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Visceral adipose tissue (VAT)—fat stored around the inter-
nal organs—has been suggested as an independent risk fac-
tor for cardiovascular and metabolic disease1–3, as well as 
all-cause, cardiovascular-specific and cancer-specific mor-
tality4,5. Yet, the contribution of genetics to VAT, as well as 
its disease-related effects, are largely unexplored due to the 
requirement for advanced imaging technologies to accurately 
measure VAT. Here, we develop sex-stratified, nonlinear 
prediction models (coefficient of determination = 0.76; typi-
cal 95% confidence interval (CI) = 0.74–0.78) for VAT mass 
using the UK Biobank cohort. We performed a genome-wide 
association study for predicted VAT mass and identified 102 
novel visceral adiposity loci. Predicted VAT mass was associ-
ated with increased risk of hypertension, heart attack/angina, 
type 2 diabetes and hyperlipidemia, and Mendelian random-
ization analysis showed visceral fat to be a causal risk factor 
for all four diseases. In particular, a large difference in causal 
effect between the sexes was found for type 2 diabetes, with 
an odds ratio of 7.34 (95% CI = 4.48–12.0) in females and an 
odds ratio of 2.50 (95% CI = 1.98–3.14) in males. Our findings 
bolster the role of visceral adiposity as a potentially indepen-
dent risk factor, in particular for type 2 diabetes in Caucasian 
females. Independent validation in other cohorts is necessary 
to determine whether the findings can translate to other eth-
nicities, or outside the UK.

The global prevalence of obesity and overweight has risen dra-
matically over the past century6, and the conditions constitute a 
severely increasing health problem worldwide. Visceral fat has been 
shown to be more harmful compared with fat stored elsewhere in 
the body1,2. Visceral adipose tissue (VAT) mass can be estimated 
accurately by magnetic resonance imaging, computed tomography 
or dual-energy X-ray absorptiometry (DXA). Unfortunately, these 
are all costly and time-consuming techniques that require substan-
tial infrastructure investments, as well as specialized medical staff. 
To this end, we developed novel, nonlinear prediction models from 
associated variables that are more easily measured than VAT itself. 
The models were calibrated using a large training dataset, with VAT 
measured by DXA in 4,198 individuals (Extended Data Fig. 1) of 
white British ancestry from the UK Biobank (UKBB).

Measured VAT mass was regressed on an extensive number of 
demographic, anthropometric and bioelectrical impedance pre-
dictors of the arms, legs and whole body (Supplementary Tables 1 
and 2 and Extended Data Fig. 2). Two reduced prediction models, 
which included only nominally significant regression terms, were 

developed for use in the clinic, while the two full models included 
all terms (Supplementary Table 3). These models were adopted to 
predict the VAT mass in nearly 400,000 white British participants of 
the UKBB, of which 325,153 were used in the downstream analyses 
(Extended Data Fig. 1). Overall, the training and application datasets 
had similar characteristics and the median depot of VAT was ~2.5 
times larger in males compared with females (Supplementary Table 
2). The coefficients of determination (R2), as well as the adjusted 
coefficients of determination, were estimated to R2 = 0.76 for all pre-
diction models, with a 95% confidence interval (CI) of 0.74–0.78 for 
the majority of models (Supplementary Table 4). All models showed 
a highly significant improvement (P < 0.0001), higher R2 and higher 
predicted R2 over those models that only included linear terms 
and no bioelectrical impedance predictors (Supplementary Table 
5a,b). The models were not overfitted, as was evident by the con-
sistently high predicted R2 values and the out-of-sample validation 
(Supplementary Tables 4 and 6a,b, Extended Data Figs. 3 and 4, and 
see also Supplementary Text). Several earlier attempts7–10 have been 
made to predict VAT using multiple linear regression modeling. 
Of these, the two largest studies (n = 350–600) with the most accu-
rate estimates of the coefficient of determination have reported an 
R2 ≤ 0.69 (refs. 8,9). We argue that higher-order terms, such as inter-
actions, should be a natural component of VAT prediction models 
that are based on anthropometric measures (Supplementary Text), 
and conclude that the increase in explained variance, compared 
with earlier linear prediction models8,9, is predominantly due to the 
adoption of a more complex model (Supplementary Text).

Using predicted VAT mass (VAT^), we performed a large-scale 
genome-wide association (GWA) study (GWAS) for VAT accumula-
tion. Up to this point, only four single-nucleotide polymorphisms 
(SNPs) have been identified in GWASs for VAT or VAT adjusted 
for body mass index (BMI)11–13. In the present study, we were able 
to identify 209 independent VAT^ associations (P < 3.33 × 10−9), dis-
tributed over 200 nonoverlapping loci (Supplementary Table 7). Of 
these, 205 signals were identified in the sex-combined analysis, while 
four signals were identified exclusively in the sex-specific analyses 
(two in females and two in males). We observed associations at sev-
eral loci that have previously been associated with obesity and BMI, 
such as the well-studied FTO and MC4R loci. Moreover, the lead SNP 
rs2842895 in the RREB1 locus, which was previously associated with 
VAT adjusted for BMI13, was also nominally significant in our analy-
sis (P = 2.7 × 10−4), with the same direction of effect (Supplementary 
Text). However, 102 of the independent loci have hitherto not been 
associated with any adiposity-related phenotype (Supplementary 
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Table 8). Altogether, common genetic variants explained 37.3% and 
38.5% of the variation in VAT^ in females and males, respectively. 
The high SNP heritability suggests that visceral fat is more heritable 
than other anthropometric traits, such as waist circumference, which 
has a reported14 SNP heritability of merely h2 = 15 ± 5%. We note 
that the genomic inflation was 1.108 in the combined cohort, which 
appears to be a result of true underlying associations, and not due to 
population structure (Supplementary Text).

There was an overlap between VAT^-associated loci and loci 
associated with other adiposity-related phenotypes (Supplementary 
Table 9). The overlap with BMI and waist circumference was gener-
ally more pronounced compared with the overlap with hip circum-
ference and waist-to-hip ratio adjusted for BMI (WHRadjBMI). 
Also, the genetic correlations (rg) between VAT^ and other adi-
posity-related phenotypes were generally high (rg ≥ 0.84), with the 
exception of WHRadjBMI (Supplementary Table 9). This is in line 
with previous work15, which found genetic correlations between 
various adiposity-related traits to lie in the range rg = 0.77–0.95.

GWA signals were enriched for genes expressed in brain tissues 
and the central nervous system (Fig. 1a and Supplementary Table 
10). This implies that VAT is mainly a ‘behavioral trait’, as was pre-
viously proposed for BMI16. Among the most significant Reactome 
pathways (Supplementary Table 11), we found several that relate 
to the release of well-known neurotransmitters, such as dopamine, 
serotonin, acetylcholine, norepinephrine and glutamate, as well as 
pathways for the integration of energy metabolism and inhibition of 
insulin secretion. One significant Kyoto Encyclopedia of Genes and 
Genomes pathway was the type 2 diabetes mellitus pathway, which 
is represented by a subset of the same genes as the Reactome inhibi-
tion of insulin secretion pathway.

Among our GWA hits, overlap with an expression quantitative 
trait locus (eQTL) was identified for 71 of the 209 VAT^-associated 
lead SNPs (Supplementary Tables 8 and 12). No fewer than 47 SNPs 
were also in high (R2 > 0.8) linkage disequilibrium with missense 
variants, of which five are predicted to be deleterious/damag-
ing both by PolyPhen and SIFT (Supplementary Tables 8 and 13).  
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Fig. 1 | Tissue enrichment for the most significant GWA signals, and results from functional experiments for HMBS. a, Tissue enrichment results from 
DEPICT. Tissues are grouped together based on similarities or on the organ from which the tissues were derived. Each bar represents one tissue, while the 
height of the bar denotes the unadjusted, two-sided P value for the tissue, given on a –log10 scale. P values were calculated using a normal null distribution 
(z test) with the mean and variance estimated from 1,000 simulated null z scores. Red bars indicate tissues for which enrichment was statistically 
significant after adjusting for multiple testing (false discovery rate < 0.05). CNS, central nervous system. b,c, Results from the luciferase assay in HepG2 
cells for the HMBS promoter fragments HMBS_P2 (b) and HMBS_P1 (c). For each set of alleles, the box plots represent the median, interquartile range, 
and minimum and maximum values of all replicates, where n is the number of independent plasmid extractions multiplied by the number of independent 
transfections. The P values (two-sided t-test) represent pairwise differences in means, either between the control plasmid pGL4.10 without any insert and 
the plasmid with one of the fragments inserted, or between the two plasmids with fragments inserted. In b, AT denotes the fragment that contains the 
rs1799993-A and rs1006195-T alleles, while CG denotes the fragment with the rs1799993-C and rs1006195-G alleles. c shows the results for the smaller 
HMBS promoter fragment (HMBS_P1), which only includes rs1006195. This fragment did not show any promoter activity, and no difference between the 
alleles (G and T) was observed. We therefore conclude that rs1799993 is the most likely functional variant on the HMBS_P2 fragment. d, GTEx data of the 
genotype-dependent gene expression in VAT for the genotypes of rs1799993, where n denotes the number of biologically independent samples for each 
genotype. The violin plots show the median (white line), interquartile range (gray box) and distribution (black area) of the normalized expression levels for 
the different alleles. The rs1799993-A allele is associated with increased expression levels of HMBS, which is consistent with the results from the luciferase 
assay, where the fragment (AT) that contains rs1799993-A and rs1006195-T has a higher promoter activity.
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One of the novel GWA loci was HMBS, which is linked to adipogen-
esis via mitochondrial respiratory activity17. The associated SNPs of 
HMBS overlapped with an eQTL for HMBS in VAT, which suggests 
that gene regulation might mediate the association. A subset of 
novel variants, including the associated HMBS SNPs, were there-
fore selected for functional follow-up (Extended Data Fig. 5) to test 
for difference in luciferase activity between alleles in HepG2 cells 
(Supplementary Table 14 and Extended Data Fig. 6). Interestingly, 
one SNP in the regulatory region of HMBS (rs1799993) was asso-
ciated with a clear difference in activity of the HMBS promoter  
(Fig. 1b,c). The allele (A) that was associated with higher promoter 
activity was also associated with both increased expression of HMBS 
(Fig. 1d) and increased VAT^ (Supplementary Table 12), which is 
consistent with the concept that increased expression of HMBS may 
lead to stimulation of adipogenesis18 and subsequent expansion of 
adipose tissue, thereby increasing the depot of visceral fat.

