orf12 rs7836059 16,125 3,671 (2) 12,454 (3) 0

SLE 8q12.1 LYN rs7829816 16,125 3,671 (2) 12,454 (3) 0

Stroke 12p13.33 NINJ2 rs12425791 42,253 37,702 (1) 0 4,551 (1)

Systemic sclerosis 6 HLA–DPB1 and DPB2 rs3128930 3,998 3,838 (1) 0 160 (1)

T2D 11p15.5 KCNQ1 rs2237892 38,760 16,698 (4) 22,062 (5) 0

T2D 2p21 THADA rs7578597 73,373 60,832 (16) 12,541 (3) 0

T2D 6p22.3 CDKAL1 rs4712523 51,193 32,554 (7) 18,639 (3) 0

T2D 9p21.3 CDKN2A/B rs2383208 53,848 32,554 (7) 21,294 (4) 0

T2D 12p15.5 KCNQ1 rs2074196 19,743 6,570 (1) 13,173 (4) 0

Uric acid 4p16.1 SLC2A9 rs16890979 26,714 22,871 (1) 0 3,843 (1)

Uric acid 4q22.1 ABCG2 rs2231142 26,714 22,871 (1) 0 3,843 (1)

Uric acid 6p22.2 SLC17A3 rs1165205 26,714 22,871 (1) 0 3,843 (1)
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Table 2 Observed discrepancies for ancestral eVect sizes and adjacent hotspots

SNP Locus  Outcome  Z score  Same direction  Two fold differences 

   euas  euafr  asafr  euas  euafr  asafr  euas  euafr  asafr  N 

rs1420101 IL1RL1 Asthma 0   1   0   3 

rs2786098 DENND1B, CRB1 Asthma  1   0   1  1 

rs1891497 DENND1B, CRB1 Asthma  1   0   1  0 

rs2200733 Intergenic Atrial fibrillation 0   1   0   3 

rs10033464 PITX2,ENPEP Atrial fibrillation 0   1   1   4 

rs9939609 FTO BMI 0   1   0   3 

rs17782313 MC4R BMI 0   1   0   1 

rs13387042 Intergenic Breast cancer 0 0 0 1 1 1 1 1 0 3 

rs2981582 FGFR2 Breast cancer 0   1   0   3 

rs12443621 TNRC9/LOC643714 Breast cancer 1   1   1   2 

rs8051542 TNRC9/LOC643714 Breast cancer 0   0   1   3 

rs889312 MAP3K1 Breast cancer 0   1   0   3 

rs3817198 LSP1 Breast cancer 0   1   1   1 

rs13281615 Intergenic Breast cancer 0   1   1   4 

rs3803662 TNRC9 Breast cancer 0 1 1 1 0 0 0 1 1 4 

rs7014346 POU5F1P1/DQ515897 Colorectal cancer 1   0   1   3 

rs3802842  Colorectal cancer 1   1   1   2 

rs4939827 SMAD7 Colorectal cancer 1   0   1   4 

rs1420101 IL1RL1 Eosinophil count 0   1   0   3 

rs12619285 IKZF2 Eosinophil count 0   1   0   2 

rs4857855 GATA2 Eosinophil count 0   1   0   4 

rs4143832 IL5 Eosinophil count 1   1   1   2 

rs7635061 GATA2 Eosinophil count 0   1   0   4 

rs2079103 IL5 Eosinophil count 0   0   1   2 

rs16890979 SLC2A9 Gout  1   1   1  1 

rs2231142 ABCG2 Gout  0   1   0  3 

rs6060369 GDF5 – BFZB Height 0 0 0 1 1 1 0 0 1 1 

rs6918981 HMGA1 Height 0 0 0 1 1 1 1 0 1 3 

rs6440003 ZBTB38 Height 0   1   0   2 

rs13273123 PLAG1 Height 1 0 1 0 1 0 1 0 1 1 

rs3791675 EFEMP1 Height 0   1   0   3 

rs1042725 HMGA2 Height 0   1   0   3 

rs16896068 LCORL Height 0   1   0   1 

rs10512248 PTCH1 Height 0   1   0   1 

rs12735613 SPAG17 Height 0   1   0   1 

rs11107116 SOCS2 Height 0   1   0   6 

rs6854783 HHIP Height 0   1   0   1 
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Table 2 continued

