
Global differences in the prevalence and distribution 
of diseases and their risk factors are a complex pheno­
menon determined by environmental, social, demo­
graphic, cultural and genetic factors. Genetic variation 
at the population level is itself shaped by population 
history, demography, regional environments and adap­
tive evolution. Understanding global genetic diversity 
and its impact on human health and disease has the 
potential to provide additional insights into the biolog­
ical mechanisms underlying disease risk and can help 
quantify the impact of the interplay between genetic 
and environmental variation on population-​level dis­
ease risk1. As such, conducting genomic research in 
diverse populations across the globe can inform ther­
apeutic development, public health and precision medi­
cine initiatives as well as facilitate global equity in the 
benefits of genomics1. Here, we define diverse popu­
lations as genetically heterogeneous populations that 
include ethno-​linguistically and geographically diverse 
individuals.

Studies assessing genetic diversity among global pop­
ulations2–4 have laid the framework for understanding 
the impact of genetic variation on disease risk in a global 
context. However, although the proportion of individ­
uals of non-​European ancestry represented in genome-​
wide association studies (GWAS) has increased over the 
past 5 years, the number and scale of GWAS in European 
populations still far exceed those in non-​Europeans5,6 
(Fig. 1). Despite the number of individuals of African 
and Hispanic or Latin American ancestry in GWAS 
being smaller, evidence suggests that these individuals 

contribute disproportionately to genome-​wide signifi­
cant associations and thus may have a greater impact 
on discovery compared with European or Asian popu­
lations5,7 (Fig. 1). This observation is consistent with the 
higher level of genetic variation among African popula­
tions relative to European or Asian populations2, which 
suggests greater opportunities for discovery per individ­
ual among populations with African ancestry relative to 
studies of Europeans or Asians7.

The recent development of larger and more glob­
ally diverse whole-​genome sequence resources and 
imputation reference panels is greatly improving our 
understanding of genetic susceptibility to disease 
by increasing the power of GWAS based on single-​
nucleotide polymorphism (SNP) arrays8. Complemented 
by the development of large whole-​genome and whole-​
exome sequencing resources (for example, gnomAD9), 
this approach is yielding a better understanding of 
population differences in the distribution of common 
(minor allele frequency (MAF) >5%) and rare (MAF 
<5%) genetic variation, deleterious mutations and their  
association with disease risk9.

In this Review, we first consider our understanding of  
genetic determinants of disease risk among global popu­
lations and the extent to which these are likely to be 
shared between or specific to populations. We then dis­
cuss the value of examining diverse populations to better 
understand genetic contributors to disease risk and vari­
ation in traits, including how to leverage this diversity to 
increase power for discovery. We conclude with consid­
ering the implications of these research approaches for 

Genome-​wide association 
studies
Hypothesis-​free studies of 
association between genetic 
variants and quantitative traits 
or diseases; typically, 
associations are examined 
across the whole genome using 
genotype array or sequencing 
approaches.
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medical genetics and future directions to advance our 
understanding of global disease risk.

Shared genetic susceptibility to disease
The extent to which underlying genetic risk factors for 
disease are similar or shared among different popu­
lations is not fully understood. To some extent, this 
can be inferred from the genetic architecture of disease. 
In other words, are most genetic variants that confer 
risk common and therefore likely to be shared among 

populations, or are these variants rare and specific to 
a given population? An empirical measure that can be 
used to assess shared genetic risk is reproducibility, that 
is, the extent to which variants associated with disease 
in one population are also observed to be associated 
with disease in another population. Next, we examine 
our understanding of the genetic architecture of disease 
among populations and then review our understand­
ing of reproducibility as a marker of shared genetic risk 
factors underlying disease among populations.
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Fig. 1 | Representation of different ethnic groups in genome-​wide 
association studies. This figure summarizes the distribution of ancestry 
categories (in percentages) of individuals (n = 110,291,046; part a), 
individuals over time (n = 110,291,046; part b), studies (n = 4,655; part c) and 
associations (n = 60,970; part d). The largest category in all panels is 
European (grey). At the level of individuals (part a), the largest non-​European 
category is Asian (bright pink), with East Asian (light pink) accounting for the 
majority. The non-​European, non-​Asian category (yellow) comprises 4% of 
individuals, and there are 6% (white) of samples for which an ancestry 

category could not be specified (NR). Part b displays the distribution of 
individuals (in percentages) included in the 915 studies published between 
2005 and 2010 compared to the distribution of individuals included in the 
2,905 studies published between 2011 and 2016. Part d demonstrates  
the disproportionate contribution of associations from the African (blue) 
and Hispanic or Latin American (purple) categories, when compared to the 
percentages of individuals (part a, blue and purple, respectively) and studies 
(part c, blue and purple, respectively). Reproduced from ref.7, CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/).

Imputation
Statistical inference of 
unobserved genotypes in 
individuals based on a 
collection of observed 
haplotypes among another set 
of individuals (usually referred 
to as the reference panel).
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The genetic architecture of polygenic traits. The 
polygenic model of complex traits and diseases sug­
gests that their genetic variance is a composite of small 
effects of multiple variants spread across the allele fre­
quency spectrum10. Although early GWAS explained 
only a small proportion of genetic variance, subsequent 
studies showed that increasing statistical power and 
the subsequent discovery of additional variants with 
weak effects could explain a substantial proportion of 
the genetic variance of a given trait or disease11,12. Less 
common or rare variants may also contribute to complex 
diseases or traits13. Increasing sample sizes and better 
imputation of rare variants have resulted in genetic dif­
ferences explaining more variation in traits at a popu­
lation level. For example, the variation in height explained 
by additive genetic effects increases substantially when 
common variation11 and rare variation are included 
as explanatory variables10,14. Family-​based designs can 
also be efficacious in identifying rare genetic variants 
with large effect sizes associated with monogenic or 
Mendelian diseases15–17. However, the much greater 
statistical power required and the challenges of reliably 
capturing less common and rare variants in relevant 
populations have largely limited our understanding of 
genetic determinants of most disease traits to common 
genetic variation (MAF >5%). Equally, statistical models 
and empirical analyses suggest that larger-​scale GWAS 
for disease traits predominantly identify common var­
iants with weak effects (OR ~1.05–1.2) that are shared 
across populations18.

Evolutionary theory suggests that common variants 
are fairly old, with many of these mutations having 
occurred >100,000 years ago, before human migration 
out of Africa13. With much of the common variation 
predating the divergence of modern populations, these 
variants and the genetic risk they confer are likely to be 
shared across populations. While the full extent of shar­
ing genetic risk factors for disease among populations is 
unclear, consistency (similar direction and effect size) 
and reproducibility of GWAS association signals across 
different populations can provide broad insights into the 
sharing of risk loci.

Reproducibility as a marker of shared genetic suscep-
tibility to disease. Many loci discovered by GWAS are 
shared across diverse populations and may be readily 
reproducible or transferable among populations. For 
example, a multi-​ethnic case–control study, which 
included 6,142 cases and 7,403 controls, analysed 19 
common genetic risk markers validated for type 2 dia­
betes mellitus (T2DM) in European populations. This 
study showed broadly consistent direction of effects 
across ethnic groups, with the majority of these var­
iants nominally significant in their association with 
diabetes risk across ethnic groups19. Analyses of 16,235 
multi-​ethnic diabetes cases and 46,122 controls from 
the Population Architecture using Genomics and 
Epidemiology (PAGE) consortium recapitulated these 
findings, showing broad consistency in the direction of 
effect across different ethnic groups20.

