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Genetic discovery from the multitude of phenotypes 
extractable from routine healthcare data can transform 
understanding of the human phenome and accelerate progress 
toward precision medicine. However, a critical question when 
analyzing high-dimensional and heterogeneous data is how 
best to interrogate increasingly specific subphenotypes while 
retaining statistical power to detect genetic associations. 
Here we develop and employ a new Bayesian analysis 
framework that exploits the hierarchical structure of diagnosis 
classifications to analyze genetic variants against UK 
Biobank disease phenotypes derived from self-reporting and 
hospital episode statistics. Our method displays a more than 
20% increase in power to detect genetic effects over other 
approaches and identifies new associations between classical 
human leukocyte antigen (HLA) alleles and common immune-
mediated diseases (IMDs). By applying the approach to genetic 
risk scores (GRSs), we show the extent of genetic sharing 
among IMDs and expose differences in disease perception or 
diagnosis with potential clinical implications.

Large-scale, hypothesis-free approaches for identifying genetic risk 
variants, including genome-wide association studies (GWAS) and 
next-generation sequencing analyses, have greatly advanced under-
standing of complex traits, with implications for drug development 
and clinical practice1–5. These approaches typically involve genetic 
discovery from case–control cohorts where clinically derived pheno-
types are considered one at a time. By contrast, resources such as the 

UK Biobank6,7, which has prospectively collected extensive health-
relevant phenotypic and genotypic information from 500,000 partici-
pants, allow for simultaneous investigation of multiple traits and are 
set to lead to a step change in the rate of genetic discovery8,9.

However, capitalizing on the availability of population-based 
cohorts for biomedical research is complicated by the scale and 
nature of the data: the phenotypic space is multidimensional and 
heterogeneous, as data can be subject to observational predilec-
tions, non-uniform recording practices and longitudinal biases 
while phenotype prevalence is variable10–16. This creates new  
challenges that are not addressed by existing analytical methods for 
GWAS and phenome-wide association studies (PheWAS). An open 
question is how to interrogate the many precise phenotypes obtainable 
from routine healthcare data at a resolution that identifies associa-
tions above and beyond those identified through GWAS, but without 
sacrificing statistical power. Making use of disease classification hier-
archies, such as the tree of International Classification of Diseases, 
Tenth Revision (ICD-10) codes, provides a tractable solution. Here 
we have developed a new Bayesian analysis framework for identifying 
genetic associations across the entire health phenotype space by taking 
advantage of the relative topology of nodes within two tree-structured  
phenotypic data sets from the UK Biobank—the self-reported (SR) 
diagnoses that are organized using the UK Biobank classification tree, 
which includes 531 diagnostic terms, and the hospitalization episode 
statistics (HES) data that utilize ICD-10 codes and contain 16,310 
diagnostic terms.

RESULTS
Tree analysis approach
To test the association of genetic variation with any given UK Biobank 
clinical phenotype, we want to construct a statistical framework that 
meets a set of fundamental requirements. First, the method must 
accommodate different types of genetic variation, such as (i) SNPs,  
(ii) haplotypes in a highly polymorphic region like the HLA gene 
region, or (iii) GRSs constructed using multiple SNPs or haplotypes 
known to be associated with a quantitative trait or complex disease. 
Second, for single-locus variation, any genetic model (for example, 
additive, dominant or full) must be accommodated. Third, the method 
must allow for joint analysis and quantification of evidence for asso-
ciation at each clinical phenotype and must estimate the genetic 
coefficients of effects. Next, the method must allow identification of 
independent genetic effects through conditional analysis. Lastly, the 
method must model the correlation structure of genetic effects across 
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observed clinical phenotypes using a priori knowledge of phenotype 
relationships obtained from a diagnosis classification tree.

To meet these requirements, we have developed a new Bayesian 
analysis framework, termed TreeWAS, which models genetic coeffi-
cients across all phenotypes as a set of random variables. To model the 
correlation structure, we allow coefficients to evolve down a tree in a 
Markov process (Fig. 1). A known classification hierarchy determines 
the tree structure, where each node is a clinical term in the classifica-
tion, and observations can be made at terminal and internal nodes. 
The prior θ determines the expected correlation between genetic coef-
ficients across phenotypes. The coefficient at a parent node can be 
inherited by a child node with probability e−θ or can transition to a 
new uncorrelated value, with probability 1 – e−θ. This new value will 
be zero with a probability of 1 – π1 or nonzero with a probability of 
π1. Thus, parameters θ and π1 define transition probabilities control-
ling the Markov process. Given the model structure and the Markov 
process assumption, we can calculate the likelihood over genetic coef-
ficients across all clinical phenotypes using dynamic programming 
(details are provided in the Supplementary Note), and we estimate 
a Bayes factor statistic (BFtree) for the evidence that genetic coef-
ficients are nonzero for at least one node. Similarly, because of the 
model’s properties, using dynamic programming and the forward-
and-backward algorithms, we can determine the marginal posterior 
probability (PP) at each node that the genetic coefficient is nonzero 
and the magnitude of this effect using the maximum a posteriori 
(MAP) estimator (Supplementary Note).

