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Osteoporosis is a common age-related disorder characterized by low 
bone mass and deterioration in bone microarchitecture, leading to 
increased skeletal fragility and fracture risk. Low BMD is a strong 
risk factor for osteoporosis, as well as a key indicator for its diagnosis 
and treatment1. BMD is highly heritable2, and GWASs have identi-
fied common variants at 73 loci associated with the trait, including 
many that are significantly associated with fracture risk3,4. Recently, 
deep imputation based on whole-genome sequencing has also  

identified low-frequency variants of large effect associated with BMD and  
fracture risk4. Despite these advances, common and rare variants 
explain only 5.8% of the total phenotypic variance in BMD3,4.

In most previous genetic studies of BMD, the data analyzed were 
derived from dual-energy X-ray absorptiometry (DXA). However, 
DXA is expensive, and consequently the largest GWAS so far of DXA-
derived BMD included only 32,965 individuals4, which compromised 
the researchers’ ability to detect risk loci. An alternative method of 
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estimating BMD that is quick, safe and relatively inexpensive, and 
therefore can be used in very large samples of individuals, is derived 
from ultrasound, typically at the heel calcaneus (referred to here as 
estimated BMD (eBMD)). Ultrasound-derived eBMD values are 
highly heritable (on the order of 50% to 80%)5–8, independently  
associated with fracture risk9,10 and moderately correlated with  
DXA-derived BMD at the hip and spine (r = 0.4–0.6)11. A previous 
GWAS that used heel ultrasound parameters (N = 15,514) identi-
fied variants at nine loci, including seven that had been previously  
associated with lumbar spine/hip BMD12.

Because genetic loci associated with BMD are strongly enriched 
for the targets of clinically relevant osteoporosis therapies13,14, the 
identification of new genetic loci and the biological pathways they 
implicate may help scientists identify drug targets for the prevention  
and treatment of fragility fracture. To identify novel genetic  
determinants of BMD, we investigated genome-wide association in 
the UK Biobank Study, which has measured eBMD and genome-
wide genotypes in 142,487 individuals. We subsequently used three  
systematic and complementary approaches to prioritize genes for 
functional validation (Supplementary Fig. 1).

RESULTS
Genome-wide association study of estimated BMD
Quantitative ultrasound of the heel was used to obtain a non-invasive 
estimate of BMD that predicts fracture9,10. After stringent quality 
control of both eBMD measurements and genome-wide genotypes 
(Online Methods, Supplementary Fig. 2), data were available 
from 142,487 individuals (53% women) (Supplementary Table 1). 
We tested the additive effect of 17,166,351 SNPs with minor allele  

frequency (MAF) > 0.1% and imputation quality score > 0.4 on eBMD, 
controlling for age, sex and genotyping array. In total, 307 conditionally  
independent SNPs at 203 loci surpassed our revised genome-wide 
significance threshold (P ≤ 6.6 × 10−9, which accounts for the large 
number of independent SNPs deeply imputed in the UK Biobank 
(Online Methods)) and jointly explained ~12% of the variance in 
eBMD (Supplementary Fig. 3, Supplementary Table 2). Together 
the 307 SNPs explained about one-third of the eBMD SNP herit-
ability estimated by BOLT-REML (h2

SNP = 0.36). Although there 
was substantial inflation of the test statistics relative to the null  
(λGC = 1.37), linkage disequilibrium (LD) score regression15 indi-
cated that the majority of inflation was due to polygenicity rather 
than population stratification (LD score regression intercept = 1.05). 
Of the 203 loci identified, 153 (75%) regions had not been impli-
cated in previous GWASs of BMD3,4,16–22 (Supplementary Table 2, 
Supplementary Fig. 3). We found it interesting that the list of novel 
associations included multiple variants (e.g., SNPs at TBX1, ZNRF3) 
for which there was extremely strong evidence of association with 
heel eBMD (P < 10−30) but little evidence of association (P > 0.05 for 
any trait) in a previous GEFOS-seq GWAS of DXA-derived BMD4 
(Supplementary Table 3).

Our study also replicated SNPs in 55 out of 73 regions (>75%) that 
had been reported as genome-wide significant in previous GWASs 
of BMD at other body sites (P < 0.05 and consistent direction of 
effect), and we replicated all loci with genome-wide significance 
identified in a previous GWAS of ultrasound-derived heel eBMD12 
(Supplementary Table 4). Our list of known BMD-associated SNPs 
is deliberately broad and comprehensive with respect to previous 
GWASs. This comprehensive inclusion policy, however, called for the 
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Figure 1  eBMD effect size compared with the effect size from a previous GEFOS meta-analysis of DXA-derived BMD for eBMD-associated SNPs. 
(a–c) Effect size for heel eBMD (y-axis) from the current UK Biobank study plotted against effect size from the previous GEFOS-seq study4 for BMD 
at the (a) femoral neck, (b) lumbar spine and (c) forearm (x-axis). Only conditionally independent variants that reached genome-wide significance (P 
< 6.6 × 10−9) for eBMD in the UK Biobank study are plotted. The −log10P value for the (any) fracture analysis of UK Biobank subjects is indicated by 
the shading of the data points (black indicates robust evidence of association with fracture, and white indicates poor evidence of association). SNPs 
that reached Bonferroni-corrected significance for fracture (P < 1.6 × 10−4) are labeled. The blue dashed lines show the strong correlation between 
estimated effect sizes at the heel and at other sites of the body. SNPs at SLC8A1 and AQP1 were significantly related with fracture after correction 
for multiple testing (P < 1.6 × 10−4) and have not previously been reported as associated with BMD or fracture, although they both reached nominal 
significance (P < 0.05) in the previous GEFOS-seq analysis.*Multiple conditionally independent variants present at the locus. ~The closest gene to the 
locus (i.e., DEPICT did not detect any region within 1 Mb of the reported SNP).
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incorporation of results from some smaller GWASs that may include 
false positives. When we restricted our attention to the 64 SNPs 
reported in the large Genetic Factors for Osteoporosis Consortium 
(GEFOS) meta-analysis by Estrada et al.3 (which are unlikely to  
represent type 1 errors), we replicated 54 of the 64 (84%) SNPs. Possible 
reasons for nonreplicated loci include site specificity, differences in  
phenotype (ultrasound-derived versus DXA-derived BMD), differ-
ences in ancestral population between studies, and type 1 error in the 
previous, smaller study.