The DIAGRAM study, which included 26,488 cases 
of T2DM and 83,964 controls, corroborated these 

findings, showing statistically significant enrichment 
for directionally consistent effects across multiple eth­
nic populations21 and high correlation of effect esti­
mates across populations. Where studies have shown 
poorer reproducibility across populations, differences 
in linkage disequilibrium (LD) have been found to explain 
why many associations do not replicate directly across 
populations18. This phenomenon can occur when 
different observed variants tag the same causal var­
iant in different populations, which can lead to the 
appearance of non-​reproducibility when examining 
the variant (rather than locus). Limited reproducibil­
ity for traits can also reflect other factors, including 
false association signals in discovery studies (or false-​
negatives in other, less-​powered studies), sparse data 
among diverse ethnic populations, differences in allele 
frequency, heterogeneity of effect due to gene–gene or 
gene–environment interactions, or allelic heterogeneity. 
Understanding the impact of these factors on repro­
ducibility, and on susceptibility to disease, will require 
a comprehensive understanding of genetic diversity 
among populations, as well as large-​scale and well-​
powered studies undertaken among genetically diverse 
populations.

Genomic diversity among populations
Although the vast majority of underlying genetic risk 
factors for disease are likely shared among populations, 
genomic diversity among populations can provide new 
opportunities for discovery. Where genetic risk factors 
differ among populations (for example, in the case of 
population-​specific variants or because of gene–gene 
or gene–environment interactions), studying diverse 
populations can help understand differences in suscep­
tibility, which may not be apparent in studies of more  
homogeneous populations.

Genetic diversity varies globally among populations. 
Genetic variation in populations arises from new muta­
tions occurring in each generation, random changes in 
allele frequencies due to genetic drift and non-​random 
changes in allele frequencies owing to differences in 
fitness levels conferred by different alleles in the pres­
ence of certain environments (selection). The relative 
contribution and impact of the above factors on genetic 
variation in a population over time can depend on the 
demographic history of populations. For example, a 
population bottleneck (that is, lower effective population 
size) can lead to rapid changes in allele frequencies of 
background variation as a result of increased genetic drift 
acting on the population (Fig. 2). Similarly, migration can 
expose the human genome to different environments, 
leading to adaptive changes and regional differentiation 
that can differentially influence genetic disease risk. That 
is, natural selection may favour certain alleles in popu­
lations exposed to specific environments, leading to an 
increase in allele frequencies that may influence disease 
risk. Population expansions can lead to increased varia­
tion within populations due to new mutations occurring 
within offspring at each generation. The genetic diversity 
observed in populations globally today is a result of these 
complex forces that have shaped the genetic structure of 
populations over tens of thousands of years.

Minor allele frequency
The frequency of the less 
common allele at a site of 
genetic variation across a 
sample of individuals or  
a population.

Genetic variance
The contribution of genetic 
variation among individuals to 
phenotypic variation.

Linkage disequilibrium
The non-​random association of 
alleles at loci along the genome 
in a given population.

Heterogeneity of effect
Statistically significant 
differences in effect size 
observed for associations 
between genetic variants and 
traits or disease among 
different studies or 
populations.

Allelic heterogeneity
The phenomenon whereby 
multiple causal variants within 
a given gene can be associated 
with the same trait or disease.

Genetic drift
A process by which frequencies 
of alleles in a given population 
change over time due to 
random sampling of individuals 
who may reproduce at every 
generation.

Selection
A process in which 
environmental or genetic 
influences determine which 
types of organism thrive better 
than others. Regarded as a 
factor in evolution.

Population bottleneck
An event that drastically 
reduces the size of a 
population. Such events can 
greatly reduce the genetic 
diversity of a population and 
make the population more 
susceptible to the influence of 
genetic drift.
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a  AF = 50%, n = 10,000

b  AF = 50%, n = 1,000

c  AF = 50%, n = 10,000, bottleneck at 20–40 generations with nb = 100

Fig. 2 | Genetic drift and changes in allele frequency as a function of population size. Simulations examining the 
changes in allele frequency (AF) of a given allele over time as a function of population size. Small population sizes and 
population bottlenecks can lead to rapid changes in AF over time. Founder populations can show markedly different AFs 
relative to their ancestral population and can therefore provide opportunities for the study of variants that were rare in the 
ancestral population but have increased to higher frequencies among these groups. a | 10 simulations on an allele with  
a frequency of 50% in a given population of size 10,000 over 100 generations. Frequencies are seen to remain stable over 
time. b | 10 simulations on an allele with a frequency of 50% in a given population of size 1,000 over 100 generations. Relative 
to part a, marked changes in allele frequencies are seen over time with a founding population size of 1,000, suggesting that 
low founder population sizes can be associated with increased genetic drift over time. c | Simulated changes in AF on an 
allele with a frequency of 50% and a population size of 10,000, which then underwent a population bottleneck to a size of 
100 between 20 and 40 generations. The observed AFs of the variant are substantially changed following the bottleneck in 
simulations. Simulations carried out using Web PopGen simulator. n and nb refer to the population size for the models.
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It is well known that genetic variation is greater in 
African populations relative to non-​African popula­
tions2,3. This is expected given that all modern humans 
arose from an ancestral African population. Populations 
that migrated out of Africa were subject to a prolonged 
population bottleneck, leading to lower genetic varia­
tion among these founder individuals and lower effec­
tive population sizes22. Although subsequent population 
expansions increased variation within these populations 
as a result of new mutations, the amount of variation 
among modern non-​African populations remains lower 
than that of modern African populations.

In the following subsections, we discuss different 
sources of genetic diversity among populations and 
how these can influence genetic variation and disease 
risk. Here, the term ‘genetic diversity’ refers to struc­
tural differences (genetic variation and differences in 
allele frequency), differences in genetic effects on traits 
(heterogeneity of effect) as well as epigenetic differences 
among populations.

Heterogeneity in allele frequency. Differentiation in 
allele frequencies following divergence between African 
populations and populations that migrated out of Africa 
has been shaped by a combination of random drift and 
selection due to adaptive forces. Population bottlenecks, 
as undergone by modern non-​African populations dur­
ing out-​of-Africa migrations, increase the impact of 
random drift, leading to genetic variants more rapidly 
drifting up or down in frequencies, relative to the ances­
tral population. This substantial genetic drift has resulted 
in non-​African populations exhibiting allele frequencies 
with greater divergence (on average) from Africans23. 
This model of population demography is recapitu­
lated by several studies of GWAS associations, which 
have shown marked heterogeneity in allele frequen­
cies of risk variants for diseases among populations24,25. 
Differences in allele frequencies among populations have 
also been shaped by adaptive forces. An example of this 
is the sickle cell variant, which has increased to fairly 
high frequencies in malaria-​endemic regions within 
Africa, while being rare or absent in other populations 
in non-​endemic regions26. The presence of this allele 
is protective against severe malaria and thus confers a 
survival advantage.