HLA-B*27:05 TreeWAS and PheWAS comparison
We illustrate the advantages of the TreeWAS approach as compared 
to existing PheWAS tests by analyzing the association of the HLA-
B*27:05 allele against the UK Biobank HES data set. The HLA-B*27:05 
association with ankylosing spondylitis is one of the strongest genetic 
effects observed in human complex diseases17, with an odds ratio of 
46, and this allele also confers risk for reactive arthritis18, psoriatic 
arthritis19 and anterior uveitis (iridocyclitis/iritis)20. Using PheWAS, 
where evidence of genetic association for each clinical term is esti-
mated independently, HLA-B*27:05 was significantly associated 
with six ICD-10 terms after correcting for multiple testing (adjusted  
P (Padj) < 0.05, using the Benjamini–Hochberg procedure21), includ-
ing M45 ankylosing spondylitis and M45.X9 ankylosing spondylitis 
(site unspecified) (Fig. 2a). However, this approach failed to identify 
associations with terms with greater granularity of clinical description 
and relatively low prevalence, such as M45.X6 ankylosing spondylitis 
with lumbar spine involvement (P = 0.01, Padj = 1.0), which is 17 
times less prevalent than M45.X9 (0.08%). By contrast, when employ-
ing TreeWAS with priors θ = 1/3 and π1 = 0.001, we observed HLA-
B*27:05 associations with 145 ICD-10 terms (PP ≥ 0.75, the level of 
significance used throughout the analysis), which clustered in differ-
ent branches of the classification tree (Fig. 2b–e and Supplementary 
Table 1). These prior values were chosen to maximize power and 
sensitivity after exploring the variability of the BFtree statistic and 
the number of nonzero nodes at a threshold of PP = 0.75 over the 
parameter space of θ and π1 (Supplementary Fig. 1). As for PheWAS, 
there was a significant association with M45 ankylosing spondylitis 
(PP = 1), but TreeWAS additionally identified associations with four 
M45 subcategories (M45.X0, M45.X2, M45.X6 and M45.X9) rather 
than two (M45.X0 and M45.X9) (Fig. 2a,b). Moreover, there was an 
association with the broader spondylopathies category (M45–M49; 
PP = 1.0), which was likely driven by associations with M45 (PP = 1.0)  
and M49 (PP = 0.43), but not M47 spondylosis (PP = 0.07), despite 
the latter being ten times more prevalent than M45 (Fig. 2b).  

As spondylosis occurs as a result of age-related disk degeneration22, 
lack of an HLA-B*27:05 association with M47 is consistent with its 
non-immunological etiology.

Associations with reactive arthritis (for example, M02.39 Reiter’s 
disease, PP = 0.78) and anterior uveitis (H20.9 iridocyclitis, unspeci-
fied, PP = 0.98) were also observed (Fig. 2c,d), and we detected a 
previously unreported HLA-B*27:05 association with H40 glaucoma 
(PP = 0.84) (Fig. 2d). As glaucoma is a common complication of 
chronic uveitis23, comorbidity may explain this association. Lastly, 
we observed a weak effect on L40.5 arthropathic psoriasis suscep-
tibility (PP = 0.60), but not non-arthropathic psoriasis (PP ≤ 0.25 
for L40 child nodes except L40.5), consistent with previous studies24  
(Fig. 2e). Therefore, our TreeWAS analysis of HLA-B*27:05 in the 
HES data set recapitulates known associations and demonstrates that 
our method can identify additional genuine associations in compari-
son to PheWAS.