VAT^ was strongly associated with increased risk for hyperten-
sion, hyperlipidemia, type 2 diabetes and heart attack/angina (Fig. 2).  

The associations were stronger (P < 0.0001) in females compared 
with males for all four diseases (Supplementary Table 15), which 
is consistent with previous studies1, and the largest difference in 
odds ratio (OR) between the sexes was found for type 2 diabetes  
(Fig. 2). This difference in effect size is unlikely to be an artifact of 
any systematic error in VAT^ (Supplementary Text), and it remained 
after accounting for measurement errors in VAT^ and after adjust-
ing for differences in the VAT^ distribution between sexes (Fig. 2). 
Apart from being a strong predictor of disease, VAT^ also exhib-
ited an effect independent of BMI (Supplementary Table 16). All 
BMI-adjusted ORs remained significantly larger than unity. The 
P value for VAT^ was also smaller than the corresponding P value 
for BMI in all cases except for hypertension in males. Furthermore, 
our results point towards important differences in the effect of 
VAT^ between type 2 diabetes subgroups with specified medical 
complications (Extended Data Fig. 7). For example, a significantly 
higher OR was estimated in type 2 diabetics with renal complica-
tions compared with type 2 diabetics diagnosed with ketoacidosis.  
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Fig. 2 | VAT^ in relation to cardiovascular and metabolic diseases. ORs and 95% CIs (normal approximation) are shown for females and males separately. 
The numbers in bold denote the total numbers of cases/controls for each disease and sex. However, for measured VAT, the numbers of cases/controls 
for females and males, respectively, are: 352/1,337 and 562/1,322 (hypertension); 25/1,664 and 93/1,791 (heart attack/angina); 31/1,636 and 67/1,790 
(type 2 diabetes); and 168/1,526 and 338/1,547 (hyperlipidemia). Unadjusted VAT^ denotes the OR per unit increase (1 kg) in VAT^ in relation to disease, 
not adjusting for any covariates. Adjusted VAT^ denotes the OR when adjusting for covariates. Bias-corrected VAT^ denotes the corresponding OR 
when correcting VAT^ for measurement errors (covariate-adjusted model). Since the random error in VAT^ was higher in males compared with females 
(Supplementary Table 4), there was a concern that the observed differences in ORs between sexes were, to a large extent, artifacts caused by differences 
in measurement error. However, bias-corrected results from SimEx simulations do not support this view, as the differences in ORs between the sexes 
for the bias-corrected VAT^ tend to be larger, rather than smaller. Measured VAT denotes the OR per unit increase (1 kg) in VAT as measured by DXA 
in a small subset of the cohort (covariate-adjusted model). The ORs appear not to be strongly affected by any systematic error in VAT^, as the ORs for 
measured VAT do not differ significantly from those of VAT^. Finally, rank-transformed VAT^ denotes the OR per unit standard deviation in ranks, based 
on the covariate-adjusted model, with VAT^ being rank-transformed to standard normal distributions for females and males separately. As the significant 
results remained significant even after VAT^ was rank-transformed, we conclude that the difference in effect between males and females is not only due to 
the difference in average VAT mass between the sexes.
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Such differences can affect risk assessment, and are consistent with 
the concept of type 2 diabetes being a heterogeneous disease that 
can be divided into several distinct subclasses19.

By relaxing the assumption of linearity, a significant nonlin-
ear effect (P < 0.0001) of VAT^ on disease was uncovered for all 
four cardiometabolic diseases (Fig. 3, Extended Data Fig. 8 and 
Supplementary Table 17). This finding was also supported by the 
data for VAT mass, as measured by DXA (Supplementary Table 
18 and Supplementary Text). A nonconstant OR (Supplementary 
Text) was observed in the sense that a one-unit (1 kg) increase of 
VAT^ was generally associated with a more pronounced increase 
in disease risk, as reflected by a higher OR, in individuals with 
small or moderate depots of VAT compared with individuals with 
large depots of VAT. Ultimately, a saturation of the disease risk 

appears to occur at high VAT^ for all four diseases, at which the 
OR approaches unity (Fig. 3 and Extended Data Figs. 8 and 9). 
However, in contrast with the other diseases that chiefly exhib-
ited monotonically decreasing ORs, type 2 diabetes was found to 
exhibit a pronounced peak in the nonconstant OR, with the risk 
of disease remaining low at low VAT^ (Fig. 3f). This allowed us to 
define a sex-specific ‘VAT transition point’, VATtr (Supplementary 
Text), above which the risk for type 2 diabetes rapidly increased, 
before saturation. We estimated VATtr to be 1.31 kg (95% 
CI = 1.23–1.41 kg) for females and 2.06 kg (95% CI = 1.93–2.19 kg) 
for males. As many as 33% of the white British males and 16% of 
the females had a VAT^ above VATtr in the UKBB. This transition 
point is aimed for use in the clinic to identify individuals at risk of 
developing type 2 diabetes. Moreover, the absolute risk of type 2 

1.0
a b c

d e f

P
ro

ba
bi

lit
y 

of
 d

is
ea

se
 (

ra
w

 d
at

a)

0.8

0.6

0.4

0.2

0

0 2.0

VAT∧ (kg)

4.0 6.0 0 2.0

VAT∧ (kg)

4.0 6.0 0 2.0

Nonconstant OR of VAT∧ (kg) on disease

4.0 6.0

0 2.0

VAT∧ (kg)

4.0 6.0 0 2.0

VAT∧ (kg)

4.0 6.0 0 2.0

Nonconstant OR of VAT∧ (kg) on disease

4.0 6.0

1.0

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

 d
is

ea
se

0.8

0.6

0.4

0.2

0

20.0

O
R

 o
f

pr
ed

ic
at

ed
 V

AT
 o

n 
di

se
as

e

10.0

5.0

3.0

1.0

2.0

0.5

20.0

O
R

 o
f

pr
ed

ic
at

ed
 V

AT
 o

n 
di

se
as

e

10.0

5.0

3.0

1.0

2.0

0.5

1.0

P
ro

ba
bi

lit
y 

of
 d

is
ea

se
 (

ra
w

 d
at

a)

0.8

0.6

0.4

0.2

0

1.0

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

 d
is

ea
se

0.8

0.6

0.4

0.2

0

Fig. 3 | Polynomial logistic regression and the change in OR with increasing VAT^. a–f, Models for hypertension (a–c) and type 2 diabetes (d–f), 
showing the observed probability (absolute risk) of having been diagnosed with disease, without adjusting for any covariates (a and d), the predicted 
probability (absolute risk) of disease for each individual (b and e), given the adopted polynomial model with covariates (Supplementary Table 17), and the 
nonconstant ORs (that is, 95% basic bootstrap CIs) for the adopted polynomial model (c and f) for a one-unit (1 kg) increase in VAT^, each as a function 
of VAT^, for females (black and gray) and males (red and pink) separately. Error bars in a and d indicate 95% CIs, assuming that the numbers of cases and 
controls in each VAT^ bin are distributed according to two independent Poisson distributions. The total numbers of cases and controls for hypertension 
and type 2 diabetes are given in Fig. 2 for females and males separately. Note that at high VAT^, the data are too sparse to adequately constrain the OR, 
which leads to inflated CIs. The nonlinear results presented here were not sensitive to the adopted polynomial in VAT^ (Extended Data Fig. 9).
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diabetes and hypertension was on average higher in females com-
pared with males with the same VAT^ (Fig. 3a,d). This excess risk 
in females was observed for a wide range of VAT^ values, despite 
the fact that both the average VAT mass (Supplementary Table 2) 
and the prevalence of disease (Fig. 2) was higher in males. This 
shows that VAT is a stronger risk factor in females, while the 
higher overall prevalence of disease in males is probably due to 
their larger average depot of visceral fat.

The associations between VAT^ and risks for disease were 
verified in a two-sample Mendelian randomization (MR) analysis 
(Table 1). With the exception of heart attack/angina in females, all 
estimated causal ORs were significantly above unity (P ≤ 0.0003), 
suggesting a causal effect of VAT on disease. The causal ORs 
were also significantly higher in females compared with males 
for hypertension (P = 0.002) and type 2 diabetes (P < 0.0001)—a 
result that prevailed for type 2 diabetes after accounting for the 
difference in average mass of visceral fat between females and 
males (Supplementary Table 19). The causal OR for type 2 diabe-
tes in females was strikingly high (OR = 7.34; 95% CI = 4.48–12.0), 
and considerable higher compared with what has recently been 
shown for waist-to-hip ratio adjusted for BMI20 (Supplementary 
Text). A statistically significant difference in effect between the 
sexes could not be established for the remaining diseases due to 
larger uncertainties in the estimates and/or smaller effect-size 
differences. Several sensitivity analyses indicated that our MR 

results were consistent and not affected by pleiotropy (Table 1, 
Supplementary Table 20 and Extended Data Fig. 10).

