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Schizophrenia (MIM181500) is a chronic, severe and disabling brain 
disorder that affects approximately 1% of the worldwide population 
and imposes an enormous burden on society1,2. It is a highly herit-
able psychiatric disorder (with an estimated heritability of 70–85%3) 
with a substantial polygenic component including thousands of 
common alleles with small effects that contribute to disease risk4. 
Approximately 33–50% of the genetic risk of schizophrenia has been 
captured by common alleles in GWAS5. The evidence to date sug-
gests that many risk alleles for common schizophrenia-associated 
genetic loci may be shared across ancestry groups, but others may 
be population specific because of differing causal variants or linkage 
disequilibrium (LD) patterns in populations of different ancestries6. 
Previous GWAS have identified more than 110 schizophrenia- 
associated loci and have substantially advanced understanding of  

this condition5,7–13. In particular, the most recent and largest schiz-
ophrenia GWAS (from the Schizophrenia Working group of the 
Psychiatric Genomics Consortium, PGC2) which, with discovery 
and extension, included a total of 36,989 schizophrenia cases and 
113,075 controls, has identified 128 independent genome-wide  
significant associations spanning 108 loci7.

However, a large proportion of the genetic factors underlying schiz-
ophrenia remain unknown. Most of the heritability of schizophrenia 
is not yet attributable to specific loci; only 3.5% of the liability can 
be explained by GWS loci7. Moreover, to date, most GWAS partici-
pants with schizophrenia are of European descent. Thus, although the 
PGC2 report includes samples from East Asia, the proportions are 
small (approximately 5% and 3% for cases and controls, respectively). 
Large-scale GWAS including individuals of non-European descent 
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are essential for extending understanding of the genetic architecture 
of schizophrenia in the human population as a whole, for testing the 
generalizability of the results from European populations regarding 
this global disorder6 and for identifying population-specific risk fac-
tors, should they exist.

To identify additional schizophrenia susceptibility loci and to gain 
a better understanding of the genes and biological pathways impli-
cated in schizophrenia, we performed a GWAS including 7,699 cases 
and 18,327 controls of Chinese ancestry, as well as a transancestry 
GWAS meta-analysis with PGC2 (43,175 cases and 65,166 controls in 
total). The candidate loci found in each analysis were then studied in 
an independent replication sample of 4,384 schizophrenia cases and 
5,770 controls of Chinese ancestry.

RESULTS
Results of GWAS screening in the Chinese population
We first conducted a GWAS for schizophrenia in the Chinese popula-
tion (in comparison to the discovery phase of our prior GWAS report10, 
the number of cases was doubled, and the number of controls was 
tripled). After systematic quality control (QC) analysis and imputa-
tion to the 1000 Genomes Project data (Online Methods), we assessed 
the associations of 5,107,227 genetic variants in 7,699 schizophrenia 
cases and 18,327 controls (Supplementary Table 1). The primary 
GWAS comprised three samples that were genotyped on different plat-
forms: 4,175 cases and 10,470 controls genotyped with the Affymetrix 
Genome-Wide Human SNP Array 6.0 (SNP6.0); 2,472 cases and 5,928 
controls genotyped with the Affymetrix Axiom Genome-Wide CHB1 
Array Plate (CHB1); and 1,052 cases and 1,929 controls genotyped with 
CHB1 or the Illumina 1M Array (1M). Principal component analysis 
(PCA) was used to assess population substructure (Supplementary 
Fig. 1 and Online Methods). For each subset, association testing was 
conducted with logistic regression including ancestry principal com-
ponents (PCs) as covariates to adjust for population stratification. The 
results were combined with inverse-variance-weighted meta-analysis 
(based on a fixed-effects model). The genomic inflation factor (λGC) 
was 1.22, and the λ1,000 (a scaled value to 1,000 cases and 1,000 controls) 
was 1.02. We conducted LD-score regression analysis14 to distinguish 
the relative contributions of confounding bias and polygenicity. The 
LD-score regression intercept was 1.07 (s.e. = 0.01), and the slope was 
greater than zero, thus suggesting that most of the increase in the mean 
χ2 statistic was from polygenic architecture rather than population 
stratification, in agreement with the previously documented polygenic 
nature of schizophrenia inheritance7,15. However, given this modest  

elevation in the intercept, we further corrected the meta-analysis 
statistics for residual test-statistic inflation14,16 (Online Methods). 
Quantile–quantile and Manhattan plots are shown in Supplementary 
Figures 2 and 3. In this analysis (Fig. 1), we observed 66 GWS variants 
in a region previously reported to be associated with schizophrenia 
(2p16.1)11,12.

The proportion of variance in susceptibility to schizophrenia 
explained by genome-wide SNP genotypes for individuals of Han 
Chinese ancestry (Online Methods) was estimated to be 31.5%  
(s.e. = 1.9%), assuming a population risk of 0.01. This result was simi-
lar to the corresponding estimate for European samples (33%)5, thus 
providing further evidence of the highly polygenic nature of schizo-
phrenia beyond that in previous studies7,15.

Results of the Chinese and PGC2 genome-wide meta-analysis
We performed a meta-analysis of the Chinese GWAS samples (7,699 
schizophrenia cases and 18,327 controls) (denoted Chinese GWAS) and 
PGC2 GWAS samples (35,476 schizophrenia cases and 46,839 controls) 
to explore the effects of power and heterogeneity. A total of 4,303,606 
genetic variants were common to the two data sets and were retained in 
the combined analysis. For combining the data, we used a fixed-effects 
model, but for variants with pronounced heterogeneity (I2 >75%)17, we 
used a random-effects model to allow for the possibility that the presence 
of heterogeneity might result in test-statistic inflation. In our final result, 
the λGC was 1.50, and the λ1,000 was less than 1.01. The deviation of the 
observed statistics from the null hypothesis was less than that expected 
under a polygenic model for schizophrenia7,18. Quantile–quantile and 
Manhattan plots are shown in Supplementary Figures 4 and 5. In the 
combined analysis, we detected 5,618 SNPs surpassing the threshold for 
GWS for association with schizophrenia. These SNPs mapped to 104 
physically distinct associated regions, as defined by clumping the vari-
ants by using r2 >0.1 and merging the LD-independent variants within 
250 kb (Fig. 1 and Supplementary Table 2).