Sensitivity and specificity analysis of TreeWAS approach using 
simulated data
Given the capacity of TreeWAS to identify multiple associations 
with HLA-B*27:05, we wanted to further investigate the method’s 
sensitivity and specificity. To assess the relative power of TreeWAS, 
and to explore its robustness and accuracy, we performed two sets 
of simulations. In the first set, we assessed power by simulating data 
from a simple scenario where genetic coefficients are nonzero for a 
set of five clinical annotations in the tree. These annotations were 
chosen to occur within a single branch of the tree (clustered nodes) or 
across distant branches (distributed nodes). We compared the power 
obtained under these two scenarios when considering a range of allele 
frequencies. We fitted the TreeWAS model under a two-parameter set-
ting with default parameters θ = 1/3 and π1 = 0.001. For the alternative 
PheWAS model, we assumed complete independence across annota-
tions, equivalent to setting θ → . Under the simulations with clus-
tered nodes, the relative gain in power for identifying active nodes, 
where genetic coefficients are nonzero, of TreeWAS as compared to 
PheWAS was 20–25% across the allele frequencies tested (Fig. 3a). This 
gain in power was not associated with an increased false-positive rate 

I

BA

54321

fedcba

Figure 1  Schematic of a diagnosis classification tree and genetic 
coefficient transition scenarios tested. Each node in the tree represents 
a clinical diagnosis, and nodes are ordered in a hierarchical structure 
on the basis of a classification criterion (such as similarities in clinical 
manifestations). White nodes represent the null state where there is no 
genetic association with the clinical phenotype. Green, red and blue 
nodes represent the alternative state where there is a genetic association 
with the clinical phenotype, with the different colors corresponding to 
different, uncorrelated genetic coefficients of association. A genetic 
coefficient can transition from the null state to a nonzero coefficient, as 
in the I→B and A→2 pairs. From the nonzero state, a genetic coefficient 
can remain in a correlated nonzero state (as in the B→3, 3→a, 3→b and 
5→e pairs); it can transition back to the null state (as in the B→4 and 
5→f pairs); or it can transition to a new, uncorrelated nonzero state (as in 
the B→5 pair). An in-depth description of the method is provided in the 
Supplementary Note.
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(<0.001), as observed in nodes simulated with genetic coefficients of 
zero (Fig. 3a). When we simulated nonzero genetic coefficients in dis-
tributed nodes, there was a 1–3% reduction in power to identify active 
nodes for TreeWAS as compared to PheWAS (Supplementary Fig. 2).  
We also observed an increase in power in quantifying the overall 
evidence for association with clustered nodes (3.4–5.4%), but a small 
decrease with distributed nodes (0.2–1.0%) (Supplementary Figs. 3 
and 4). Therefore, when genetic coefficient correlation is captured 
by the classification tree, the gain in power with TreeWAS relative to 
PheWAS is substantial; if correlation is not well represented by the 
tree, then the cost incurred with the former method is minimal.

In the second simulation set, we assessed the impact of non-inde-
pendence among annotations arising from the clinical data collec-
tion approach. For example, recording of a specific disease subtype 
for an individual may mean that other subtypes are less likely to be 
recorded for the same patient. We performed simulations under the 
null model of no genetic association using individual-level phenotype 
data from both UK Biobank phenotype data sets. For each simulation, 
we permuted the observed genotypes of HLA-B*27:05, representative 
of a common genetic variant (given its 4.05% allele frequency in the 
UK Biobank), while maintaining non-independence among annota-
tions in the tree. For comparison, we also performed permutations of 

individual-level phenotype data in addition to the genetic data where 
all correlation was removed. With these permutations, we quantified  
the rate of false positives in our approach. When we permuted geno-
types only, we observed an inflation of the BFtree statistic and the 
node-level posterior probability with the HES data set, consistent 
with the more prominent correlation structure in the ICD-10 tree as 
compared to the SR diagnosis tree (Fig. 3b,c). Through these simula-
tions, we estimated a false-positive rate of 0.05 and 0.01 with a log10 
(BFtree) threshold of 10 and 20, respectively, in the HES data set, when 
substantial non-independence exists among nodes. For the SR data 
set, the false-positive rate at these thresholds was below 0.01. Thus, 
although non-independence among nodes can artificially increase 
test statistics, this can be countered by using conservative significance 
thresholds to maintain the false-positive rate at an appropriate level.

Effects of HLA allelic variation in the phenome
HLA region genetic variation is associated with numerous human 
disorders, in particular autoimmune and autoinflammatory diseases. 
Hence, we sought to interrogate HLA effects on the full range of SR 
and HES phenotypes using TreeWAS. Through conditional analysis 
(Online Methods and Supplementary Note), we identified independ-
ent associations for ten HLA alleles in the SR data (log10 (BFtree) ≥ 10)  
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M45.X9 ankylosing spondylitis
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Figure 2  Evidence of HLA-B*27:05 allele association with risk for clinical diagnoses in the HES data set. (a) Quantile–quantile plot of association test 
P values of the HLA-B*27:05 allele with each diagnosis term in the ICD-10 classification tree performed with maximum-likelihood estimation using 
a logistic regression model. Gray area depicts the 95% confidence interval of sampling variance. Results are color-coded according to the posterior 
probability (PP) that HLA-B*27:05 is associated with each diagnosis term as estimated with the TreeWAS model. (b–e) Branches of the  
ICD-10 classification tree where significant associations between HLA-B*27:05 and clinical diagnoses were identified (PP > 0.75), including  
those for M45–M49 spondylopathies (b), M00–M03 infectious arthropathies (c), diseases of the eye and adnexa (d), and L40–L45 papulosquamous 
disorders (e). Results are tabulated in Supplementary Table 1.
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and eight HLA alleles in the HES data (log10 (BFtree) ≥ 20) (Fig. 4 
and Supplementary Tables 2 and 3). Seven of these alleles or alleles 
in high linkage disequilibrium (LD; r > 0.98) were associated in both 
data sets (Supplementary Fig. 5).