Notably, across six loci (RSPO3, LINC00326, CPED1, MPP7, 
KCNMA1 and TMEM263), there were SNPs with different direc-
tions of effect in the current eBMD study compared with those in  
previous BMD studies. The SNPs at CPED1 also showed an associa-
tion with fracture in the UK Biobank data (discussed below), but in 

the direction predicted by eBMD rather than the direction predicted 
by BMD in previous studies (i.e., alleles that predispose subjects to low 
eBMD are associated with increased risk of fracture). Although these 
opposite directions of association are difficult to explain, differences 
in the phenotypes measured by DXA and ultrasound technologies 
are likely to be responsible. For example, whereas heel ultrasound 
measures primarily trabecular bone, DXA-based BMD measure-
ments reflect a combination of trabecular and cortical bone. In  
addition, ultrasound-based measurements are independent of bone 
size, whereas areal BMD as measured by DXA is not fully size- 
corrected. In fact, of the six loci that showed opposite associations 
between DXA BMD and eBMD, three also showed strong associations 
with height in data from the Genetic Investigation of Anthropometric 
Traits (GIANT) consortium in the same direction as the DXA BMD 
data23, which suggests that these three associations may partly have 
reflected size effects (although it must be noted that several other 
concordant eBMD and DXA BMD loci also showed associations with 
height). Whereas bone size and bone mass generally show a strong 
positive correlation, genetic influences that lead to greater bone size 
might be inversely related to trabecular bone density at certain sites, 
owing to reduced mechanical strain as a consequence of a larger and 
thus stronger skeleton. However, despite these few discrepancies, over-
all there was a strong positive correlation between estimated effect 
size for the genome-wide-significant heel eBMD SNPs in the present 
UK Biobank Study and estimated effect sizes for DXA-derived BMD 
at other skeletal sites in our previous GEFOS-seq study (femoral neck, 
Pearson’s r = 0.64 (0.57–0.71); lumbar spine, r = 0.69 (0.62–0.75); 
forearm, r = 0.49 (0.39–0.58)) (Fig. 1)4. Adjusting for weight had  
little effect on genome-wide significance, save for partially attenuating 
the strength of the association between eBMD and known adiposity 
variants (Supplementary Table 5).

Because we had used a large sample size and genotyped and/or 
imputed low-frequency variants (MAF < 1%), we next assessed the 
relationship between allelic architecture and eBMD (Fig. 2). We found 
a strong relationship between MAF and effect size that generally  
followed the statistical power of our study design. The variants of largest 
effect (for which each allele increased eBMD by 0.44 s.d.; P = 5 × 10−11)  
were in the gene IGHMBP2 (within 0.5 Mb of known variants in LRP5) 
and the known EN1 and WNT16/CPED1 loci. We also detected sev-
eral rare (MAF < 1%) and low-frequency variants (1% < MAF < 5%)  
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Figure 2  The relationship between absolute conditional and joint-
analysis effect size (y-axis) and minor allele frequency (x-axis) for 307 
conditionally independent SNPs. Red circles represent SNPs at previously 
reported BMD loci. Blue circles represent SNPs at novel loci. The black 
dashed curve shows the effect size required for 80% power to detect 
association at a given minor allele frequency at genome-wide significance 
(α = 6.6 × 10−9) in the present study. The orange dashed curve shows the 
effect size required for 80% power to detect association at a given minor 
allele frequency at genome-wide significance (α = 6.6 × 10−9) assuming 
N = 483,230 individuals in the full UK Biobank study. GWS, genome-
wide significant. *Multiple conditionally independent variants present at 
the locus. ~The closest gene to the locus (i.e., DEPICT did not detect any 
region within 1 Mb of the reported SNP).

Table 1  Genome-wide significant eBMD-associated SNPs significantly associated with risk of fracture (P < 1.6 × 10−4)
Any fracture Fall fracture

RSID CHR BP C.GENE EA NEA EAF OR CI95%-L CI95%-U P OR CI95%-L CI95%-U P Status

rs10490046 2 40630678 SLC8A1 A C 0.78 0.94 0.92 0.97 6.8 × 10−6 0.94 0.91 0.98 1.4 × 10−3 Novel

rs112069922 4 1034997 IDUA C T 0.95 0.89 0.84 0.93 4.8 × 10−6 0.90 0.84 0.96 2.2 × 10−3 Known

rs9491689 6 127398595 RSPO3 C A 0.72 1.05 1.03 1.08 5.0 × 10−5 1.05 1.02 1.09 2.0 × 10−3 Known

rs7741021 6 127468274 RSPO3 A C 0.52 1.07 1.04 1.09 1.5 × 10−8 1.07 1.04 1.10 4.8 × 10−6 Known

rs4869744 6 151908012 ESR1 T C 0.71 0.95 0.93 0.98 1.3 × 10−4 0.95 0.92 0.98 8.0 × 10−4 Known

rs2941741 6 152008982 ESR1 G A 0.58 1.05 1.03 1.08 6.5 × 10−6 1.07 1.04 1.11 2.4 × 10−6 Known

rs10276670 7 30956489 AQP1 A G 0.77 0.95 0.92 0.97 4.1 × 10−5 0.94 0.91 0.97 3.5 × 10−4 Novel

rs2536195 7 120959155 WNT16 A G 0.6 1.10 1.07 1.12 2.6 × 10−15 1.13 1.10 1.16 1.6 × 10−15 Known

rs10668066 7 120965464 WNT16 G GCACC 0.75 1.09 1.07 1.12 1.5 × 10−11 1.13 1.09 1.17 2.5 × 10−12 Known

rs7099953 10 54426489 MBL2 G T 0.89 0.90 0.87 0.93 4.9 × 10−9 0.89 0.84 0.93 5.0 × 10−7 Known

rs7209826 17 41796406 SOST A G 0.62 1.05 1.03 1.07 3.6 × 10−5 1.06 1.03 1.10 7.1 × 10−5 Known

rs188810925 17 41798194 SOST G A 0.92 1.09 1.04 1.14 9.2 × 10−5 1.11 1.05 1.17 3.3 × 10−4 Known

β and s.e. values from BOLT-LMM were transformed via the following formula: (β or s.e.)/(µ × (1 – µ)), where µ is the number of cases/number of controls. Approximate odds ratios 
(OR) and 95% confidence intervals (CI95%) were calculated from the transformed β and s.e. CI95%–L, lower CI limit; CI95%–U, upper CI limit; RSID, reference SNP cluster ID; CHR, 
chromosome; BP, base pair position of the variant according to human reference sequence Hg19/GRCh37; C.GENE, closest gene; EA, effect allele; NEA, non-effect allele; EAF,  
effect allele frequency; P, strength of evidence against the null hypothesis of no association between variant and self-reported fracture (i.e., P value); any fracture, any self-report-
ed fracture within the past 5 years (N = 14,492 cases/130,563 controls); fall fracture, self-reported fracture within the past 5 years that occurred as the result of a simple fall  
(N = 8,540 cases/131,333 controls).
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in previously unreported loci, including rare variants near the genes 
BMP5 and BMPR2. When we compared the mean absolute effect sizes 
of genome-wide significant variants, we found a 6.5-fold difference 
in effects attributed to rare versus common variants.

Sex-specific analyses across the genome and tests of sex hetero-
geneity at genome-wide significant SNPs revealed a single variant, 
rs17307280, at FAM9B on the X chromosome that was signifi-
cantly associated with eBMD in men only (Supplementary Fig. 4, 
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Figure 4  Increased bone mass and strength in adult Gpc6−/− mice. (a) X-ray microradiography images of femurs and caudal vertebrae from female 
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Supplementary Table 6) (heterogeneity P = 1.4 × 10−11), thus  
replicating previous results from Estrada et al.3.