Results of the combined analysis with replication samples
We then obtained association results from an independent 
Chinese cohort of 4,384 schizophrenia cases and 5,770 controls19 
(Supplementary Table 1) for LD-independent SNPs with P <1 × 10−5 
in the Chinese-only GWAS meta-analysis or with P <5 × 10−7 in the 
Chinese and PGC2 GWAS meta-analysis (Online Methods).

The combined analysis of the Chinese GWAS and replication 
samples resulted in a data set of 12,083 cases and 24,097 controls. 
Seven loci were GWS for association with schizophrenia in the 
meta-analysis of individuals of Chinese ancestry. Of those loci, three 
have been previously reported to be associated with schizophrenia 
(Supplementary Fig. 6), and the other four are novel: rs2073499 at 
3p21.31 (odds ratio (OR) = 0.899, fixed-effects meta-analysis P = 2.61 
× 10−8), rs7757969 at 6q21 (OR = 1.110, P = 4.82 × 10−8), rs4479915 
at 6q27 (OR = 0.876, P = 4.82 × 10−9) and rs11534004 at 7q31.1 
(OR = 0.890, P = 1.71 × 10−8) (Fig. 2). Four additional loci were 
significant at P <1 × 10−5 in the Chinese GWAS meta-analysis and 
showed nominal evidence of replication (P <0.05) but were not GWS 
in the combined analysis. Results for all tested SNPs are presented  
in Supplementary Table 3.

The combined results of the transancestry meta-analysis (43,175 
schizophrenia cases and 65,166 controls) and replication samples 
(4,384 schizophrenia cases and 5,770 controls) identified a total of 109 
GWS loci (Supplementary Table 4 and Supplementary Data 1). Of 
the 109 loci, 83 had previously been reported, and 26 loci were novel.

Together, the above results identified 124 SNPs that were GWS 
and were associated with schizophrenia. The SNPs mapped to 113 
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Figure 1  Comparison of Manhattan plots for the Chinese and 
transancestry analyses. Manhattan plot of results from the Chinese-only 
(7,699 schizophrenia cases and 18,327 controls) and PGC2-plus-Chinese 
transancestry (43,175 cases and 65,166 controls) analyses. −log10P 
values for PGC2 plus Chinese transancestry analyses and log10P values for 
Chinese-only analyses are shown.
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physically distinct loci: four loci were GWS only in the Chinese-only 
analysis, 106 were GWS only in the transancestry analysis, and three 
were present in both analyses (Supplementary Table 5). Of the 113 
associated loci, 30 have not been previously reported (Table 1), four 
of which were GWS in the Chinese sample but not the transancestry 
analysis. In addition, at three of the previously reported loci, the GWS 
SNPs in the present study were in low LD with the previously identi-
fied GWS SNPs (r2 <0.1 in both the European and Chinese popula-
tions), thus possibly suggesting independent signals in these regions 
(Supplementary Table 5).

Similarities and differences across ancestries
Of the 108 loci (128 index SNPs) identified in the PGC2 report7, 
we were able to investigate 103 loci (117 index SNPs or their prox-
ies) that were in common between PGC2 and Chinese data sets 
(Supplementary Table 6). Of these, the PGC2-associated risk alleles 
were overrepresented in Chinese cases at 109 SNPs (from 98 loci), and 
at 58 SNPs (from 56 loci) this overrepresentation achieved nominal 
significance (P <0.05). In transancestry meta-analyses, 85 SNPs at 78 
loci continued to be GWS. It is known that the random-effects model 
might be overly conservative20, and therefore on an exploratory basis, 
we performed a fixed-effects model meta-analysis for all these SNPs 
regardless of the existence of heterogeneity. Under the fixed-effects 
model, an additional eight SNPs (93 in total) at eight loci (86 loci in 

total) were GWS in the combined analysis. However, the results for the 
GWS SNPs indicated by fixed-effects meta-analysis and with evidence 
of heterogeneity should be interpreted with caution. Nevertheless, 
this finding suggested that the schizophrenia susceptibility loci iden-
tified in European samples were applicable to the Chinese sample. 
Moreover, the transancestry meta-analyses also confirmed two GWS 
loci (8p12 and 7q11.22) identified in our previous reports10,21.

Regarding the seven GWS index SNPs analyzed in the Chinese-
only analysis in this study, three replicated at P <0.05 in the PGC2 
data set but showed significant heterogeneity (Higgins and Thompson  
I2 index >75%) across populations and were not GWS in transances-
try meta-analyses. In addition, one of the index SNPs (rs78681500) 
was absent in the PGC2 data set, owing to its rarity (minor allele 
frequency (MAF)<1%). Of the 117 GWS index SNPs identified in the 
transancestry analysis, all showed the same direction of effect across 
ancestries, and the I2 was less than 75%.

We next assessed the genome-wide congruence of risk alleles across 
the PGC2 and Chinese GWAS data sets for LD-clumped independent 
SNPs22. For the schizophrenia-associated SNPs (P ≤0.0001) identified 
in the Chinese data set, we observed a highly significant excess of 
directional concordance in the PGC2 data set (67.7%, binomial test 
P = 3.06 × 10−7). For the SNPs demonstrating weaker evidence of an 
association with schizophrenia (0.0001 < P ≤ 0.05), we also observed 
an excess of consistency in the direction of effect. In contrast, for the 
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Figure 2  Regional plots for novel GWS loci in Chinese people. (a) rs2073499 at 3p21.31. (b) rs7757969 at 6q21. (c) rs4479915 at 6q27.  
(d) rs11534004 at 7q31.1. Meta, meta-analysis; chr, chromosome. −log10P values are shown for SNPs for the region 500 kb on either side of the 
marker SNPs. The index SNP is shown in purple, and the r2 values of the other SNPs are indicated by color. The r2 values were established on the basis 
of 1000 Genomes data (November 2014). P values for the GWAS stage are shown with circles, and P values for the meta-analysis combining all data 
sets are shown with text. The genes within the relevant regions are annotated and shown as arrows.
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SNPs with no evidence of association (P >0.5), there was no enrich-
ment in coincident risk alleles across ancestry groups (Supplementary 
Table 7). We repeated this analysis by identifying the schizophrenia 
risk alleles at SNPs in the PGC2 data set and assessing concordance in 
the direction of the effect in the Chinese data set, and we found a very 
similar pattern (Supplementary Table 7). We concluded that there 
was a significant excess in directional concordance across ancestry 
groups for the SNPs with evidence of a schizophrenia association.

