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Abstract Executive functions (EFs) have been proposed

as an endophenotype for psychopathology because EF

deficits are associated with most psychiatric disorders. To

examine this hypothesis, we derived polygenic risk scores

for autism, attention-deficit/hyperactive disorder (ADHD),

bipolar disorder, major depression (MDD), and

schizophrenia, using genome-wide data from the Psychi-

atric Genomics Consortium as discovery samples. We then

examined the relationships between these polygenic risk

scores and three separable EF components measured with a

latent variable model. We also examined the relationship

between genetic risk for ADHD and MDD and their

respective symptom counts and lifetime diagnoses. We

found no evidence for larger effect sizes for EFs as

endophenotypes for psychiatric disorders. However, larger

sample sizes will be important in examining this relation-

ship further.

Keywords Cognitive control � Executive control �
Polygenic risk scores � Intermediate phenotypes

Executive functions (EFs)—higher-order cognitive pro-

cesses that regulate thoughts and actions during goal-di-

rected behavior—are implicated in many types of

psychopathology. Individuals with attention-deficit/hyper-

activity disorder (ADHD), autism (AUT), schizophrenia

(SCZ), major depressive disorder (MDD) and bipolar dis-

order (BP), as well as other psychiatric disorders, show EF

deficits, and many of the symptoms for these disorders

reflect EF dysfunction (Amann et al. 2012; Rosenthal et al.

2013; Snyder 2013; Snyder et al. 2015). In fact, researchers

have hypothesized that EFs are endophenotypes—inter-

mediate phenotypes on the pathway between genes and

diagnosis—for these disorders (Nyden et al. 2011; Glahn

et al. 2004; Hasler et al. 2004; Snitz et al. 2006; Willcutt

et al. 2005). If so, then the genes that influence EFs also

influence vulnerability to psychiatric disorders. In this

study, we examine the hypothesis that genetic risk for

psychiatric disorders predicts individual differences in EFs.

We use large, publically available samples for ADHD,

AUT, BP, MDD, and SCZ to find genetic risk variants and

construct polygenic risk scores (PRSs) for each disorder,

then test whether these risk scores predict EFs in an

independent population-based sample that is smaller but

more deeply phenotyped.

The EF framework we use is the unity/diversity model

(Miyake and Friedman 2012), which was recently dis-

cussed by Snyder et al. (2015) as a particularly promising

framework for gaining new insights into the relationship

between EFs and psychopathology. This model examines

nine tasks tapping three separable but correlated latent

variable EFs (response inhibition, updating working
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memory, and shifting sets). The covariances among the

nine tasks are partitioned into three orthogonal factors:

Common EF, which explains variance in all nine tasks,

including the response inhibition tasks; Updating-Specific,

which explains residual covariance among the updating

working memory tasks (once the common factor is

accounted for); and Shifting-Specific, which similarly

explains residual covariance among the tasks designed to

examine task shifting ability.

The Common EF latent factor is thought to reflect active

goal maintenance and top-down biasing of lower-level

cognitive processing (Miyake and Friedman 2012), which

may be particularly important to avoid dominant or auto-

matic responses. In fact, Common EF is isomorphic with

response inhibition; in other words after accounting for

Common EF, there is no Inhibition-Specific factor. The

Shifting-Specific factor is thought to capture individual

differences in the speed with which no-longer-relevant

goals are cleared from working memory, and the Updating-

Specific factor is thought to capture individual differences

in gating information into working memory, as well as

possibly memory-specific factors like retrieval (Miyake

and Friedman 2012). Our prior work with this model (see

Miyake and Friedman 2012), as well as existing meta-

analyses and reviews (e.g., Snyder 2013; Snyder et al.

2015) suggests that the Common EF factor is the most

closely related to multiple forms of psychopathology.

There is less work examining specific variances in updating

and shifting (i.e., after removing Common EF variance),

but some prior research suggests that they show different

relationships with psychopathology-relevant behavior (see

summary in Herd et al. 2014). Given this body of research,

we use this model as a candidate endophenotype.

A mediational endophenotype, also referred to as an in-

termediate phenotype, is assumed to be closer to the genetic

risk factors for the disorder and the behavioral symptoms

(Kendler and Neale 2010). Therefore, relevant genes should

bemore strongly associated with the endophenotype than the

psychiatric disorder itself (Flint and Munafò 2007; Walters

and Owen 2007). Proposed criteria for endophenotypes

include the following: They are associated with the disorder,

heritable, and found in unaffected family members at higher

rates than in the general population (Gottesman and Gould

2003). Endophenotypes should also co-segregate in families,

and be state-independent, or exist in probands even when

they are not currently exhibiting the disorder (Gottesman and

Gould 2003). Thus, one should be able to find an association

between genetic risk for psychopathology and purported

endophenotypes even in individuals who do not meet criteria

for a disorder at the time they are measured on the

endophenotypes.

Twin and family studies have shown that most complex

psychiatric disorders are heritable (Shih et al. 2004), with

heritability estimates of 76 % for ADHD, 85–92 % for

AUT, 59–87 % for BP, 37 % for MDD, and 81 % for SCZ

(Faraone et al. 2005; Miles 2011; Smoller and Finn 2003;

Sullivan et al. 2000, 2003). As relatively few to no single

nucleotide polymorphisms (SNPs) have been identified at a

genome-wide significance level for most of these psychi-

atric disorders (with the exception of SCZ; Ripke et al.