SNP Locus Outcome Z score Same direction Two fold differences

euas euafr asafr euas euafr asafr euas euafr asafr N

rs1390401 ZNF678 Height 0 1 1 0

rs2011603 NCAPG, LCORL Height 1 0 1 0 1 0 1 1 1 1

rs2282978 CDK6 Height 0 1 1 0

rs4549631 LOC387103 Height 0 1 0 0

rs2814993 C6orf106 Height 0 1 0 1

rs3116602 DLEU7 Height 0 1 0 2

rs6686842 SCMH1 Height 1 0 1 1

rs10906982 ADAMTSL3 Height 0 1 0 2

rs6724465 IHH Height 0 1 1 1

rs12198986 BMP6 Height 0 1 1 4

rs10946808 HIST1H1D Height 0 1 1 2

rs798544 GNA12 Height 0 1 0 2

rs1812175 HHIP Height 0 1 0 1

rs12986413 DOT1L Height 0 0 1 2

rs967417 BMP2 Height 0 1 0 4

rs3748069 GPR126 Height 0 1 1 1

rs314277 LIN28B Height 0 0 1 3

rs4896582 GPR126 Height 0 1 1 2

rs17690703 IMP5 PD 1 1 1 2

rs183211 NSF PD 1 1 1 1

rs823128 PARK1/NUCKS1 PD 0 1 0 3

rs708730 PARK1/ NUCKS1 PD 1 1 1 1

rs823156 PARK1/SLC41A1 PD 1 1 1 1

rs947211 PARK1/SLC41A1 PD 1 1 1 1

rs4698412 BST1 PD 0 1 1 1

rs11931532 BST1 PD 0 1 1 1

rs4538475 BST1 PD 1 1 1 1

rs12621278 ITGA Prostate cancer 0 1 0 1 1 1 0 1 1 3

rs17021918 PDLIM5 Prostate cancer 0 0 0 0 1 0 1 0 1 3

rs12500426 PDLIM5 Prostate cancer 0 1 0 0 0 1 1 1 0 3

rs7679673 TET2 Prostate cancer 0 1 0 1 0 0 0 1 1 1

rs1512268 NKX3.1 Prostate cancer 0 0 0 1 1 1 0 0 0 5

rs7127900 IGF2, IGF2AS, INS, TH Prostate cancer 0 1 0 1 1 1 0 1 1 3

rs5759167 Prostate cancer 0 0 0 1 1 1 1 1 0 3

rs1447295 Intergenic Prostate cancer 1 1 1 5

rs16901979 Intergenic Prostate cancer 0 1 1 1

rs1344706 ZNF804A Schizophrenia 0 1 0 0

rs3821236 STAT4 SLE 0 1 0 1
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Table 2 continued

BMI body mass index, distance distance to the closest hotspot end, N number of adjacent hotspots (200 kb window), PD Parkinson’s disease, SLE
systematic lupus erythematosus, T2D type 2 diabetes