Potential biological mechanisms of the associated loci
To determine the likely causal genes of the schizophrenia-associated 
genetic loci, we considered each of the following to represent evi-
dence supporting a gene’s causality within a locus (Online Methods):  
(i) being the gene nearest the index SNP23; (ii) containing a mis-
sense mutation and being in high LD (r2 >0.8) with the GWS SNPs23;  
(iii) showing prioritization with DEPICT24; (iv) being cis-acting expres-
sion quantitative trait loci (cis-eQTL) genes for the index SNPs23,25–28; 
or (v) showing prioritization in summary-data-based Mendelian ran-
domization (SMR) analysis29. Using these criteria, we prioritized 247 
genes from the schizophrenia risk loci and found that 85 had more 
than one line of supporting evidence (defined as ‘prioritized candidate 
genes’) (Supplementary Table 8). We first focused on those genes 
in the newly identified loci (Table 1). As expected, some of those 
genes were plausibly biologically relevant. The index SNP rs2247870  
(NP_115495.3, p.Val5876Ile) at 5q14.3 (GWS locus no. 37) is a mis-
sense variant in ADGRV1 (also known as GPR98), which encodes 

a member of the G-protein-coupled-receptor superfamily and is 
expressed in the central nervous system. Multiple lines of evidence 
suggest that G-protein-coupled receptors play critical roles in major 
psychiatric disorders (including schizophrenia) and their treatment30. 
A variant in GPR98 has been found to be associated with the response 
to antipsychotic treatment31. FYN (GWS locus no. 49) encodes a 
membrane-associated tyrosine kinase. FYN plays a critical role in 
neuronal apoptosis and is involved in brain development and synaptic 
transmission32,33. Lower expression of FYN protein has been observed 
in the platelets of schizophrenic patients compared with controls34. 
The results from whole-blood eQTL analysis27 indicated that the 
schizophrenia risk allele identified in this study (rs7757969[C]) was 
correlated with a lower expression of FYN (P = 1.71 × 10−7, with a 
false discovery rate <0.05 and in the credible interval covered by the 
99% credible set), in agreement with previous findings. The estimate 
(bXY) for the effect of gene expression on schizophrenia risk under 
the SMR analysis was −0.70 (PSMR = 7.55 × 10−4). MAGI2 (GWS locus 
no. 54) encodes a synaptic scaffolding molecule that is essential for 
the development and maintenance of synapses35. Synaptic dysfunc-
tion has been suggested to play an important role in schizophrenia36. 
Common variants in MAGI2 have been found to be associated with 
cognitive impairment in people with schizophrenia37. Although it 
is currently difficult to pinpoint a causal gene that is responsible for 
a given locus, the prioritized genes may be considered as favorable 
candidates for further research to unravel the plausible biological 
mechanisms underlying the associations.

Table 1  Novel schizophrenia GWS loci and notable genes
Chromosome SNP Position P value Notable gene(s)a

2 rs999494 73157395 2.40 × 10−10 EMX1 (N, D)

2 rs62152284 104984387 5.86 × 10−9 LOC100287010 (N)

2 rs6430491 134840967 9.55 × 10−10 MIR3679 (N)

3 rs10510653 32058559 2.54 × 10−8 GPD1L (Q), ZNF860 (N)

3 rs2073499 50374293 2.61 × 10−8 HYAL3 (Q), RASSF1 (N)

4 rs11722779 103827488 3.40 × 10−8 BDH2 (Q), CENPE (Q), CISD2 (Q), KRT8P46 (Q), LRRC37A15P (Q), NHEDC1 (N), SLC9B1 (Q)

5 rs10940346 49806042 1.11 × 10−8 EMB (N, Q)

5 rs2247870 90151589 2.54 × 10−8 ADGRV1 (N, M, D)

5 rs2764766 127213625 1.94 × 10−8 LINC01184 (N)

6 rs6903570 64866857 2.70 × 10−8 EYS (N), PHF3 (D), PTP4A1 (D)

6 rs160593 105466332 7.69 × 10−9 HACE1 (Q), LIN28B (N, Q)

6 rs7757969 112132032 4.82 × 10−8 FYN (N, Q)

6 rs4479915 165075601 4.82 × 10−9 C6ORF118 (N)

7 rs323167 78336677 4.47 × 10−8 MAGI2 (N, D)

7 rs11534004 113467444 1.71 × 10−8 PPP1R3A (N, M)

8 rs17687067 17036201 3.39 × 10−12 MTMR7 (Q), VPS37A (Q), ZDHHC2 (N, D, Q)

8 rs73219805 26272768 1.94 × 10−11 BNIP3L (N, D), PPP2R2A (D), SDAD1P1 (Q)

10 rs111364339 64857872 5.37 × 10−9 JMJD1C (D), NRBF2 (N)

12 rs28607014 117708611 1.75 × 10−8 NOS1 (N)

14 rs10148671 29469373 4.46 × 10−8 LINC01551 (N)

14 rs2383377 33257914 2.36 × 10−8 AKAP6 (N, D), NPAS3 (D)

14 rs8012642 84669481 4.66 × 10−8 FLRT2 (N)

15 rs783540 83254708 3.05 × 10−8 AP3B2 (D, Q), CPEB1 (N, Q)

15 rs758129 89900887 2.87 × 10−8 MIR9-3 (N), POLG (D), RLBP1 (Q)

16 rs6500596 4470027 5.24 × 10−9 CDIP1 (Q), CORO7 (N, D, Q), DNAJA3 (M, Q), NMRAL1 (Q, S)

16 rs8058130 64371163 4.77 × 10−8 CDH11 (N)

17 rs56007784 1290950 1.16 × 10−9 YWHAE (N)

17 rs72843506 19946287 3.73 × 10−8 AKAP10 (D), CCDC144CP (Q), SPECC1 (N, D, Q), USP32P3 (Q)