These associations were fine-mapped, and the majority of the 
strongest effects were with IMDs, as reported previously through 
GWAS17,25–30 (Fig. 4). For class I alleles, we observed associations with 
psoriasis (HLA-C*06:02) and ankylosing spondylitis (HLA-B*27:05), 
and the genetic coefficients for the latter were the largest observed 
in the SR and HES data sets (Fig. 4a,c). For class II alleles, HLA-
DRB1*03:01 and HLA-DQB1*02:02 were observed to be independ-
ently associated with celiac disease in both data sets; these alleles tag 
two of the strongest known celiac disease HLA risk haplotypes, DR3–
DQ2 and DR7–DQ2 (ref. 26). In both data sets, HLA-DQA1*03:01 
was identified and fine-mapped to rheumatoid arthritis; this allele is 
in moderate LD with HLA-DRB1*04:01 (r = 0.71), which is the likely 
causal allele driving this association27. Similarly, HLA-DQA1*03:01 
was associated with type 1 diabetes (T1D), and we note that this allele 
is in LD with HLA-DQB1*03:02 (r = 0.67), which has been indicated 
as the most significantly associated T1D class II allele26. In the SR data 
set, we identified an HLA-DRB1*15:01 association and fine-mapped it 
to multiple sclerosis (Fig. 4a). In the HES data set, HLA-DQB1*06:02 
was identified instead and also fine-mapped to multiple sclerosis (PP 
= 1; Fig. 4c), but this allele is in strong LD with HLA-DRB1*15:01 (r 
= 0.97) (Supplementary Fig. 5). Lastly, HLA-DRB1*01:03 was fine-
mapped to ulcerative colitis and Crohn’s disease in both data sets, 
and it is the likely causal allele for these two types of inflammatory 
bowel disease (IBD)30.

Apart from established HLA associations with common IMDs, 
we also confirmed HLA effects for conditions where GWAS have 
not been performed, detected associations with clinical annotations 
linked to disease complications and identified new HLA associations 
with other IMDs. For example, in the SR data set, we confirmed the 
association of HLA-DRB1*04:04 with polymyalgia rheumatica and 

giant cell arteritis, which has previously been identified only through 
small candidate gene studies31,32 (Fig. 4a). The ulcerative colitis– and 
Crohn’s disease–associated HLA-DRB1*01:03 allele was found also 
to be associated with surgical procedures linked to complications of 
IBD, such as Z93.3 colostomy status (PP = 1) and Z93.2 ileostomy 
status (PP = 1), consistent with findings by the International IBD 
Genetics Consortium33 (Fig. 4c). Of the ten HLA alleles independ-
ently associated with clinical phenotypes in the SR data set, five were 
associated with hypothyroidism/myxoedema, and three of the eight 
alleles from the HES data were associated with the E03 hypothy-
roidism code. This disease is thus the phenotype with the largest 
number of independent HLA associations across both UK Biobank 
data sets. Associations have been reported with hypothyroidism for 
both HLA class I and class II loci, but the specific alleles driving these 
associations are not well resolved34,35, apart from a recently reported 
HLA-DQA1*05:01–HLA-DQB1*02:01–HLA-DRB1*03:01 (DR3–DQ2 
haplotype) association36. In addition to HLA-DRB1*03:01, we refined 
the HLA associations with hypothyroidism to two further independ-
ent risk alleles, HLA-DQA1*03:01 and HLA-DRB1*01:03, and two 
independent protective alleles, HLA-B*15:01 and HLA-DPB1*01:01 
(Fig. 4 and Supplementary Table 4). Our HLA analysis therefore 
demonstrates the validity of our method as it can identify known 
genetic associations and can facilitate discovery of new associations 
for relatively understudied diagnoses.

