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Parameter
A numerical value that 
summarizes a characteristic of 
a population, such as the mean 
height of men, the lifetime risk 
of schizophrenia or the 
heritability of a specific trait.

The genetic correlation is a quantitative genetic parameter 
that describes the genetic relationship between two traits 
and has been expected to reflect pleiotropic action of genes 
or correlation between causal loci in two traits. Studies of 
genetically correlated traits improve our understanding  
of complex traits because they can reveal genetic variation 
that contributes to disease, improve genetic prediction 
and inform therapeutic interventions.

In humans, most lifestyle risk factors of disease, as well  
as the diseases themselves, are at least partially herit­
able1; genetic correlation estimates help to describe their 
complex relationships, which, particularly in the context 
of disease traits, may be unrecognized. For example, 
although genetic correlations had been hypothesized 
among psychiatric diseases2, they long remained diffi­
cult to measure using traditional genetic epidemiological 
approaches, which require data from many families with 
two or more blood relatives recorded for each trait. Given 
that most diseases defined as common have lifetime risks 
of 0.5–5%, collating data sets that are informative for two 
diseases is difficult and subject to ascertainment biases. 
The Scandinavian registries3, which comprise data on 
diagnosis codes from national hospital admissions and 
discharges for up to several million individuals, have been 
useful for calculating estimates of increased risk of a given 
disease in relatives of those with a different specified dis­
ease4, which is the key observation for estimating genetic 
correlation between diseases from family data. However, 
these registries also have limitations for estimating genetic 
correlation between diseases; the data set is restricted to 
the size of the national population, and recording began 
quite recently for many disease traits3, resulting in incom­
plete or censored observations for late-onset disease. 
Moreover, it remains challenging to disentangle genetic 
sharing from sharing of a common family environment, 

which in traditional epidemiology can only be sepa­
rated by collecting large data sets of families that include  
different types of relatives (such as full siblings, cousins 
and parents–offspring) measured for both diseases.

Genome-wide association studies (GWAS) have pro­
vided a new paradigm for estimating genetic correlations 
among disease traits from data sets that have been inde­
pendently collected for two diseases. Individual-trait 
data sets have much larger sample sizes and, because  
the data for the two traits are independently collected, the  
opportunity of confounding through shared common 
environmental factors is minimized. These new data, 
combined with new statistical methods to estimate 
genetic correlations from both individual-level genetic 
data or GWAS summary statistics and widespread data 
sharing, have greatly increased the potential to describe 
relationships between complex diseases and traits.

Here, we review the definition, estimation, inter­
pretation and uses of genetic correlations for human 
complex traits, with a focus on disease. We discuss how 
genetic correlations between measured traits can be  
used to improve the power of association tests for iden­
tifying genetic variants contributing to disease risk, can 
improve genetic prediction and can aid inferences about 
causality to inform intervention strategies. We describe 
the interpretation of genetic correlation estimates and 
consider scenarios that can lead to misinterpretation. 
Supporting theory, together with simulations and code, 
are provided in the Supplementary note.

Defining genetic correlations
Genetic correlation measures pleiotropy. Pleiotropy is 
present when a genetic locus affects more than one trait. 
The term pleiotropy was introduced before the mol­
ecular characterization of DNA5 and hence is attributed 
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to a genetic locus, which can imply pleiotropy at the 
level of either a DNA variant or a gene. In the context 
of a discussion about genetic correlation, our interest 
is in DNA variants. Pleiotropy between two traits can 
reflect different modes of action5,6 (Fig. 1). The main 
distinction is whether the two phenotypes are part of a 
causal cascade (vertical or mediated pleiotropy) or not  
(horizontal or biological pleiotropy). Understanding 
horizontal pleiotropy may lead to a better understand­
ing of biological processes that are common between 
traits. Vertical pleiotropy can inform on causality for 
intervention strategies for disease prevention. It is  
worth noting that in earlier studies7,8 that laid the found­
ation for understanding pleiotropy, vertical pleiotropy 
was termed ‘spurious pleiotropy’, a term that we now 
use for spurious genetic correlation estimates due to 
bias, misclassification or linkage disequilibrium (Fig. 1). 
Methods to discriminate between vertical and hori­
zontal pleiotropy indicate that often a combination of 
both contribute to the genetic correlation9,10. Genetic 
correlation describes the average effect of pleiotropy 
across all causal loci, but the underlying architecture 
of correlations at individual loci can vary (Fig. 2). Local 
genetic correlation can deviate from the genome-wide 
average and regions with strong positive or negative 
genetic correlation have been described for multiple 
traits even in the absence of genome-wide genetic 
correlation11.