2014), and at best only a handful of SNPs have been

identified for constructs related to EFs (Davis et al. 2010;

Ibrahim-Verbaas et al. 2016; Plomin et al. 2013; Rietveld

et al. 2014), it is difficult to assess whether the same

genetic variants that predict EFs also predict these psy-

chiatric disorders or vice versa. Even in cases for which a

relatively large number of genome-wide significant vari-

ants have been identified, such as the 128 independent

associations with SCZ identified by Ripke et al. (2014), the

variants collectively explain very little of the phenotypic

variance on a liability scale (3.4 %), with the individual

SNPs explaining much less (by one estimate for genetic

studies more generally, each SNP is typically associated

with a 1.1 odds ratio; Dick et al. 2015).

One approach to increasing effect sizes is to use PRSs.

PRSs aggregate the signals from multiple SNPs related to

the disorder of interest, instead of testing the association of

variants one by one (Dudbridge 2013; Morrison et al.

2007). To calculate a PRS, first a GWAS in a discovery

sample is used to quantify the relations between all SNPs

and a disorder. Then SNPs that meet a certain p-value

threshold (for example, p\.0005) in the discovery sample

are binned together. However, it is unclear what signifi-

cance threshold is optimal, because adding SNPs can

increase noise as well as signal; the threshold that results in

the optimal signal to noise ratio likely varies depending on

phenotype and sample size. Thus, studies commonly look

at PRSs for SNPs at different p-value bins (e.g., all SNPs

with p\.10, .05, .005, etc.). Then, for a given bin or col-

lection of apriori chosen SNPs, in an independent testing

sample, the PRS is computed as a summed count of whe-

ther or not each individual has 0, 1, or 2 copies of the risk

variants. If the discovery sample is sufficiently large, then

one might expect the estimates of the regression betas for

each SNP to be stable and accurate, and each SNP can be

weighted by its beta from the discovery sample (Dudbridge

2013). Finally, the PRSs can be used to predict the disorder

or another phenotype in the testing sample.

A benefit of using a PRS is the ability to use a large dis-

covery set for one phenotype (i.e., a psychiatric disorder) to

estimate genetic risk and then test for association in an

independent, more deeply phenotyped sample. Both samples

do not need to have both phenotypes, and a larger sample size

is more important in the discovery sample for determining

the risk variants and estimating the SNP effect sizes (Dud-

bridge 2013). So, a smaller testing sample, which in this case
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has been assessed with great rigor, can be used to test the

genetic association between the two phenotypes.

Genome-wide association studies (GWAS) for constructs

related to EFs (such as intelligence test subscales, matrix

reasoning, the Stroop test, the trail-making test, and educa-

tional attainment) have had varying success in identifying

significant genetic variants (Davis et al. 2010; Ibrahim-

Verbaas et al. 2016; Plomin et al. 2013; Rietveld et al. 2014).

However, due to sample-size constraints, reverse-pheno-

typing is frequently employed. For example, the observed

heritability of educational attainment is due in part to cog-

nitive ability, but also reflects much more, such as work

ethic, motivation, and behavioral problems (Krapohl et al.

2016). A recent GWAS by Rietveld et al. (2014) found that a

PRS for educational attainment predicted general cognitive

ability better than it did educational attainment in an inde-

pendent sample. The authors suggested that the higher

relation to general cognitive ability than to the originally

investigated trait (educational attainment) arose because

general cognitive ability is an endophenotype for educa-

tional attainment. The authors describe this phenomenon of

using risk variants for the disorder of interest to try to predict

a purported endophenotype as ‘‘reverse endophenotyping.’’

We utilized this approach because we have an extensive EF

battery on a relatively small sample that would be inappro-

priate for risk score discovery. That is, even though it may be

more logical to calculate a PRS for the endophenotype and

test it with a psychiatric phenotype, we do the opposite

because there are currently larger sample sizes for psychi-

atric disorders than for these EFs.

One recent study found associations between psy-

chopathology and single cognitive measures (verbal-nu-

merical reasoning, educational attainment, reaction time,

and memory) in sample sizes of 36,035–112,067 individ-

uals from the UK Biobank (Hagenaars et al. 2016). Asso-

ciations were examined in two ways: genetic correlations

from LD score regression, and PRSs. Schizophrenia was

the only disorder consistently related to each measure, with

genetic correlations ranging from 0.13 to -0.34 and betas

from regressions with PRSs ranging from -0.062 to 0.025.

This study shows the best-case scenario for effect sizes in

large samples with single measures related to cognition.

However, this study focused on individual cognitive tests

that did not target particular EFs. In the current study, we

use a similar approach to examine relations to multiple

EFs, measured at the level of latent variables.

The current study

We used publicly available genome-wide summary data

from five case–control samples (AUT, ADHD, BP, MDD,

and SCZ) from the Psychiatric Genomics Consortium

(PGC) (The Psychiatric GWAS Consortium Steering

Committee 2009). We calculated PRSs for each disorder at

multiple p-value bins, and then used them to predict three

separable EFs (Common EF, Updating-Specific, and

Shifting-Specific latent variables) in an independent sam-

ple composed of unrelated individuals drawn from two

Colorado twin studies (n = 386 with both genetic and EF

data).

For our EF measures, we employed a latent variable

model, which has two major advantages over individual

tasks. First, because they only reflect variance that corre-

lates across tasks, latent variables are free from measure-

ment error due to unreliability (Bollen 1989). Second,

particularly for EF constructs, latent variables are more

valid measures, because they remove task impurity

(Miyake et al. 2000). EFs are higher-level processes that

act on lower-level processes; so individual EF tasks typi-

cally include a good deal of variance that is not related to

the EF of interest (such as verbal or spatial ability). The EF

model that we use includes measures that were selected to

tap the same EFs but differ in these non-EF requirements

so that this non-EF variance would be removed from the

latent variables. The result is a purer measure of the EF, but

the consequence is that standard errors for estimates of

relations with these latent variables may be larger than

those for individual tasks to the extent that the latent

variable loadings are low (which they typically are for EF

models). High reliability and validity is particularly

important in evaluating endophenotypes, because poor

measurement can outweigh the benefits gained by an

endophenotype’s more proximal connections between

genes and behavior. Prior research with a subset of the data

used here demonstrates that these EF latent variables are

highly heritable and show high stability across a 6-year

time window (Friedman et al. 2016).