Effects on fracture
We tested the relationship between eBMD-associated SNPs and 
fracture. We identified 14,492 individuals (58% women) in UK 
Biobank who had reported a previous fracture, without giving 
special consideration to the trauma mechanism, as high-trauma 
fractures are predicted by low BMD and are predictive of future 
low-trauma fracture, thus suggesting a shared etiology24,25. In total, 
we observed that 12 eBMD SNPs were associated with fracture, 
after controlling for multiple testing (P ≤ 1.6 × 10−4). The results of 
sensitivity analyses including only 8,540 individuals (69% women) 
who had reported a fracture resulting from a simple fall (i.e., from 
standing height) were consistent with these findings (Table 1). Of 
these 12 loci, variants at AQP1 and SLC8A1 had not been associ-
ated with BMD or risk of fracture previously (although both SNPs 
showed nominal association (P < 0.01) with DXA-derived BMD  
values from the GEFOS-seq study4 (Fig. 1, Supplementary Table 3)).  
We observed an inverse relationship between the effects of genome-
wide significant eBMD variants on eBMD and the odds of fracture 
(Supplementary Fig. 5).

Shared genetic factors
To test whether eBMD has a shared genetic etiology with 247 
other diseases and biomedically relevant traits, we used LD score  
regression26 as implemented in LDHub27. This method estimates 
the degree to which genetic risk factors are shared between two dis-
eases or traits, although it says nothing about how this shared genetic  
etiology arises (i.e., whether one variable causes the other, or whether 
the relationship between eBMD and the other variable is mediated 
by an underlying variable such as body mass index (BMI), which 
is itself partially genetic). Genetically increased eBMD was strongly 
and negatively correlated with fracture (Fig. 3; rg = −0.47; 95% CI, 
−0.59, −0.35). Further, measures of BMD at other skeletal sites showed 
moderate positive genetic correlation with eBMD (Fig. 3) in agree-
ment with the concordant directions observed at the genome-wide 
significant loci (Fig. 1).

We also asked whether eBMD is genetically correlated with a 
range of other complex traits and diseases (Supplementary Table 7,  
Fig. 3). We observed weak and negative correlation with HDL choles-
terol level, LDL cholesterol level, height, age at menarche and rheu-
matoid arthritis (Fig. 3). In contrast, eBMD was weakly positively 
genetically correlated with BMI, waist circumference, waist-to-hip 
ratio, coronary heart disease and type 2 diabetes. These findings  
support a shared genetic etiology of several common traits and  
diseases with eBMD, as has been shown previously for BMD, adiposity 
and type 2 diabetes through Mendelian randomization28,29.

Gene prioritization
Strategy one: bioinformatic, statistical and functional genomics 
in humans. We used several bioinformatics and statistical genet-
ics tools to prioritize likely candidate genes and variants. These 
included the Variant Effect Predictor software30 to identify deleteri-
ous coding variation at genome-wide significant loci (Supplementary 
Table 8), the FINEMAP software to create configurations of plausi-
ble causal SNPs around each conditionally independent lead SNP 
(Supplementary Table 9), ENCODE maps of DNase I hypersensitivity 
sites (DHSs)31,32 and contextual analysis of transcription factor occu-
pancy4 to identify SNPs that perturb transcription factor activity, and 
evidence of cis–expression quantitative trait loci (eQTLs) in human  

osteoblasts33 (Supplementary Table 10). These results are fully 
described in Supplementary Note 1.

Strategy two: data-driven expression-prioritized integration. 
For the second gene-prioritization approach, we used the DEPICT 
computational tool34. We identified 273 genes as most likely to drive 
the eBMD association signals (false discovery rate (FDR) < 0.05). 
Among these 273 genes were several with an established role in bone  
metabolism, such as BMP2, LRP5, EN1, RUNX2, JAG1, ESR1, 
COL21A1 and SOST (Supplementary Table 11).

We next tested the DEPICT-prioritized genes for enriched expres-
sion in any of 209 Medical Subject Heading (MeSH) tissue and  
cell-type annotations34. We identified 62 tissue or cell-type annota-
tions (FDR: 5%) among the entries defined from the MeSH tissue 
and cell annotations (Supplementary Table 12, Supplementary  
Fig. 6). The strongest evidence of enriched expression of the genes 
mapping to eBMD loci came from chondrocytes and cartilage, although  
systems other than the musculoskeletal system were also  
overrepresented (cardiovascular system, 7/12 significant entries; 
membrane tissue, 6/7 significant entries; connective tissue cells, 5/7 
significant entries).

We also tested the DEPICT-prioritized genes for enriched gene 
sets, and identified more than 1,000 significantly enriched (FDR: 5%) 
gene sets. Clustering in 35 ‘meta gene-sets’ showed that most clus-
ters were related to skeletal growth (e.g., regulation of mineralized  
tissue development, vertebral fusion, abnormal craniofacial develop-
ment, cartilage development) or signaling pathways involved in bone  
biology (e.g., mesenchymal stem cell differentiation, BMP or WNT 
signaling). More global biological processes were also highlighted 
(e.g., transcription factor binding and regulation, chromatin remod-
eling complex, cell development) (Supplementary Fig. 7).

Analysis with the MAGENTA (meta-analysis gene-set enrichment 
of variant associations) software produced similar results implicating 
gene sets involved in bone mineralization and development, cadherin, 
the WNT and Hedgehog signaling pathways, and other pathways  
worthy of further investigation (oncogenic pathways, melanogenesis, 
etc.) (Supplementary Table 13).

We tested all genes prioritized by DEPICT for expression in 
mouse osteoblasts, osteoclasts and osteocytes. Among the 273 genes  
prioritized, 241 had mouse homologs (the majority that did not have a 
known homolog were long noncoding RNAs), with 92% expressed in 
osteoblasts, 66% in osteoclasts and 83% in osteocytes (Supplementary 
Table 14). In all, 95.4% of these genes were expressed in at least one of 
the three cell types. This represents a substantial enrichment of genes 
expressed in osteoblasts, osteocytes and osteoclasts (P < 0.0001 for 
each of osteoblasts, osteocytes and osteoclasts).

We then investigated whether a skeletal phenotype had been 
reported in the International Mouse Phenotyping Consortium (IMPC; 
“URLs”) or Mouse Genome Informatics (“URLs”) databases in knock-
out mice with deletion of any of the prioritized genes. We found that 
189 (78%) of the 241 DEPICT-prioritized genes had mouse knockout 
phenotype data available, and 62 (33%) of those phenotypes included 
skeletal abnormalities (Supplementary Table 14).

Strategy three: deep phenotyping of knockout of selected genes 
within 1 Mb of lead SNPs. The third gene-prioritization approach 
identified all genes within 1 Mb of lead SNPs at associated eBMD loci. 
We compared these genes with genes from knockout mice generated 
at the Wellcome Trust Sanger Institute for the IMPC35. Knockout 
mice had been generated for 120 of the prioritized genes, and bespoke 
skeletal phenotyping was undertaken as part of the Origins of Bone 
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and Cartilage Disease Program36. Specifically, we carried out both 
structural and functional analysis of skeletal samples, using digital 
X-ray microradiography, micro-CT and biomechanical testing. We 
compared our results with normal reference data from >250 control 
mice with an identical C57BL/6 genetic background. We found that 43 
(36%) of these 120 prioritized genes were associated with significantly 
abnormal bone structure, representing twofold enrichment compared 
with the results of a previous analysis of 100 unselected knockout 
mice36 (χ2 = 8.359, P = 0.0038) (Supplementary Table 15).