In summary, we performed a large-scale GWAS to identify 
genetic variants that influence VAT. Furthermore, we showed that 
VAT^, also adjusted for BMI, is strongly associated with disease 
risk, which suggests that VAT^ captures additional harmful effects 
not captured by BMI. It is not completely elucidated why VAT is 
more harmful compared with other fat depots, such as subcuta-
neous adipose tissue. Possible hypotheses either identify visceral 
adiposity as being more lipolytic and resistant to the antilipo-
lytic effects of insulin, leading to higher amounts of circulating 
free fatty acids, or suggest that VAT has a higher rate of macro-
phage infiltration, which results in a proinflammatory profile that  
subsequently promotes insulin resistance3. Both scenarios gen-
erally agree with the causal effect of VAT^ on type 2 diabetes  
risk. The nonlinear relationship between VAT^ and disease  
risk should be studied further to gain a deeper understanding of 
the biology behind the complex relationship between VAT mass 
and disease.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41591-019-0563-7.

Table 1 | MR estimates of the causal effects of VAT^ on cardiometabolic diseases

Females Males

Disease Design Cases Controls OR/intercept 
(95% CI)

P valuec Cases Controls OR/intercept 
(95% CI)

P valuec

Hypertension Two samplea 25,414 85,171 2.61
(2.14–3.19)

3.1 × 10−21 33,744 76,216 1.86
(1.65–2.10)

1.4 × 10−24

One samplea 3.51
(2.71–4.54)

2.5 × 10−21 2.00
(1.75–2.28)

4.5 × 10−24

MR–Egger 
interceptb

−0.002
(−0.016–0.011)

0.75 −0.009
(−0.026–0.008)

0.31

Heart attack/angina Two samplea 2,259 108,326 1.38
(0.79–2.42)

0.25 7,484 102,477 1.73
(1.42–2.11)

3.8 × 10−8

One samplea 1.58
(0.76–3.27)

0.22 2.00
(1.58–2.54)

6.9 × 10−9

MR–Egger 
interceptb

0.027
(−0.002–0.056)

0.072 −0.002
(−0.026–0.023)

0.89

Type 2 diabetes Two samplea 3,044 106,371 7.34
(4.48–12.0)

2.7 × 10−15 6,473 101,623 2.50
(1.98–3.14)

6.4 × 10−15

One samplea 13.5
(7.08–25.6)

2.4 × 10−15 4.05
(3.14–5.23)

9.1 × 10−27

MR–Egger 
interceptb

−0.015
(−0.039–0.010)

0.24 −0.015
(−0.042–0.012)

0.27

Hyperlipidemia Two samplea 10,317 100,432 1.69
(1.27–2.24)

2.9 × 10−4 17,029 93,101 1.35
(1.18–1.55)

1.7 × 10−5

One samplea 2.01
(1.39–2.91

2.1 × 10−4 1.54
(1.31–1.82)

3.1 × 10−7

MR–Egger 
interceptb

0.001
(−0.037–0.040)

0.95 −0.017
(−0.046–0.013)

0.27

aORs with corresponding CIs represent generalized least squares estimates from the GSMR analysis21, based on 44 genome-wide significant (P < 5 × 10−8) lead SNPs identified in a GWAS performed in the 
interim release of the UKBB genotype dataset (Supplementary Table 21). All ORs are given per 1 kg increase in VAT^. Results from the main, two-sample MR design are generally conservative and the effects 
are probably underestimated, partly due to the fact that any weak-instrument bias is in the direction of the null22 and partly due to ‘winner’s curse’ bias. Note that any remaining dependence between the 
two cohorts in the two-sample design is unlikely23 to introduce weak-instrument bias in the direction of the confounded association. The causal estimate from the one-sample design may be interpreted 
as an upper limit to this bias. In some cases, a few SNPs have been removed from the analysis, as they were flagged as pleiotropic outliers (Supplementary Table 22). bEvidence of directional pleiotropy is 
present only if the MR–Egger intercept deviates significantly from zero. cUnadjusted and two-sided P values, estimated from a standard normal null in logit space (marginal z test), are reported. Values below 
P = 3.2 × 10−3 (Šidák correction for 16 tests) are considered statistically significant, assuming independence between sexes, diseases and the effect and intercept estimates.

Nature Medicine | VOL 25 | SEPTEMBER 2019 | 1390–1395 | www.nature.com/naturemedicine1394

https://doi.org/10.1038/s41591-019-0563-7
https://doi.org/10.1038/s41591-019-0563-7
http://www.nature.com/naturemedicine


LettersNature Medicine

Received: 24 April 2018; Accepted: 29 July 2019;  
Published online: 9 September 2019

References
	1.	 Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue 

compartments: association with metabolic risk factors in the Framingham 
Heart Study. Circulation 116, 39–48 (2007).

	2.	 Vega, G. L. et al. Influence of body fat content and distribution on variation 
in metabolic risk. J. Clin. Endocrinol. Metab. 91, 4459–4466 (2006).

	3.	 Tchernof, A. & Despres, J.-P. Pathophysiology of human visceral obesity: an 
update. Physiol. Rev. 93, 359–404 (2013).

	4.	 Brown, J. C., Harhay, M. O. & Harhay, M. N. Anthropometrically-predicted 
visceral adipose tissue and mortality among men and women in the third 
National Health and Nutrition Examination Survey (NHANES III). Am. J. 
Hum. Biol. 29, 444–454 (2017).

	5.	 Katzmarzyk, P. T., Mire, E. & Bouchard, C. Abdominal obesity and mortality: 
the Pennington Center longitudinal study. Nutr. Diabetes 2, e42–e43 (2012).

	6.	 Bentham, J. et al. Worldwide trends in body-mass index, underweight, 
overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 
population-based measurement studies in 128·9 million children, adolescents, 
and adults. Lancet 390, 2627–2642 (2017).

	7.	 Samouda, H. et al. VAT = TAAT − SAAT: innovative anthropometric model to 
predict visceral adipose tissue without resort to CT-scan or DXA. Obesity 21, 
41–50 (2013).

	8.	 Eastwood, S. V. et al. Estimation of CT-derived abdominal visceral and 
subcutaneous adipose tissue depots from anthropometry in Europeans, South 
Asians and African Caribbeans. PLoS One 8, e75085 (2013).

	9.	 Neamat-Allah, J. et al. Validation of anthropometric indices of adiposity 
against whole-body magnetic resonance imaging—a study within the German 
European Prospective Investigation into Cancer and Nutrition (EPIC) 
cohorts. PLoS One 9, e91586 (2014).

	10.	Neamat-Allah, J. et al. Can the use of blood-based biomarkers in addition to 
anthropometric indices substantially improve the prediction of visceral fat 
volume as measured by magnetic resonance imaging? Eur. J. Nutr. 54, 
701–708 (2015).

	11.	Fox, C. S. et al. Genome-wide association for abdominal subcutaneous and 
visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 
8, e1002695 (2012).

	12.	Sung, Y. J. et al. Genome-wide association studies suggest sex-specific loci 
associated with abdominal and visceral fat. Int. J. Obes. 40, 662–674 (2016).

	13.	Chu, A. Y. et al. Multiethnic genome-wide meta-analysis of ectopic fat depots 
identifies loci associated with adipocyte development and differentiation. Nat. 
Genet. 49, 125–130 (2017).

	14.	Speed, D. et al. Reevaluation of SNP heritability in complex human traits. 
Nat. Genet. 49, 986–992 (2017).

	15.	Sodini, S. M., Kemper, K. E., Wray, N. R. & Trzaskowski, M. Comparison of 
genotypic and phenotypic correlations: Cheverud’s conjecture in humans. 
Genetics 209, 941–948 (2018).

	16.	Locke, A. E. A. E. et al. Genetic studies of body mass index yield new 
insights for obesity biology. Nature 518, 197–206 (2015).

	17.	Moreno-Navarrete, J. M. et al. Heme biosynthetic pathway is functionally 
linked to adipogenesis via mitochondrial respiratory activity. Obesity 25, 
1723–1733 (2017).

	18.	Gómez-Hernández, A., Beneit, N., Díaz-Castroverde, S. & Escribano, O. 
Differential role of adipose tissues in obesity and related metabolic and 
vascular complications. Int. J. Endocrinol. 2016, 1216783 (2016).

	19.	Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their 
association with outcomes: a data-driven cluster analysis of six variables. 
Lancet Diabetes Endocrinol. 6, 361–369 (2018).

	20.	Emdin, C. A. et al. Genetic association of waist-to-hip ratio with 
cardiometabolic traits, type 2 diabetes, and coronary heart disease.  
J. Am. Med. Assoc. 317, 626–634 (2017).

	21.	Zhu, Z. et al. Causal associations between risk factors and common diseases 
inferred from GWAS summary data.Nat. Commun. 9, 224 (2018).

	22.	Haycock, P. C. et al. Best (but oft-forgotten) practices: the design, analysis, 
and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 
103, 965–978 (2016).