While many previous studies of general cognitive ability

have larger samples, deep phenotyping by selecting highly

heritable EF constructs based on a well-characterized

model of EF should increase our ability to detect an

association between psychopathology PRSs and EF, par-

ticularly in a smaller sample. Prior work with the data from

the Colorado Longitudinal Twin Study sample (Friedman

et al. 2016) indicates that these EF latent variables have

heritabilities at age 17 of 98 % for Common EF, 100 % for

Updating-Specific latent factor, and 76 % for Shifting-

Specific. In the same sample, heritability for a general

intelligence factor was estimated at 76 % (Friedman et al.

2008). These same latent variables are stable from ages 17

to 23 years, with correlations between the two ages of .86,

1.0, and .91 for Common EF, Updating-Specific, and

Shifting-Specific abilities, respectively (Friedman et al.

2016). Moreover the Common EF factor is more strongly

related than general cognitive ability to behavior that is
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relevant to psychopathology, such as attention problems

and self-restraint (e.g., Friedman et al. 2007, 2011). Thus,

Common EF is a strong candidate for examination as an

endophenotype for psychopathology.

For comparison purposes, we also included measures

that were more similar to the psychiatric disorders on

which the risk scores were based. Specifically, we used the

ADHD and MDD PRSs to predict attention problems,

depression symptoms, ADHD and MDD lifetime diagno-

sis, and a joint general anxiety disorder (GAD) and/or

MDD lifetime diagnosis (given that depression and anxiety

have a high genetic correlation; Kendler et al., 1992).

These analyses enabled us to examine whether our effect

sizes for EFs are larger or smaller than those for pheno-

types that more closely match the original psychiatric

phenotypes used to generate the PRSs.

Intelligence quotient (IQ), another proposed endophe-

notype for psychopathology and a construct related to EF

(Friedman et al. 2006), has been previously linked to

genetic risk for SCZ. As such, we tested whether the PRSs

were correlated with IQ in our sample to see if we replicate

this association and to better interpret the observed rela-

tionships between PRSs and EFs.

Whilewe are interested in the relationship between all three

latent factors in the EF model and psychopathology, we

hypothesize that the PRSs will be negatively related to the

Common EF factor, based on prior work suggesting that

multiple forms of psychopathology are associated with broad

EF deficits (e.g., Snyder et al. 2015). In addition, prior phe-

notypic and genetic models with one of these samples suggest

a possible positive relationship between the Shifting-Specific

factor and PRSs for psychopathology, reflecting a stability/

flexibility tradeoff with the Common EF factor (Miyake and

Friedman 2012); therefore, we hypothesize that PRSs will be

positively related to the Shifting-Specific factor.

Method

Participants

Target sample

For genetic analyses participants were 452 individual twins

(178 female;mean age at time of EF testing 19.6 [SD = 2.3]),

a subset from 2935 twins recruited from the Colorado Lon-

gitudinal Twin Study (LTS) and the Colorado Community

Twin Study (CTS) at the University of Colorado (Rhea et al.,

2013). For all models we included all individuals who had

phenotypic data in order to get a more robust estimation of

phenotypic traits (distributions or thresholds); however, only a

subset of 452–386 individuals who had both genotypic and

phenotypic information, depending on the analysis,

contributed to the correlation between PRS and phenotype.

For example, in the estimation of the EF models, we used all

twinswho had EF data (n = 1543) in order to get better, more

stable estimates of the latent factor loadings; however, only

one twin from a subset of those twin pairs was genotyped, and

of those, only Caucasian samples were imputed to the 1000

genomes reference panel. Out of the 452 individuals with

imputed genotype data, 386 also hadEF data, 387 had IQdata,

452 had diagnostic information for ADHD, MDD, general

anxiety disorder and/or major depression, or depression

symptoms from the Center for Epidemiologic Studies-De-

pression scale (CES-D), and 257 also had Child Behavioral

Checklist (CBCL; Achenbach 1991) data (see supplemental

Table S1 for ns).

Discovery samples

We used publicly available summary statistics from

GWAS to obtain the sets of SNPs (and associated beta

weights) to be included in the PRSs for each disorder. The

discovery data came from the PGC (Sullivan 2010) and

included an AUT sample from the Autism Disorder

Working Group (March 2015 Release; URLs:PGC) with

10,610 individuals (5305 ASD cases and 5305 pseudo-

controls), an ADHD sample (Neale et al. 2010) with 9543

individuals (896 cases, 2455 controls, 2064 trios), a BP

sample (Sklar et al. 2011) with 16,731 individuals (7481

cases, 9250 controls), a MDD sample (Ripke et al. 2013)

with 76,237 individuals (16,023 cases, 60,214 controls),

and a SCZ sample (Ripke et al. 2014) with 150,064 indi-

viduals (36,989 cases, 113,075 controls). For more details

on the discovery samples’ characteristics, preprocessing

procedures, and analysis methods used by the PGC, see the

papers associated with each dataset.

Materials

Attention problem symptoms

Attention problems were assessed by the attention prob-

lems subscale of the Child Behavior Checklist (CBCL;

Achenbach 1991). This subscale had 11 symptoms that

could be endorsed as not true (0), somewhat true (1), or

very true (2), for a maximum score of 22 points. For the

LTS, we used multiple waves of parent (either mother or

father) ratings from age 7 until age 16 years. After taking

the square root of the raw score to help normalize the

distribution, we regressed out age separately within each

sex at each time point, then averaged the standardized

residuals across time. We followed the same procedure for

the CTS sample, however we only had parent ratings

(mother, father, or both) at one time point. Across both the

LTS and CTS samples, mothers’ ratings were more

Behav Genet

123



common than fathers’; only mothers answered approxi-

mately 77 % of the time, only fathers answered 9 % of the

time, and both parents answered approximately 13 % of the

time. When both were available, we averaged the parents’

ratings at that time point, and then averaged the combined

rating with the other time points. Descriptive statistics for

raw scores are provided in Supplemental Table S1.