SNP Locus Outcome Z score Same direction Two fold differences

euas euafr asafr euas euafr asafr euas euafr asafr N

rs7574865 STAT4 SLE 0 1 0 4

rs2431697 SLE 0 1 0 5

rs6568431 PRDM1-ATG5 SLE 0 1 0 3

rs2230926 TNFAIP3 SLE 0 1 0 5

rs729302 IRF5/TNPO3 SLE 0 1 0 3

rs13277113 BLK SLE 0 1 0 3

rs2248932 BLK SLE 0 1 0 2

rs3131379 MSH5 SLE 0 0 1 1

rs12537284 IRF5/TNPO3 SLE 0 1 1 3

rs6985109 XKR6 SLE 0 0 1 2

rs4240671 XKR6 SLE 0 0 1 2

rs11783247 XKR6 SLE 0 1 0 2

rs6984496 XKR6 SLE 0 1 1 2

rs7829816 LYN SLE 0 1 1 2

rs9888739 ITGAM SLE 0 1 1 2

rs1143678 ITGAM SLE 0 1 1 2

rs4548893 ITGAM SLE 0 1 0 2

rs7836059 C8orf12 SLE 1 0 1 3

rs4963128 KIAA1542 SLE 0 1 1 1

rs6445975 PXK SLE 1 1 1 1

rs10516487 BANK1 SLE 0 1 0 2

rs10239340 TNPO3 SLE 1 0 1 2

rs10279821 IRF5/TNPO3 SLE 1 0 1 3

rs12425791 NINJ2 Stroke 0 1 1 3

rs3128930 HLA–DPB1 and DPB2 Systemic sclerosis 0 1 1 4

rs2074196 KCNQ1 T2D 0 1 0 5

rs2237892 KCNQ1 T2D 1 1 0 6

rs4712523 CDKAL1 T2D 1 1 0 1

rs2383208 CDKN2A/B T2D 1 1 0 3

rs7578597 THADA T2D 0 1 0 0

rs16890979 SLC2A9 Uric acid 1 1 0 2

rs2231142 ABCG2 Uric acid 0 1 0 3

rs1165205 SLC17A3 Uric acid 0 1 1 0
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Overall, when all 108 GWS associations were consid-
ered, there was moderate correlation among the eVect sizes
in diVerent ancestry groups (Fig. 1): the correlation coeY-
cients were 0.33 (p < 0.001), 0.27 (p = 0.20) and 0.20
(p = 0.51) for the European–Asian, European–African and
Asian–African comparisons. When limited to the associa-
tions where the eVect size in the ancestry group that
reached GWS corresponded to an OR > 1.2, the correlation
coeYcient was 0.19 (p = 0.23) for the European–Asian
(n = 44) comparison (data were too limited for the other
two comparisons). Although the assessed GWAS were
designed to cover genetic signals corresponding to common
variants, uncommon and even rare variants are represented
in the GWAS genotyping platforms, albeit unevenly. The
number of available rare variants did not allow for further
analysis and, when limited to associations where the variant
under study was uncommon in at least one of the compared
ancestral groups, the correlation coeYcient was 0.29
(p = 0.17) for the European–Asian (n = 24) comparison
(data were too limited for the other two comparisons).

The ratio of the genetic eVect (odds ratio) in one ancestry
group versus another gives the ROR for an association. The
ROR estimates can then be evaluated in a meta-analysis
across all associations for each ancestry group contrast. As
shown in Supplementary Figure, in many associations, the
European estimates were much larger than the Asian esti-

mates, and in an almost equal number of associations, the
reverse was the case. Overall the summary ROR was very
close to 1.00 (random-eVects ROR = 1.08; 95% CI 1.03,
1.13) when all binary associations were considered, indicat-
ing that on average the genetic risk estimates did not diVer
between European and Asian groups; however, the
observed between-association heterogeneity was large
(I2 = 75%) meaning that the observed variation in the ROR
estimates across the three groups cannot be explained by
chance alone. On average, African populations tended more
frequently to have lower estimates of genetic risk compared
to European estimates, but again there was very large heter-
ogeneity (summary random-eVects ROR = 1.17; 95% CI
1.06, 1.30; I2 = 79%). The summary random-eVects ROR
was 1.03 (95% CI 0.92, 1.17; I2 = 53%) for Asian versus
African estimates. For the continuous traits, the summary
random-eVects ROR was 1.01 (95% CI 0.98, 1.04;
I2 = 63%) for the European-Asian comparisons and 1.06
(95% CI 0.96, 1.16; I2 = 71% for the European–African
comparisons). Considering binary and continuous associa-
tions together, the results did not change substantially
(summary random-eVects ROR = 1.04; 95% conWdence
interval: 1.02, 1.07; I2 = 71% for the European–Asian com-
parisons, 1.13; 95% CI 1.05, 1.21; I2 = 77% for the Euro-
pean–African comparisons and 1.01; 95% CI 0.90, 1.14;
I2 = 69% % for the Asian–African comparisons. Neither the