	23.	 Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in 
two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

Acknowledgements
We acknowledge all of the participants and staff involved in UKBB for their valuable 
contribution. This research was conducted using the UKBB Resource under application 
number 15152, following the restrictions on data availability set up by the UKBB. The 
computations were performed on resources provided by SNIC through the Uppsala 
Multidisciplinary Center for Advanced Computational Science under projects b2016021 
and sens2017538. The research was funded by the Swedish Society for Medical Research 
(M.R.-A. and Å.J.), Swedish Research Council (Å.J., 2015-03327), Kjell and Märta Beijers 
Foundation (Å.J.), Göran Gustafssons Foundation (Å.J.), Marcus Borgström Foundation 
(Å.J.), Åke Wiberg Foundation (Å.J., M16-0210), Swedish Heart and Lung Foundation (Å.J., 
20170484), Swedish Diabetes Foundation (C.W.) and Science for Life Laboratory (Å.J.).

Author contributions
T.K., M.R.-A. and Å.J. designed the study and performed the data analysis. T.K. 
developed all of the models, performed the statistical analysis and generated the figures. 
G.P. and C.W. performed the functional study. T.K., M.R.-A., G.P., J.H., C.W., W.E.E. and 
Å.J. interpreted the data and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41591-019-0563-7.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41591-019-0563-7.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to T.K. or Å.J.

Peer review information: Kate Gao and Brett Benedetti were the primary editors on this 
article and managed its editorial process and peer review in collaboration with the rest of 
the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Nature Medicine | VOL 25 | SEPTEMBER 2019 | 1390–1395 | www.nature.com/naturemedicine 1395

https://doi.org/10.1038/s41591-019-0563-7
https://doi.org/10.1038/s41591-019-0563-7
https://doi.org/10.1038/s41591-019-0563-7
http://www.nature.com/reprints
http://www.nature.com/naturemedicine


Letters Nature Medicine

Methods
Study cohort. UKBB recruited 502,682 individuals, originally aged 40–69 years, 
from across the UK during 2006–2010. Most participants were invited once 
(instance 0), whereas a subset of participants were invited to revisit the assessment 
center on one or two additional occasions (instances 1 and 2, respectively). 
Participants were interviewed about lifestyle and disease history via touchscreen 
questionnaires and verbal interviews. Participants underwent a physical 
examination that included measurements of weight, height and waist and hip 
circumference, and females were asked about their menopausal status. Bioelectrical 
impedance measurements were performed on the Tanita BC418MA body 
composition analyzer, which uses an eight-electrode setup that estimates body 
composition in the whole body as well as in the limbs. VAT mass was measured by 
DXA in a subset of 5,109 individuals at instance 2 using the GE Healthcare Lunar 
iDXA scanner. This subset of participants was selected independently but was 
biased towards participants living within a reasonable traveling distance from one 
of the imaging assessment centers.

Prediction models for VAT mass. Initially, two UKBB subcohorts were 
constructed: one training dataset with VAT mass measured by DXA (instance 2; 
n = 5,109), to which the prediction models were calibrated; and one application 
dataset (instances 0 and 1; n = 502,638), in which VAT mass was predicted using 
the calibrated prediction models. To avoid potential bias due to population 
structure, only white British participants (data field: 21000; code: 1001) were 
included in the analysis, and all entries of “do not know”, “prefer not to answer” 
or “NA” for any of the explored predictor variables or in the response were set to 
missing. After removal, n = 4,212 participants remained in the training dataset and 
n = 397,170 participants remained in the application dataset (Extended Data Fig. 
1). The quality control performed on the training dataset included the removal 
of a number of outliers in the bioelectrical impedance variables. Unfortunately, 
bioelectrical impedance measurements were only performed at instances 0 and/
or 1, in contrast with the other predictors, which were also measured at instance 
2. Therefore, all individuals whose BMI had changed by more than eight units 
between instance 0 or 1 and the instance at which VAT was measured (that is, 
instance 2) were removed. In total, 14 participants were removed and n = 4,198 
remained after quality control in the training dataset. The same criteria for removal 
that applied to the training dataset were also applied to the application dataset. 
Two individuals with inadequate menopausal status were removed, as were two 
individuals with extremely low waist circumference (≤26 cm) but otherwise 
average body size measures. Furthermore, a number of individuals with extreme 
hip circumference in relation to their BMI were removed (hip > 2 × BMI + 80 cm), 
including one male with a hip circumference of 39 cm and a BMI of 23.4 kg m−2. 
Also, all individuals with a difference in impedance between the left and right arm 
or the left and right leg of >120 ohm were removed, as were extreme impedance 
measures in relation to the individual’s BMI. As a result of this quality control of 
the predictors, only 11 individuals with extreme VAT^ had to be removed before 
the epidemiological studies and GWASs were performed. In total, 950 individuals 
were removed from the application dataset, whereas n = 396,220 individuals passed 
quality control.

We note that individuals in the training dataset were, on average, 4–5 years 
older than the individuals in the application dataset, in agreement with VAT being 
measured at a second revisit to the assessment center (instance 2). This difference 
is reflected in the fraction of females that underwent menopause, as well as in most 
other variables to different degrees (0.4–4.0% difference in median), and led to  
a median difference of 6–10% between measured VAT and VAT^ (Supplementary 
Table 2).

VAT mass was predicted using multiple regression modeling, with a number 
of predictor interactions, in males and females separately. As discussed in the 
Supplementary Text, the inclusion of nonlinear terms can be motivated on 
theoretical and physical grounds. In total, 11 predictor variables distributed on 20 
different linear and interaction terms were included in the models (Supplementary 
Tables 1–3 and Extended Data Fig. 2). The predictors (including the interaction 
terms) that were incorporated in the prediction models correlated to various 
degrees with the dependent variable VAT mass. Waist and waist × weight showed 
the highest correlations with VAT mass for females and males, respectively 
(Extended Data Fig. 2). For females, the lowest correlation with VAT was height, 
while for males the lowest correlation was age. The bioelectrical impedance 
predictors showed significant negative correlations with VAT mass, with whole-
body impedance being the most negative, both for females and males (Extended 
Data Fig. 2).

We created two sets of prediction models in males and females separately: 
reduced and full models (Supplementary Tables 3 and 4). The full models were 
based on the entire set of regression terms, with the exception of menopausal 
status in males. In the two reduced models, only nominally significant terms were 
selected, while the redundant terms were eliminated by backward elimination. 
In-sample validation of the models was performed by calculating the predicted 
R2 (see Supplementary Text) using two different techniques: leave-one-out cross-
validation24 and bootstrapping. The function validate, in the R package rms, was 
used to estimate the predicted R2 by the bootstrap method. The models were 
further validated (out-of-sample validation) by an independent sample of Irish 

and other white, non-British individuals from the UKBB. The leave-one-out cross-
validation was also used to estimate random and systematic errors of the prediction 
models (Supplementary Table 4, Extended Data Figs. 3 and 4 and Supplementary 
Text), while relative goodness-of-fit and model selection were assessed by Akaike’s 
information criterion (AIC). All analyses were done in R version 3.4.2 (ref. 25) using 
lm and glm, which are included in the statistics library.

GWAS, enrichment analyses and functional annotation. Genotyping in UKBB 
was performed using two custom-designed microarrays (UK BiLEVE and Axiom 
Genotyping), which contain probes for 807,411 and 820,967 SNPs, respectively. 
Imputation was performed using UK10K and 1000 Genomes phase 3 as reference 
panels26,27. The genetic dataset included 93,093,070 SNPs with imputations from 
the third release of imputed data from UKBB (version 3; accessed March 2018). 
As in the filtering of the application dataset for the VAT prediction modeling, 
only participants of British descent (data field: 21000) were included in the GWA 
analyses. To minimize the effects of population stratification, an additional filtering 
included only participants classified as Caucasian by principal component analysis 
(data field: 22006). Genetic relatedness pairing was provided by the UKBB (data 
field: 22011). Individuals were excluded due to relatedness based on kinship data 
(estimated genetic relationship > 0.044), and individuals with a poor call rate 
(<95%), high heterozygosity (data field: 22010) or sex errors (data field: 22001) 
were also removed. After filtering, 325,153 participants with VAT^ remained 
for the GWAS. Of these, 104,271 were part of the interim genotype data release 
cohort, while 220,882 were part of the second genotype data release of unrelated 
individuals (Extended Data Fig. 1).

GWA analyses were performed using linear regression models implemented in 
PLINK version 1.90b3n28, in females and males separately, while the sex-combined 
associations were subsequently computed using a fixed-effect meta-analysis. 
For the main GWAS, SNPs were filtered based on call rate (all SNPs with a call 
rate > 99% were kept), deviance from Hardy–Weinberg equilibrium accepting SNPs 
with P > 10−20, minor allele frequency (MAF), assuming that MAF > 0.001, and 
imputation quality (>0.3). After filtering, 10,549,349 SNPs remained. Before the 
analysis, VAT^ was adjusted for age by the residual method, and rank-transformed 
using rntransform in the R package GenABEL29. The first 15 genetic principal 
components were included as covariates, together with a batch-effect variable to 
adjust for genotyping array (Axiom or BiLEVE), as both were used in the first 
genotype data release (interim release). A family-wise error rate of α < 0.05 of the 
GWAS was ensured by adopting a P value threshold of P = 3.33 × 10−9, accounting 
for the female, male and sex-combined subgroups, for a MAF threshold of 0.1%, 
and assuming that genomic inflation due to population structure was absent (see 
Supplementary Text).