17 rs35065479 55736735 2.31 × 10−8 TSPOAP1-AS1 (Q), MSI2 (N)

18 rs56775891 77575613 1.85 × 10−8 KCNG2 (N, Q, S)

18 rs28735056 77622879 4.60 × 10−10 KCNG2 (N)

Genomic position is based on the UCSC hg19/NCBI build 37. aNotable genes are indicated as follows: gene nearest to the index SNP (N); schizophrenia-associated variant in strong  
LD (r2 ≥ 0.8) with a missense variant in the indicated gene (M); gene prioritized by DEPICT (D); gene with mRNA levels in cis genetic linkage with the index SNPs (Q); and gene prioritized by 
SMR analysis (S).

https://www.ncbi.nlm.nih.gov/protein/113722120
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Improved fine-mapping resolution at the associated loci
We sought to refine the localization of likely functional variants in 
the schizophrenia-associated loci by using a previously published 
approach38,39. We derived Bayesian credibility sets in different data 
sets and evaluated the evidence for improved fine-mapping resolution 
through transancestry meta-analysis. For the 99% credible SNP sets, 
the transancestry data set produced the smallest spanned regions for 
~80% (n = 88) of the tested loci (Supplementary Table 9), including 
11 loci with a spanned region less than 30 kb. At 53 of the 88 loci, 
the number of genes that overlapped with the transancestry interval 
defined by a credible set was two or fewer. Of those overlapped genes 
mapping to the credible intervals in the 53 loci, 49.1% was were in the 
list of prioritized candidate genes, whereas the proportion was 12.4% 
and 5.1% for the analysis of PGC2 and Chinese data, respectively.

We also conducted fine-mapping analysis with PAINTOR by lev-
eraging the functional annotation data and LD information in multi-
ancestry cohorts40–42. We integrated the primary functional categories 
(coding, UTR, promoter, DNase-hypersensitivity site, intronic and 
intergenic) proposed by Gusev et al.41. A total of 62 variants achieved 
a posterior probability of >0.80 in at least one of the single-population 
and transancestry analyses (Supplementary Table 10). Of them, 38 
variants had a higher posterior probability in the transethnic analysis 
than in the single-population analyses, including an additional 16 vari-
ants that achieved a transancestry posterior probability of >0.80 but 
had a posterior probability <0.80 in the single-population analyses. 
Eleven (68.8%) of these 16 variants had at least one hit in the selected 
eQTL studies in HaploReg v4.1 (ref. 23 and Supplementary Table 11). 
For example, at GWS locus no. 80, rs12541 with a posterior probability 
of 0.926 (Supplementary Fig. 7a) is in the UTR region of ESAM and 
correlated with its expression in whole blood (P = 3.62 × 10−8 and in the 
99% credible-set interval)27. A further example is GWS locus no. 103, 
rs3814883, which had a posterior probability of 0.911 (Supplementary 
Fig. 7b) and is a synonymous variant of TAOK2 and also an eQTL 
SNP for several genes in different tissues23 (Supplementary Table 
12). It might also be correlated with the expression of SEZ6L2 
in the brain cerebellum and frontal cortex (P = 2.37 × 10−8  
and 5.03 × 10−8, respectively)26. TAOK2 has been found to affect basal-
dendrite development in cortical neurons43. SEZ6L2 has been found to 
be a Cathepsin D transport receptor involved in neurite outgrowth44. 
To further explore the regulatory nature in the context of the cell-type-
specific epigenome, we also integrated the reference epigenomes of 
seven highlighted marks for 127 human tissues and cell types produced 
by the Roadmap Epigenomics Project45 (Online Methods). Of the top 
100 enriched cell-type-specific epigenomic annotations for schizo-
phrenia associations in the current and PGC2 analyses7, over 40 were 
related to the brain and nervous system (Supplementary Table 13).  
In the further PAINTOR fine-mapping analyses with the top 100 epi-
genomic annotations, many SNPs had higher posterior probabilities, 
some of which increased to a value >0.80, thus indicating potential 
biologically relevant cell types for these associations (Supplementary 
Table 14). For example, rs6670165, a candidate causal SNP at GWS 
locus no. 7, mapped to enhancers and promoters active in several brain 
regions. The identification of these SNPs suggested an important ben-
efit of the transancestry fine-mapping signal in functional annotation 
data. However, 14 variants had a posterior probability >0.80 in the sin-
gle-population analyses, which decreased to <0.8 in the transancestry 
analysis (Supplementary Table 10).

Biological pathways and gene sets
To identify pathways and gene sets in the transancestry meta-analysis, 
we performed an enrichment analysis with MAGMA46. We identified 

one gene set, ‘regulation of insulin secretion by glucagon-like pep-
tide 1’ (from the Reactome database) that was significantly enriched 
(MAGMA competitive P = 5.14 × 10−7; Fig. 3). The MAGMA pathway 
analysis also highlighted several other pathways. Two of the previ-
ously highlighted schizophrenia-associated pathways, ‘postsynaptic 
density’47 and ‘voltage-gated calcium channel complex’7, also ranked 
highly in our analysis, with P values of 9.01 × 10−4 and 1.32 × 10−3, 
respectively (Supplementary Table 15).