Genetic risk score associations with IMDs
Outside of the HLA region, over the last decade, understanding of 
genetic susceptibility to the common IMDs has increased tremen-
dously, with tens to hundreds of risk loci being identified for each dis-
ease37. However, given the prevalence of IMDs in the UK Biobank and 
the typically small effect sizes estimated, we expect low power at indi-
vidual loci. For example, when considering nine of the most common 
autoimmune and autoinflammatory diseases (Online Methods), we 
observed evidence of association (log10 (BFtree) > 0) for 64 individual  
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Figure 3  Sensitivity and specificity analysis of TreeWAS on simulated data. (a) Rate of active node identification at increasing posterior probability 
thresholds and different simulated minor allele frequencies (MAFs) of the causal genetic variant, for the TreeWAS method (θ = 1/3 and π1 = 0.001; 
blue) and for the PheWAS method (a model assuming complete independence among phenotypes with θ →  and π1 = 0.001; orange). For each 
simulation replicate (n = 500), we simulated five clustered nodes with nonzero genetic coefficients (circles) and, for the remaining nodes, phenotype 
counts were simulated to match observed disease prevalence and zero genetic coefficients (diamonds). The vertical dashed line denotes the PP = 0.75 
threshold used in the analysis. (b,c) Rate of false positives in the BFtree statistic (b) and active node identification (c) when genotypes for the  
HLA-B*27:05 allele were permuted in both phenotypic data sets. Gen, genotype; phen, phenotype.
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SNPs (12.96% of GWAS SNPs tested) in the SR data set and 125 indi-
vidual SNPs (25.30%) in the HES data set. Nevertheless, we can gain 
power by combining the effects of multiple typed and imputed suscep-
tibility variants in a GRS (Online Methods) and using the TreeWAS 
approach to assess the relationship of the GRS with the UK Biobank 
phenome (Fig. 5).

Typically, GRSs best identified those clinical annotations from 
which they were constructed, with secondary associations detected 
for conditions with shared genetic risk. For example, Crohn’s dis-
ease and ulcerative colitis have high genetic correlation38, although 
disease-specific susceptibility loci have been identified for each and 
heterogeneity in effect sizes has been observed39. The GRS for Crohn’s 
disease was thus associated with both Crohn’s disease itself as well as 
ulcerative colitis, but the magnitude of the genetic coefficients was 

greater for Crohn’s disease, as expected (β = 0.86 versus β = 0.44 in 
SR data and β = 0.73 versus β = 0.35 in HES data for Crohn’s disease 
and ulcerative colitis, respectively). However, the GRS for ulcerative 
colitis could not differentiate these two clinical annotations, with esti-
mated genetic coefficients of the same magnitude for both Crohn’s 
disease and ulcerative colitis (β = 0.68 in SR data and β = 0.64 in HES 
data; Fig. 5a,b). This indicates some level of variation in the preci-
sion of different GRSs in identifying specific phenotypes, such that 
the discriminatory capacity of GRSs will depend on the degree of 
genetic sharing among conditions and may require consideration of 
additional clinical features33.

For all associations, genetic coefficients were less than 1, demon-
strating a degree of dilution in phenotype detection across both the 
SR and HES data sets; we note that simulation analyses estimated an 
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expected dilution of ~15% due to winner’s curse (Supplementary 
Table 5 and Supplementary Note). The least dilution was observed 
for association of the celiac disease GRS with this disease (β = 0.96 
and β = 0.87 in the SR and HES data sets, respectively). The celiac 
disease phenotypes derived from the UK Biobank healthcare data are 
thus highly comparable to the clinically ascertained disease phenotype 
used in the GWAS40 from which the variants for the celiac disease 
GRS were obtained. Across both data sets, the greatest dilution of the 
association between a GRS and its respective disease was observed 
for rheumatoid arthritis (β = 0.43 and β = 0.55 in the SR and HES 
data sets, respectively), while, in HES data specifically, the ankylos-
ing spondylitis GRS was not associated with the disease (PP = 0.01), 
potentially owing to the small number of patients with ankylosing 
spondylitis in this data set (n = 146), and in SR data the SLE GRS asso-
ciation with SLE had a genetic coefficient of only 0.20 (Fig. 5a,b).

Overall, the GRS associations were largely consistent between the 
SR and HES data sets, and, for GRSs and their respective diseases, 

the estimated genetic coefficients were weakly positively correlated  
(rcorrected = 0.23, correcting for measurement error) (Fig. 5c). 
Strikingly, although the capacity of the SLE GRS to identify SLE itself 
in SR data was so diluted that the SLE GRS was in fact a better predictor  
of celiac disease (β = 0.57) (Fig. 5a), in the HES data set this was not 
the case. The SLE GRS was most predictive of M32.9 SLE (β = 0.50,  
PP = 1.00) and, to a lesser extent, K90.0 celiac disease (β = 0.47, PP = 1.00)  
(Fig. 5b). This discrepancy between the SR and HES data sets suggests 
differences in the diseases annotated as SLE in the two data sets, which 
may in turn reflect differences in disease perception or diagnosis that 
could have clinical implications. Notably, in the SR data, SLE was also 
associated with the celiac disease GRS (β = 0.13), but this was not the 
case in the HES data, further supporting a distinction between SLE 
phenotypes in the two data sets.