More recently, it has become clear that the global 
population history is far more elaborate than previ­
ously thought, with analyses of ancient DNA revealing 
complex migrations and replacement of populations 
in different regions27–30. Furthermore, European and 
Asian populations have come into contact with archaic 
populations (Neanderthal and Denisovan), with inter­
breeding resulting in small introgressed genomic seg­
ments evident in modern humans in these regions31,32. 
Similarly, there is evidence to suggest contact with 
archaic or basal populations (a lineage that split even 
earlier than the oldest known modern African line­
age) among Africans30,33,34. These introgressed genomic 
regions among different ancestral groups have provided 
important insights about historical adaptation and 
selection events that resulted in segments of archaic 
ancestry persisting in modern humans, potentially 

because they afford a survival advantage in certain 
environments31,35,36.

Understanding these differences in allele frequen­
cies of variants among populations is important, as this 
can influence our ability to identify GWAS association 
signals (Fig. 2). Because the power to detect associations 
is generally greater for common variation in a given 
population, most risk alleles identified to date have rela­
tively high MAFs among European populations, having 
been discovered in European GWAS23,37. As a result, risk 
alleles in current GWAS databases are likely enriched 
for variants common among Europeans and depleted for 
variants that are rare among Europeans23.

In this context, studying more diverse populations 
would provide opportunities for identification of new 
associations of variants with disease, as these studies 
would be better powered to detect disease associations 
of variants that are common in these populations but 
rare in other populations23. An example of associations 
that have been identified in a non-​European population 
on the basis of higher allele frequencies in these popula­
tions includes variants in the gene KCNQ1 and T2DM38; 
the SNPs rs2237897 and rs2237892 in the KCNQ1 gene, 
which have been associated with T2DM in the Japanese 
population, have a much higher MAF in South East Asia 
(0.39 and 0.38, respectively) relative to Europe (0.04 and 
0.06, respectively)39,40. Identifying these associations in 
European populations would have required much larger 
sample sizes given the lower frequency of these variants, 
as has been discussed previously38.

Nevertheless, it is important to recognize the trade-​
off between opportunities for novel discovery and loss 
of power that may occur due to heterogeneity of genetic 
structure or allele frequencies among populations in 
multi-​ethnic studies. Heterogeneity in allele frequen­
cies is likely to increase power in multi-​ethnic studies  
in the context of genetic variants that are rare or absent in  
one population but more common in other ethnic 
groups, providing novel opportunities for discovery 
that would not exist if only the former population was 
sampled41. However, heterogeneity with regard to allele 
frequencies and population structure (differences in 
LD) can also reduce power in the context of common 
and shared genetic variation, where associations with 
traits are detected with higher statistical resolution in 
more homogeneous populations. For example, a simu­
lation study showed that including an additional 10,000 
individuals from an African population in a GWAS of 
10,000 individuals from a European population sub­
stantially improved power to detect associations for 
variants that were of low frequency in Europeans, rel­
ative to conducting a GWAS of all 20,000 individuals 
from a population of European ancestry; power to 
detect an association increased by 40%, with a relative 
risk of 1.3 for variants with frequencies between 1% 
and 5%41. This increase in power was largely driven by 
variants that had allele frequencies that were 15–40% 
higher in Africans relative to Europeans. However, 
for variants that were common in Europeans, a loss of 
power was observed when African individuals were 
included in the second stage of the GWAS; neverthe­
less, this decrease was marginal, as power to identify 
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associations for common variants was already high 
among Europeans41.

Population-​specific variants. Population specificity is a 
special case of allele frequency differentiation, whereby 
a given variant is present in a specific population but 
absent in another. This concept must be understood as 
a dynamic concept, because whether a variant seems to 
be specific to a given population depends on the sam­
pling frame. For example, a variant observed in popu­
lation A can be defined as specific to population A if 
not observed in a finite sample within population B, 
although it is possible that it may be present, albeit rare, 
in population B and could be observed if all individu­
als within the population were sampled. This concept 
must therefore be treated as contingent, to some extent, 
on the observed sample of sequences from different 
populations at a given time. Truly population-​specific 
variants are more likely to be rare variants and recent 
in origin relative to common ancestral variants, having 
occurred in a specific lineage of a population following 
divergence from other populations13. These variants 
often track with recent demographic changes among 
populations, including rapid population expansions22. 
Rapid population expansions lead to an increase in rare  
variants due to the entry of new mutations into the popu­
lation with every generation. Rare variants may also 
cluster geographically42. With the development of large-​
scale whole-​genome sequence resources, such as the 
1000 Genomes Project or the African Genome Variation 
Project, it has become clear that a substantial proportion 
(between 10 and 23%) of non-​reference alleles observed in 
individuals within a given population may be defined as 
specific to that population2,3.

There are several examples of population-​specific 
variants that have been implicated in infectious and 
non-​communicable diseases. Important infectious dis­
ease susceptibility loci such as the CCR5 Δ32 variant, 
which confers protection against HIV transmission and 
disease progression, are found principally in Europe 
and West Asia and are absent in sub-​Saharan Africa; 
this allele has been shown to be under strong selection 
potentially relating to smallpox, with long-​range disper­
sal and selection gradients explaining the differences in 
allele frequency observed within Europe43. Furthermore, 
studies examining differences in hypertension suscepti­
bility across global populations have cited population-​
specific variants at several loci, including ALDH2, 
which is associated with hypertension44,45. Specific loss-​
of-function mutations in PCSK9 that are associated 
with substantially lowered LDL-​cholesterol levels and 
risk of heart disease were found to be more common  
in populations of African descent and are rare or absent in  
European populations46,47. A population-​specific variant 
in MYBPC3 associated with cardiomyopathy has a fre­
quency of ~4% in the Indian subcontinent but is rare or 
absent elsewhere48.

In addition to SNPs, copy number variations 
(CNVs) and structural variants can also be function­
ally important, with many shown to be associated 
with specific diseases, including autism spectrum 
disorders, neuro-​developmental disorders49 and 

congenital abnormalities50. Substantial differences in the 
distribution of CNVs among ethnic groups have been 
described, with one study showing only 15% of overlap 
in genotyped CNVs between European and East Asian 
populations51.

Heterogeneity in variant effects. In addition to the 
heterogeneity in allele frequencies of risk variants, 
the observed effects of risk alleles on complex traits can 
also vary across populations. Observed heterogeneity 
in inferred effect sizes can arise from differences in LD 
patterns around the causal variant between populations, 
when the causal variant is unobserved (Fig. 3a). Other 
reasons for this variation include gene–environment 
(Fig.  3b) or gene–gene (Fig.  3c) interactions, which 
may be mediated by epigenetic factors that influence 
disease-​related signalling pathways or gene expression. 
Heterogeneity of genetic effects can influence the power 
for discovery of associations across populations, with 
high levels of heterogeneity reducing power to detect 
associations52. Furthermore, understanding hetero­
geneity in effect across populations may provide impor­
tant insights into the mechanisms underlying disease 
susceptibility in different contexts. The delineation of 
factors underlying the heterogeneity of variant effects 
has been limited in most studies; detection of gene–gene 
and gene–environment interactions would require much 
larger sample sizes than those needed for the identifi­
cation of primary associations of interest10, limiting the 
capacity to explore these interactions.