GPC6 findings
Using these parallel strategies, we identified 100 genes that, when 
disrupted, were associated with an abnormal skeletal phenotype in 
mutant mice (Supplementary Tables 14 and 15). However, all three 
gene-prioritization strategies identified GPC6, so we selected this gene 
for further study (Supplementary Table 16).

GPC6 encodes a member of the glycosylphosphatidylinositol-
anchored, membrane-bound heparan sulfate proteoglycan protein 
family. Loss-of-function mutations in GPC6 result in omodysplasia 
1 (OMIM 258315), a rare autosomal recessive skeletal dysplasia char-
acterized by short-limbed dwarfism with craniofacial dysmorphism. 
This indicates a role for GPC6 in skeletal biology37, although the gene 
has not previously been implicated in osteoporosis.

Our bioinformatics pipeline provided evidence for a functional 
association at the GPC6 locus. A single SNP in GPC6, rs1933784, 
in high linkage disequilibrium with the conditionally independent 
lead SNP rs147720516 at this locus (r2 > 0.9), was a plausible causal 
and functional variant. We observed that rs1933784 was a low- 
frequency SNP (MAF = 0.05) that was significantly associated with 
eBMD (P = 2.3 × 10−10), with high causal probability (log10 Bayes 
factor = 2.4), and that it was present within DHSs in several cell 
types (Supplementary Table 16). The rs1933784 variant also showed 
some evidence of association with GPC6 expression in osteoblasts  
(P = 4.7 × 10−3) (Supplementary Table 16).

DEPICT identified GPC6 as the gene most likely to be responsible  
for the association at this locus. Gpc6 is expressed in osteoblasts 
and osteocytes in mice (Supplementary Table 14). In osteocytes, 
Gpc6 had a similar level of enrichment (1.76 log fold-enrichment) as 
genes known to have key involvement with the skeleton, such as Lrp5  
(1.95 log fold-enrichment) (Supplementary Fig. 8), encoding an 
important receptor that influences bone mass through canonical 
Wnt signaling, and Runx2 (1.73 log fold-enrichment), encoding a key  
transcription factor in osteoblast differentiation.

We analyzed adult female Gpc6−/− mice and compared the results 
with data for >250 wild-type control mice of identical C57BL/6 
background. Consistent with the phenotype of omodysplasia 1, 
Gpc6−/−mice had femurs and vertebrae that were shorter than 
those of wild-type mice (−1.95 and −2.17 s.d., permuted P = 0.06 
and 0.016, respectively). Gpc6−/− mice also had increased femoral  
bone mineral content (+2.4 s.d., permuted P = 3 × 10−4) and increased 
cortical thickness (+2.3 s.d., permuted P = 5 × 10−3) compared with 
wild-type mice. The biomechanical consequence of these structural 
abnormalities was an increase in yield load (+2.1 s.d., permuted  
P = 8 × 10−3) that reflected increased material elasticity (Fig. 4). 
Although the phenotype of Gpc6−/− mice is consistent with human 
omodysplasia 1, no information is available regarding adult mani-
festations of the condition. Thus, further studies in Gpc6−/− mice 
are required to characterize the cellular and molecular mechanisms 
underlying the role of GPC6 in the pathogenesis of osteoporosis.

Finally, we queried 87 separate GWASs using the web utility 
PhenoScanner, with full genome-wide summary statistics available 

for the conditionally independent genome-wide significant SNPs for 
eBMD (rs72635657, rs147720516) at the GPC6 locus, for any associa-
tions with a P value of <0.05 (ref. 38). We identified one association, 
for rs72635657 with femoral neck BMD (P = 0.015). We also searched 
the NHGRI–EBI catalog39 of published GWASs for GPC6 (accessed 
22 March 2017). SNPs in the region of GPC6 had previously shown 
evidence of association with attention deficit hyperactivity disorder, 
FEV1 after bronchodilation, Alzheimer’s disease, neuroticism and 
lower facial height, although the lead SNPs reported in these scans 
were not in appreciable LD with the lead conditionally independent 
SNPs in the present study (all r2 < 0.1).

DISCUSSION
With this study, we have increased the number of genetic loci associ-
ated with BMD in humans almost threefold and doubled the amount 
of variance explained for this trait. Further, we have demonstrated that 
several BMD-associated variants also influence the risk of fracture. 
We have prioritized genes for future study and provided functional 
evidence that GPC6 has a role in determining BMD and the patho-
physiology of osteoporosis.

Our findings provide evidence that the genetic architecture under-
lying BMD is highly polygenic. The observed effect sizes follow a close 
relationship with MAF within the limits of the statistical power of the 
study. This suggests that further low-frequency and rare variants of 
moderate to large effect will be identified in future studies, which is 
likely to improve the overall understanding of the cellular and molec-
ular mechanisms involved. Drug targets supported by evidence from 
human genetics are most likely to result in clinically useful therapies 
in general, and this has been demonstrated for musculoskeletal condi-
tions13,14. Thus, our findings will be helpful for identifying pathways 
and proteins amenable to pharmacologic manipulation to decrease 
the burden of fracture in the population.

GPC6 encodes a glypican that may serve as a novel drug target for 
osteoporosis care, as it is a cell-surface protein involved in signaling 
whose loss of function leads to increased bone mineral content, likely 
due to increased cortical bone and resultant increased elasticity. GPC6 
is a member of the glypican family (GPC1–6) of glycosylphosphati-
dylinositol-anchored, membrane-bound heparan sulfate proteoglycan 
core proteins that are involved in cellular growth control and differen-
tiation. Mutations of GPC3, GPC4 and GPC6 result in developmental 
skeletal abnormalities, but limited or no information is available from 
affected adults (OMIM 312870, OMIM 258315). The heparan sulfate 
proteoglycans attached to the GPC6 core protein regulate skeletal 
signaling pathways involved in bone formation and mineralization, 
including those mediated by the FGF, VEGF, Hedgehog and BMP 
pathways40. In addition, the adult high-bone-mass phenotype and 
increased cortical bone thickness identified in Gpc6−/− mice in these 
studies is consistent with the recently identified direct role of GPC6 
in the modulation of Wnt signaling41,42, which is the key regulator of 
osteoblastic bone formation and is associated with BMD in humans. 
Overall, these findings suggest a number of possible new pharmaco-
logical targets that include not only the core protein GPC6, but also 
the heparan sulfate synthetic (EXT1–2) and modification enzymes 
(NDST1–4, GLCE, HS2ST and HS6ST1–3) that specifically regulate 
growth factor binding and activity. The availability of global and  
tissue-specific Gpc6−/− mice35 now provides the opportunity to test 
these possibilities directly. However, we caution that although GPC6 
and associated proteins seem to be promising targets for pharmaco-
therapy, other factors (the likelihood of unintended side effects, etc.) 
will need to be considered before these molecules can be confirmed 
as suitable candidates for pharmacological manipulation.

http://www.omim.org/entry/258315 
http://www.omim.org/entry/312870?search=312870&highlight=312870
http://www.omim.org/entry/258315?search=258315&highlight=258315
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There are several limitations to our study. First, despite the high  
concordance between the loci identified from ultrasound-derived 
measurements of BMD and those from previous studies that used 
DXA-derived BMD, there were some notable differences. Our study 
did not replicate associations at 18 known BMD loci identified in  
previous studies. Also, our list of genome-wide significant variants 
included some that were strongly related to eBMD at the heel but were 
not found in previous studies that used DXA-derived BMD measures 
at other body sites in considerably smaller samples. For some of these 
loci, such as TBX1, this may simply be a consequence of the associated 
variants having been neither genotyped nor tagged well in previous 
studies. For other loci, it may reflect genetic influences that are specific  
to the heel (for example, genetic responses of the heel to ground  
reaction forces) that are not present at other body sites. Interestingly, we 
identified variants at six loci where the direction of effect was opposite  
between eBMD at the heel and DXA-derived BMD at other sites, 
although notably at CPED1 the variants also showed association with 
risk of fracture in the direction consistent with the heel eBMD associa-
tion. Although the reason for these differences is unclear, the implication  
is that ultrasound measurements of the heel capture aspects of bone 
structure beyond those obtained by central DXA, and this is consistent 
with previous observations that ultrasound measurements of the heel 
predict risk of osteoporotic fracture over and above hip BMD43.