Secondary associations of the GRSs were identified either with 
known complications of the disease with which the primary asso-
ciation was observed or with other IMDs. For example, as for the  
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HLA-DRB1*01:03 associations, the ulcerative colitis GRS was associ-
ated with colostomy and ileostomy events (β = 0.31, PP = 0.98 and  
β = 0.31, PP = 1, respectively), as was the Crohn’s disease GRS, 
although the effect size magnitude was lower (β = 0.03, PP = 0.91 and 
β = 0.03, PP = 0.87, respectively). Also paralleling the HLA analysis, 
hypothyroidism was associated with several GRSs: five and four of 
the nine GRSs tested were associated with the disease in the SR and 
HES data sets, respectively, with those for celiac disease, rheumatoid 
arthritis, SLE and T1D being found in both data sets. Hence, hypothy-
roidism is the single phenotype with the largest number of different 
GRS associations (Fig. 5a,b and Supplementary Tables 6 and 7).

DISCUSSION
By exploiting the inherent hierarchical structure of diagnostic clas-
sifications, our Bayesian analysis framework addresses a fundamental 
challenge for the analysis of high-dimensional, heterogeneous rou-
tine healthcare data: how to identify statistically significant genetic 
associations when interrogating thousands of diagnoses without 
employing methods11,13 that sacrifice phenotypic resolution. When 
applying TreeWAS to interrogate the effect of the HLA region on the 
UK Biobank phenome, associations were identified with 143 and 966 
nodes in the SR and HES data sets, respectively. Assessing the impact 
of IMD GRSs also identified associations with 151 and 810 nodes in 
the two respective data sets. The total number of nodes identified 
demonstrates the power of TreeWAS for detecting associations in data 
sets where numerous weak but correlated effects are present across 
the classification tree.

Among the many active nodes for which genetic associations were 
observed, previously established effects of HLA alleles on specific 
IMDs were detectable, as were effects for relatively understudied con-
ditions. Notably, multiple new associations with HLA alleles were 
discovered for hypothyroidism. Although not all previously reported 
HLA associations could be detected for any single IMD (such as anky-
losing spondylitis41 or multiple sclerosis29) owing to limited power 
with the current UK Biobank data sets, the capacity for genetic dis-
covery will improve with increasing cohort size, and associations with 
nodes displaying substantial granularity of clinical description were 
already identifiable.

In the GRS analysis, associations between GWAS-derived GRSs and 
their respective diseases were typically the strongest effects observed, 
even without HLA allele inclusion, demonstrating that non-HLA vari-
ants can provide precision for detecting specific IMDs. Cross-disease 
associations of GRSs were also identified, particularly for hypothy-
roidism, and this previously unappreciated extent of genetic sharing 
indicates a common, genetically determined pathogenesis. For all 
GRS associations, dilution of the capacity for phenotype detection 
was observed but was largely comparable between the SR and HES 
data sets. An intriguing exception was the differential association of 
the SLE GRS with the respective SLE terms in the two data sets: this 
GRS could not precisely predict the self-reported disease but could 
accurately detect the hospitalization-record-derived phenotype. In 
comparison to the other IMDs investigated, SLE is a more heteroge-
neous, systemic condition, which consequently presents a substantial 
diagnostic challenge42. Therefore, this discrepancy in the magnitude 
of SLE GRS association could reflect incorrect reporting of the disease, 
disease overdiagnosis not discernible in the HES data if hospitaliza-
tion is associated with more clear-cut diagnosis, or greater disease 
heterogeneity whereby SLE as defined in GWAS and in the HES data 
represents only a subset of a more genetically variable syndrome.