Depression symptoms

Participants completed the Center for Epidemiologic

Studies-Depression scale (CES-D; Radloff 1977) at three

waves: wave 1 (ages 11.33–15.99 years), wave 2 (ages

15.75–27.45 years), and wave 3 (ages 21.10–34.37 years).

This 20-question scale assesses how often a person expe-

riences depressive symptoms on a scale of 0 (rarely or none

of the time) to 4 (most or all of the time). At each wave,

after reverse-scoring appropriate questions, if an individual

answered at least 16 questions, we took the mean of those

questions and multiplied it by 20 in order to get a sum

score.1 We used a square root transformation to help nor-

malize the distribution and regressed out age, sex, and their

interaction, then averaged the standardized residuals across

waves to get a single score for each participant.

Lifetime diagnoses

We examined three lifetime diagnoses: ADHD, MDD, and

GAD and/or MDD. Adult case–control status was assessed

by the DSM-IV diagnostic criteria, or the DSM-IIIR

adjusted to be equivalent with the DSM-IV diagnostic

criteria if data were collected before 2002. We used the

Diagnostic Interview Schedule (DIS; Robins et al. 2000)

for participants 18 or older, and the Diagnostic Interview

Schedule for Children (DISC; Shaffer, et al. 2000) for

participants younger than 18. We had three waves of data

available (see Depression symptoms section) and used all

of the data to create our measures. Age at time of psy-

chopathology assessment ranged from 12 to 34 with a

mean age of 24.4 (SD = 3.7). When there were multiple

assessments, the age in supplemental Table S1 is from the

most recent wave of available data. Our final variables

were dichotomous variables for each disorder, where if the

participant had ever met criteria for diagnosis at any wave,

he or she was considered a case. Out of the 452 participants

who had genetic data and information on lifetime diagno-

sis, 43 (9.5 %) had a lifetime diagnosis of ADHD, 107

(23.6 %) had a lifetime diagnosis of MDD, 45 (10 %) had a

lifetime diagnosis of GAD, and 120 (26.5 %) had a lifetime

diagnosis of MDD and/or GAD.

Full-scale intelligence

IQ was measured using the Wechsler Adult Intelligence

Scale, third edition (WAIS-III; Wechsler 1997) in the LTS

sample, and the Wechsler Abbreviated Scale of Intelli-

gence (WASI; Wechsler 1999) in the CTS sample. The

WAIS-III was collected at a mean age 16.58 (SD = 0.79),

with a mean score of 102.2 (range 70–142). The WASI was

collected at a mean age of 21.09 (SD = 1.72), with a mean

score of 106 (range 53–135). Scores were regressed on age,

sex, and their interaction within sample, and the stan-

dardized residuals were then concatenated.

EF tasks

Nine EF tasks were used to construct EF latent variables.

The inhibition tasks (antisaccade, stop-signal, and Stroop)

required stopping a prepotent behavioral response (eye

movements, categorization, or word reading, respectively).

The dependent measures were antisaccade accuracy, esti-

mated stop-signal reaction time in the stop-signal task, and

Stroop response time interference (for incongruent minus

asterisks stimuli). The updating working-memory tasks

(keep track, letter memory, and spatial 2-back) required

monitoring incoming stimuli (words, letters, or spatial

locations, respectively) updating working-memory with

new relevant information (deleting no longer relevant

information) when appropriate. The dependent measures

were accuracy. The set-shifting tasks (number–letter,

color–shape, and category-switch) required participants to

switch between two subtasks (categorizing numbers or

letters, colors or shapes, or animacy or size, respectively)

on the basis of cues that appeared before each trial. The

dependent measures were local switch costs, or the dif-

ference in reaction time on switch trials minus repeat trials.

Additional information is provided in Table 1; see Fried-

man et al. (2008) for full details. Tasks were administered

in the LTS sample at mean age 17.25 years (SD = 0.65)

and in the CTS sample at mean age 21.01 years

(SD = 1.68). The CTS and LTS samples were combined

and then age, sex, and their interaction were regressed out

of each EF task score. Standardized factor loadings for the

three orthogonal EF latent variables are provided in

Table 1 for the combined sample. See supplemental

Table S1 for task descriptive statistics for the sample with

genetic data.

Procedures

Genotyping: discovery sample

The AUT2 and SCZ2 sample were part of a second phase

and were imputed to the 1000 Genome reference panel

1 Across all waves, only 4 scores were not computed because the

participant did not answer at least 16 questions.
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(The 1000 Genomes Project Consortium, 2010). The BP

sample was imputed to HapMap phase 2; the ADHD and

MDD samples were imputed to HapMap phase 3 (Thoris-

son et al. 2005; The International HapMap Consortium

2003). After quality control through PGC (see individual

references for more information) all results files were

downloaded to our servers. All discovery samples went

through a clumping procedure in PLINK (Purcell et al.

2007) to account for linkage disequilibrium (LD).

Clumping accounts for LD by taking the most significant

SNPs in a GWAS, then grouping SNPs that meet an LD

threshold with this most significant index SNP, resulting in

only one signal per LD block. We used an LD threshold of

R2\ 0.2, with no SNPs excluded based on p-values for

association with the disorder. The resulting SNPs were then

put into R (R Core Team 2013) and the list of SNP names

were matched to the imputed SNPs in the testing sample

for PRS generation in the testing sample.