The extent to which common shared variants across 
populations have varying effects on disease suscepti­
bility is unknown, although most studies suggest broad 
consistency in effect sizes of associations validated in 
replication GWAS or meta-​analyses across populations 
for most variants. For example, one study examining 
43 validated gene–disease associations across 697 study 
populations with different ancestry found broadly con­
sistent effects at loci across populations, with only 14% 
of variants studied showing substantial heterogeneity 
in effect size (defined as I2>75%, where I2 is a statistical 
variable representing the difference in effects attrib­
uted to heterogeneity rather than chance)24. We note 
that the analysis of between-​study heterogeneity in this 
study may have been limited by poor representation of 
non-European studies (with regard to sample size and 
number). Analysis of between-population heterogeneity  
can also be diluted by substantial within-population  
heterogeneity, as noted in the study that screened 134 
meta-​analyses to examine the genetic effects for 43 
validated gene–disease associations across 697 study 
populations of various ancestries; 46% of the screened 
studies showed significant within-​population hetero­
geneity24. A similar observation was made by another 
study53, suggesting that a large proportion of statistical 
heterogeneity may be attributable to factors other than 
ancestry24.

Similarly, a systematic review of meta-​analyses of 
six cancer types observed generally consistent genetic 
effects across different ethnic groups, although the 
power to detect heterogeneity of effect was limited in 
many studies due to limited sample size54. Statistically 

Non-​reference alleles
An allele that is different from 
the allele in the human 
reference genome at a given 
position. The human reference 
genome is a curated human 
genome assembly that is 
based on existing knowledge 
about the human genome at a 
given time.
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significant heterogeneity in effect size was identified 
among 25% of associated SNPs, with levels of hetero­
geneity being associated with differences in LD structure  
at loci54, suggesting that the heterogeneity was likely 

overestimated and attributable to differences in tagging 
of causal SNPs across different ethnic groups.

Another study25 examined the heterogeneity of allele 
frequencies and effect sizes at 108 loci identified as 
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Fig. 3 | Mechanisms for observed heterogeneity of effect size between 
populations. a | Heterogeneity in observed effect size for specific markers 
between populations (populations 1 and 2) arising due to differences in 
linkage disequilibrium (LD) between the causal variant (unobserved) and 
observed variants between two populations. The grey box shown below the 
graphs represents a chromosomal locus, with the diamond representing 
the unobserved causal variant at the locus and the circles representing 
observed markers in the study. The colour of the circle represents the degree 
of correlation (LD) with the causal variant. In population 1, marker B is in high 
LD with the causal variant and marker D is in low LD with the causal variant, 
whereas in population 2 marker D is in high LD with the causal variant and 
marker B is in low LD with the causal variant. On comparing effect sizes of 
markers between populations (right panels), these differences in LD with the 
causal variant manifest as heterogeneity of effect size for markers B and D 
between populations 1 and 2. b | Gene–environment interaction, whereby 
the effect of the risk allele is amplified by the presence of a specific 
environmental factor. Yellow shapes represent diseased individuals. The two 
blue lines simplistically represent the diploid genome of each individual, 
with the allele represented by the red cross being the risk allele and the blue 

diamond being the non-​risk allele. Although the same number of individuals 
carry the risk allele in both populations, more individuals carrying the risk 
allele develop disease in population 1. Of note, this scenario also applies in 
circumstances where the demographic patterns (for example, older age for 
age-​related manifestation of genetic effects) in a certain population can 
influence the gene effect. These gene–environment interactions can be 
mediated through epigenetic differences that alter gene expression 
differentially in the two populations (shown on the left side of the figure).  
c | Gene–gene interactions, whereby the effect of the risk variant is amplified 
in the presence of another variant (interacting variant is represented by a 
blue cross; non-​interacting variant is represented as a pink diamond). 
Differences in allele frequencies of the interacting variant, or differences in 
LD structure (influencing how often the risk variant and the interacting 
variant occur together), can lead to differences in effect sizes among 
different populations. In this case, the interacting variant occurs commonly 
along with the risk allele in population 1 but not in population 2, resulting in 
heterogeneity in genetic effects between the populations. OR , odds ratio; 
MAF, minor allele frequency ; pop, population; r2, Pearson’s coefficient of 
correlation; SNP, single-​nucleotide polymorphism.
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statistically significantly associated with complex traits 
in at least one ethnic group in GWAS from the NHGRI  
catalogue6. This study showed substantial hetero­
geneity in effect across ethnic groups. Among the eligible  
associations examined, significant heterogeneity in 
effect sizes was seen in European–Asian comparisons 
(22% of associations) and European–African compari­
sons (42% of associations)25; however, given that the 
interrogated variants were not necessarily causal, these 
observations may reflect heterogeneity in LD patterns 
across populations, where different variants tag the 
causal variant differentially25, as suggested in previous 
work54.

Despite assessment of heterogeneity in recent multi-​
ethnic studies52,55, there have been few reproducible 
examples of heterogeneity of effect at known causal or 
functional loci associated with disease across popu­
lations. Understanding pathways mediating this associ­
ation in cellular models from diverse populations could 
provide important insights into biological heterogeneity. 
One example of heterogeneity of effect with mechanistic 
evidence is the modification of the association between 
MTHFR 677C>T and stroke risk. MTHFR 677C>T has 
been shown to be associated with increased homocyst­
eine levels (reduction in homocysteine: 3.12 μmol L–1, 
95% CI 2.23–4.01 in low-​folate regions; 0.13 μmol L–1, 
95% CI –0.85 to 1.11 in areas with folate fortification) 
and increased risk of stroke (OR 1.68, 95% CI 1.44–1.97 
in low-​folate regions compared with OR 1.03, 95% CI 
0.84–1.25 in regions of folate fortification), with effects 
on homocysteine reduction and stroke being larger in 
regions with low folate in the diet relative to regions 
where folate fortification is undertaken to increase 
dietary folate56. This hypothesis of gene–environment 
interaction for MTHFR and dietary folate is biologically 
compatible with the known metabolism of folate and 
homocysteine and the action of the enzyme produced 
by the MTHFR gene56.

These findings collectively suggest that while statis­
tical heterogeneity in multi-​ethnic meta-​analyses may 
indicate biological heterogeneity of effect, as a result 
of gene–environmental and gene–gene interactions, 
statistical heterogeneity can arise from artefactual and 
study design factors such as differences in LD structure 
around the causal variant — which result in differences  
in the efficiency of tagging in different populations; geno­
typing errors and differences in imputation accuracy 
across populations; and non-​genetic factors such as dif­
ferences in phenotype definitions and the demographic 
and disease profile of individuals included in different 
studies. Examining and reporting statistical heterogeneity  
remain pivotal and could provide important insights 
into the allelic architecture at a locus, fine-​mapping of 
causal drivers of the association and identifying biologi­
cal mechanisms underlying disease in larger studies57. 
However, substantial statistical heterogeneity can reduce 
the power to detect association signals in multi-​ethnic 
GWAS58,59. Recently developed statistical methods55,60 
that allow exploration of heterogeneity combined with 
large-​scale study resources in diverse populations provide 
new opportunities to identify and explore heterogeneity  
among populations.