Identifying misclassification, misdiagnosis and miscoding in  
routine healthcare data is an ongoing challenge, although there are 

recognized instances, such as inaccuracy in T1D and type 2 diabetes 
(T2D) differentiation43. In the UK Biobank, the T1D GRS is not asso-
ciated with T2D terms in the SR data (PP = 0.0002) and shows weak 
evidence of association in the HES data (PP = 0.52). However, the T2D 
GRS, which can accurately detect T2D terms (β = 0.80, PP = 1.00 and  
β = 0.71, PP = 1.00 in the SR and HES data sets, respectively), is also 
associated with T1D in the HES data (β = 0.71, PP = 1.00) but not 
the SR data (PP = 0.30; Supplementary Table 8 and Supplementary 
Note). These cross-disease associations may be attributable to T1D/
T2D misclassification, misdiagnosis and miscoding43 (Supplementary 
Figs. 6 and 7, and Supplementary Note) but also to genetic sharing44 
and poor distinction of patients with latent autoimmune diabetes of 
adulthood45, whose genetic profiles comprise a mixture of T1D and 
T2D risk loci46. Thus, the SLE and diabetes examples demonstrate 
how exploring the genetic basis of the healthcare phenome can expose 
disease areas where improvements are required to ameliorate disease 
perception or strengthen diagnostic practices. Digital phenotyping 
using genetic data in combination with longitudinal clinical infor-
mation, physical measures and biomarkers43,47 could help to rectify 
misclassification, misdiagnosis and miscoding present in healthcare 
data and to infer missing phenotypes. This could in turn facilitate 
patient management, particularly if it enables correction of treatment 
strategies within an actionable time frame.

Integration of genomic data with routine healthcare information 
offers much potential to learn about differences in disease risk, diag-
nosis and reporting within and between healthcare systems, including 
between countries. Moreover, increased incorporation of correlated, 
high-dimensional phenotypes (for example, from molecular, cytom-
etry and imaging readouts), including measures of temporal disease 
progression48, may lead to a genetically driven understanding of 
the architecture of the human phenome and of causal relationships. 
The value of TreeWAS lies in enhancing power to identify groups 
of endpoints affected by specific genetic risk factors, by exploiting 
the encoding of medical ontologies. A corollary is that structures 
that better capture the underlying biological process affecting the 
origin and progression of disease should be better correlated with 
genetic risk factors. Although generalizing the TreeWAS method to 
structures reflecting temporal progression and associated quantitative 
data modalities requires future development, we believe that it is an 
important step toward the goal of learning a genetically motivated 
classification of disease and associated phenotypes.

URLs. UK Biobank, http://www.ukbiobank.ac.uk/; UK Biobank gen-
otyping procedure and genotype calling protocols, http://biobank.
ctsu.ox.ac.uk/crystal/refer.cgi?id=155580; UK Biobank internal qual-
ity control procedures, http://biobank.ctsu.ox.ac.uk/crystal/refer.
cgi?id=155580; HLA*IMP, https://oxfordhla.well.ox.ac.uk/hla/;  
World Health Organization ICD-10 disease classification codes, 
http://www.who.int/classifications/icd/en/.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
UK Biobank data. The UK Biobank is a prospective cohort of over 500,000 
men and women aged 40 to 69 years when recruited in 2006–2010. Participants 
have provided data on lifestyle, environment and medical history through an 
interview and completion of a questionnaire; physical measures; biological 
samples for genotyping and biochemical assays; and informed consent to long-
term medical follow-up through linkage of national health registries. The UK 
Biobank has obtained ethical approval covering this study from the National 
Research Ethics Committee (REC reference 11/NW/0382).

Phenotypic data. We analyzed two phenotypic data sets available through the 
UK Biobank. The first included SR diagnosis data, ascertained through the 
completion of questionnaires and interviews with study participants (data field 
20002 non-cancer illness code, self-reported); the second data set included the 
HES registry data set ascertained through linkage of health registries (data 
fields 41142 and 41078; accessed in September 2016). Clinical diagnoses in 
these data sets are described with different classification schemes, both of 
which follow a hierarchical structure. The diagnosis terms used to store the 
medical history of UK Biobank participants were proposed by the UK Biobank 
team (data-coding 6), and this classification tree is organized into 11 subclasses 
with a total of 561 clinical terms, 531 of which are selectable. Diagnosis terms 
used to store hospitalization events follow the ICD-10 list compiled by the 
World Health Organization. The ICD-10 classification tree is organized into 
22 chapters and contains a total of 19,855 clinical terms, 16,310 of which are 
selectable. Each hospitalization episode in the data set has a primary diagnosis 
associated with the event, and an event may be annotated with one or more 
secondary diagnoses. Disease outcomes for each individual, as a binary trait, 
were generated for the combined primary and secondary diagnosis annota-
tions. Individuals were considered unaffected for any given diagnostic term 
unless the diagnosis was reported in the questionnaires and interviews or a 
hospitalization event with that diagnostic term was observed.