Genotyping: testing sample

Individuals were genotyped on the Affymetrix 6.0 platform

(Affymetrix, Inc., Santa Clara CA) and called by

BEAGLECALL 1.0.1 (Browning and Yu 2009). See the

description for the ‘‘Center on Antisocial Drug Dependence

(CADD)’’ sample in Derringer et al. (2015) for full details

of the cleaning and quality control procedures before

imputation.

Caucasians were identified by visual inspection of the

first 10 components from a principal components analysis

calculated in PLINK using the full, unrelated CADD

sample (described in Derringer et al. 2015). Cut-offs for the

first 3 PCs were applied, and then the remaining subjects

were imputed to the 1000 Genome reference panel using

IMPUTE2 (Howie et al. 2009).2 The 10 ancestry compo-

nents were also used as covariates in the analyses.

SHAPEIT was used for the prephasing process (De-

laneau et al. 2012). A cut-off info score of[= .4 was used

to ensure good quality imputed SNPs, resulting in

approximately 14.9 million SNPs. After restricting imputed

SNPs to those also identified in the discovery sample (see

Table 1 Descriptions and Factor Loadings of the Executive Function Tasks

Standardized factor loading

Measure Description Common

EF

Updating-

specific

Shifting-

specific

Inhibiting

Antisaccade Avoid the prepotent response to saccade to a cue and instead look in the opposite

direction to view a briefly displayed target

.54 – –

Stop-signal Stop a dominant categorization response on infrequent trials in which an auditory signal

sounds

.50 – –

Stroop Avoid the prepotent tendency to read a word and instead name the color of the font in

which the word is printed

.41 – –

Updating

Keep-track From a series of 15 words, remember the most recently presented exemplar of 2-4

specified categories

.38 .63 –

Letter-

memory

During a series of letters, continuously rehearse the last three letters and recall them at the

end

.38 .47 –

Spatial

2-back

Respond whether an indicated location is the same as that two trials back .40 .17 –

Shifting

Number-

letter

Categorize whether the number in a letter-number pair is odd or even, or whether the

letter is a consonant or vowel, depending on the location of stimuli (top or bottom of

screen)

.42 – .45

Color-shape Categorize whether a colored shape is a circle or triangle, or red or green, depending on a

cue letter (C or S) appearing above the stimulus

.39 – .43

Category-

switch

Categorize a word as living or nonliving, or small or big, depending on a cue symbol

appearing above the word

.45 – .59

Standardized factor loadings (all p\ .05) from a model with no genetic risk score or principal components included. Models included the full

sample (n = 1549) although only a subset of 389 individuals contributed to the correlation with the genetic risk scores. The model showed an

acceptable fit, v2(21) = 97.22, p\ .001; CFI = .959; RMSEA = .048. EF executive function

2 Visual inspection involved comparing the self-reported ancestry to

the places in the distribution that showed breakpoints (or drop-offs)

between the sample’s ancestry groups. This resulted in identification

of European ancestry participants by component 1[ 0.014, 0\ com-

ponent 2\ 0.013, and component 3[ -0.006.
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Table S3 in supplemental materials for number of SNPs in

each PRS), the beta weights for those SNPs were used to

calculate weighted risk scores in the testing sample by

multiplying 0, 1, or 2 (for copies of the risk allele), or

dosages for imputed SNPs, by the beta weight for those

SNPs, and summing across SNPs in each p-value bin.

Analyses

Analyses were run in Mplus 7.3 (Muthén and Muthén

1998–2012) to allow for estimation of the EF latent vari-

ables. Models used all available phenotypic data when

possible; however, only individuals who also had genetic

information contributed to the correlation between PRSs

and phenotype (i.e., individuals with EF data, but without

genetic data were included in the models to obtain the best

estimates of the factor loadings, but the covariance with the

PRS was only based on the subset with both genetic and

phenotypic data). For models with categorical diagnoses,

mean and variance adjusted weighted least squares

(WLSMV) estimation (delta parameterization) was used,

which models the underlying liability as a normal distri-

bution using a probit model; for models with only contin-

uous data, robust maximum likelihood (MLR) was used.

Non-independence (due to including both twins) was cor-

rected for with the type = COMPLEX option, which

clusters by family. In all analyses, all individual indicators

(e.g., all nine EF tasks) as well as the PRS were regressed

on 10 ethnicity PCs.3

As described earlier, all continuous phenotypic variables

were age, sex, and age by sex4 regressed before analysis.

Age (of last diagnostic assessment) and sex were included

as covariates for models including diagnoses. PRSs were

not regressed on age and sex.

PRSs and EFs

We used structural equation modeling to estimate the three

EF latent variables: a Common EF latent variable, repre-

senting what is shared between all of the tasks (with

loadings from all nine tasks), an Updating-Specific latent

variable capturing additional variance specific to Updating

tasks (with loadings from three updating tasks), and a

Shifting-Specific latent variable capturing additional

variance unique to the shifting tasks (with loadings from

the three shifting tasks). The latent factors in the EF model

are orthogonal, where Common EF explains covariance

across all nine tasks, and the Updating- and Shifting-

Specific factors explain additional covariance among the

updating and shifting tasks, respectively, that is not

explained by the Common EF factor.

To examine the relations of these EF latent variables to

each PRS, we correlated them with the residual of the PRS

(after removing the PCs from the PRS). Thus, the corre-

lations we present are actually partial correlations con-

trolling for ethnicity, because the 10 PCs were regressed

out of both the PRS and the individual EF tasks (and the EF

tasks were also residualized on age and sex).