Table 3 Potential predictors of genetic risk estimate diVerences

Predictor Genetic risk estimate diVerence OR (95% CI) p

Association level

Number of hotspots Statistically signiWcant diVerence 0.88 (0.64–1.21) 0.43

Opposite direction 0.90 (0.61–1.39) 0.58

Opposite direction or same direction but >twofold diVerence 0.80 (0.60–1.06) 0.12

Distance to the nearest hotspot Statistically signiWcant diVerence 0.82 (0.58–1.15) 0.25

Opposite direction 1.17 (0.75–2.02) 0.72

Opposite direction or same direction but >twofold diVerence 0.87 (0.63–1.21) 0.41

Pairwise comparisons

European versus Asian

Number of hotspots Statistically signiWcant diVerence 0.81 (0.55–1.19) 0.28

Opposite direction 1.01 (0.68–1.51) 0.96

Opposite direction or same direction but >twofold diVerence 0.70 (0.51–0.97) 0.03

Distance to the nearest hotspot Statistically signiWcant diVerence 0.84 (0.57–1.25) 0.40

Opposite direction 1.07 (0.68–1.70) 0.76

Opposite direction or same direction but >twofold diVerence 0.98 (0.70–1.38) 0.90

European versus African

Number of hotspots Statistically signiWcant diVerence 0.94 (0.53–1.67) 0.83

Opposite direction 0.68 (0.32–1.44) 0.32

Opposite direction or same direction but >twofold diVerence 0.83 (0.45–1.53) 0.54

Distance to the nearest hotspot Statistically signiWcant diVerence 0.95 (0.48–1.88) 0.89

Opposite direction 2.39 (0.84–6.81) 0.10

Opposite direction or same direction but >twofold diVerence 1.23 (0.60–2.54) 0.57
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number of nearby hotspots nor the distance to the closest
hotspot was statistically signiWcant associated with the
observed ROR estimates for the assessed associations con-
sidering either pairwise or overall comparisons.

We next sought to explore whether the synthesis of data
across all available ancestral groups would lead to enhance-

ment of statistical signiWcance of the replicated associa-
tions. Data synthesis under a Wxed-eVect model assumption
across the assessed ancestral groups is shown in Supple-
mentary Table 3. In 76 cases, the combined ancestry data
yield a more promising (i.e., lower) p value while in 32
cases they yield a worse (i.e., higher) p value that is

Fig. 1 Pairwise correlations between risk-allele frequencies and the
genetic-risk estimates (binary phenotypes as blue dots and continuous
outcomes as red dots) across three major ancestral groups, for the

European–Asian (a), European–African (b) and Asian–African
(c) comparisons, respectively
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achieved by a single-ancestry analysis. Finally, among the
47 associations with available detailed information to esti-
mate measures of between- and within-ancestry heteroge-
neity (�2), the available data suggest more commonly larger
variance compared to between-ancestry groups than within-
ancestry groups, but these estimates have large uncertainty
and for the majority of these associations there is not
enough detailed information to calculate them (Supplemen-
tary Table 4).

Discussion

The current evaluation of 108 GWS associations with agnos-
tically discovered genetic markers shows varying consis-
tency in genetic eVect sizes across major ancestral groups,
and notable diVerences are encountered in a sizable propor-
tion. Although the eVect sizes seen in one population have
modest correlation with the eVect sizes in populations of
another ancestry and it is not possible to reliably predict the
eVect in diVerent ancestry groups for an association that has
reached GWS in one ancestry group, eVects diVering beyond
chance are less common. Combination of data from diverse
ancestry groups may thus be more likely to lead to lower
p values for association than ancestry-speciWc analyses.