Differences in functional elements. While clear differ­
ences in genome sequence are observed among different  
global populations, differences in genome function, for 
example, gene expression and epigenetic profiles, are 
poorly understood. Gene expression and functional 
annotation databases, such as ENCODE61, Roadmap 
Epigenome62 and the Genotype-​Tissue Expression 
(GTEx) Project63, are largely focused on cell lines and 
tissue originating from European ancestry samples. 
Limited exploration of differences in gene expression 
profiles from lymphoblastoid cell lines across populations 
of varying ancestry has suggested potentially important 
differences in the transcriptomic landscape between 
ethnic groups64–66, with up to 25% of variation in gene 
expression among individuals attributable to population 
ancestry64. The contribution of differences in gene expres­
sion and alternative splicing to this variation has been 
inconsistent among studies64,67,68, with some reporting 
primarily differences in transcript isoforms among genet­
ically distant populations68 and others reporting predom­
inately differences in gene expression (transcript usage)65. 
Consistent with these differences observed among popu­
lations of different ancestries, prediction of gene expres­
sion in individuals using reference databases has been 
found to be dependent on the composition of ancestry 
within the database. For example, using European gene 
expression reference databases has been shown to be less 
accurate for the prediction of gene expression in indivi­
duals of African descent, with a true-​positive rate >0.10 
lower when using training data from European indivi­
duals compared with using data from African-​American 
individuals for training69.

Similarly, studies of DNA methylation have suggested 
differences among populations70–72, providing early 
insights into potentially different regulation of genomic 
function across different populations. One study showed 
differential cytosine methylation at 13% of studied CpG 
sites between European and African populations72. 
Several genetic variants associated with these differen­
tial modifications, that is, methylation quantitative trait 
loci (mQTLs), were associated with cardiometabolic 
and respiratory traits in previous GWAS72. Another 
study examining DNA methylation variation at 552,141 
CpG sites across the genome in monocytes across indi­
viduals of European and African ancestry identified 
14.1% statistically significant differentially methylated 
sites73. mQTLs were found to account, on average, for 
~58% of the observed population differences in DNA 
methylation, suggesting that a substantial proportion of 
population differences in methylation were driven by 
differences in allele frequency of mQTLs73.

While there has been a recent increase in the rep­
resentation of diverse non-​European populations in 
GWAS, parallel development of functional resources 
such as tissue expression databases, well-​characterized 
immortalized cell lines and induced pluripotent stem cell 
lines from diverse populations has been very limited63. 
Differences in the regulation of gene function among 
populations suggest that our understanding of genome 
function from European populations may not be directly 
transposable to other populations. This has implications 
not just for our understanding of disease susceptibility 
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and mechanisms underlying disease in different popu­
lations but also for the development of disease therapies 
that are applied globally. Understanding the impact of 
genetic variation and environmental factors on genome 
function across different populations will require par­
allel development of functional and cellular resources 
from diverse global populations.

From diversity to discovery
As we have discussed, genomic diversity — differences in 
the allele frequency spectra, LD structure and functional 
genomic elements — is thought to have arisen from 
complex demographic histories of populations (includ­
ing population bottlenecks, migrations and expansions), 
genetic drift and adaptive forces relating to differences in 
environmental exposures. The genetic variability among 
populations provides important opportunities for dis­
covery of new genetic loci associated with disease that 
may be evident in some populations and not others. In 
this context, populations with high levels of genetic var­
iability provide greater opportunities to understand the 
impact of genetic variation on traits or diseases. Here, 
we provide examples of specific contexts in which dis­
covery of associations can be enhanced when studying 
genetically diverse populations (Table 1).

Founder effects. Over the past decade, an increasing 
number of investigations have leveraged the known 
demographic history among populations to enhance 
novel discovery of variants associated with disease risk. 
An example of this approach is the study of population 
isolates with a limited number of founders74. Small 
founding population sizes in such isolates lead to drift 
forces having a higher effect on genomes within these 

populations, sometimes allowing variants that are rare 
in other populations to increase to higher frequencies 
in these populations (Fig. 2). The enrichment of rare 
variants is dependent on multiple factors, including the 
number of population bottlenecks and effective popula­
tion size, leading to unique compositions of rare alleles 
in each population isolate75. This may present as differ­
ential susceptibility to some diseases. For example, the 
Pima Indians of Arizona have a very high prevalence of 
T2DM (~38%)76–78 and a near absence of type 1 diabetes 
mellitus74.

This pattern of enrichment of certain rare variants 
can enhance discovery of associations with disease. 
An example is the cardioprotective variant p.Arg19Ter 
in the APOC3 gene (rs76353203), which is associated 
with reduced blood triglyceride levels and has drifted 
up in frequency in the Amish founder population 
and, independently, in an isolated population from 
Crete, Greece79–81. Another example is the nonsense 
p.Arg684Ter variant in the TBC1D4 gene (rs61736969), 
which is found at high frequencies in the Greenlandic 
population and is associated with a substantially 
increased risk of T2DM among homozygotes82.

As the power to detect variants associated with dis­
ease is highly dependent on allele frequency, the effects 
of rare variants associated with disease are much more 
likely to be detected in isolated populations (even in 
fairly modest sample sizes of a few thousand individuals) 
where these are common80,83.

Selection. Selection can have an important role in the 
differentiation of functional variants across popula­
tions. For example, common variants associated with 
sickle cell anaemia, glucose-6-phosphate dehydrogenase 

Table 1 | characteristics of specific populations and cohorts that facilitate genetic discovery

Population characteristic Opportunities

Genetically diverse populations (for 
example, African populations)

High levels of genetic variation among 
individuals in the population

Novel discovery of loci associated with traits relative to less diverse 
populations — for example, population-​specific variants, variants 
common in these populations but rare in other well-​studied 
populations

Population isolates, founder 
populations (for example, Amish 
populations, Greek isolates)

Low effective population size, relative 
genetic homogeneity , enrichment for 
some rare deleterious variants

Novel discovery among loci that have increased to high 
frequencies in these populations but are rare in most other global 
populations

Populations with high levels of 
consanguinity (for example, Middle-​
Eastern populations)

High levels of homozygosity Assessment of pathogenic potential of rare variants in homozygous 
form and gene function by assessment of naturally occurring gene 
knockouts

Admixed populations (for example, 
African-​Americans)

Genomes of individuals are a mosaic of 
haplotypes of different ancestral origin

Assessment of the association between local ancestry with disease 
(where disease susceptibility is known to vary among source 
populations). Cases with disease will be enriched for specific 
ancestry at loci associated with disease

Populations exposed to different 
environmental stimuli (for example, 
sub-​Saharan African populations 
exposed to malaria)

Genetic adaptation in response to 
environment stimulus

Adaptation, including selective sweeps or balancing selection 
leading to certain alleles rare or absent in other populations 
reaching higher frequencies in these populations (for example, the 
sickle cell variant associated with malaria)

Multi-​ethnic cohorts High levels of differentiation between 
different ethnic groups studied and 
different linkage disequilibrium patterns

Better resolution of causal variants associated with traits or 
diseases

Family-​based cohorts Pedigrees with related individuals 
(diseased and healthy), with detailed 
phenotyping for each pedigree

• Assessment of loci associated with Mendelian disease; discovery 
of de novo mutations associated with disease

• Assessment of heritability of complex traits, accounting for 
shared environment
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(G6PD) deficiency or α-​thalassaemia are thought to 
have increased to high frequencies in some African 
populations owing to the protection these variants  
confer against severe malaria84–86. These variants have 
been found to be associated with haematological traits 
in GWAS among individuals of African ancestry87–89, 
although equivalent studies at a much larger scale have 
not detected these association signals in largely European 
cohorts, where these variants are relatively rare90. In 
this context, selection related to malaria has increased 
the allele frequencies of these otherwise deleterious  
mutations in endemic regions91.