Second, our study does not provide a definitive biological mechanism 
through which variants at genome-wide significant loci causally affect 
eBMD. Our eQTL analyses were not consistent with the mediation of 
SNP effects through osteoblast expression at a majority of loci. This is 
probably because at least some of the identified eBMD-associated SNPs 
may act on cell types other than osteoblasts, such as osteocytes and 
osteoclasts. Further, the relatively small sample size of 95 individuals in 
the osteoblast eQTL experiment may have led to uncertain estimates. 
Also, the expression of genes in culture may reflect different biological 
processes than those in vivo. Although differences in gene expression 
are not the only mechanism through which the functional effects of 
an association can be mediated, we expect that large-scale genomic 
studies investigating the pattern of genetic association in osteoblasts, 
osteocytes and osteoclasts will reveal how these eBMD associations are 
mediated in the not-too-distant future.

Third, our study had a limited ability to detect very rare variants  
(i.e., MAF < 0.1%) or rare variants of small effect (MAF < 1% and effect 
size < 0.05 s.d.). Finally, our study investigated the genetic etiology of 
osteoporosis only in European individuals. It is likely that studies of 
populations of different ancestry will reveal novel loci that are important 
in the regulation of BMD, as has been the case for other conditions44.

In summary, our findings shed light on the pathophysiological  
mechanisms that underlie changes in BMD and fracture risk in humans. 
The proteins identified and prioritized by these studies identify  
signaling pathways that represent new drug targets for the prevention 
and treatment of osteoporosis—a major health care priority.

URLs. International Mouse Phenotyping Consortium (IMPC),  
http://www.mousephenotype.org; Mouse Genome Informatics (MGI), 
http://www.informatics.jax.org; the Origins of Bone and Cartilage 
Disease Study (OBCD), http://www.boneandcartilage.com; UK 
Biobank (UKBB), http://www.ukbiobank.ac.uk/; Genetic Factors 
for Osteoporosis Consortium (GEFOS), http://www.gefos.org/; UK 
Biobank protocol for measurement of eBMD, https://biobank.ctsu.
ox.ac.uk/crystal/docs/Ultrasoundbonedensitometry.pdf; UK Biobank 
document #155580 on genotyping and quality control, http://biobank.
ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf; Hg19 gene range list, 
https://www.cog-genomics.org/plink2/.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Measurement of eBMD, fracture and weight in UK Biobank. In 2006–2010, 
the UK Biobank recruited 502,647 individuals aged 37–76 years (99.5% were 
aged 40–69 years) from across the country. All participants provided infor-
mation regarding their health and lifestyle via touch screen questionnaires, 
consented to physical measurements, and agreed to have their health followed. 
They also provided blood, urine and saliva samples for future analysis. UK 
Biobank has ethical approval from the Northwest Multi-centre Research Ethics 
Committee, and informed consent was obtained from all participants. A Sahara 
Clinical Bone Sonometer (Hologic Corporation, Bedford, Massachusetts, 
USA) was used for quantitative ultrasound assessment of calcanei in UK 
Biobank participants. Details of the complete protocol are publicly available 
on the UK Biobank website (“URLs”). Participants were initially measured 
at baseline (N = 487,428) and had their left calcaneus (N = 317,815), right 
calcaneus (N = 4,102) or both calcanei (N = 165,511) measured. A subset of 
these subjects were followed up at two further time points (N = 20,104 and  
N = 7,988), during which both heels were measured. A detailed description of 
the ascertainment procedure is provided in Supplementary Figure 2. Prior to 
quality control, ultrasound data were available for 488,683 individuals at either 
baseline and/or follow-up assessment. eBMD (g/cm2) was derived as a linear 
combination of speed of sound (SOS) and bone ultrasound attenuation (BUA) 
(eBMD = 0.002592 × (BUA + SOS) − 3.687). To reduce the impact of outlying 
measurements, quality control was applied to male and female subjects sepa-
rately with the following exclusion thresholds: SOS, ≤1,450 or ≥1,700 m/s for 
males, ≤1,455 or ≥1,700 m/s for females; and BUA, ≤27 or ≥138 dB/MHz for 
males, ≤22 or ≥138 dB/MHz for females. Individuals exceeding the following 
thresholds for eBMD were excluded: males, ≤0.18 or ≥1.06 g/cm2; females 
≤0.12 or ≥1.025 g/cm2. Bivariate scatter plots of eBMD, BUA and SOS were 
visually inspected, and any measurements that did not cluster with the others 
were removed; this left a total of 483,230 valid measures (476,618 left and 6,612 
right calcaneus) for SOS, BUA and BMD (265,057 females and 218,173 males). 
Please see Supplementary Figure 2 for a detailed description of the quality 
control pipeline and Supplementary Table 1 for an overview of descriptive 
statistics of the cohort after quality control.

We defined 14,492 individuals (8,439 female and 6,053 male) as having 
a fracture, on the basis of affirmative answers to the question, “Have you 
fractured/broken any bones in the last 5 years?” at either baseline or first  
follow-up. Individuals were coded as missing if they responded “Do not know” 
or “Prefer not to answer” at both baseline and first follow-up; otherwise they 
were coded as controls (N = 130,563). Self-reported fractures have low false 
positive and false negative rates45. Individuals who stated that they had had 
a fracture were also asked whether the fracture resulted from a simple fall  
(i.e., from standing height). We created a second variable using this question, 
where 8,540 individuals (5,853 female and 2,687 male) had a fracture from 
a simple fall and 131,333 individuals did not report a fracture. Weight was 
measured with a Tanita BC418MA body composition analyzer.

Preparation, quality control and genetic analysis in UK Biobank samples. 
Genotype data from the interim May 2015 release of UK Biobank were available 
for a subset of 152,729 participants. Data were imputed centrally by UK Biobank 
with IMPUTE2 (ref. 46) to a 1000 Genomes (October 2014) and UK10K ref-
erence panel. In addition to the quality control metrics performed centrally 
by UK Biobank (UK Biobank document #155580; see “URLs”), we defined 
a subset of ‘white European’ ancestry samples by using a K-means (K = 4)  
clustering approach based on the first four genetically determined principal 
components. A maximum of 142,487 individuals (76,067 females and 66,420 
males) with genotype and valid quantitative ultrasound measures were avail-
able for the present analyses. We tested genetic variants for association with 
eBMD, assuming an additive allelic effect, in a linear mixed non-infinitesimal 
model implemented in BOLT-LMM47 to account for cryptic population struc-
ture and relatedness. Genotyping array, age and sex were included as covariates 
in all models. We also included weight as a covariate in a sensitivity analysis to 
investigate whether the power to detect association was increased or whether 
weight mediated the relationship between genotype and eBMD (i.e., some vari-
ants may be primarily associated with weight, and their effect on eBMD may 
be mediated through a causal effect of weight on eBMD29). Only SNPs down 
to an MAF of 0.1% and with an info-score threshold of >0.4 were analyzed.  