After the GWA analyses, we used the PLINK clump function with thresholds 
R2 = 0.05, p1 = 3.33 × 10−9 and p2 = 0.0001, and a window of 2,000 kilobases, 
to find the lead SNP and define start and end positions for each locus, and to 
identify multiple uncorrelated SNPs within the locus, if any. If more than one 
signal was identified within a locus, independence was confirmed for all SNPs by 
recalculating the conditional P value, adjusting for the most significant SNP(s). 
The same P value cut-off (P = 3.33 × 10−9) adopted in the GWA analyses, was used 
in the conditional analyses. A locus was considered as novel for VAT^ if the lead 
SNP was not in linkage disequilibrium (R2 < 0.05) with any SNP reported in the 
GWAS Catalog30 (accessed 1 December 2018) for any of the following adiposity-
related phenotypes: VAT, subcutaneous adipose tissue, body fat percentage, BMI, 
obesity, weight, waist circumference, hip circumference or waist-to-hip ratio. 
This also included adiposity-related phenotypes adjusted for, for example, BMI, 
smoking, physical activity and so on, and phenotypes with gene × environment 
or gene × gene interactions. The variance explained by genetic variants (SNP 
heritability) was assessed using GCTA version 1.26.0 (ref. 31). Participants with 
an estimated genetic relationship > 0.025 were removed from the analysis to 
evade phenotypic resemblance due to nongenetic effects (for example, shared 
environment between relatives). Only genotyped SNPs with MAF > 1% and 
a call rate > 95% (n = 730,616 SNPs), from the interim release of the UKBB 
genotype dataset (n = 104,271 participants in total), were used to estimate the SNP 
heritability, to avoid confounding effects of uncertainties in the imputed data. Age, 
a batch indicator variable for the two genotyping arrays and the first ten principal 
components were included as covariates.

To facilitate the identification of the functional role or tissue specificity for 
the associated variants, tissue and geneset enrichment analyses were performed 
using DEPICT version 1.1 (ref. 32). Geneset enrichment in DEPICT is based on 
similarities in gene expression. A total of 14,461 so-called reconstituted genesets 
were pregenerated: genesets that represent a wide set of biological annotations (Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEG), Reactome 
(REA), Mammalian Phenotype (MP), and protein–protein Interaction networks by 
Ensembl (ENS)). For tissue enrichment in DEPICT, microarray data from 37,427 
human tissues were used to group genes with similar expression patterns with regard 
to different cells and tissues. For the enrichment analyses, we used the data from the 
sex-combined GWAS in the entire cohort (n = 325,153). The geneset enrichment 
analyses identified whether genes related to the most significant (P < 1 × 10−7) GWA 
hits were over-represented among the reconstituted DEPICT genesets. A false 
discovery rate below 0.05 was considered significant in the enrichment analyses.
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All independent lead SNPs were also functionally annotated with regard to 
being in linkage disequilibrium with an eQTL or with a missense, splice site, 
nonsense or frameshift variant. Significant eQTLs were downloaded from the 
Genotype-Tissue Expression (GTEx) project33. First, we selected the subset (80%) 
of GTEx SNPs that overlapped with the UKBB SNPs. Second, we identified 
the most significant SNP for each tissue and gene in the GTEx dataset. Third, 
we estimated the linkage disequilibrium between the lead eQTL SNPs and the 
independent UKBB lead GWA SNPs. A lead GWA SNP that was in linkage 
disequilibrium (R2 > 0.8) with a lead GTEx eQTL SNP was considered to be 
an eQTL for the same gene in the same tissue (Supplementary Table 12). The 
threshold of significance for the eQTLs was set to 2.3 × 10−9, in agreement with 
previous studies34. We also used the Bioconductor biomaRt35 package in R for 
functional annotation of the lead GWA SNPs. In biomaRt, lead GWA SNPs, and all 
SNPs in linkage disequilibrium (R2 > 0.8) with the lead SNPs, were cross-referenced 
against Ensembl Genes and Ensembl Variation version 94 (accessed 29 November 
2018, using the human assembly GRCh38), to identify possibly damaging variants 
such as missense variants, classified as damaging/deleterious with regard to the 
SIFT and PolyPhen scores, or variants identified as frameshift, stop gained, stop 
lost or splice acceptor/donor variants (Supplementary Table 13). Before cross-
referencing, the GRCh37 coordinates of the SNPs were converted into GRCh38 
coordinates using the liftOver tool.

To determine the SNP overlap between our VAT^ GWAS and previous 
GWASs on other adiposity-related traits, we first searched the GWAS Catalog30 
for known genome-wide significant (P < 5.0 × 10−8) SNPs associated with BMI, 
waist circumference, hip circumference and WHRadjBMI. We then estimated to 
what fraction these SNPs were also associated with VAT^ (P < 5.0 × 10−8) in our 
study. Furthermore, to test whether our novel lead VAT^ SNPs were also associated 
(P < 5.0 × 10−8) with the above-mentioned traits, we carried out additional GWA 
analyses for these traits in UKBB, using the same methodology and covariates as 
for the VAT^ GWAS, except for WHRadjBMI, which was also adjusted for BMI. 
Genetic correlations (rg) between VAT^ and BMI, waist, hip and WHRadjBMI 
were estimated using linkage disequilibrium score regression (LDSC) software36,37 
(version 1.0.0). As for the SNP heritability calculations, only genotyped SNPs 
from the interim release cohort were used, to avoid introducing bias as a result 
of imputation errors. Variant filtering and participant quality control were the 
same as for the main GWA analysis (after filtering, n = 508,171 SNPs remained for 
analysis), and sex-stratified SNP associations were calculated from age-adjusted, 
rank-transformed traits, using a batch indicator variable and 15 principal as 
covariates, except for the waist-to-hip ratio, which was also adjusted for BMI.  
As for VAT^, sex-combined associations were estimated using fixed-effect  
meta-analysis.

Functional analysis. For a subset of the novel VAT^ loci, potentially regulatory 
SNPs were selected (Extended Data Fig. 5) for functional validation using a 
luciferase assay in HepG2 cells. The basic criterion for functional follow-up was 
that the lead SNP overlapped with a GTEx eQTL in adipose tissue. Among these 
loci, we selected the lead SNP and/or SNPs in linkage disequilibrium (R2 > 0.8), 
with the lead SNP that was located in regulatory elements identified by histone 
marks, DNase I hypersensitive sites, or in transcription factor binding sites 
according to ENCODE or Roadmap epigenomics data. Among the 102 novel 
adiposity SNPs identified in this study, 20 overlapped with eQTLs in GTEx 
(Supplementary Table 8). Of these, we selected three loci that overlapped with 
eQTLs in adipose tissue for genes that have previously been studied specifically 
in adipocytes: DPYSL4, PKD1 and VPS11/HMBS. DPYSL4 has been shown to 
regulate energy metabolism in adipocytes and cancer cells through interaction with 
the mitochondrial supercomplex (a large aggregate of proteins that contains the 
enzymes of the mitochondrial respiratory chain38). PKD1 encodes polycystin-1, 
which has been extensively studied due to its association with polycystic kidney 
disease. PKD1 encodes a membrane protein that has been proposed to act as 
a G protein-coupled receptor and mediate mechanosensation in the primary 
cilium of kidney cells39. Polycystin-1 has been studied in adipocyte-derived 
stem cells, where polycystin-1 has been suggested to influence both adipocyte-
derived stem cell proliferation and differentiation activity40. HMBS is involved in 
the heme biosynthetic pathway, and expression of this gene is increased during 
differentiation of adipocytes. HMBS has recently been shown to be linked to 
adipogenesis via mitochondrial respiratory activity17. VPS11 is involved in vesicle-
mediated protein trafficking to lysosomal compartments in the cell. VPS11 has not 
been linked specifically to adipocyte function; however, the same variants that are 
associated with HMBS expression in adipose tissue are also associated with VPS11 
expression in other tissues.

The DPYSL4 locus contains 53 SNPs in linkage disequilibrium with the 
lead GWA SNP, of which three SNPs (rs881347, rs61865793 and rs11146233) 
overlap with regulatory elements close to the transcription start site of DPYSL4 
(Extended Data Fig. 5c). These SNPs were amplified together in one PCR fragment 
(Supplementary Table 14). The PKD1 locus contained 33 SNPs, of which one SNP 
(rs13337177) is located in a regulatory region in the first intron of PKD1, and 
another SNP (rs36232) is located in a regulatory element upstream of PKD1, close 
to the transcription start site of RAB26 (Extended Data Fig. 5b). These SNPs were 
amplified as two nonoverlapping PCR fragments (Supplementary Table 14).  

At the HMBS/VPS11 locus, there were 55 SNPs in the region. Of these, five 
variants (rs1784461, rs1786141, rs1784460, rs1784459 and rs1786684) overlap with 
regulatory elements in the VPS11 promoter, two SNPs (rs1799993 and rs1006195) 
overlap with regulatory elements in the first intron of HMBS, and two SNPs 
(rs2509121 and rs11217133) overlap with regulatory elements in the promoter of 
the upstream gene HYOU1 (Extended Data Fig. 5a). For the HYOU1 promoter, 
one PCR fragment amplified both SNPs. For the HMBS and VPS11 promoters, two 
PCR fragments each were designed (one that included all of the targeted SNPs, and 
a shorter fragment that included a subset of the SNPs (Supplementary Table 14)).