A previous evaluation (Ioannidis et al. 2004) of 43 vali-
dated candidate gene associations had shown large diVer-
ences in the allele frequencies, but quite good agreement
with the eVect sizes. While candidate gene associations
tackled mostly variants that were thought to be the func-
tional, causative variants, agnostic GWAS have captured
common markers that are likely to be only in linkage dis-
equilibrium with the culprits, and rarely the functional,
causative variants themselves. The GWAS approach is far
more eYcient and has dramatically increased the yield of
markers with robust support for association. Linkage dis-
equilibrium of the discovered tagging markers with func-
tional, causative variants may vary a lot across diVerent
ancestry groups (Bodmer and Bonilla 2008) aVecting the
correlations among observed cross-ancestry genetic-risk
estimates. A previous study of population diVerentiation of
GWAS-discovered SNPs for 26 conditions across diVerent
HapMap populations (Adeyemo and Rotimi 2010) found
substantial diVerences in allele frequencies, but population
diVerentiation (expressed by Fst) varied across diVerent
conditions. No previous study has examined diVerences in
the genetic eVects of GWAS-discovered variants across a
large number of conditions. Several studies have tested a
number of GWAS-discovered SNPs for one condition in
diVerent ancestry groups (Grant et al. 2008; Ioannidis
2009a, b; Ioannidis et al. 2009; Li et al. 2008; Ng et al.
2008; Yamada et al. 2009). Most have documented some
modest or large diVerences in the genetic eVects, but infer-

ences are diYcult to generalize from single studies and
traits.

Some limitations should be discussed. First, although
under adequate quality control procedures, genotyping is
generally considered accurate (Chanock et al. 2007; Well-
come Trust Case Control Consortium 2007) in the GWAS
era, other sources of errors, e.g., phenotype misclassiW-
cation, or suboptimal characterization of ancestry groups
could cause diVerences in diVerent studies. Second, the
notion that common ancestry is an eYcient way to ensure
population homogeneity has been extensively debated and
ancestry deWnitions range from self-reported ancestry to
reported grandparental birthplace to genome-deWned
(through hierarchical clustering methodology) ancestry; all
approaches have limitations (Campbell et al. 2005; Yang
et al. 2008; Tang et al. 2005; Royal et al. 2010). In all,
genome-wide data are an accurate and cost-eVective way to
ascertain stratiWcation within study populations, including
stratiWcation due to Wner grained population histories
largely unknown to individuals (Need and Goldstein 2006;
Tian et al. 2008; TishkoV et al. 2009). Conversely, genome-
based clustering is not commonly used in replication data-
sets where ancestry is often assigned by self-report without
genomic data conWrmation. Third, comparison of genetic
eVects across ancestry groups may be inXuenced by the
winner’s curse. We followed a strict protocol in selecting
only Wnal replication datasets (rather than initial discovery
studies) that are least likely to be aVected by the winner’s
curse. Finally, we took extra care in assuring that the
observed diVerences were observed in situations where
there was strong evidence for the presence of an overall
genetic association. We thus speciWcally focused on
robustly replicated GWAS-derived associations, since we
wanted to exclude the possibility of including null underly-
ing associations where either the detection of any cross-
ancestry diVerence would be due to chance alone or an
observed pattern of consistency would reXect the null eVect
variation. Toward the same end and aiming to include asso-
ciations less prone to selection and reporting biases, we
excluded candidate gene studies and fully endorsed the
agnostic, genome-wide association study framework.