We additionally analyzed the association between eBMD and directly geno-
typed SNPs on the X chromosome, adjusting for genotyping array, age, sex 
and the first four ancestry principal components, using Plink v1.09 beta 3.38  
(7 June 2016) software48 and a nested sample of unrelated subjects  
(N = 135,729). Because the analyses for the X chromosome data were based 
on observed genotypes, our quality control was slightly different. We excluded 
SNPs with evidence of deviation from Hardy–Weinberg equilibrium (1 × 10−6), 
MAF < 0.1% and overall missing rate > 5%, which yielded 15,552 X chromo-
some SNPs for analysis. Heterogeneity between sexes in effect size coefficients 
was tested with EasyStrata49. Manhattan and Miami plots of our genome-wide 
association scans were generated by EasyStrata version 15.3. Regional associa-
tion plots were generated with LocusZoom (v1.3)50, using LD information 
estimated from our reference UK Biobank sample, together with the December 
2016 release of the NHGRI–EBI catalog of published GWASs. SNPs that were 
associated with eBMD at genome-wide significance levels were additionally 
tested for association with fracture using BOLT-LMM, including age, sex, BMI 
and the time of reporting the fracture as fixed effects47.

Estimation of genome-wide significance threshold. Traditional estimates of 
the genome-wide significance threshold for common variants (MAF > 5%) in 
European populations (i.e., α = 5 × 10−8) are based on a Bonferroni correction 
of α = 0.05/106, as there are an estimated 1 million statistically independent 
SNPs above this MAF threshold. However, in the case of UK Biobank, we 
assessed SNPs down to an MAF of 0.1% in 142,487 individuals and applied 
an info-score threshold of >0.4, which resulted in 17.17 million SNPs. Thus, 
we defined a new and more conservative threshold to declare genome-wide 
significance, accounting for the number of independent statistical tests per-
formed in our data. To do this, we applied the method we used previously in 
the UK10K sequencing consortium4, which assesses the correlation between 
nearby test statistics empirically. Analysis of permuted data derived from a 
small proportion of all tested variants allows assessment of the correlation 
patterns. Thus we were able to estimate, in subsets of the genome of varying 
size, the relationship between the Bonferroni significance threshold and the 
empirical significance threshold that corrects for correlations, and thereby 
extrapolate to the whole genome. Specifically, when assessing all 740,018 
variants that met our filtering criteria across chromosome 9 (Supplementary 
Fig. 9), we saw a good linear fit between family-wise error rate (α = 0.05), 
divided by the number of tests and the empirical significance thresholds. Our 
estimated genome-wide significance threshold then, accounting for all SNPs 
with MAF ≥ 0.1% and info-score > 0.4, was α = 6.6 × 10−9.

Approximate conditional association analysis. To detect multiple independ-
ent association signals at each of the genome-wide significant eBMD loci, 
we carried out approximate conditional and joint genome-wide association  
analysis using the software package GCTA51. SNPs with high collinearity (mul-
tiple regression R2 > 0.9) were ignored, and those situated more than 20 Mb 
away were assumed to be in complete linkage equilibrium. A reference sample 
of 15,000 unrelated (pairwise relatedness < 0.025) individuals of white British 
origin randomly selected from UK Biobank was used to model patterns of LD 
between variants. The reference genotyping data set consisted of the same  
17 million variants assessed in our GWAS, but with an additional quality 
control step to exclude SNPs that deviated from Hardy–Weinberg equilibrium  
(1 × 10−6). Conditionally independent variants that reached GWAS signifi-
cance were annotated to the physically closest gene with bedtools52 v2.26.0 
and the Hg19 Gene range list available online (see “URLs”).

Estimation of variance explained by significant variants and SNP herit-
ability. We estimated the proportion of phenotypic variance tagged by all SNPs 
on the genotyping array (i.e., the SNP heritability) with BOLT-REML53. To 
calculate the variance explained by all genome-wide significant SNPs, we first 
used the method of Bigdeli et al.54 to shrink the effect sizes of SNPs likely to 
suffer from ‘winner’s curse’. Briefly, the method works by shrinking the effect 
sizes of SNPs that just reach significance while having a negligible effect on 
SNPs that are more robustly significant (and consequently more accurately and 
precisely estimated). After calculating the corrected effect sizes, we removed 
the combined effect of the SNPs on the individual’s eBMD and recalculated the 
total expected variance in BOLT-LMM. The difference between this estimate 
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and the total expected variance calculated on the original data without the SNP 
correction was an estimate of the variance explained by all SNPs.

Linkage disequilibrium score regression. To estimate the amount of genomic 
inflation in the data due to residual population stratification, cryptic related-
ness and other latent sources of bias, we used LD score regression15. LD scores 
were calculated for all high-quality SNPs (i.e., INFO score > 0.9 and MAF  
> 0.1%) from a data set consisting of 15,000 unrelated individuals from the 
UK Biobank. To estimate the genetic correlation between eBMD and other 
complex traits and diseases, including those related to osteoporosis, we used 
a relatively new method based on LD score regression as implemented in 
the online web utility LDHub26,27. This method uses the cross-products of  
summary test statistics from two GWASs and regresses them against a measure 
of how much variation each SNP tags (its LD score). Variants with high LD 
scores are more likely to contain more true signals and thus provide a greater 
chance of overlap with genuine signals between GWASs. The LD score regres-
sion method uses summary statistics from the GWAS meta-analysis of eBMD 
and the other traits of interest, calculates the cross-product of test statistics at 
each SNP, and then regresses the cross-product on the LD score. The slope of 
the regression is a function of the genetic covariance between traits: 

E z z
N N

M
l

N
N Nj j

g
j

S( )1 2
1 2

1 2
= +

r r

where Ni is the sample size for study i, ρg is the genetic covariance, M is the 
number of SNPs in the reference panel with MAFs between 5% and 50%, lj 
is the LD score for SNP j, Ns quantifies the number of individuals that over-
lap both studies, and ρ is the phenotypic correlation among the Ns overlap-
ping samples. Thus, if there is sample overlap (or cryptic relatedness between 
samples), it will affect only the intercept from the regression (i.e., the term 
rN N Ns / 1 2 ) and not the slope, and hence estimates of the genetic covariance  

will not be biased by sample overlap. Likewise, population stratifica-
tion will affect the intercept but will have a minimal effect on the slope  
(i.e., intuitively, as population stratification does not correlate with LD between 
nearby markers).