HepG2 cells were purchased from the American Type Culture Collection and 
maintained in RPMI-1640 basal medium supplemented with 10% fetal bovine 
serum and 2 mM l-glutamine, together with 100 units of penicillin and 100 µg 
streptomycin per 1 ml culture medium. Cells were plated 1 d before transfection 
in 96-well plates. The confluency was around 70% on transfection. Each well 
was transfected with 0.3 μl X-tremeGENE HP DNA transfection reagent (Roche) 
and 100 ng experimental firefly luciferase reporter plasmid, and 1 ng of pGL4.74 
Renilla luciferase reporter plasmid was used as an internal control for monitoring 
transfection and lysis efficiency. Cells were harvested 24 h after transfection and 
assayed with the Dual-Luciferase Reporter Assay System (Promega) on an Infinite 
M200 PRO reader (Tecan).

For each SNP that was selected for functional analyses, DNA samples from two 
individuals who were homozygous for different alleles were selected from a cross-
sectional cohort from Sweden41. PCR primers were designed to amplify the regions 
of interest, and the products were cloned into plasmids employing the In-Fusion 
cloning system (Takara). To test for enhancer activity, the putative enhancer 
element with variations was inserted upstream of the minimal promoter sequence 
of pGL4.23. To test for promoter activity, fragments with sequence variants were 
inserted into pGL4.10 directly upstream of the luciferase gene. All inserts were 
verified by Sanger sequencing. Two to three independent plasmid extractions and 
transfections were performed, and the data are presented as ratios of the firefly 
luciferase activity from the experimental plasmids to Renilla luciferase activity 
from pGL4.74.

Six out of eight plasmids were successfully constructed and verified by Sanger 
sequencing (Supplementary Table 14). Generically, three independent plasmid 
extractions were performed from each fragment, and for each extraction three 
independent transfections were carried out. Only one fragment (HMBS_P1) 
failed to show any promoter or enhancer activity (Extended Data Fig. 6). One 
of the fragments (HMBS/VPS11_HMBS_P2), which harbored rs1799993 and 
rs1006195, showed a significant difference (P < 0.05) in promoter activity between 
alleles (Extended Data Fig. 6b), which was verified by six additional independent 
transfection experiments (Fig. 1b).

Epidemiological study. We analyzed four different disease phenotypes: type 2 
diabetes, heart attack/angina, hypertension and hyperlipidemia. Disease cases 
and controls were selected based on the touchscreen questionnaire data and 
verbal interviews. Participants who reported that they did not know or preferred 
not to answer the questions in the respective data field were set as missing. Type 
2 diabetes cases were extracted from the main and secondary International 
Classification of Diseases 10 (ICD-10) summary information on diagnoses (data 
fields: 41202 and 41204). Cases were selected as participants with non-insulin-
dependent diabetes mellitus. In addition, participants reporting that they had 
type 2 diabetes in the verbal interview (data field: 20002; code: 1223) were also 
selected as cases. Participants reporting that a doctor had told them that they had 
diabetes of any other type in the verbal interview (data field: 20002; code: 1220, 
1221 or 1222) and participants reporting that a doctor had told them that they had 
(unspecified) diabetes (data field: 2443) were set as missing, as long as they had not 
been selected as cases from the ICD-10 summary information. The rest were set as 
controls. Hypertension cases were selected as participants reporting that a doctor 
had told them that they had high blood pressure (data field: 6150). Participants 
who responded “no” were used as controls. Heart attack or angina cases were 
selected as participants reporting that a doctor had told them that they had had 
a heart attack or angina (data field: 6150). Participants who responded “no” were 
used as controls. Finally, hyperlipidemia cases were selected as participants who 
indicated that they had high cholesterol levels during the verbal interview (data 
field: 20002). Participants who responded that they did not have high cholesterol 
were used as controls.

In this study, we primarily focused on the biology of visceral fat and its 
implications for disease development, with special attention to sex differences. We 
therefore chose to express VAT^ in physical units (kg), to allow for straightforward 
interpretation of the results. A direct comparison between the sexes is not possible 
if VAT^ is standardized for females and males separately. Direct comparisons 
with other adiposity-related traits were of lesser concern. Besides, measurements 
in physical units can instantly be used in a clinical setting. Nonetheless, we also 
estimated ‘re-scaled’ ORs, which were conditional on the respective distribution 
in VAT^. This was done before the analysis by rank-transforming VAT^ for 
females and males separately to standard normal distributions, using rntransform 
within the R package GenABEL29. This particular transformation was chosen 
to account for the general difference in distribution between sexes, and not 
only for the difference in mean (shift) and variance (scale), as in the case of the 
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z transformation (see Supplementary Text). Unless otherwise stated, all ORs 
refer to an increase of 1 kg in VAT^. Note that P values for ORs, given the null 
hypothesis of no association, are invariant under the z transformation.

To test whether VAT mass was associated with cardiovascular and metabolic 
disease, we performed logistic regression using VAT^ as the predictor variable and 
disease status as the response. Males and females were analyzed separately, and age, 
smoking behavior (never, former, and heavy or occasional present smokers), as 
well as the first 15 genetic principal components, were included as covariates. The 
linear logistic modeling was done in R version 3.4.2 (ref. 25) using glm, included 
in the stats library. A potential difference in OR between females and males was 
assessed by modeling the effect on disease of a sex × VAT^-interaction term in a 
sex-combined analysis. The null hypothesis of no difference in the effect of VAT^ 
on disease between females and males is equivalent to the hypothesis that the 
coefficient of the interaction term is equal to zero, which was tested by a marginal 
t-test. The dichotomous sex variable was coded as (“female”, “male”) = (0, 1), and 
the usual covariates of the adjusted models were included.

To assess whether VAT^ could explain the risk of disease independent of BMI, 
we performed a logistic regression including BMI as a covariate, in addition to age, 
smoking history and the first 15 principal components. Note that adjusting for BMI 
in the logistic regression models could possibly introduce collider bias. However, in 
its simplest form, collider bias generally induces a negative correlation or reduces a 
positive effect, which is referred to as Berkson’s paradox42. The remaining observed 
positive effect of VAT^ on disease after adjusting for BMI should therefore, in the 
presence of such a particular bias, constitute a lower limit to the true effect.

The effect of VAT^ on the risk of type 2 diabetes, conditional on specified 
complications, was assessed using the information on medical complications 
related to type 2 diabetes from the ICD-10 classification of diseases, present 
in UKBB. Cases were divided into seven different subgroups with specified 
complications, including type 2 diabetes cases with: (1) coma; (2) ketoacidosis; (3) 
renal complications; (4) ophthalmic complications; (5) neurological complications; 
(6) peripheral circulatory complications; and (7) no complications. Females and 
males were analyzed separately and the same individuals as in the main analyses 
were used as controls.

We also tested whether a significant nonlinear effect of VAT^ was present in 
the data. We explored this possibility assuming the log odds to be a polynomial 
function of VAT^. The logit function was then taken to be of the form:

logit p x; z1; ¼ ; zmð Þð Þ ¼ f x; zð Þ ¼ β0 þ β1x þ β2x
2 þ ¼ þ βqx

q þ g zð Þ

where x denotes VAT^, q is the degree of the polynomial, and g(z) denotes the 
adopted function of covariates. To test for a nonlinear effect, we compared the 
AIC of models with (q > 1) and without (q = 1) higher-order polynomial terms in 
VAT^. Aside from smoking behavior and the first 15 genetic principal components, 
we also included polynomial terms for age (that is, in case the AIC decreased by a 
significant amount when a higher-order polynomial term in age was included in 
the model). A sensitivity test of the nonlinear effect on the degree of the polynomial 
in VAT^ was also performed (Extended Data Fig. 9 and Supplementary Text). See 
Supplementary Text for a definition of the nonconstant OR and a derivation of the 
VAT transition point. As for the linear modeling, the polynomial logistic modeling 
was done in R version 3.4.2 using glm.

Causal inference by MR. MR is an instrumental variable approach used in 
observational epidemiology to obtain consistent estimates of putative causal 
relationships. The method is applied when unmeasured or unknown confounding 
and/or reversed causation is suspected to bias the estimated association between 
exposure and outcome. In reality, it is a daunting task to measure, or even be aware 
of, all covariates that can affect both exposure and outcome, wherefore MR is an 
attractive alternative. The MR method gives a consistent estimate of the causal 
relationship between exposure and outcome if the genetic variants used in the 
analysis are valid instruments. A genetic variant is a valid instrument if: (1) the 
variant is associated with the exposure; (2) the variant is not associated with any 
measured or unmeasured confounder; and (3) the variant is associated with the 
outcome only via the exposure (that is, the variant is independent of the outcome, 
given the exposure (and confounders)). The third assumption is referred to as the 
exclusion restriction. Assumptions (2) and (3) are strong and cannot be directly 
tested. The violation of these two assumptions introduces pleiotropy and may 
result in biased causal estimates.

To assess whether any effect of VAT^ on disease was biased by unmeasured 
confounding, we performed a sex-stratified, two-sample MR analysis. Instrumental 
variable selection of strong genetic variants was performed by conducting a sex-
combined GWAS on VAT^ in the subcohort (n = 104,271) of the interim release 
UKBB genotype dataset (Extended Data Fig. 1). As in the main GWAS of the 
combined cohort, we used the imputed genotype data from the third release (data 
accessed March 2018). After clumping (using the clump function in PLINK) with 
a linkage disequilibrium threshold of R2 = 0.1 and a window of 2,000 kilobases, 
44 genome-wide significant (P < 5 × 10−8), nearly independent lead SNPs were 
identified (Supplementary Table 21). These variants were then selected as the 
genetic instruments of the MR analyses. The same subcohort (interim release) was 
used to estimate the sex-specific effects of the genetic instruments on VAT^.  