On average the genetic eVects were substantially smaller
in African populations, probably because these 108 associa-
tions were generally not initially discovered in African pop-
ulations. Of note, the majority of the assessed African
populations were African–American groups where the pro-
portion of European ancestry is considerable (as high as
20%) with very large variation among individuals (Bryc
et al. 2010). Thus, the diVerences between European and
African populations, other than African Americans, might
be even more prominent.

The notion that the underlying recombination back-
ground could create between-ancestry and within-ancestry
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eVect diVerences was not supported by our evaluation of
recombination hotspots using 1000 Genomes data. Never-
theless, we should acknowledge that this analysis is not
conclusive and it is limited due to the paucity of non-Euro-
pean population data in GWAS. Moreover, linkage disequi-
librium patterns may diVer enough to cause diVerences in
associations between ancestral groups even when recombi-
nation hotspots are not identiWed in the 1000 Genomes data
(Myers et al. 2005). Finally, as mentioned before for many
associations, the amount of data from non-European popu-
lations was limited. Therefore, the proportion of the associ-
ations where there is a diVerence beyond chance in eVect
size across ancestry groups is probably underestimated.

The variable consistency in associations of common
variants across major ancestry groups has important impli-
cations for understanding the genetic architecture of com-
plex diseases. These diVerences may also reXect diVerences
in the causal variants and/or their frequency across diVerent
populations. Inclusion of populations of diVering ancestry
in ongoing eVorts should be further encouraged. The power
to detect some markers may be diVerent in one ancestry
group than another, because of diVerences in allele frequen-
cies, genetic eVects, and potential environmental modiWers.
Given that many loci may be pertinent to more than one
ancestry group, one can obtain complementary lists of
interesting loci with GWS signals by examining diVerent
ancestry groups, while an appropriately adjusted combined
analysis will often increase power and contribute further
discoveries. Finally, results of risk models involving many
SNPs are more likely to be population-speciWc due to
diVerences in LD patterns and allele frequencies character-
istic of each composite SNP (RansohoV and Khoury 2010;
Yang et al. 2009), and should have separate validation in
other populations. This has implications for the transla-
tional potential and development of genetic-risk prediction
tests (Gulcher and Stefansson 2010; Ioannidis 2009a, b).

ConXict of interest The authors declare no conXict of interest relat-
ed to this manuscript.

References

deyemo A, Rotimi C (2010) Genetic variants associated with complex
human diseases show wide variation across multiple populations.
Public Health Genomics 13:72–79

Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE,
Dudley JT, Ormond KE, Pavlovic A, Morgan AA et al (2010)
Clinical assessment incorporating a personal genome. Lancet
375:1525–1535

Bodmer W, Bonilla C (2008) Common and rare variants in multifacto-
rial susceptibility to common diseases. Nat Genet 40:695–701

Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S,
Froment A, Bodo JM, Wambebe C, TishkoV SA et al (2010) Ge-
nome-wide patterns of population structure and admixture in

West Africans and African Americans. Proc Natl Acad Sci USA
107:786–791

Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Moun-
tain JL, Pérez-Stable EJ, Sheppard D, Risch N (2003) The impor-
tance of race and ethnic background in biomedical research and
clinical practice. N Engl J Med 348:1170–1175

Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML,
Groop LC, Altshuler D, Ardlie KG, Hirschhorn JN (2005) Dem-
onstrating stratiWcation in a European American population. Nat
Genet 37:868–872

Cappelleri JC, Ioannidis JP, Schmid CH, de Ferranti SD, Aubert M,
Chalmers TC, Lau J (1996) Large trials vs meta-analysis of small-
er trials: how do their results compare? JAMA 276:1332–1338

Chinn S (2000) A simple method for converting an odds ratio to eVect
size for use in meta-analysis. Stat Med 19:3127–3131

Cooper H, Hedges LV (eds) (1994) The handbook of research synthe-
sis (Russell Sage 58. Foundation, New York)

DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Con-
trol Clin Tr 7:177–188

Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari
P, Rai TS, Khullar M, Soares P, Bahl A et al (2009) A common
MYBPC3 (cardiac myosin binding protein C) variant associated
with cardiomyopathies in South Asia. Nat Genet 41:187–191