Gene prioritization and pathway analysis. To establish functional connections, 
we conducted three different analyses implemented in the DEPICT v1 tool34. 
First, to prioritize genes with relevant biological roles in the eBMD-associated 
loci, we tested functional similarities among genes from different associated 
regions where genes with high functional similarity across regions obtained 
lower prioritization P values. Second, we analyzed expression enrichment across 
particular tissues or cell types by testing whether genes in the associated eBMD 
loci had high expression in any of the 209 MeSH annotations, using data from 
37,427 expression arrays. Third, we performed a gene set enrichment analysis 
to test whether the genes in the associated eBMD loci were enriched in recon-
stituted gene sets. The 10,968 gene sets tested were generated from diverse 
databases, including Gene Ontology, KEGG, REACTOME, the InWeb data-
base (high-confidence protein–protein interaction), and the Mouse Genetics 
Initiative (phenotype–genotype relationships). In all three analyses we used the 
FDR to adjust for multiple testing; significance was defined at FDR = 5%.

The DEPICT analyses were based on independent lead SNPs (r2 < 0.1; 
European populations, 1000 Genomes reference panel) with P values below 
the genome-wide significance threshold (P < 6.64 × 10−9). Because many of 
the gene sets tested came from different repositories, they overlapped; hence 
significantly enriched gene sets were further grouped into ‘meta gene sets’ 
through similarity clustering, as previously described34. The visualization of 
these meta gene-sets was performed in Cytoscape55, filtering at FDR < 1%.

We also compared the DEPICT gene set enrichment results to analyses with 
the MAGENTA software56. Briefly, MAGENTA maps each gene in the genome 
to a single index SNP with the lowest P value within a 110-kb upstream and 
40-kb downstream window (excluding genes in the HLA region owing to 
complex patterns of LD). This P value is then corrected for confounding factors  
(SNP density, gene size, etc.) in a linear regression model, and each gene is 
ranked by its adjusted gene score. The observed number of gene scores in a 
given pathway, with a ranked score above a specified threshold (i.e., 95th and 
75th percentiles of all gene scores), is then calculated. This observed statistic 

is then compared to 1,000,000 randomly permuted pathways of identical size. 
This generates an empirical gene set enrichment analysis P value for each gene 
set. A gene set was declared significant when an individual pathway reached 
FDR < 0.05 in either analysis. We tested 3,217 prespecified gene sets from 
the Gene Ontology, Ingenuity, KEGG, Protein Analysis through Evolutionary 
Relationships (PANTHER), BioCarta and Reactome databases.

Prioritizing candidate genes and possible causal variants at each eBMD 
locus. We combined a number of approaches to identify possible causal SNPs 
at each eBMD signal (defined here as all SNPs within 500 kb of a conditionally  
independent lead SNP that attained genome-wide significance). First, we 
used the Variant Effect Predictor (VEP)30 to annotate all SNPs within a locus 
(defined as ±500 kb from a conditionally independent lead SNP) for deleterious 
coding variation annotation if they were significantly associated with eBMD 
(P < 6.6 × 10−9). Deleterious SNPs were classified as such if they had one of 
the following sequence ontology terms: frameshift_variant, inframe_deletion, 
inframe_insertion, initator_codon_variant, missense_variant, splice_acceptor_ 
variant, splice_donor_variant, stop_gained, or stop_lost.

Next, using FINEMAP57, we identified 305 autosomal lead SNPs and  
further defined sets of plausible causal SNPs within each locus. For each locus, 
FINEMAP implements a shotgun stochastic search algorithm to test multi-
ple causal configurations of SNPs, calculating within a Bayesian framework 
the posterior probabilities of each configuration to identify the number of 
likely causal SNPs. We note that this approach assumes that the true causal  
variants have been included in the analysis and have been well imputed. We 
also emphasize that approaches such as this that are based solely on association 
test statistics and LD are unlikely to be definitive with respect to the identifica-
tion of causal variants/genes. Thus, we regard these fine-mapping analyses as 
one of several approaches that can be used to implicate specific variants/genes 
in osteoporosis etiology. When the same variant/gene is implicated by multiple 
independent approaches (for example, mouse knockout, human knockout, 
gene expression and eQTL studies), there is greater confidence of the identity 
of the gene/variant(s) underlying the statistical association.

For a given number of plausible causal SNPs, FINEMAP will calculate for 
each SNP the Bayes factor, which quantifies the evidence that the particular 
SNP is causal. We retained only SNPs with Bayes factors greater than 100, 
or log10 Bayes factors greater than 2, as our plausible causal SNPs for each 
locus.

We then annotated each set of plausible causal SNPs for overlap with 
DHSs, using a master list derived from 115 cell types4. DHSs are focal sites 
of open chromatin comprising the collective transcription factor binding 
sites in a given cell type. We further annotated each SNP inhabiting a DHS 
with Contextual Analysis of Transcription Factor Occupancy (CATO) scores. 
CATO, previously described by Maurano et al.4, scores the likelihood that a 
variant will cause allelic imbalance of a DHS by modeling both local sequence 
context and direct effects on the transcription factor recognition sequences 
for 44 transcription factor motif families. CATO scores range between 0 and 
1, and we considered SNPs with CATO scores greater than 0.1 as having very 
strong functional evidence (corresponding to a 51% positive predictive rate 
in the initial training set4).

Genetically modified animals used for functional validation. The IMPC 
(“URLs”)58 and the International Knockout Mouse Consortium (IKMC) are 
generating null alleles for all protein-coding genes in mice on a C57BL/6 
genetic background59. These mice are phenotyped through a broad-based 
phenotyping screen60. This approach can be used for functional investigation  
of candidate genes identified by a GWAS of human disease or traits, and 
studies have already ascribed novel functions for poorly annotated or previ-
ously unpublished genes. The Origins of Bone and Cartilage Disease (OBCD) 
study (“URLs”) is undertaking a validated multiparameter skeletal pheno-
type screen36 of mutant mouse lines generated by the Wellcome Trust Sanger 
Institute as part of the IKMC and IMPC effort.

OBCD methods. Samples from 16-week-old female wild-type and knock-
out mice were stored in 70% ethanol, anonymized and randomly assigned to 
batches for rapid-throughput analysis in an unselected fashion. The relative 
bone mineral content (BMC) and length of the femur and caudal vertebrae 
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were determined at 10-µm pixel resolution by digital X-ray microradiography  
(Faxitron MX20). Micro-CT (Scanco uCT50, 70 kV, 200 µA, 0.5-mm aluminum  
filter) was used to determine cortical bone parameters (thickness, BMD,  
medullary diameter) at 10-µm voxel resolution in a 1.5-mm region centered  
on the mid-shaft region 56% of the way along the length of the femur  
distal to the femoral head, and trabecular parameters (bone volume, trabecular  
number, thickness, spacing) at 5-µm voxel resolution in a 1-mm region begin-
ning 100 µm proximal to the distal growth plate. Biomechanical variables of 
bone strength and toughness (yield load, maximum load, fracture load, the 
percentage of energy dissipated before fracture) were derived from destruc-
tive three-point bend testing of the femur and compression testing of caudal 
vertebrae 6 and 7 (Instron 5543 load frame, 100-N load cell)36. Overall, 19 
skeletal parameters were reported for each individual mouse studied and com-
pared to reference data obtained from >250 16-week-old wild-type C57BL/6 
female mice. Coefficients of variation for each skeletal parameter were as fol-
lows: femur BMC (2.0%) and length (2.1%); vertebra BMC (2.1%) and length 
(2.3%); trabecular bone volume/tissue volume (18.5%), trabecular number 
(7.3%), trabecular thickness (7.9%) and trabecular spacing (8.3%); cortical 
bone thickness (4.3%), internal diameter (6.0%) and BMD (4.0%); femur yield 
load (13.2%), maximum load (10.0%), fracture load (29.0%), stiffness (13.7%) 
and energy dissipated before fracture (26.7%); and vertebra yield load (13.0%), 
maximum load (10.3%) and stiffness (13.3%).