While selective sweeps such as those described above 
are most often described in the literature, more pervasive 
— and potentially more important, albeit fairly small — 
changes in allele frequencies at numerous loci are likely 
to have occurred through adaptive selection. Changes 
arising from environmental adaptation can be difficult 
to distinguish from random stochastic changes resulting 
from genetic drift. Parallel adaptation refers to independ­
ent multiple mutations that arise in parallel, at the same 
locus or different loci, and give rise to the same adaptive 
or advantageous phenotype92. In many cases of paral­
lel adaptation, different alleles may reach intermediate 
frequencies in populations, not giving rise to an allele 
that reaches fixation in a given population (a hard selec­
tive sweep) but, rather, a ‘soft selective sweep’92. Previous 
work has indicated substantial parallel adaptation across 
geographically distinct populations93, suggesting that 
genetic architecture is shaped in parallel ways by the 
environment in different regions over thousands of years.

Genes that have adapted in a parallel manner across 
populations can have important pleiotropic functions93, 
such that selection on one trait has effects on the suscep­
tibility to other traits. For example, parallel divergence 
among populations was observed for the IFIH1 gene93, 
which has been associated with several traits, including 
antiviral defence94, type 1 diabetes mellitus95 and psori­
asis96. Given the high polygenicity of most traits, these 
complex adaptive forces can have a collective impact 
on genetic susceptibility to disease among different 
populations.

Adaptive selection can thus lead to differentiation of 
functionally important alleles among populations, with 
some alleles reaching high frequencies in specific pop­
ulations when they confer a selection advantage in the 
presence of specific environments. These differences can 
be leveraged for enhanced genomic discovery.

Admixture. Studies showing associations between the 
proportion of ancestry inherited from a given source 
population and disease suggest that differences between 
disease susceptibility among populations may be geneti­
cally determined97–99. Admixture mapping is an approach 
that leverages potential differences in genetic suscepti­
bility to disease among different ethnic groups to exam­
ine the association between local genetic ancestry and 
disease across the genome. It relies on the principle that 
for diseases where associated genetic variants differ sub­
stantially in frequency between ancestral populations, 
admixed individuals with disease will be enriched for 
ancestry from the population with the higher proportion 

of risk alleles at loci associated with disease100,101. This 
approach has been used to identify genetic loci associ­
ated with hypertension98,99, infectious disease suscep­
tibility101, prostate cancer102, multiple sclerosis103 and 
cardiometabolic diseases101,104,105.

Admixture mapping can also facilitate discovery of 
loci associated with traits in the context of parallel adap­
tation, where variants at multiple loci that have entered 
populations through admixture can reach high frequen­
cies (due to adaptive selection), thus manifesting as 
greater than expected local ancestry from one source at 
these loci. An example of this is the genetic adaptation 
to high altitude among Tibetans, which can be inferred 
through enrichment of high-​altitude (Sherpa-​like) ances­
try at the EPAS1 and EGLN1 genes, which are known to 
be associated with haemoglobin concentration106.

Endogamy and autozygosity. Cultural practices vary 
among different populations, and certain practices such as 
consanguinity and endogamy can influence disease suscep­
tibility. This fact has been recognized in some populations, 
where the burden of recessive genetic disease is thought 
to be linked to these cultural practices. High rates of con­
sanguineous marriage occur in North Africa, the Middle 
East and West, Central and South Asia107. Over gener­
ations, endogamy can lead to similarities between the 
inherited maternal and paternal chromosome segments, 
resulting in long segments of autozygosity. Autozygosity 
raises the probability that two deleterious alleles occur 
together (homozygosity), increasing the susceptibility to 
monogenic recessive disorders. Consanguinity has been 
associated with an increased prevalence of haematological 
disorders such as α-​thalassaemia and β-​thalassaemia in 
Middle Eastern countries108.

Populations with high levels of autozygosity provide a 
unique opportunity to examine the functional impact of 
gene knockouts, owing to the higher probability of delete­
rious recessive mutations being homozygous. In addition 
to monogenic disorders, consanguinity has also been 
associated with an increased susceptibility to com­
plex traits such as tuberculosis and chronic hepatitis B  
infection in West African individuals109. Studies in 
well-​characterized population isolates have suggested 
that the risk of hypertension is correlated with the 
inbreeding coefficient110, which indicates that part of this 
raised risk is attributable to an increase in deleterious 
recessive mutations associated with disease.

Delineating genetic effects from shared environ­
mental effects in large-​scale studies of populations with 
high levels of consanguinity, using variance partitioning 
approaches111, will be vital to understanding the impact 
of autozygosity on complex diseases and may provide 
novel insights into the genetic architecture of complex 
traits. Recent efforts such as the East London Genes 
and Health Study, the Saudi Genomes Project112 and the 
Qatar Genomes Project provide unique opportunities to 
study the impact of autozygosity on disease.

Improved resolution of causal variants. Although 
GWAS have continuously increased the number of loci 
associated with complex diseases or traits over the past 
decade, the resolution of causal variants driving these 

Adaptive selection
Evolutionary changes to the 
genome that occur due to 
selection and are adaptive to 
the given environment.

Fixation
The change in the genetic pool 
of a population from the 
presence of two alleles at a 
given locus to only one allele 
being present; this allele is said 
to be fixed.

Admixture
Interbreeding or mixing of two 
or more populations that were 
previously isolated.

Consanguinity
The state of being closely 
related to someone by sharing 
a recent ancestor; in genetics, 
commonly used to refer to 
mating with close relatives.

Endogamy
The practice of marrying only 
within the limits of a local 
community, clan or tribe.

Autozygosity
Stretches of the two 
homologous chromosomes 
within the same individual that 
are identical by descent; 
occurs when there is non-​
random mating.

Inbreeding coefficient
The probability that two alleles 
at a locus in an individual are 
identical by descent from a 
common ancestor, that is, the 
chance that an individual is 
homozygous for an ancestral 
allele by inheritance (not by 
mutation).
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associations has lagged behind. Although LD increases 
the power to detect associations in populations by 
facilitating imputation and allowing tagging of causal 
variation, LD can also limit the identification of causal 
drivers of the association signal when multiple variants 
at a given locus attain equivalent statistical significance 
for association with the trait or disease in question. 
Differences in LD structure among populations can 
provide opportunities to resolve causal associations at  
such loci. This is particularly true for African popu­
lations, where LD is weaker across the genome and 
decays faster2, allowing better resolution of associated 
loci in GWAS (Box 1). Indeed, studies have shown that 
addition of modest samples from African populations 
can greatly improve resolution at loci, relative to adding 
large numbers of samples from a homogeneous popu­
lation113. Approaches that leverage heterogeneity in allele 
frequencies and LD can facilitate novel discovery in 
multi-​ethnic meta-​analyses and allow better resolution 
of identified signals52,55,113–115.