1000 Genomes (2011) A deep catalog of human genetic variation. ht-
tp://www.1000genomes.org/

Grant SF, Li M, BradWeld JP, Kim CE, Annaiah K, Santa E, Glessner
JT, Casalunovo T, Frackelton EC, Otieno FG et al (2008) Associ-
ation analysis of the FTO gene with obesity in children of Cauca-
sian and African ancestry reveals a common tagging SNP. PLoS
One 3:e1746

Gulcher J, Stefansson K (2010) Genetic risk information for common
diseases may indeed be already useful for prevention and early
detection. Eur J Clin Invest 40:56–63

Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, Gun-
narsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I et al
(2007) ReWning the impact of TCF7L2 gene variants on type 2
diabetes and adaptive evolution. Nat Genet 39:218–225

Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring
inconsistency in meta-analyses. BMJ 327:557–560

HindorV LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Col-
lins FS, Manolio TA (2009) Potential etiologic and functional
implications of genome-wide association loci for human diseases
and traits. Proc Natl Acad Sci USA 106:9362–9367

HindorV LA, Junkins HA, Hall PN, Mehta JP, Manolio TA (2011) A
catalog of published genome-wide association studies. (Available
at: http://www.genome.gov/gwastudies)

Ioannidis JP (2007) Non-replication and inconsistency in the genome-
wide association setting. Hum Hered 64:203–213

Ioannidis JP (2009a) Population-wide generalizability of genome-wide
discovered associations. J Natl Cancer Inst 101:1297–1299

Ioannidis JP (2009b) Personalized genetic prediction: too limited, too
expensive, or too soon? Ann. Intern Med 150:139–141

Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG
(2001) Replication validity of genetic association studies. Nat
Genet 29:306–309

Ioannidis JP, Ntzani EE, Trikalinos TA (2004) ‘Racial’ diVerences in
genetic eVects for complex diseases. Nat Genet 36:1312–1318

Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Uncertainty in het-
erogeneity estimates in meta-analyses. BMJ 335:914–916

Ioannidis JP, Thomas G, Daly MJ (2009) Validating, augmenting and
reWning genome-wide association signals. Nat Rev Genet
10:318–329

Janssens AC, van Duijn CM (2008) Genome-based prediction of com-
mon diseases: advances and prospects. Hum Mol Genet 17:R166–
R173
123

http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.genome.gov/gwastudies


Hum Genet (2012) 131:1057–1071 1071
Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J, Yu Z, Lin X (2008) Vari-
ants in the fat mass- and obesity-associated (FTO) gene are not
associated with obesity in a Chinese Han population. Diabetes
57:264–268

Manica A, Prugnolle F, Balloux F (2005) Geography is a better deter-
minant of human genetic diVerentiation than ethnicity. Hum Gen-
et 118:366–371

Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data
from retrospective studies of disease. J Natl Cancer Inst 22:719–
748

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioan-
nidis JP, Hirschhorn JN (2008) Genome-wide association studies
for complex traits: consensus, uncertainty and challenges. Nat
Rev Genet 9:356–369

Moonesinghe R, Khoury MJ, Liu T, Ioannidis JP (2008) Required sam-
ple size and nonreplicability thresholds for heterogeneous genetic
associations. Proc Natl Acad Sci USA 105:617–622

Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A Wne-
scale map of recombination rates and hotspots across the human
genome. Science 310:321–324

NCI-NHGRI Working Group on Replication in Association Studies,
Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ,
Thomas G, Hirschhorn JN, Abecasis G, Altshuler D et al (2007)
Replicating genotype-phenotype associations. Nature 447:655–
660

Need AC, Goldstein DB (2006) Genome-wide tagging for everyone.
Nat Genet 38:1227–1228

Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma
RC, So WY, Cho YS et al (2008) Implication of genetic variants
near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B,
IGF2BP2, and FTO in type 2 diabetes and obesity in 6, 719
Asians. Diabetes 57:2226–2233

Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP (2009) Discovery
properties of genome-wide association signals from cumulatively
combined data sets. Am J Epidemiol 170:1197–1206

RansohoV DF, Khoury MJ (2010) Personal genomics: information can
be harmful. Eur J Clin Invest 40:64–68

Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Bo-
ehnke M (2010) Genome-wide association studies in diverse pop-
ulations. Nat Rev Genet 11:356–366

Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bam-
shad MJ, Clark AG (2010) Inferring genetic ancestry: opportuni-
ties, challenges, and implications. Am J Hum Genet 86:661–673

Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung
VG (2007) Common genetic variants account for diVerences in
gene expression among ethnic groups. Nat Genet 39:226–231

Tang H (2006) Confronting ethnicity-speciWc disease risk. Nat Genet
38:13–15

Tang H, Quertermous T, Rodriguez B, Kardia SL, Zhu X, Brown A,
Pankow JS, Province MA, Hunt SC, Boerwinkle E et al (2005)
Genetic structure, self-identiWed race/ethnicity, and confounding
in case-control association studies. Am J Hum Genet 76:268–275

The International HapMap Project (2003) Nature 426:789–796
Tian C, Gregersen PK, Seldin MF (2008) Accounting for ancestry:

population substructure and genome-wide association studies.
Hum Mol Genet 17:R143–R150

TishkoV SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment
A, Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O et al (2009)
The genetic structure and history of Africans and African Ameri-
cans. Science 324:1035–1044

Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of re-
cent positive selection in the human genome. PLoS Biol 4:e72

Waters KM, Stram DO, Hassanein MT, Le Marchand L, Wilkens LR,
Maskarinec G, Monroe KR, Kolonel LN, Altshuler D, Henderson
BE et al (2010) Consistent association of type 2 diabetes risk vari-
ants found in Europeans in diverse racial and ethnic groups. PLoS
Genet 6:e1001078

Wellcome Trust Case Control Consortium (2007) Genome-wide asso-
ciation study of 14,000 cases of seven common diseases and
3,000 shared controls. Nature 447:661–678

Yamada H, Penney KL, Takahashi H, Katoh T, Yamano Y, Yamakado
M, Kimura T, Kuruma H, Kamata Y, Egawa S et al (2009) Repli-
cation of prostate cancer risk loci in a Japanese case-control asso-
ciation study. J Natl Cancer Inst 101:1330–1336

Yang JJ, Burchard EG, Choudhry S, Johnson CC, Ownby DR, Favro
D, Chen J, Akana M, Ha C, Kwok PY et al (2008) DiVerences in
allergic sensitization by self-reported race and genetic ancestry.
J Allergy Clin Immunol 122:820–827

Yang Q, Flanders WD, Moonesinghe R, Ioannidis JP, Guessous I,
Khoury MJ (2009) Using lifetime risk estimates in personal geno-
mic proWles: estimation of uncertainty. Am J Hum Genet 85:786–
800

Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA,
Chen TX, Schweitzer AC, Blume JE, Cox NJ et al (2008) Evalu-
ation of genetic variation contributing to diVerences in gene
expression between populations. Am J Hum Genet 82:631–640

Zollner S, Pritchard JK (2007) Overcoming the winner’s curse: esti-
mating penetrance parameters from case–control data. Am J Hum
Genet 80:605–615
123


	Consistency of genome-wide associations across major ancestral groups
	Abstract
	Introduction
	Methods
	Eligible associations
	Ancestral origin
	Robust statistical support
	Screened GWAS publications and selection of associations and datasets

	Statistical analysis
	Risk-allele frequencies
	Genetic effect sizes
	Adjacent hotspots

	Results
	Characteristics of the eligible associations

	Risk-allele frequencies
	Genetic effect sizes
	Discussion
	Conflict of interest
	References