Genetic data set. The interim release of the UK Biobank genetic data used for 
this study includes 152,732 individuals, 120,286 of whom were determined 
to be of British Isles ancestry (Supplementary Fig. 8) and included in the 
analysis. The initial 50,000 individuals were genotyped on the Affymetrix UK 
BiLEVE Axiom array as part of a pilot study described elsewhere49, and the 
remaining 102,732 individuals were genotyped on the Affymetrix UK Biobank 
Axiom array. Quality control of SNP data and whole-genome SNP imputation 
was performed by the UK Biobank analysis team and is described on the UK 
Biobank website (http://www.ukbiobank.ac.uk/scientists-3/genetic-data). We 
imputed 356 classical HLA alleles for the HLA-A, HLA-B, HLA-C, HLA-DRB5, 
HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DQB1, HLA-DQA1, HLA-DPB1 
and HLA-DPA1 loci at four-digit resolution with the HLA*IMP:02 algo-
rithm50,51 using data from a multi-population reference panel. The imputation 
panel contained 2,263 SNPs in the MHC region (GRCh37 coordinates chr. 6: 
29,500,000–33,500,000) that overlapped UK Biobank genotyped SNPs. This 
SNP set was selected to optimize MHC coverage and imputation performance, 
and the HLA*IMP:02 algorithm was trained on this SNP set. GRSs, weighted 
by effect sizes, were generated for nine IMDs using genome-wide associated 
variants compiled from previous studies: ankylosing spondylitis17, Crohn’s 
disease39, celiac disease40, multiple sclerosis52, psoriasis25, rheumatoid arthri-
tis53, SLE54, T1D55 and ulcerative colitis39. SNP genotypes for the UK Biobank 
individuals were extracted from the imputed genotype data and maintained 
if the imputation information score was above 0.85; if a SNP was not typed or 
imputed successfully, it was not included in the GRS calculation.

Simulated data. To assess the accuracy of the method, we simulated case–control  
status for 120,000 individuals and the 531 selectable phenotypes in the diag-
nosis tree used for the self-reported data set and with disease prevalence 
as observed in the UK Biobank cohort. Simulations were generated under 
two scenarios. For the first, we assumed a causal relationship between a 
genetic variant and five clinical terms under the same parent node in the tree  

(disease prevalence in these nodes ranged between 0.01 and 0.4%). These 
simulations are referred to as clustered clinical phenotypes. The second set of 
simulations, termed distributed phenotypes, consisted of five clinical terms 
with a causal relationship distributed under different branches of the classifica-
tion tree; these clinical terms were selected with matching disease prevalence, 
as for the clustered simulations. For each scenario, we simulated genotypes 
sampled from a multinomial distribution with a fixed allele frequency and 
genetic coefficients sampled from the prior (Supplementary Fig. 9). Case–
control status was determined by using logistic risk with a y intercept matching 
the observed disease prevalence. Sets of simulations were performed for the 
allele frequencies 0.005, 0.01, 0.02 and 0.05. For each simulation, we computed 
the evidence of association in the tree (BFtree) and the evidence of associa-
tion at each individual node with the parameters θ = 1/3 and π1 = 0.001. We 
compared the power to detect association with at least one node in the tree 
with an analysis where we assumed no correlation in the genetic coefficients 
between nodes in the tree, equivalent to setting θ →  in the TreeWAS method 
(Supplementary Note). We performed 500 simulation replicates for each com-
bination of parameters and settings. To assess the robustness of the algorithm 
to the non-independence between annotations unaccounted for by the tree 
structure, we performed simulations where we permuted the genotypes whilst 
leaving the observed phenotypes in the UK Biobank cohort intact. Simulations 
were performed with the observed self-reported and HES data sets, and we 
permuted the observed genotype.

HLA analysis. For each HLA locus, we derived highest-confidence geno-
types by taking the allele at each chromosome with the highest imputation 
posterior probability. Genotypes were used to generate count distributions 
in affected and unaffected individuals at each terminal node in the tree. To 
identify independent HLA associations, we performed sequential conditional 
analysis using an approximation to the likelihood function as described in the 
Supplementary Note. At each step, BFtree statistics were generated for each 
allele and the allele with the largest value was selected for conditioning in 
the next iteration. Conditional analysis was repeated until all observed BFtree 
statistics were below 1010 in the self-reported diagnosis data set and 1020 in 
the HES data set, ensuring a false discovery rate below 0.01, as determined 
through the simulation analysis. For each significant allele association, we 
computed the marginal posterior probability for the genetic coefficient being 
not equal to 0 and the MAP estimate using posterior decoding as described in 
the Supplementary Note. Association with a clinical annotation was deemed 
significant if the posterior probability was above 0.75.

Code availability. Code to perform TreeWAS analysis is available from the 
authors upon request or through the code repository at https://github.com/
mcveanlab.

Data availability. UK Biobank data are available under open access to conduct 
health-related research after approval of a project proposal6.
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