In Supplementary Table 15, we highlight knockout mice with pheno-
types greater than 2 s.d. away from the mean of wild-type mice. We generated  
P values for the reported Gpc6−/− mouse phenotypes through permutation. 
To do so we first identified the least extreme phenotype for the Gpc6−/− mice 
tested. We then permuted the knockout labels 100,000 times to observe the 
number of times we observed two knockout animals with both phenotypes 
as extreme as the least extreme Gpc6−/− mouse phenotype. The P value was 
then calculated as the number of extreme permutations divided by 100,000. 
All mouse studies were undertaken by the Wellcome Trust Sanger Institute 
Mouse Genetics Project as part of the IKMC and licensed by the UK Home 
Office in accordance with the Animals (Scientific Procedures) Act 1986 and 
the recommendations of the Weatherall report.

Gene expression in primary human and mouse osteoblasts. To study human 
osteoblasts, we undertook cis-eQTL analyses of plausible causal regulatory 
SNPs in 95 primary human osteoblasts as previously described by Grundberg 
et al.33, performed with an updated imputation panel, the combined UK10K 
and 1000 Genomes phase 1 v3 reference panel61. We used an α level of 0.05 to 
identify possible gene targets of plausible causal SNPs.

We investigated the possibility that heel eBMD associations and cis-eQTL 
effects in osteoblasts may represent different signals (as opposed to a causal 
effect of osteoblast expression on eBMD) by performing two sample sum-
mary Mendelian randomization analyses on osteoblast eQTL and heel eBMD 
GWAS results62,63. A HEIDI (heterogeneity in dependent instruments) test 
was used to identify situations in which the lead cis-eQTL was likely to be in 
LD with two distinct causal variants (one affecting gene expression, and the 
other affecting eBMD variation), as opposed to expression of the relevant gene 
mediating the relationship between the SNP and eBMD. Intuitively the test 
works by comparing estimates of the putative causal effect of gene expression 
on eBMD obtained by Mendelian randomization analysis of each variant while 
taking into account dependencies between the SNPs. Under a causal model, 
different SNPs should produce the same causal estimate (subject to sampling 
error), whereas under a model of linkage (i.e., two separate signals in the 
region, one affecting gene expression in osteoblasts and the other affecting  
eBMD), the estimates from the Mendelian randomization analysis may sig-
nificantly differ. In the context of our study, a significant HEIDI test sug-
gested that expression of the relevant gene in osteoblasts does not mediate the 
SNP–eBMD association. We therefore performed HEIDI tests for all the probes 
listed in Supplementary Table 10 that were implicated in our gene expression  
analyses. To prevent weak SNP instruments from potentially affecting our 
results, we included only SNPs that exhibited strong evidence of association 
(i.e., F statistic > 10) in the eQTL analysis63.

Gene expression profiles of candidate genes were examined in primary 
mouse osteoblasts undergoing differentiation. These data have been described 
in detail previously64 and are publicly available from the Gene Expression 

Omnibus (GSE54461). To study mouse osteoblasts, we obtained pre-osteoblast- 
like cells from calvaria collected from neonatal C57BL/6J mice carrying a 
transgene expressing cyan florescent protein (CFP) under the control of the 
Col 3.6-Kb promoter. The cells were placed into culture for 4 d in growth 
media, and cells that did not express CFP at the end of that culture period 
were removed by FACS. The remaining pre-osteoblast cells were re-plated 
and exposed to an osteoblast-differentiation cocktail, and RNA was collected 
every 2 d from day 2 to 18 d post-differentiation. We used RNA-seq to evaluate  
the transcriptome at each time point with an Illumina HiSeq 2000. Three 
technical replicates per samples were sequenced. The alignments for abun-
dance estimation of transcripts were created with Bowtie version 0.12.9, using 
the NCBIM37 reference genome. We calculated the expression level per gene 
with RSEM version 1.2.0 with parameters of --fragment-length-mean 280 and  
--fragment-length-sd 50, and the expression level for each sample was normal-
ized relative to the per-sample upper quartile.

Gene expression in mouse osteocytes. We determined osteocyte expression 
by analyzing whole-transcriptome sequences derived from four different 
mouse bones: the tibia, femur, humerus and calvaria (marrow removed; n 
= 8 per bone). A threshold of expression was determined on the basis of the 
distribution of normalized gene expression for each sample, using a modi-
fied statistical approach from Hart et al.64. ‘Expressed’ genes were above this 
threshold for eight of eight replicates in any bone type. We determined the 
specificity of these genes’ expression in the skeleton by comparing transcrip-
tome-sequencing data from bone samples with osteocytes isolated to data from 
bones with the marrow left intact (n = 5 per group) (S.E.Y., J.H.D.B., G.R.W., 
and P.I.C., manuscript in preparation).

Gene expression in mouse osteoclasts. Expression of genes in mouse osteo-
clasts was determined from publically available data obtained via RNA-seq of 
bone-marrow-derived osteoclasts obtained from 6–8-week-old C57BL/6 mice 
(GEO accession GSM1873361).

Data availability. The human genotype and phenotype data on which the 
results of this study are based are available upon application from UK Biobank 
(“URLs”). GWAS summary statistics from this study are available via the 
GEFOS website (“URLs”). No new data sets or related accession codes were 
generated as part of this study. Mouse phenotype data are available online from 
the IMPC (“URLs”) and OBCD (“URLs”).

A Life Sciences Reporting Summary for this paper is available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Skeletal phenotyping of knockout mice. 
The reference ranges for each skeletal parameter were derived from >250 female 
16 week old C57BL/6 wild-type mice.  Using these data together with coefficients 
of variation for each test, power calculations indicate an 80% power to detect 
outlier phenotype of greater or equal to 2SD with a sample size of n=2

2.   Data exclusions

Describe any data exclusions. If skeletal samples were damaged or incomplete on receipt they were excluded 
from the analysis. 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No replication of knockout  mouse lines.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not applicable

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

All skeletal samples from knockout mice generated by the Wellcome Trust Sanger 
Institute were bar coded. Samples were sent to Imperial College in anonymized 
batches and all skeletal phenotyping and analysis was performed blind to 
genotype.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

NA

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All knockout lines and primary phenotype data are available on line at the IMPC 
http://www.mousephenotype.org/ and OBCD http://www.boneandcartilage.com/

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

NA

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. NA

b.  Describe the method of cell line authentication used. NA

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

NA

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

NA
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Knockout mice were generated at the Wellcome Trust Sanger Institute for the 
International Mouse Phenotyping Consortium.  Skeletal samples from female 16 
week old C57BL/6 wild type and mutant mice in an identical genetic background 
were analysed.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

NA
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