PRSs and psychopathological symptoms, diagnoses,

and IQ

Weused the fivePRSs to predict IQ,ADHDsymptom scores,

ADHD lifetime diagnosis, depression symptom scores,

depression lifetime diagnosis, and MDD and GAD lifetime

diagnoses. IQ was correlated with all five PRSs, however

ADHD symptom scores and diagnosis, and depression

symptom scores and diagnosis, were correlated only with the

ADHD PRSs and the MDD PRSs respectively. As with the

EF model, the correlations we present are actually partial

correlations controlling for ethnicity, because the 10 PCs

were regressed out of both the PRS and the phenotype (and

the phenotype was also regressed on age and sex).

Permutation

PRSs for higher p-value bins include the same SNPs as

lower threshold bins for PRSs based on the same disorder.

Due to high correlations between p-value bins within each

risk score (see supplemental Table S2), correlations with

the same phenotype across bins of the same risk score are

not independent. Therefore, we used permutation to correct

for multiple testing. For each permutation, we retained the

relatedness of the p-value bins within PRSs for each dis-

order. The association between the independent and

dependent variables was broken by randomly shuffling

scores for the dependent variables 1000 times and con-

structing a distribution of statistical coefficients under this

null. For example, for the EF model, we shuffled the rows

of the nine EF task scores (residualized on age and sex), so

that the correlations among the nine EF tasks were

retained, but their associations with the PRSs were broken.

Because the PRSs were not shuffled, the associations

among p-value bins remained intact. For each shuffle, we

then ran the same model (including ethnicity PCs, which

were not shuffled), and obtained the newly estimated cor-

relations between PRSs and EFs. We constructed the

3 To include individuals without genetic data in the estimation of the

EF latent variables (Mplus will exclude individuals missing on

covariates) and other phenotypic measures, we imputed missing PCs

as the average for that self-identified ethnicity in our genetic sample.

The number of individuals who contributed to each phenotype was as

follows: EFs = 1543; CES-D = 2875; CBCL = 1684; IQ = 1571;

DIS diagnoses = 2875.
4 This interaction term was included even though it was not

significant in any models.
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empirical distribution of correlation coefficients for each

disorder in this way, and used it to calculate empirical p-

values for the correlations we obtained in our unpermuted

models (i.e., a correlation would be significant if it was

more extreme than 95 % of the empirical correlation values

in the distribution of permuted correlations). This is ulti-

mately less stringent than a Bonferroni correction (Ca-

margo et al. 2008) for multiple testing, but does not correct

for the multiple testing due to examining multiple pheno-

types, for which we divided our alpha of .05 by the number

of phenotypes tests (nine) examined, for a new alpha of

.006.

Results

PRSs with cognitive measures

EFs

To examine the relationship between EFs and genetic risk

for psychopathology, we correlated the PRSs (residualized

on PCs) with the EF latent variables (individual tasks

regressed on PCs). Correlations are shown in Fig. 1.

Common EF was positively correlated with the MDD

p\ .05 bin PRS, but did not significantly relate to the other

PRSs at any p-value bin, and this correlation did not sur-

vive multiple testing correction.

The Updating-Specific latent variable significantly pos-

itively correlated with the ADHD p\ .0005 and SCZ

p\ 1 bins. While the former survived permutation, neither

of these results were significant after correcting for multi-

ple-testing of the nine phenotypes. Updating-Specific

abilities did not appear to be related to any of the other

three disorders. Likewise, Shifting-Specific abilities were

not related to genetic risk for any of the five disorders.

IQ

We also examined the relationship between IQ and the

PRSs, because IQ is phenotypically associated with EFs

(Friedman et al., 2006; 2008) and has been related to PRSs

for SCZ (Lencz et al. 2014; McIntosh et al. 2013). As

shown in Fig. 1d, IQ was negatively correlated with the

SCZ p\ 5 9 10-5 bin, but this result did not survive

correction for multiple testing.

PRSs with measures of psychopathology

Given the relatively small effects we observed with the

proposed endophenotypes (EFs and IQ), we wondered if

we would get similarly small effects with phenotypes that

were arguably more closely related to the phenotypes used

to construct the PRSs. So, we examined how the ADHD

and MDD PRSs related to attention and depression

symptoms and lifetime diagnoses. The magnitude of effects

found for relevant phenotypes within our sample allows for

a better understanding of the magnitude of relationship

observed with EF and IQ.

The relationships between ADHD and MDD symptom

scores and their respective PRSs were assessed with cor-

relational analyses of the residuals of PRS and phenotype

after each was regressed on the PCs for ethnicity. As shown

in Fig. 2, PRSs for MDD were not significantly related to

any psychopathological phenotypes in our sample. While

genetic risk for ADHD was not related to ADHD symptom

scores, it was correlated with lifetime diagnosis for ADHD

at one bin (p\.05), but this result did not survive multiple

testing correction. Because we did not find significant

results with either EFs or psychopathology measures after

correcting for multiple testing, we did not test whether the

magnitudes of effects were significantly larger for EFs.

Power

To better interpret our results, we conducted power anal-

yses for the EF measures in our sample. As can be seen in

Table 2, we would have enough power with our sample

size used in this study (N = 386) if there were a moderate

to large correlation (r = .20–.50) between Common EF

and a PRS. However, the observed effect sizes were

smaller than this, and therefore we were underpowered

with our sample size. We examined what sample size

would be necessary for a power of .80 with a smaller

correlation estimate (r = .10). Alpha levels were varied

because we examined nine different phenotypes that are

not fully independent of one another; for example, ADHD

symptoms are correlated with ADHD lifetime diagnosis

(r = .25) and MDD symptoms at a lower level (r = .15),

so our adjusted alpha should be somewhere between .05

and .006. As shown in Table 2, for 80 % power to detect an

effect with a correlation of .10 or smaller, larger sample

sizes, on the order of 1510–2500 or more, are necessary. In

summary, if latent EFs were strong endophenotypes for

psychopathology and we observed stronger relations

between EFs and these PRSs than previously seen with

other cognitive measures, we would have been adequately

powered. However with a correlation of .10 or smaller, we

would need many more subjects to have adequate power.