Defining genetic correlation mathematically. In a 
general quantitative genetic model, in which, for each 
individual, two traits (x and y) are each defined as the 
sum of a genetic value (g) and a residual value (e, with 
residual simply meaning the difference between the trait 
value and the genetic value):

x g e= + (1)x x

y g e= + , (2)y y

the genetic correlation (ρg) of the traits is:

ρ
σ

σ σ
= (3)g

g g

g g

,

2 2

x y

x y

where σg g,x y
 is the covariance of the genetic values and  

σ σ,g g
2 2

x y is the genetic variance of the two traits in the popu­
lation. As a result, ρg ranges from –1 to 1. Following 
convention, the Greek letters emphasize parameters 
(ρg), which are replaced by Roman letters for esti­
mates (rg), although we note that h2 is commonly used 
to represent both the parameter and the estimate of 
heritability. Because the definition of genetic correlation 
depends on invoking a latent model, it is important to  
acknowledge that any estimates of genetic parameters 
may be biased if the assumed latent model is an 
imperfect representation of nature. Lack of clarity in 
distinguishing the conceptual parameters from the 
estimates made from the available data is a common 
problem12.

If the traits are standardized (that is, phenotypic  
variance = 1) and the genetic values consider only the 
additive genetic effects, then the genetic variances are 
narrow-sense heritabilities and the numerator is the 
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Fig. 1 | Different mechanisms of pleiotropy between two 
diseases. a | In horizontal pleiotropy , the genetic variant (G) 
contributes directly to risk of both diseases (x and y) or 
indirectly through an intermediate (endo)phenotype (z). 
b | In vertical pleiotropy , there is a causal relationship 
between disease x and y where disease x itself leads to an 
increased risk of disease y (left); in some circumstances, 
reverse causation may be observed (here we assume that 
there is a natural order in the traits to expect causation from 
trait x to trait y, with the reverse causation from y to x less 
expected) (right). In some circumstances, there may be 
causality , reverse causality and genetic correlation. 
c | Spurious pleiotropy at a locus can occur when a measured 
genetic marker (M) ‘tags’, via linkage disequilibrium, two 
distinct causal variants (left); however, this sort of spurious 
pleiotropy has to be consistent across loci to result in a 
non-zero estimate of genome-wide genetic correlation. 
Different sources of bias (such as disease misclassification) 
may also lead to the incorrect assumption of pleiotropy 
between disease x and y (right). In early work on pleiotropy, 
the term ‘spurious pleiotropy’ was used for what we term 
‘vertical pleiotropy’. βxy is the expected change in trait y 
caused by each unit increase in trait x; βyx is the expected 
change in trait x caused by each unit increase in trait y. ρg, 
genetic correlation; rg, estimated genetic correlation.

Traits
Measurements or phenotypes 
that are usually studied as the 
outcome of statistical analyses. 
They can be quantitative 
(for example, height) or 
dichotomous (for example, 
schizophrenia).

Estimates
Approximations of a parameter 
based on a sample of observed 
data drawn from a population.

Ascertainment biases
Types of bias that occur when 
the studied trait or disease 
affects how data were 
ascertained. For example, 
patients with a family history 
of diabetes may have more 
frequent examinations for 
cardiovascular diseases.

Genome-wide association 
studies
Studies in which up to millions 
of mostly common single- 
nucleotide polymorphisms from 
across the genome are each 
tested for association with a trait.

GWAS summary statistics
The output of statistical tests of 
association of a trait with each 
single-nucleotide polymorphism 
generated by a genome-wide 
association study (GWAS), 
typically including the effect 
allele, signed effect estimate, 
standard error, test statistic 
(for example, a z-score) and/or 
p-value.

Power
The probability that a study 
correctly rejects the null 
hypothesis of no association  
or correlation, also described 
as 1– type II error.

Bias
Phenomenon where statistical 
analyses produce estimates in 
observed data that 
systematically overestimate or 
underestimate the population 
parameter. Bias can arise from 
the ascertainment of the 
observed data or the statistical 
procedures used to generate 
the estimates.

Linkage disequilibrium
(LD). The non-random 
segregation of alleles at two 
distinct loci. LD induces a 
correlation between two 
single-nucleotide polymorphism 
(SNP) genotypes in the 
population and is caused by the 
fact that alleles of neighbouring 
SNPs are transmitted together 
until broken down by 
recombination events.
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covariance of the standardized traits or the coheritability 
(hxy). Equation 3 can therefore be rewritten as:

ρ
h

h h
= (4)g

xy

x y
2 2

As the genetic covariance is scaled relative to the  
two genetic standard deviations when computing ρg, a 
high genetic correlation is possible even if there is only 
a small genetic contribution to the two traits. Hence, 
reporting estimates for both rg and h2 can provide a refer­
ence for the importance of the shared genetic contribution 
to the trait phenotypes by enabling coheritability to be  
estimated and benchmarked against the heritabilities.