Polygenic risk-score profiling
Polygenic scoring analyses have been proposed to predict the case– 
control status in a target data set, on the basis of the results from a 
training GWAS4. To assess the overlap between the common-variant  
signal in the European and Chinese populations and to provide esti-
mates of the proportions of variance additionally explained by the 
Chinese sample, we conducted a polygenic scoring analysis. We ran-
domly selected approximately 1,000 schizophrenia cases and 1,000 
controls from the Chinese sample as the target sample and used four 
training data sets: (i) the PGC2 European-only data set (EUR49);  
(ii) the full PGC2 data set; (iii) the Chinese sample, excluding the 
target sample; and (iv) the Chinese plus PGC2 combined data set 
(Fig. 4). The risk-profile SNPs (P thresholds (PT) = 5 × 10−8, 1 × 10−6, 
0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1) from the European-only 
data set alone explained approximately 1.11% to 2.34% of the vari-
ance in the case–control status of the Chinese sample on the liability 
scale48 (assuming a population risk of 0.01). When the Asian samples 
were included, the PGC2 data set explained approximately 1.52% to 
3.51% of the variance. The Chinese data set alone explained approxi-
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Figure 3  Interaction network of the schizophrenia-associated pathway 
‘glucagon-like peptide-1 regulates insulin secretion’. The network shows 
functional interactions for the genes in the pathway ‘glucagon-like 
peptide-1 regulates insulin secretion’ from the Reactome database. 
Each node represents a gene, and each edge represents a functional 
interaction. The node size corresponds to the gene size. The node color 
corresponds to the significance of the gene on the basis of the MAGMA 
analysis, and the green-to-red gradient corresponds to nonsignificance to 
high significance.
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mately 0.10% to 8.15% of the variance. In almost all situations, the 
combined data set (PGC2 plus Chinese) explained larger proportions 
of the variance (approximately 1.89% to 8.28%). For PT = 5 × 10−8, the 
proportion of the explained variance increased from 1.20% (EUR49), 
1.52% (PGC2) and 0.10% (Chinese) to 1.89% (PGC2 plus Chinese); 
for PT = 0.05, it is increased from 2.34% (EUR49), 3.09% (PGC2) 
and 6.16% (Chinese) to 7.86% (PGC2 plus Chinese). To evaluate the 
increased variance explained by the newly identified GWS loci, we 
performed additional polygenic risk-score profiling trained on the 
full data set (GWAS excluding the target sample and with replication)  
and restricted to the newly identified loci with the Chinese sample 
included. These novel loci explained 1.34% of the variance, 30% of 
which was contributed by the loci from the Chinese-only analysis.

Correlations between two psychiatric disorders in the  
Chinese sample
Strong evidence of a shared genetic etiology between schizophrenia and 
other psychiatric disorders (such as bipolar disorder and major depres-
sive disorder) has been observed in European samples49,50. The degree of 
shared variation across psychiatric disorders in the Chinese population 
has been unclear. We estimated the genetic correlation between schizo-
phrenia and major depressive disorder, two diseases for which Chinese 
GWAS data with large sample sizes are available, by using LD-score 
regression14. We observed a statistically significant genetic correlation 
between schizophrenia and major depressive disorder in the Chinese 
sample (rg = 0.43, s.e. = 0.08, LD-score regression P = 5.87 × 10−8), in 
agreement with findings (rg = ~0.40) in the European samples49.

DISCUSSION
In the large GWAS analysis of schizophrenia in subjects of Chinese 
ancestry, we identified seven GWS loci, four of which were novel. In 
general, alleles identified as being associated at subthreshold levels of 
significance in the Chinese data set were also enriched in schizophrenia 
cases in the GWAS from PGC2, thus supporting the validity of combin-

ing the two data sets. The transancestry meta-analyses of the Chinese 
and PGC2 data identified 109 GWS risk loci, three of which were GWS 
in the Chinese-only analysis. Our analyses confirmed most of the previ-
ously identified schizophrenia loci and identified 30 novel loci.

We observed a significant excess in the directional consistency 
of schizophrenia risk alleles across ancestry groups, even at SNPs 
demonstrating only weak evidence of an association. These findings 
indicated that most schizophrenia risk loci were shared across these 
two ancestral populations, and transancestry meta-analysis provided 
a powerful means for identifying new loci and narrowing the associa-
tion intervals. Polygenic scoring analysis also demonstrated notable 
increases in the explained variance in case–control status (PGC2-
plus-Chinese training to Chinese target compared with PGC2 to 
Chinese target or Chinese training to Chinese target). However, this 
analysis also suggested that variants identified in European samples 
partially explained the genetic variance of schizophrenia in Chinese 
populations. Notably, estimates of the proportion of explained vari-
ance in liability were lower than those in European populations7, 
similarly to previous reports on transethnic analyses4,51. Such lower 
estimates might be a result of differences in the allele frequencies and 
LD patterns between different populations4.

It has been suggested that there are also population-specific risk 
alleles for schizophrenia6 and that, if so, cross-ancestry analyses might 
have less power than that of studies of individuals with a recent shared 
ancestry. We found that some GWS loci in the PGC2 report were 
not GWS in the PGC2-plus-Chinese combined analysis. Moreover, 
most of the GWS SNPs identified in the analysis of Chinese subjects 
showed strong heterogeneity only across ancestries, though three of 
them achieved nominal significance with the same sign in the PGC2 
data set. Another SNP fell within the previous PGC2-identified locus, 
but it was rare (MAF <1%) in European populations. Thus, further 
transancestry fine-mapping, by leveraging the differences in the LD 
structure among diverse populations, may be an efficient approach 
to identify the causal variants underlying such associations and may 
also distinguish population-specific loci. Indeed, we also observed 
considerable improvements in the fine-mapping resolution at several 
susceptibility loci.

Our use of fine-mapping tools and functional annotations to ana-
lyze schizophrenia-associated loci identified numerous candidate 
genes with several lines of supporting evidence, including genes 
that have previously been implicated in schizophrenia (for example, 
FYN and MAGI2) and novel genes (for example, EMX1 and BNIP3L) 
within the novel loci. Moreover, pathway analyses highlighted several 
pathways that contribute to schizophrenia pathogenesis, including 
previously described pathways (the voltage-gated calcium-channel 
pathway and postsynaptic density) and a new pathway (regulation 
of insulin secretion by glucagon-like peptide 1). The latter has not 
been highlighted in previous genetic studies of schizophrenia, but 
evidence from other investigation types has linked insulin signaling 
to the pathophysiology of schizophrenia. Previous epidemiological 
data have suggested that individuals with schizophrenia, compared 
with the general population or healthy controls, have a higher preva-
lence of metabolic syndrome52,53. Moreover, high prevalence rates 
of impaired glucose metabolism have been observed in drug-naive 
patients with schizophrenia54. A proteomic analysis has shown that 
levels of several proteins involved in energy metabolism are altered 
in the brains of schizophrenic people55. Our results provided further 
support for a role for insulin-related energy metabolism in the etiol-
ogy of schizophrenia.