A second, nonoverlapping and unrelated dataset (n = 220,882) of UKBB 
participants (Extended Data Fig. 1) was used to estimate the effects of the 
instrumental variables on risk of disease. Since our exposure is a predicted variable, 
there was a concern that additional pleiotropy could have been introduced by 
the sheer complexity of the prediction models, defining VAT^. To account for 
potential pleiotropy in our data, the main MR analysis was performed with the R 
package gsmr21 (version 1.0.7), which identifies and removes pleiotropic outliers 
before causal effect estimation. The generalized summary-data-based MR (GSMR) 
method21 utilizes the generalized least squares technique to estimate putative causal 
effects, which is a regression approach that allows for both heteroskedastic and 
correlated data via the variance–covariance matrix. The linkage disequilibrium 
correlations between the nearly independent SNPs were estimated from 5,000 
randomly selected white British individuals in the UKBB. The significance 
threshold for a SNP being identified as a HEIDI-outlier21 (that is, being invalid) 
was set to the default value of α = 0.01. Any SNP below this threshold was  
removed before the MR analysis (Extended Data Fig. 10 and Supplementary  
Table 22). To avoid potential collider bias, we only used age and the first 15 
principal components as covariates in all MR models.

Several alternative MR methods that are robust to the presence of invalid 
instruments, including the weighted median approach43 and MR Egger44 were 
also performed in a sensitivity analysis (Supplementary Table 20), as described 
in the Supplementary Text. These analyses were performed in the R package 
MendelianRandomization (version 0.4.1). In addition, a one-sample MR using  
the second dataset only was performed to assess the effect of weak-instrument  
and winner’s curse bias in the GSMR and weighted median approaches 
(Supplementary Text).

Statistical analyses. Apart from the prediction modeling and the main GWA, 
epidemiological and MR analyses, which are described in their respective 
subsections, we performed a number of additional statistical analyses and tests. CIs 
of the coefficients, adjusted coefficients and predicted coefficients of determination 
(Supplementary Text) of the VAT^ prediction models were estimated by basic 
bootstrapping using a minimum of 50,000 bootstrap samples. Likewise, the 
95% confidence bands of the nonconstant ORs (see Fig. 3c,f and Extended 
Data Fig. 8c,f) were estimated by basic bootstrapping using 1,000 bootstrap 
samples. We estimated all parameters in the polynomial logistic regression model 
(Supplementary Table 17) and calculated the nonconstant OR for the original 
sample and for each bootstrap sample. For any given VAT^, the 95% basic 
bootstrap CI was then governed by:

I ¼ 2 dORðxÞ � q0:975; 2 dORðxÞ � q0:025
 

where dORðxÞ
I

 denotes the estimate of the nonconstant OR at x ¼ VAT^

I
 (that 

is, from the original sample), while q0:975
I

 denotes the 97.5% quantile and q0:025
I

 
denotes the 2.5% quantile of the sample of bootstrapped, nonconstant ORs. In 
a similar manner, we also estimated the 95% CIs of the ‘VAT transition points’ 
for type 2 diabetes (Supplementary Text), with basic bootstrapping using 1,000 
bootstrap samples.

The 95% CIs of the observed probability (absolute risk) of being diagnosed 
with disease, conditional on VAT^, in the population of white British individuals 
(for example, Fig. 3a,d) were estimated first by assuming that the numbers of cases 
and controls in each VAT^ bin were distributed according to two independent 
Poisson distributions, such that:

Xi  Pois λi ¼ ni;cases
� �

and:

Yi  Pois μi ¼ ni;controls
� �

where ni;cases
I

 and ni;controls
I

 are, respectively, the numbers of cases and controls in 
VAT^ bin i. The error distribution, Zi, is then taken to be of the form:

Zi ¼D
Xi

Xi þ Yi

The 95% CI of bin i was finally estimated by computing the 2.5 and 97.5% quantiles 
of an empirical error distribution function, corresponding to Zi and generated 
by 10,000 random variates xi and yi, which were drawn from the two Poisson 
distributions Xi and Yi, respectively.

The predicted probability of disease, pj, for each individual, j, given a 
(nonlinear) logistic regression model with estimated parameters β̂0; β̂1; ¼

I
, is given 

by the expression:

pj ¼
1

1þ e�f ðxj ;z jÞ

where:

f xj; z j
� �

¼ β̂0 þ β̂1xj þ ¼ þ ĝ z j
� �
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and where xj is the VAT^ of individual j, and zj is the vector of covariates of 
individual j. These predictive probabilities were calculated for females and males 
separately (see, for example, Fig. 3b,e).

To assess the amount of bias introduced by the non-negligible measurement 
errors in VAT^ (Fig. 2), we performed errors-in-variables modeling using 
the SimEx algorithm, implemented in the R package simex. As a measure of 
the error in VAT^, we adopted the estimated maximum standard deviation 
(see Supplementary Table 4) for each subgroup. The vector of λs for which 
the simulation step was performed was set to λ = (0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 
1.75, 2.0)T, while the number of iterations for each λ was set to B = 400. In the 
extrapolation step, a quadratic fitting method was used.

Under H0 : β2 ¼ 0
I

, there is no nonlinear (quadratic) term for measured VAT 
in the logistic regression. If so, there should be an equal probability to obtain an 
estimate β̂2>0

I
 as to obtain an estimate β̂2<0

I
 (Supplementary Table 18). The null 

distribution is thus given by the binomial distribution such that X  Bin n; pð Þ
I

, 
with p = 0.5 and where n is the total number of independent tests. Now, assuming 
that the four diseases are independent in both females and males, we have n = 8, 
and the probability that we should observe at least seven events in which β̂2<0

I
 

simply by chance is given by P X≥7ð Þ ¼ 0:035
I

.
When testing for equality of the causal OR between sexes in the MR analysis, 

we assumed a one-tailed z test for unequal variances (normal approximation), with 
the alternative hypothesis being:

H1 : βF>βM

where βF and βM denote the causal estimates of VAT^ on disease in females 
and males, respectively. This was done to incorporate previous evidence of the 
relationship between females and males, as suggested by the results from the 
epidemiological study (Fig. 2).

Ethics committee approval. Ethical approval was given to the UKBB resource 
by the North West Multicentre Research Ethics Committee (covering the United 
Kingdom), National Information Governance Board for Health and Social Care 
(covering England and Wales) and Community Health Index Advisory Group 
(covering Scotland). UKBB possesses a generic Research Tissue Bank approval 
granted by the National Research Ethics Service, which lets applicants conduct 
research on UKBB data without obtaining separate ethical approvals. Written 
consent was obtained from all UKBB participants.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data on which this study is based (application number 15152) are available 
for bona fide researchers from the UKBB Resource (http://www.ukbiobank.ac.uk/
about-biobank-uk/), on filing an application to the UKBB. The data for VAT^ can 
be accessed via the UKBB Resource, while the summary statistics of the GWAS are 
available for download from the GWAS Catalog (https://www.ebi.ac.uk/gwas/). 
Relevant additional data will be available from the authors on request.
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Extended Data Fig. 1 | Study selection. Instances 0, 1 and 2 denote different data collection time periods (instance 0, 2006–2010; instance 1, 2012–2013; 
instance 2, 2014 to the present). At instance 2, VAT mass was measured by DXA. For the MR analysis, the cohort was split into two nonoverlapping 
subsets. IV, instrumental variable.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