Although the relationship between phenotypic corre­
lation (ρp) and genetic correlation additionally includes 
the correlation between residual factors (ρe):

( )( )ρ h h ρ h h ρ= + 1− 1− , (5)
p x y g x y e

2 2 2 2

Cheverud’s conjecture13 proposes that estimates 
of ρp can be used to approximate estimates of ρg. The 
conjecture relies on the assumption that most environ­
mental effects act in the same direction and through 
the same pathways as genetic effects, which leads to a 
similarity between phenotypic and genetic correlations. 
Importantly, unlike estimation of genetic correlation, the 
phenotypic correlation can be estimated from cohorts 
of unrelated individuals that have been measured for 
both traits. Although it is relatively easy to collect data 
to estimate phenotypic correlations between quantita­
tive traits, it remains challenging to estimate pheno­
typic correlations for disease traits because of limited 
data availability, potential ascertainment biases and  
symptom overlap14.

Genetic value
(g). The sum of the total effects 
of all genetic loci on the trait in 
an individual, that is g = Xß 
where X is a vector of 
genotypes for all loci and ß is  
a vector with additive allelic 
effects on the trait. It is also 
called the genotypic value,  
true polygenic (risk) score or 
breeding value.

Covariance
(σx y, ). The expected product  
of the deviation of two random 
variables from their mean 
(σ = − −E X μ Y μ[( )( )]x y x y, ).

Genetic variance
(σg

2). The expected squared 
deviation of genetic values 
from the mean genetic value 
(σ = −E G μ[( ) ]g g

2 2 ), and can also 
be considered the covariance 
of a genetic value with itself.

Heritability
(h2). The proportion of 
phenotypic variance 
(parameter σP

2, estimate VP) 
attributable to variance in 
genetic factors. In the context 
of human traits, most often 
only additive genetic factors 
are considered for the genetic 
variance (parameter σA

2, 
estimate VA) and the ratio of 
variances is the narrow-sense 
heritability.

Latent model
A collection of formalized 
assumptions to describe  
a data-generating process 
through which observed 
variables (such as disease 
occurrence) can be used to 
identify unobserved (latent) 
variables (for example, genetic 
parameters: heritability  
and genetic correlation).

Phenotypic variance
(σP

2). Variance of phenotypic 
values (for example, height or 
disease liability) after 
accounting for the variance 
attributable to fixed effects  
(for example, sex). When 
phenotypes are standardized, 
these phenotypic values are 
scaled such that µP = 0  
and σP

2 = 1.

Coheritability
(hxy). The genetic covariance of 
standardized traits. This is a 
useful measure for comparisons 
of coheritabilities and 
heritabilities on the same scale.

−0.2

0.0

0.2

0.0

−0.2

0.0

0.2

0.4

Region 1 Region 2 Region 3 Total

−0.2

0.2

0.6

0.2

−0.2

0.0

0.2

0.4

0.6

Region 1 Region 2 Region 3 Total

0.05 0.05

0.5

0.2

−0.2

0.0

0.2

0.4

0.6

Region 1 Region 2 Region 3 Total

0.2 0.2 0.2 0.2

−0.2

0.0

0.2

0.4

0.6

Region 1 Region 2 Region 3 Total

Genomic region Genomic region

Genomic region Genomic region

0.6

a  Constant genetic correlation

c  Opposite regional genetic correlation

b  Strong regional genetic correlation

gρgρ

gρgρ

d  Regional genetic correlation without genome-wide
     genetic correlation

Fig. 2 | Genome-wide genetic correlation versus regional genetic correlation. The overall genetic correlation 
(as estimated from pedigree or genome-wide association study data) between two traits has been fixed at 0.2, but the 
underlying regional architecture of the genetic correlation can vary widely11. In part a, the genetic correlation is constant 
across the genome. Alternative scenarios include strong regional genetic correlation (part b) and a combination of both 
positive and negative regional correlations (part c); in both of these cases, the regional genetic correlation can far exceed 
the overall genome-wide genetic correlation. In part d, both positive and negative regional correlations occur in the 
absence of an overall genetic correlation. Regions can be interpreted as physical genomic loci, as allele-frequency bins 
or as functionally annotated categories (such as coding versus non-coding, biological pathways or tissue-specific 
expression). ρg, genetic correlation.

Nature Reviews | Genetics

R e v i e w s



Independently-collected GWAS data sets for a range 
of important traits are now widely available and offer 
an alternative to family studies for estimating genetic 
correlations attributable to common genetic variants. 
However, the expectation that genetic correlation esti­
mates from family phenotypic records are the same as 
those from GWAS data assumes that ρg is homogeneous 
across the allelic frequency spectrum of risk loci15.