Implications for medical genetics
Knowledge of the genetic susceptibility to disease in 
globally diverse populations and of the interplay of 
genetic and environmental factors contributing to dis­
ease is important to understand population disease risk 
and to inform preventive, diagnostic or therapeutic 
strategies.

Implications for risk prediction. Understanding the 
risk associated with specific loci can facilitate the direct 
development of risk scores that, in combination with 
clinical risk factors, can be used to predict the likelihood 
of developing a given disease116. Many studies have high­
lighted the limitations of applying polygenic risk scores 
(also known as genome-​wide polygenic scores) that 
have been ascertained from European cohorts to other 
populations, as these are likely to be biased and reduce 
predictive accuracy117–120. These biases are thought to 
relate to several factors, including biases in the allele 
frequency spectrum of risk variants ascertained in 
European GWAS, with undiscovered associated variants 
that are common in non-​European populations but rare 
among Europeans not included in scores37; differences in 
LD structure around the causal variant among popula­
tions, leading to error in assignment of appropriate risk 
scores to the causal allele which may be unknown; and 
heterogeneity in effect sizes across populations. Given 
these caveats, understanding and characterizing genetic 
risk of disease among diverse populations is essential 
for the successful application of risk prediction scores 
among these populations. Indeed, even inclusion of data 
from modest-​sized studies from the target population 
to European-​ascertained GWAS data can substantially 
improve prediction of risk and reduce bias120.

Implications for screening and diagnostics. Differences 
in the spectrum and frequency of mutations across 
populations are likely to have an impact on screening 
initiatives when genetic tests have been designed based 
on the mutational spectrum in a specific ethnic group. 
That is, the majority of variants in databases for clinically 

significant or pathogenic genetic mutations have been 
ascertained in European individuals and may not be rep­
resentative of other less studied population groups2,121. 
This has implications for clinical genetics diagnostics 
and precision medicine initiatives.

For example, cystic fibrosis is a recessively inherited 
disease caused by mutations in the CFTR gene. The spec­
trum and frequency of individual CFTR variants varies 
among ethnic groups and geographical locations, with 
the p.Phe508del mutation identified in 90% of white 
patients with cystic fibrosis, whereas this mutation is 
absent in 17%, 30%, 38% and 40% of those of Native 
American, Hispanic, African and Asian ethnicities 
with cystic fibrosis, respectively122. While the American 
College of Medical Genetics 23-mutation panel for cystic 
fibrosis screening reportedly identifies the majority of 
white and Native American patients with cystic fibrosis 
by identifying two copies of causal mutations within the 
gene, less than half of the patients with cystic fibrosis of 
other ethnicities would have causal variants discovered 
based on these tests122. Hence, allelic heterogeneity at 
loci associated with syndromic diseases among different 
populations, as identified for cystic fibrosis123, has direct 
implications for screening and diagnosis of individuals 
with disease in ethnically diverse populations.

As another example, recent work identifying associ­
ations between a common α-​thalaessemia variant (22% 
frequency among African populations) and G6PD vari­
ants with glycated haemoglobin levels suggest that these 
effects must be taken into account when considering the 
use of glycated haemoglobin as a marker for the diagno­
sis of diabetes mellitus in African populations in whom 
these mutations are common124.

Implications for therapeutic strategies. Genetic diver­
sity among populations has been shown to influence 
responses to drugs, which has important implications 
for precision medicine and pharmacogenomics. The 
necessity for different dosages of the anti-​clotting drug 
warfarin to maintain therapeutic effects across different 
ethnic groups125,126 illustrates the need for inclusion of 
diverse population groups in pharmacogenomic inves­
tigations and trials. Understanding pharmacogenomic 
differences among populations has the potential to 
directly inform clinical care and potentially avert adverse 
events126. Initiatives such as Human Heredity and Health 
Africa (H3Africa) have established local networks and 
capacity for large-​scale GWAS across Africa, providing 
exciting opportunities for drug discovery127.

Conclusions and outlook
Inclusion of diverse populations in studies of genetic 
determinants of disease has to date been fairly lim­
ited due to several challenges, including the need for 
building close partnerships with local communities 
and governments, regional collaborators and academic 
universities, as well as the need for building human and 
infrastructure research capacity in a sustainable way. 
These efforts require substantive financial and time 
investments, which would benefit from strategic sup­
port from funding bodies outside mainstream research 
grant systems. Recent funding initiatives, for example,  
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Box 1 | Linkage disequilibrium

Linkage disequilibrium (LD) refers to the non-​random correlation 
between markers along a chromosomal segment. LD is defined as the 
difference between the observed frequency of a particular combination 
of alleles at two loci and the frequency expected if assortment was 
random. initially, when a new mutation arises on a haplotype, it is in 
perfect LD with the markers on the haplotype. as recombination between 
markers occurs, linkage decays over time. recombination depends on the 
genetic distance and the number of generations — it occurs with higher 
probability the further alleles are from each other and with each 
generation, leading to decay in LD over time. the recombination rates 
across the human genome lead to specific patterns of LD observed in 
humans. the human genome is made up of segment blocks of loci in 
strong LD with each other. these are referred to as ‘haplotype blocks’, 
and boundaries are usually associated with hot spots of recombination. 
Haplotype blocks in humans can vary in size from a few kilobases to 
more than 100 kb. These blocks can make it difficult to delineate causal 
variants associated with disease in genome-​wide association studies 
(Gwas).

Factors influencing LD
LD is affected by population demographic forces, such as genetic drift, 
mutation, selection and admixture. Population bottlenecks increase LD 
between markers, and slower decay may be observed over distance.  
the decay of LD has been shown to be lower for european populations  
and other populations that have been through population bottlenecks, 
relative to african populations2. selection forces can also lead to increased 
LD between markers if a given haplotype with specific combinations  
of markers is selected for and increases in frequency relative to other 
haplotypes. Genetic drift can act in conjunction with population 
bottlenecks to increase LD between markers. Mixing between  
populations can also lead to strong LD between markers, especially for 
markers that are highly differentiated between the mixing populations130.  
this is referred to as admixture LD. admixture LD can provide important 
information about the time and complexity of admixture between  
source populations.