In summary, the Chinese (n = 36,180) and multiancestry (n = 118,495) 
GWAS meta-analysis and follow-up replication studies identified  
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Figure 4  Polygenic risk-score profiling analysis. Polygenic risk-score 
profiling analysis using approximately 1,000 randomly selected 
schizophrenia cases and 1,000 controls from the Chinese sample as a 
target and deriving risk alleles from three training data sets: the PGC2 
European-only (EUR49) data set (light blue); the full PGC2 data set 
(blue); the Chinese (Chn) sample excluding the target sample (light 
red); and the Chinese and PGC2 data sets combined (red). The x axis 
shows ten P-value thresholds (PT = 5 × 10−8, 1 × 10−6, 0.0001, 0.001, 
0.01, 0.05, 0.1, 0.2, 0.5 and 1). The y axis is the estimate of the 
proportion of variance explained on the liability scale, which is converted 
from Nagelkerke’s pseudo R2 (computed by comparison of a full model 
including covariates and polygenic risk scores to a reduced model 
including covariates only).
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113 GWS risk loci for schizophrenia, 30 of which are novel. Our results 
demonstrated added value from transancestry meta-analysis for fine-
mapping of loci associated with schizophrenia and highlighted the 
existence of shared genetic risk across populations. In addition to 
confirming known genetic architectures, our comprehensive analyses 
provide further biological insights into the etiology of schizophrenia, 
thus potentially facilitating further mechanistic studies to assess the 
pathogenesis of this complex disorder.

URLs. PGC, http://pgc.unc.edu/; EIGENSTRAT, https://github.
com/DReichLab/EIG/tree/master/EIGENSTRAT/; SHAPEIT, https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html; 
IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html; 
1000 Genomes Project, http://www.1000genomes.org/; The NIH 
Roadmap Epigenomics Mapping Consortium, http://www.road-
mapepigenomics.org/; HaploReg v4.1, http://archive.broadinstitute.
org/mammals/haploreg/haploreg_v4.1.php/; PLINK, https://www.
cog-genomics.org/plink2/; PubMed, http://www.ncbi.nlm.nih.gov/
pubmed/; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/; 
UCSC, http://genome.ucsc.edu/; GeneCards, http://www.genecards.
org/; LDSC, https://github.com/bulik/ldsc/; A. Price laboratory, 
https://www.hsph.harvard.edu/alkes-price/software.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Recruitment of research subjects. As in our previous study10, all cases of 
Chinese ancestry were inpatients or outpatients with a history of more than 
2 years of schizophrenia, who were recruited from mental-health centers in 
China, interviewed by two independent psychiatrists and diagnosed according 
to Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria. 
All cases met the following two criteria: preoccupation with one or more delu-
sions and frequent auditory hallucinations. However, none of the following 
symptoms were prominent: disorganized speech, disorganized or catatonic 
behavior, or flat or inappropriate effects. The controls were randomly selected 
from Chinese volunteers (from hospitals and a community survey) who were 
asked to reply to a written invitation to evaluate their medical histories. Lists 
of potential control subjects were screened for suitability as volunteers by 
excluding subjects with major mental illnesses. All participants provided 
written informed consent. The study was approved by the Ethics Committee 
of Human Genetic Resources at the Bio-X Institutes of Shanghai Jiao Tong 
University, in accordance with the tenets of the Declaration of Helsinki. We 
confirm that our study is compliant with the Guidance of the Ministry of 
Science and Technology (MOST) for the Review and Approval of Human 
Genetic Resources.

Genotyping, quality control and genotype imputation of the Chinese GWAS 
data. Several different genome-wide genotyping platforms were used in this 
study: Affymetrix Genome-Wide Human SNP Array 6.0 (SNP6.0), Affymetrix 
Axiom Genome-Wide CHB1 Array Plate and Illumina 1M Array.

For the SNP6.0 chips, the genotype calls were generated together by 
using Affymetrix Axiom Analysis according to the Best Practices Workflow 
for SNP6.0. Sample QC filtering of the GWAS data was first performed by 
excluding arrays with Contrast QC measurements (a metric developed by 
Affymetrix for SNP6.0 QC, n = 197) that were <0.4. Step 1 genotyping was 
run on all CEL files passing QC over a subset of 20,000 SNPs, and samples 
with a call rate ≤97% were excluded (n = 285). The remaining samples were 
used for step 2 genotyping analysis. SNP polisher was then used for SNP QC, 
and the SNPs in the recommended categories (PolyHighRes, MonoHighRes, 
NoMinorHom and Hemizygous) were retained. Sex was established via geno-
typing and evaluated for each of the subjects, and samples with inconsistent 
sex (compared with the sample record) were removed (n = 79). Heterozygosity 
rates were calculated with the intent of removing deviations that exceeded 6 
s.d. from the mean (n = 0). PLINK’s identity-by-descent analysis was used 
to detect cryptic relatedness56 (URLs). When a pair of individuals had PI_
HAT >0.2, the member of the pair with the lower call rate was excluded from 
the analysis (n = 259). SNPs with call rates <97% (n = 28,040), MAF <1%  
(n = 185,439) or significant deviation from Hardy–Weinberg equilibrium 
(HWE) in controls (HWE P ≤ 1 × 10−6, n = 20,344) were excluded. We also 
excluded population outliers on the basis of PCA. After application of qual-
ity-control criteria, a set of 590,413 SNPs for 14,645 individuals was generated 
for genotype imputation.

For the CHB1 chips, the genotype calls were generated together accord-
ing to the Axiom Genotyping Solution Data Analysis Guide. Briefly, arrays 
with dish QC (DQC), a single-sample metric developed by Affymetrix for 
Axiom QC) values <0.82 were first excluded (n = 181). Samples that surpassed 
the DQC values were used for genotype calling with a subset of probe sets. 
Samples with a call rate <97% or in a nonpassing plate (an average call rate of 
passing samples <98.5%) were also excluded (n = 276). The post-QC samples 
were then coclustered, and genotype calls were produced with the Axiom 
Genotyping Algorithm v1 (Axiom GT1). SNP QC was also executed with the 
SNP polisher procedure, and the SNPs in the recommended categories were 
retained. Verification procedures for sex, relatedness and PCA outliers were 
also conducted in sample QC as described above (n = 289). SNPs with call rates 
<97% (n = 56,735), MAF <1% (n = 206) or significant deviations from HWE 
in controls (HWE P ≤ 1 × 10−6, n = 18,849) were excluded. After application 
of QC criteria, a set of 555,058 SNPs for 9,580 individuals was generated for 
genotype imputation.