LettersNature Medicine

Extended Data Fig. 2 | Correlations between predictors and measured VAT mass. a,b, The length of each bar denotes the strength of the pairwise 
Pearson’s product–moment correlation between the regression predictor (specified on the left) and measured VAT mass, for the female (a) and male 
(b) training datasets. The strength of the correlation is also visualized by color (dark blue, lowest correlation; yellow, highest correlation). The regression 
predictors are ordered from largest positive to largest negative correlation in females. Error bars denote 95% asymptotic CIs based on Fisher’s Z transform. 
Sample sizes are n = 2,010 for females and n = 2,188 for males.
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Extended Data Fig. 3 | Bias and 95% CIs of full prediction models, as a function of measured VAT.  a,b, VAT^, as predicted from the leave-one-out cross-
validation, plotted against measured VAT mass for females (a; black circles) and males (b; red circles). Also plotted is VAT^ against measured VAT mass 
for the out-of-sample data (green dots in a and blue dots in b). The out-of-sample datasets constitute Irish and other white individuals from the UKBB, 
excluding white British. The sample sizes are n = 2,010 females and n = 2,188 males for the training datasets, and n = 119 females and n = 102 males for the 
out-of-sample datasets. The long-dashed, gray lines denote the linear fits (ordinary least squares regression) to the leave-one-out cross-validation data, 
and the gray (a) and red shaded areas (b) denote the corresponding CIs of the estimated slopes. Green (a) and blue shaded areas (b) denote the CIs of 
the linear fits (not plotted) to the out-of-sample data. Thin black lines denote the one-to-one relation. A slope below the one-to-one relation indicates that 
a small bias is present in the data. However, note that the attenuation is exaggerated due to measurement errors also in the measured VAT mass. c,d, VAT 
prediction residuals plotted against measured VAT mass for females (c) and males (d). The long-dashed lines correspond to the fitted regression lines in  
a and b. The gray, solid lines denote the conditional 95% CIs. These lines become dashed at high VAT mass, to indicate an increasing uncertainty in the CIs. 
Otherwise, symbols are as in a and b.
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Extended Data Fig. 4 | Bias and 95% CIs of reduced prediction models, as a function of measured VAT. Symbols and sample sizes as in Extended Data 
Fig. 3.
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Extended Data Fig. 5 | Overview of the genomic locations of the selected 
SNPs in the functional study. The locations of the SNPs are indicated 
by vertical lines. a, The HMBS/VPS11 region. Region 1 contains two SNPs 
(rs2509121 and rs11217133). Region 2 contains five SNPs (rs1784461, 
rs1786141, rs1784460, rs1784459 and rs1786684). Region 3 contains two 
SNPs (rs1799993 and rs1006195). b, The PKD1 region. Region 1 contains 
one SNP (rs13337177). Region 2 contains one SNP (rs36232). c, The 
DPYSL4 region. Region 1 contains three SNPs (rs881347, rs61865793 and 
rs11146233).
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Extended Data Fig. 6 | Results from the luciferase assay in HepG2 cells. For each set of alleles, the box plots represent the median, interquartile range, 
and minimum and maximum values of all replicates, except for outliers, which are represented as individual points. The total number of replicates of each 
plasmid is given by the number of independent plasmid extractions multiplied by the number of independent transfections. The P values (two-sided t-test) 
represent pairwise differences in means, either for the control plasmid (pGL4.10 or pGL4.23) without any insert versus the same plasmid with one of the 
fragments inserted, or for the two plasmids with fragments, with different alleles inserted. In the names, the subscripts _E and _P indicate whether the 
fragment was cloned as an enhancer (_E) or promoter (_P) element, with _P1 and _P2 representing two different fragments in the same promoter region. 
The last part of the names represents the alleles of the SNPs that were targeted by each fragment (see Supplementary Table 14). Two to three independent 
plasmid extractions and transfections were performed, with each transfection being replicated three times.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Letters Nature Medicine

Extended Data Fig. 7 | Effect of VAT^ on the risk of developing type 2 diabetes for subgroups with specified medical complications. a,b, Estimated 
ORs for females (a) and males (b). The solid, gray lines and 95% CIs (dashed gray lines) correspond to the OR estimated for all female (a) or male cases 
(b) (see bold text to the left; see also Fig. 2). The black (a) and red vertical lines (b) (with error bars denoting 95% CIs) denote the ORs for the various 
subgroups with specific medical complications. Note the difference in scale between the two panels. All ORs refer to an increase of 1 kg in VAT^.
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Extended Data Fig. 8 | Polynomial logistic regression models for heart attack/angina and hyperlipidemia. a–f, Models for heart attack/angina (a–c) and 
hyperlipidemia (d–f), showing the probability of disease for the raw, unadjusted data (a and d), the predicted probability of disease for each individual  
(b and e), given the adopted polynomial model (see Supplementary Table 17), and 95% (basic bootstrap) confidence bands (shaded areas) of the ORs 
per one-unit increase (1 kg) in VAT^ (c and f), each as a function of VAT^. In a and d, error bars indicate 95% CIs, based on the Poisson statistics. The total 
numbers of cases and controls for heart attack/angina and hyperlipidemia are given in Fig. 2 for females and males separately. In all panels, black and gray 
denote females while red and pink denote males.
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Extended Data Fig. 9 | Sensitivity test for the polynomial logistic regression models. Each panel shows the log[OR] for five different models that are 
polynomial in VAT^ to different degrees: dashed lines denote second-degree polynomials (q = 2); dotted lines denote third-degree polynomials (q = 3); 
long-dashed lines denote fourth-degree polynomials (q = 4); dot-dashed lines denote fifth-degree polynomials (q = 5); and two-dashed lines denote sixth-
degree polynomials (q = 6). The lines are also color-coded from light gray (q = 2) to black (q = 6). All models also include age, smoking behavior and 15 
principal components as covariates. The models are polynomial in age, with degrees of the polynomials as indicated in Supplementary Table 17. Shaded 
areas indicate regions of large model uncertainty. Note that for each disease, all models show a very similar functional form of the log[OR], independent of 
the degree of the polynomial.
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Extended Data Fig. 10 | Relationship between the effects of the genetic instruments on VAT^ and their effects on disease. Each panel shows the 
relationship between the effects on VAT^ and the effects on disease of the n = 44 nearly independent genetic instruments (Supplementary Table 21). Error 
bars denote the 95% CI (normal approximation) of each effect estimate. Females are denoted in black, while males are denoted in red. Pleiotropic outliers 
identified by the GSMR analysis that were removed before estimation of the causal effects are shown in gray (Supplementary Table 22). An observed slope 
is indicative of a causal relationship between VAT^ and disease that is unbiased by confounding. The dashed lines denote the estimated log[OR] values by 
the gsmr package (Table 1). Note the different scales of the y axes.
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

This research was conducted using the UK Biobank Resource under Application Number 15152, following the restrictions on data availability as decided by the UK 
Biobank.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The UK Biobank is a publicly available population-based cohort. No sample-size calculations were performed prior to data analysis, the sample 
size was chosen based on the sample size in the publicly available dataset.

Data exclusions Data exclusion/filtering was performed both on phenotypic and genotypic level. Only white British participants were included in the analyses, 
to avoid bias or/and variance inflation due to population structure. Individuals who answered “do not know”, “prefer not to answer”, or had 
missing entries in any of the explored predictor variables or in the response (measured VAT mass by DXA) were removed. In addition, a 
number of extreme outliers were removed in the predictor variables, such as all individuals who had changed their body-mass index (BMI) 
more than eight units between instance 0 or 1 and the instance at which VAT was measured (i.e., instance 2), individuals with inadequate 
menopausal status, and individuals with extremely low waist circumference (<= 26 cm) but otherwise with average body size measures. 
Furthermore, a number of individuals with extreme hip circumference in relation to their BMI were removed. Also, all individuals with a 
difference in impedance between left and right arm or left and right leg of >120 ohm were removed as were extreme impedance measures in 
relation to the individual’s BMI. These criteria were applied both to the training data set and the application data set and only eleven 
individuals with an extreme predicted VAT mass had to be removed before the logistic regression and the genome-wide association (GWA) 
study were performed. At the genotypic level, an additional filtering was performed including only participants classified as Caucasians by 
principal component analysis. Individuals were also excluded due to relatedness based on kinship data (estimated genetic relationship >0.044) 
and individuals with poor call rate (<95%), with high heterozygosity or with sex-errors were removed. The exclusion criteria on the genotypic 
level were established prior to the study. Finally, SNPs were filtered based on call rate (>99%), deviance from Hardy-Weinberg equilibrium 
(HWE) such that p>1E-20, minor allele frequency (MAF) such that MAF>0.001 and imputation quality (>0.3).

Replication Out-of-sample validation was used to validate the performance of the prediction models and to verify that over-fitting was not an issue. In line 
with the cross validation and the bootstrapping, out-of-sample validation was successful and the models were not over-fitted. As regards the 
GWA study, no replication was performed, but a family-wise error rate of alpha<0.05 was ensured by adopting a p-value threshold of 
p=3.33E-09 for genome-wide significance, in order not to have an inflated type I error.

Randomization A subset of the UK biobank participants were invited to the imaging study that produced the DXA scan variables that has been used to 
estimate visceral fat mass. This subset of participants was selected independently from the information that had previously been collected but 
was biased towards participants living within a reasonable traveling distance to one of the imaging assessment centers.

Blinding Doctors and nurses were not blinded to individual participants during e.g., verbal interviews. However, prior to data and laboratory analyses 
all data and samples were anonymized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) We used the HepG2 cell line, purchased from ATCC (ATCC Number HB-8065).

Authentication The cell line was authenticated by ATCC at purchase.
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Mycoplasma contamination The cells were tested negative for Mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No misidentified cell line was used.

Human research participants
Policy information about studies involving human research participants

Population characteristics The UK Biobank is a very large and detailed prospective study with over 500,000 participants (both females and males) aged 
40-69 years at the time of recruitment in 2006-2010.

Recruitment The UK Biobank database includes 502,682 participants recruited from all across the UK. Participants were recruited between 
2006 and 2010. Most participants visited the center once, but some individuals visited the center at up to three instances. 
Selection bias, potentially affecting the non-linear results presented in this study, may arise if diseased individuals with high 
depots of visceral fat opted-out from participating in the study to a higher degree as compared to diseased individuals with 
lower depots of visceral fat. That said, the fact that all estimated odds ratios appear to approach unity would be contrived from 
the point of view of selection bias, since a detailed balance between an increase in visceral fat and an increase in the fraction of 
diseased individuals opting-out from participation must, in that case, be maintained.

Ethics oversight Ethical approval was given to the UKBB resource by the North West Multicentre Research Ethics Committee (covering the UK), 
the National Information Governance Board for Health & Social Care (covering England and Wales), and the Community Health 
Index Advisory Group (covering Scotland). UKBB possesses a generic Research Tissue Bank approval granted by the National 
Research Ethics Service, which lets applicants conduct research on UKBB data without obtaining separate ethical approvals. 
Written consent was obtained from all UKBB participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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