What information does LD give us? Differences in patterns of LD and 
rates of LD decay among populations have been used to better resolve 
causal variants associated with traits in Gwas. Due to differences in 

population history, different observed markers may be in strong LD with 
(that is, ‘tag’) the unobserved causal variant in different populations.  
this can provide clues as to which variant is likely to be causal. Due to 
lower LD between variants in African populations, haplotype blocks are 
shorter, making it easier to resolve regions within which causal variants lie. 
using these differences in LD to better resolve the true causal variant 
driving associations in Gwas is referred to as fine-​mapping. LD between 
markers that does not decay over relatively long distances may be 
indicative of selection forces that have led to specific haplotypes 
reaching high frequencies in a given population. LD patterns have 
therefore been used to identify regions of the genome under natural 
selection131,132.

as LD decays over time, it can be used to estimate the age of a 
haplotype. For example, markers in high LD with each other, where 
recombination has not occurred as expected based on local 
recombination rates, indicate a potential recent increase in haplotype 
frequency that is indicative of recent selection. the figure represents the 
influence of recombination on LD over time. two haplotypes (blue and 
yellow) differ in alleles at the single-​nucleotide polymorphisms A and B. 
The alleles A and B lie on one haplotype, and a and b lie on another 
haplotype. These two markers are in complete LD, as the combination of 
A and b or a and B does not exist within the population. Only a single 
allele exists in the population at position C at this point in time (that is, the 
site is monomorphic in the population). However, a mutation occurs at 
this site, with C mutating into c in one haplotype, producing a new 
haplotype abc (white). at this point, three haplotypes exist within the 
population. as the population expands, and reproduces, this haplotype is 
also observed in a proportion of the population. However, there is strong 
LD (D′ = 1) between markers A and C as only three haplotypes exist. 
The haplotype Ac does not exist at this point. During reproduction, 
recombination occurs between two haplotypes, so that all four possible 
haplotypes between a and C are now seen within the population (ac, aC, 
aC and ac). LD has decayed due to recombination between markers a and 
C. However, markers A and B remain in complete LD as no recombination 
has occurred between these markers. The recombination probability 
depends on genetic distance, and markers that are genetically less 
distant (such as A and B) are more likely to remain in high LD relative to 
markers that are genetically distant (such as a and C), as shown in the 
example here.

D′, relative measure of disequilibrium (D) compared to its maximum; r2, Pearson’s coefficient of correlation.
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the National Institutes of Health’s Trans-​Omics for 
Precision Medicine (TOPMed) programme, have begun 
to enable such activities. Including genetically diverse 
populations in GWAS is a pragmatic strategy to enhance 
novel discovery of associations with diseases or traits 
and provide better resolution of causal variation and 
allow translation of discoveries into clinical practice.

Understanding genetic contributions to disease 
susceptibility across populations will be vital for pre­
cision medicine initiatives, including for risk predic­
tion and the development and evaluation of therapies, 
enabling global equity in the benefits of genomics1,128. 
Comprehensively understanding the contribution of 
rare and common variation to different diseases among 
populations will require the development of multi-​
ethnic large-​scale population resources with whole-​
genome sequencing or whole-​exome sequencing data, 
along with relevant clinical data. Inclusion of functional 
annotations in GWAS can also provide important infor­
mation about the contribution of different genetic and 
epigenetic factors to traits129. This, however, requires 
more comprehensive characterization of molecular 
quantitative trait loci in larger sample sizes and across 
diverse human populations129. Collection of integrated 
electronic health-​record real- world resources, in con­
junction with genetic sampling, provides a cost-​effective 
strategy for the simultaneous examination of multiple 
complex disease traits and treatment phenotypes.

Future work in diverse populations should focus 
on using unbiased approaches, including unbiased 
variant discovery and genome references, as well as 
study designs that incorporate globally diverse whole-​
genome or whole-​exome sequence data and genotyping 
using arrays that enable efficient genomic coverage for 
diverse or specific populations. Unbiased design of 
GWAS in globally diverse populations will provide vital 

information to better understand reproducibility and 
heterogeneity of effects among populations, as well as 
important resources for fine-​mapping of causal variants. 
In parallel, the development of methods that leverage 
differences in genetic architecture among populations 
and better characterize heterogeneity among popula­
tions52,55,114,115 will improve the power to identify causal 
drivers of association signals, including at complex loci 
where effects are a composite of multiple drivers. With 
larger scale and more diverse populations in GWAS, 
along with the ability to better capture rarer genetic 
association signals, we may observe increasing popu­
lation differences in the structure and shape of genetic 
association signals globally, providing much finer-​scale 
insights into the genetic patterns of disease risk.

A more comprehensive understanding of genetic 
determinants of disease susceptibility worldwide will 
require moving from GWAS to understanding biological 
mechanisms underlying associations and functional val­
idation in global populations. This shift will involve the 
development of globally relevant functional resources, 
including tissue biobanks and transcriptomic resources 
across global populations, to better understand the 
impact of population-​specific variation and hetero­
geneity in variant effects at the transcriptomic level. 
Functional validation will also require the development 
of cellular models from genetically diverse populations 
in order to directly observe in vitro effects in relevant 
cell types with specific genetic profiles. New large-​scale 
GWAS based on population-​specific and multi-​ethnic 
bioresources will provide unprecedented opportunities 
to understand genetic susceptibility to disease globally. 
Mega-​biobank initiatives such as the China Kadoorie 
Biobank, BioBank Japan, H3Africa, the NIH All of Us, 
the Finnish Biobanks and the Million Veterans Program 
(Table 2) are expected to enable the unprecedented 

Table 2 | Large-​scale resources for genomic studies of diverse populations

Resource ethnicity Data collected Description

China Kadoorie 
Biobank

Chinese Lifestyle data, measurements, death and 
health-​related data; 25,000 surveyed 
repeatedly for follow up

>510,000 individuals recruited

BioBank Japan133 Japanese Questionnaires, measurements, laboratory 
tests, imaging, serial review of medical 
records, disease codes and survival data

200,000 participants recruited, hospital-​
based sampling

NIH All of Us Multi-​ethnic (oversampling 
from diverse communities, 
50% from ethnic minorities)

Lifestyle data, blood tests, electronic health 
records

>210,000 participants recruited in year 1; 
aim to recruit 1 million participants

H3Africa African Genotyping, whole-​genome sequencing data, 
biomarkers, clinical data

>54,000 participants recruited to multiple 
projects

Million Veteran 
Program

Multi-​ethnic Blood biomarkers, electronic health record 
data

>730,000 participants recruited; 450,000 
samples genotyped; 10,000 samples whole-​
genome sequenced

Finnish Biobanks Finnish National health register, blood samples Cooperative of six hospital-​based 
biobanks; aim to recruit 500,000 Finns (10% 
of population)

TOPMed Programme Multi-​ethnic (40% European, 
32% African, 16% Hispanic/
Latino, 10% Asian, 2% Other)

Risk factors, subclinical disease measures 
and incident disease (heart, lung and blood 
disorders)

• ~144,000 participants
• Sequencing of patients with heart, lung, 

blood and sleep disorders (National 
Heart, Lung, and Blood Institute); >90,000 
participants sequenced
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characterization of fine-​scale genetic architecture of 
disease among diverse populations. Further represent­
ative population-​specific resources from other ances­
trally diverse populations across the world are needed 
to inform our understanding of genetic susceptibility to  
disease in the global context. This will require a con­
certed effort of sustained long-​term investment in 

capacity-​building in the fields of epidemiology, sta­
tistical genetics and bioinformatics, supporting 
local researchers and infrastructure to facilitate the 
development of such resources from understudied  
populations1.
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