Discussion

To understand the potential of EFs as endophenotypes for

psychiatric disorders, we used large discovery datasets to

generate PRSs for five disorders (AUT, ADHD, MDD, BP,
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and SCZ) and related those PRSs to EF latent variables in

an independent dataset. We found little evidence for

stronger effect sizes for the EFs than measures more sim-

ilar to these psychopathologies. The general pattern of

results indicated that EFs might be related to psy-

chopathology, but they may not lead us to find more

genetic variants than symptom or diagnosis measures

unless we have significantly larger sample sizes.

At a nominally significant level, a Common EF latent

variable was positively related to genetic risk for depres-

sion; however, this effect was in the opposite direction than

expected, with higher genetic risk for depression indicating

better Common EF in a general population sample. Higher

genetic risk for ADHD was nominally related to better

Updating-Specific abilities; this association was also not in

the expected direction. The amount of variance explained
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Fig. 1 Correlations between cognitive measures and psychopatho-

logical polygenic risk scores (PRSs). Bars represent standard errors.

Legend shows colors corresponding to p-value threshold bins for each

disorder. a Correlations between PRSs and the Common EF latent

factor. b Correlations between PRSs and the Updating-Specific latent

factor. c Correlations between PRSs and the Shifting-Specific latent

factor. d Correlations between PRSs and IQ. EF executive function,

IQ intelligence quotient, ADHD Attention Deficit Hyperactive Disor-

der, AUT Autism, BP Bipolar Disorder, MDD Major Depressive

Disorder, SCZ Schizophrenia. *p\.05 uncorrected
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by the PRS for each latent factor was R2 = 0.03 for

Common EF and R2 = 0.06 for Updating-Specific. How-

ever, these results did not survive correction for multiple

testing, so they would need to be replicated to determine if

they are real effects that are simply underpowered.

Likewise, we examined a measure of general cognitive

ability, IQ, which has also been proposed as an endophe-

notype for psychopathology (Burdick et al. 2009).

Although our results did not survive correction for multiple

testing, the directionality and variance explained was

comparable to what has been observed in previous studies.

Lencz et al. (2014) linked a PRS for general cognitive

ability to case–control status of SCZ, and McIntosh et al.

(2013) linked a PRS for SCZ to increased cognitive decline

between the ages of 11 and 70. We also found that

increased genetic risk for SCZ predicted lower IQ, with the

amount of variance explained (R2 = 0.01) comparable to

that found by (Lencz et al. 2014; R2 = 0.000–0.019) and

(McIntosh et al. 2013; R2 = 0.006–0.009). The replication

of this association between increased genetic risk for SCZ

and cognitive ability suggests that we may be seeing real,

but underpowered, effects.

A mediation model of an endophenotype (Kendler and

Neale 2010) assumes that the endophenotype is more

proximal to genes that influence the psychiatric disorder. If

the mediation assumption is incorrect and phenotypes

related to disorders of interest, such as depression symp-

toms, are equally or more strongly related to the PRSs, then

EFs as endophenotypes might not be as useful for PRS

research. To address this assumption, we also used the

PRSs to predict relevant phenotypes more similar to the

psychopathologies used to generate the PRSs. Again, we

found few associations. A relationship between increased

risk for ADHD and lifetime diagnosis for ADHD emerged,

where greater genetic risk was related to higher rates of

lifetime diagnosis, but it did not survive correction for

multiple testing. However, the amount of variance

explained (R2 = 0.02) is similar to what we observed for

EF and IQ, suggesting that in a small testing sample,

psychopathology phenotypes do not have a weaker rela-

tionship with PRSs than candidate endophenotypes.

Recently, a few studies have addressed the assumption

that endophenotypes will elicit larger effect sizes with

respect to genetic variants. A meta-analysis by Flint and

Munafò (2007) concluded that endophenotypes were not

necessarily showing larger effect sizes than the disorders of

interest. These results could have occurred because the
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Fig. 2 Correlations between ADHD, MDD, and GAD/MDD symp-

toms and lifetime diagnosis, and ADHD and MDD polygenic risk

scores (PRSs). Correlations are partial correlations after the 10

principal components for ethnicity have been regressed out of the

PRSs and the phenotypic measures and age and sex have been

regressed out of the phenotypic measures. Bars represent standard

errors. Legend shows colors corresponding to p-value threshold bins

for each disorder. ADHD Attention Deficit Hyperactive Disorder,

MDD Major Depressive Disorder, CBC Child Behavioral Checklist,

ADHD dx lifetime diagnosis of ADHD, CESD Center for Epidemi-

ologic Studies-Depression Scale, MDD dx MDD lifetime diagnosis,

GAD/MDD dx General Anxiety Disorder or MDD lifetime diagnosis.

*p\ .05 uncorrected

Table 2 Power for Executive Function Analyses

Simulated

correlations

1-b; a = .05 and

N = 386

Required N; a = .05 and

1-b = .8

Required N; a = .01 and

1-b = .8

Required N; a = .006 and

1-b = .8

.50 1 57 84 94

.40 .999 91 135 151

.30 .990 165 245 274

.20 .811 375 558 625

.10 .294 1510 2247 2519

Power analysis for the executive functions (EFs) latent-variable model where simulated correlations represent a theoretical correlation between

common EF and the polygenic risk score

1-b = power; a = alpha; N number of participants included in parameter estimates
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studies were not using appropriate endophenotypes or

because the assumption that endophenotypes have larger

effect sizes is incorrect. In particular, if the endopheno-

types were not mediators between the genes and pheno-

types as often assumed, but instead indices of liability,

where the same genes influence both the endophenotypes

and the phenotypes of interest (Kendler and Neale 2010),

then one might not expect larger effect sizes for the

endophenotypes.