For Illumina 1M chips, SNP genotypes were generated from normalized 
bead intensity data with Genome Studio. Samples with a call rate <97% were 
excluded (n = 35). Regular sample QC procedures for parameters including 
sex, relatedness, heterozygosity rate and PCA outlier checking, were performed 

as described above (n = 231). SNPs with call rates <97% (n = 35,743), MAF 
<1% (n = 89,032) or HWE P ≤ 1 × 10−6 (n = 954) were excluded. After applica-
tion of QC criteria, a set of 716,466 SNPs for 1,823 individuals was generated 
for genotype imputation.

For each GWAS data set, the entire set was imputed together as follows: 
the genotypes were phased with SHAPEIT (URLs)57,58 for each chromo-
some, and imputation was performed for each 5-Mb chromosome interval 
with IMPUTE2 (URLs)59. The haplotypes derived from the 1000 Genomes 
Project Phase 1 (release v3, URLs) were used as reference data60. Because two 
genotyping platforms were used for GWAS set 3, we used two phased reference 
panels in this special case, as proposed by Howie et al.59. For each platform, 
the prephased data from the other platform were used as the second reference 
panel. The variants with INFO >0.8, MAF >0.01, a call rate ≥97% and HWE  
P ≥ 1 × 10−6 in the controls were saved for further analysis. Those present in at 
least two data sets were saved for the meta-analysis. A set of 5,107,227 genetic 
variants for 7,699 cases and 18,327 controls remained in the final analysis.

PGC2 GWAS data set. The PGC2 GWAS data set7 comprised 49 case–control 
samples (34,241 cases and 45,604 controls) and three family-based samples 
(1,235 parent–affected offspring trios). All of the samples were from subjects 
of European ancestry, excluding three case–control samples from subjects of 
East Asian ancestry (1,836 cases and 3,383 controls). The summary results 
for the PGC2 data set and European only data set (EUR49) were downloaded 
from the PGC website (URLs).

Replication data set. The replication sample consisted of 4,384 cases and 
5,770 controls of Han Chinese ancestry. More details of the general charac-
teristics and genotyping have been presented in our previous research19. For 
the Chinese-only analyses, the independent SNPs with P <1 × 10−5 in the 
Chinese GWAS analysis of pre- or postcorrection with the inflation factor were 
selected. For the transancestry analysis, the independent SNPs with P <5 × 10−7 
in the Chinese (pre- or postcorrection) and PGC2 GWAS meta-analyses were 
selected. The precorrection data sets were used only for including more candi-
date SNPs for replication. All the association results in this article were based 
on the postcorrection data sets, wherein the global inflations were controlled. 
A total of 295 SNPs were analyzed in the Chinese replication analysis.

Power calculations. Power calculations were performed with the GAS 
Power Calculator61 with a range of genotype relative risks and disease-allele  
frequencies, assuming a population prevalence of 0.01 and a significance level of  
5 × 10−8. For the Chinese-only (n = 36,180) and transancestry (n = 118,495) 
analyses, we had adequate power (>80%) to detect variants with low risk-allele 
frequencies (RAFs) of 0.03 with genotypic relative risks of 1.318 and 1.161, 
respectively. This sample size in Chinese-only analyses was large enough to 
achieve adequate power for risk variants with genotypic relative risks of 1.150 
and RAFs of 0.14 to 0.85, and the transancestry analyses achieved adequate 
power for risk variants with 1.075 and RAFs of 0.15 to 0.84.

Statistical methods and bioinformatics analysis. Population substructure was 
evaluated through a PCA with EIGENSTRAT software (URLs), on the basis of 
LD-pruned autosomal SNP genotypes62,63. Two rounds PCA were performed. 
One round with samples from the HapMap Project phase 3 (HapMap3) was 
performed to identify admixed samples, and the other round was performed 
for each subset of cases and controls, wherein individual outliers (>6 s.d. from 
the mean on any one of the top ten PCs) were identified and removed for five 
iterations, and final PCs reflecting subtle ancestry information for each sample 
were generated for further correction. In the Chinese GWAS stage, the associa-
tion was analyzed for subsets by using a logistic regression model involving 
covariates for PCs to adjust for possible population stratification. We evalu-
ated the effects of the 20 PCs on genome-wide test statistics to determine the 
PC inclusion in the final association analysis for each data set. In the Chinese 
replication stage, the associations between SNPs and schizophrenia risk were 
evaluated on the basis of logistic regression with SNPTEST64. The Higgins and 
Thompson I2 index was used for assessing heterogeneity across data sets65. 
Both fixed-effects-model and random-effects-model meta-analyses were used 
in this study. The variants with pronounced heterogeneity (I2 >75%) were 
combined in a random-effects model in the transancestry meta-analysis17.
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We assessed the genome-wide congruence of risk alleles across samples 
by using binomial sign tests that compared the direction of the effect sizes of 
independent SNPs between PGC2 and Chinese GWAS results. P values were 
generated under the null hypothesis (H0: P = 0.50). The proportion of variance 
in liability to schizophrenia explained by the common SNPs was estimated by 
using genome-wide complex-trait analysis66, and the PCs were included in 
the analysis as covariates. For each of the associated loci (except the eMHC 
region, owing to the complexity of this region7), we calculated an approxi-
mate Bayes factor per Wakefield, as well as the posterior probability of driving 
the association for each SNP within a 2-Mb window, and then created 99% 
credibility sets38,39,67. We created credibility sets by using the Chinese, PGC2 
(European) and combined data sets separately. We conducted the transancestry 
fine-mapping in the presence of functional information by using PAINTOR 
according to the suggested pipeline, as well as PGC2-only and Chinese-only 
analyses for comparison. The primary functional annotations for SNPs pro-
posed by Gusev et al.41 were obtained from the A. Price laboratory website 
(URLs). The reference epigenomes of 127 human tissues and cell types45 were 
obtained from the NIH Roadmap Epigenomics Mapping Consortium (URLs). 
We included seven highlighted epigenomic marks (H3K4me3, H3K4me1, 
H3K36me3, H3K27me3, H3K9me3, H3K27ac and H3K9ac)45 in our analy-
ses. Enrichment analyses of the schizophrenia associations in the current and 
PGC2 analyses with the epigenomic features were performed with the genomic 
regulatory elements and GWAS overlap algorithm (GREGOR)68, and the top 
100 enriched annotations were selected for further PAINTOR analyses. The 
online tool HaploReg23 (v4.1; URLs) was used to explore the genes nearest 
to the index SNPs, and genes containing a missense mutation in high LD  
(r2 >0.8, on the basis of the 1000 Genomes Phase 1 CEU or ASI population for 
the LD calculation) with the GWS SNPs. The effects of GWS SNPs on expres-
sion in eQTL studies of different tissues (including blood and brain tissues25–27)  
were extracted from the query results of HaploReg23 and the CommonMind 
Consortium Knowledge Portal28. A significant eQTL was reported as having a 
false discovery rate of 0.05 in the original studies25–28 and being located in the 
credible interval covered by the 99% credible set for the regulated gene for the 
data sets in which detailed results were available for establishing the credible 
sets25,27. We used DEPICT24 to identify the most likely causal genes for the 
schizophrenia-associated loci, on the basis of the functional similarity among 
genes from associated regions. We carried out SMR analysis29 for the blood 
and brain tissue eQTL data sets25,27, using the 1000 Genomes Project data as 
reference files. For the gene prioritization analysis at the GWS loci (exclud-
ing the eMHC region, owing to the complexity of this region29), only probes 
with at least one cis-eQTL at P <5.0 × 10−8 were considered for SMR analysis, 
and a significance threshold was set as PSMR <5.20 × 10−5 corresponding to a 
Bonferroni correction for 960 tests (960 probes with cis-eQTL at P <5.0 × 10−8 
across the GWS loci)29. The heterogeneity in dependent instruments (HEIDI) 
test was also performed, and P <0.05 was considered to indicate significant 
heterogeneity. The genes prioritized by the GWS index SNP or its high LD  
(r2 >0.8) proxies were listed. In addition, the SMR analysis was also performed 
for some specific SNPs and genes. Here, the P-value threshold for selecting 
eQTL was not applicable, and the details are shown in the results. We searched 
the published literature for these genes with respect to schizophrenia in 
PubMed (URLs) and the NHGRI-EBI GWAS Catalog (URLs), and we obtained 
additional functional evidence for these SNPs and genes from the published 
literature, the UCSC genome database (URLs) and GeneCards (URLs).

LD-score regression for Chinese GWAS data. We estimated Chinese LD scores 
from the Chinese subjects in the 1000 Genomes Project Phase 3, using the LD 
Score (LDSC; URLs) software package14. We used a window size of 1 cM to esti-
mate LD scores, excluded singletons and did not set an r2 cutoff. The LD-score 
regression intercept from the Chinese GWAS data was estimated according to 
application notes for real data from the LDSC developers14. As Bulik-Sullivan 
et al. have proposed14, correcting test statistics with the LD-score regression 
intercept is a robust way for controlling the confounding bias from inflation. 

Correction was applied to the Chinese GWAS meta-analysis results by multiply-
ing the standard errors by the square root of the correction factor16.

Polygenic scoring analysis. Approximately 1,000 cases and 1,000 controls 
from the Chinese sample were randomly selected as the target sample. Risk-
profile SNPs (PT = 5 × 10−8, 1 × 10−6, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 
and 1) from the training GWAS data sets (the PGC2 European-only (EUR49) 
and full data sets, the Chinese GWAS data set excluding the target sample 
and the Chinese plus PGC2 combined data set) were selected with the PLINK 
‘--clumped’ function, and SNPs within 500 kb or with r2 ≥0.1 were discarded. 
The risk-profile SNPs were then used to generate scores for the target samples 
by using the PLINK ‘--score’ function. The case–control status was then pre-
dicted by logistic regression analysis of polygenic scores plus PC covariates. 
Nagelkerke’s R2 was used for the full model, using the polygenic score plus 
the covariates minus R2 for the covariates alone, thus yielding an estimate of 
the explained variance. The R2 was then transformed into a liability scale48, 
assuming a population prevalence of 1% for schizophrenia7.

Pathway analysis. MAGMA46 was used to explore pathway-based associations 
in the genome-wide meta-analysis data set. An F test was used to compute 
the gene P value, and the gene P values and gene correlation matrix were then 
used for the gene-set analysis with a regression model46. We defined gene 
boundaries 35 kb upstream and 10 kb downstream for assigning SNPs to a 
gene, as adopted in a recent psychiatric-disorder pathway analysis47. Each 
gene was then assigned pathways in the Gene Ontology (GO), PANTHER, 
Ingenuity, Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome 
and BioCarta gene set databases69. A total of 2,981 pathways or gene sets were 
used in this analysis.

Data availability. Summary statistics for the meta-analyses will be made 
available at http://gwas.bio-x.cn/. A Life Sciences Reporting Summary is 
available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No initial power analysis was done to determine the sample size. Our post hoc 
power analysis indicated that our sample size was large enough to achieve 
adequate power for detecting variants of low risk allele frequencies of 0.03 with 
genotypic relative risks of 1.161.

2.   Data exclusions

Describe any data exclusions. Typical quality control was performed for our GWAS data sets. Arrays with low 
quality data were excluded. Samples failed in the sex, relatedness, heterozygosity 
rate and PCA outlier checking procedures were also excluded.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We performed Chinese and multi-ancestry GWAS meta-analyses and follow-up 
replication analyses, and the identified loci were reliably reproduced with genome-
wide significant evidence.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The samples were grouped by disease status.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

The researchers were not blinded to group allocation.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The URLs for the software used were provided. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

The materials were commercially available.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Not applicable.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Not applicable.

b.  Describe the method of cell line authentication used. Not applicable.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not applicable.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Not applicable.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

For privacy concerns, we can't provide detailed information for the participants. 
These information were not used as covariates in our analysis.
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