The largest GWAS study to date found no significant

hits for EF tasks (Stroop, trail-making, and fluency tests;

Ibrahim-Verbaas et al. 2016), despite discovery sample

sizes ranging from 5429 to 32,070. Thus, EF tasks, like

other measures, seem to have relatively small effect sizes

for individual variants. However, another meta-analysis by

Rose and Donohoe (2013) found different effect sizes for

two different classes of endophenotypes for SCZ, with

larger effect sizes for cognitive neuroimaging endopheno-

types than lab-based cognitive measures. More research is

needed to establish good estimates of expected effect sizes

for different types of endophenotypes.

Another emerging debate focuses on issues of sample size

and phenotype specificity when testing for genotype-phe-

notype associations. Many studies have shown that with the

small effect sizes for individual SNPs, large samples will be

necessary to detect significant associations with the pheno-

types of interest. However, when combining data sets or

using large publicly available datasets, often only rudimen-

tary phenotypic assessment is available (e.g., case–control

status, without information on which symptoms were

endorsed or degree of severity of illness). This thin pheno-

typing allows for the inclusion of more subjects, but poten-

tially dilutes statistical power and the strength of association

(Tracy 2008). While this trade-off holds in this study with

regard to PRS generation, the deep phenotyping of a candi-

date endophenotype could possibly help in the testing sam-

ple. We had hoped that our deep phenotyping with the latent

variable model of EF, which reduces measurement error and

extracts highly heritable latent factors that are more

stable across time than single measures (Friedman et al.

2016),would enable us to detect a larger effect.Wewerewell

powered to detect effects that explained 4 % or more of the

variance, but the effects we obtained were smaller than that.

Despite being underpowered, there is still useful infor-

mation to gain pertaining to the effect sizes we can rea-

sonably expect from endophenotypes compared to more

direct measures of psychopathology with a small testing

sample size. Lab-based measures of EF, even at a highly

heritable latent variable level, do not seem to generate

substantially larger effect sizes for genes related to risk for

psychopathology than measures of symptoms, at least in a

population-based sample.

Limitations

In addition to the previously discussed power issues, a

limitation of this study is that our sample was population-

based with low levels of psychopathology; hence, the

genetic variance related to psychopathology was likely

restricted compared to a clinical sample. Although

endophenotypes are present in individuals without the

disorder of interest, particularly in family members of a

proband, the use of a population sample might have limited

the variance in the endophenotype as well. Thus, a stronger

effect would perhaps be seen in a clinical sample.

Although we chose to calculate PRSs from psychiatric

disorders and test them with EFs because larger sample

sizes are available for the former than the latter, and

because its utility has been previously demonstrated in

other studies (Lencz et al. 2014; Rietveld et al. 2014), the

reverse endophenotype approach could also be considered

a limitation. The relationship between purported

endophenotypes and genetic risk for psychopathology is

likely a complicated matter (Cannon and Keller 2006). If

an endophenotype is only related to a portion of the genes

influencing a given disorder, the strength of the relationship

between all genes that affect the disorder and the

endophenotype is unclear. Conversely, if the endopheno-

type is a complex trait itself, such as EF, there are likely

unique genetic contributions to EF that do not overlap with

the more distal phenotype of interest, such as psy-

chopathology. Due to the unclear genetic relationship

between endophenotypes and the more distal phenotype, it

is difficult to estimate an expected effect size. However, the

genetic architecture of both psychopathology and EF are

important for the interpretation of our results.

Multiple testing could also be considered a complication

of this study. Associations between five disorders and four

phenotypes (Common EF, Updating-Specific, Shifting-

Specific and IQ) were tested, as well as one disorder

(ADHD) with two phenotypes (ADHD diagnosis and

ADHD symptoms), and one disorder (MDD) with three

phenotypes (MDD diagnosis, combined GAD/MDD diag-

nosis, and MDD symptoms), all of these at nine bins. In

total, we conducted 225 tests. While this number is not

remarkable for those working with GWAS data, it is

greater than is typically done in PRS studies. How to

adequately correct for multiple testing is complicated by

the fact that the nine bins are not independent from each

other, the phenotypes are not independent (e.g., ADHD

symptom count is correlated with ADHD diagnosis), and

the different disorders are also not independent of one

another due to comorbidity. We chose to use permutation

testing and then use a Bonferonni correction for the number

of bins; however, there is no clear best way to correct for
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multiple testing in this scenario. One suggestion for future

studies would be to reduce the number of bins tested,

particularly if testing several phenotypes. However, our

initial thorough approach in the exploratory analyses pre-

sented here will guide future investigations of relationships

between common and specific EFs and a range of psy-

chopathology outcomes.

Conclusion

In this study, we examined the relationship between PRSs

for psychopathology and EFs with highly heritable EF

latent variables. Despite large sample sizes for deriving

PRSs for psychopathology and deeply phenotyped candi-

date endophenotypes, we did not see substantial effects.

The highest observed relations between PRSs for psy-

chopathology and EFs ranged from an R2 of .03–.06, which

are smaller than we needed for adequate power with our

sample size. The highest R2 for non-EF phenotypes with

PRSs was .03, in a similar range as our EF measures.

Overall, our results are similar to what was found by Flint

and Munafò (2007) and provide little evidence for EFs as

endophenotypes that will give significantly larger estimates

than psychiatric phenotypes such as lifetime diagnosis.

However, even if EFs do not necessarily show larger

genetic effect sizes than psychiatric measures, their trans-

diagnostic associations with psychopathology (Snyder

et al. 2015) suggests that increasing understanding of their

genetic influences can provide a window into disease

mechanisms and pathways.
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