Methods to estimate genetic correlations
Methods to estimate genetic correlations depend on the 
data sets available, such as large cohorts of related indi­
viduals or GWAS. Here, we describe the methods that 
laid the foundation for studies of genetic correlation, 
including methods to study the distribution of genetic 
correlation across the genome (genome partitioning) 
and methods to study genetic correlations of the same 
trait in different environments. Table 1 presents a list of 
available methods and software.

Genetic epidemiological data for related individuals.  
A bivariate linear mixed model (LMM) can be used to esti­
mate heritabilities and genetic correlations from large 
cohorts of families measured for two traits. In a bivar­
iate LMM, each phenotype is modelled as a function 
of the latent genetic values of individuals, and they are 
assumed to be drawn from a bivariate normal (that is, 
polygenic) distribution, where in this case the variance– 
covariance structure of the genetic relationships is 
based on pedigree data. Best estimates of genetic and 
phenotypic variances and covariances can be obtained 
using restricted maximum likelihood (REML)16. For dis­
ease traits, a simpler approach is to estimate genetic 
correlation estimates using population disease risk 
and risks in pairs of related individuals (such as full 
siblings or parent–offspring), assuming, for example, 
a liability threshold model. Under this model, the herita­
bilities and genetic correlations can be estimated using 
normal distribution theory17,18. Although the equations 
look complex, they depend on only five measures: life­
time risk of disease x and y (Kx and Ky), lifetime risk of 
disease y or x in relatives of those with disease x or y 
(KRy,x, KRx,x, KRy,y) and the coefficient of relationship (αR), 
which is 0.5 for full siblings or parent–offspring:







∕( )( )
( )

h
T T T i T T

a i i T T
=

− 1− 1− −

+ −
(6)x

x x x x x x x x

x x x x x
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2
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( )
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T T T i T T

a i i T T h h
=
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+ −
(7)g

y y x x x y y x

x x x y x x y

R ,
2

R ,
2
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Here, Tx and TRy,x are the normal distribution thres­
holds that reflect the proportions Kx and KRy,x; and ix is 
the mean phenotypic liability of those with disease x, 
which is calculated as zx/Kx, where zx is the height of the 
standard normal curve at Tx. The relationship between 
the increased risks to relatives (KRy,x/Ky; for exam­
ple, cross-disorder risk ratio) and genetic correlation 

depends on the coefficient of kinship, heritability for 
both traits and disease prevalence (Fig. 3). Very similar 
estimates of h2 and rg are obtained for schizophrenia 
and bipolar disorder using a LMM approach on data 
from the large Swedish registry (h2 of 0.64 (95% CI 
0.62–0.68) and 0.59 (95% CI 0.56–0.62), respectively, 
and rg = 0.60 (no 95% CI reported))4 or meta-analysis 
of the estimates derived from the simple liability 
threshold equations (h2 of 0.64 (95% CI 0.61–0.67) 
and 0.56 (95% CI 0.54–0.58), respectively, and rg = 0.47  
(95% CI 0.32–0.62))19 described in equations 6 and 7,  
demonstrating that the simple approach is a good 
approximation of the complex analysis. The LMM 
approach also estimated a contribution for environ­
ment shared between relatives (c2), which was 0.045 
(95% CI 0.044–0.074) for schizophrenia and 0.034 
(95% CI 0.023–0.062) for bipolar disorder.

Alternatively, the  tetrachoric correlation (rtc) of 
Pearson20 can be used to estimate heritability1 and 
genetic correlation from the 2 × 2 table of observations 
of disease1,21,22 in related individuals:

h
a

r= 1
(8)x x

2

R
tc,

r
r

a h h
= (9)g

x y

x y

tc, ,

R
2 2

Here, the main assumption is that health and disease 
are a result of dichotomizing an underlying bivariate 
normal distribution, which is consistent with the liabil­
ity threshold model but requires that the proportion of 
cases in the study equals the population risk. Therefore, 
both methods yield similar estimates when applied to 
such data (Supplementary note).

Individual-level GWAS data for unrelated indi-
viduals. Estimation of the genetic correlation from 
individual-level GWAS data involves a bivariate exten­
sion23 of the univariate genome-based REML (GREML) 
that uses a genomic relationship matrix (GRM) to estimate 
single-nucleotide polymorphism-based heritability 
(SNP-based heritability)24,25. As for traditional epidemio­
logy data, this approach uses an LMM, in which the 
phenotype is modelled as a function of the genetic values 
of individuals, but the variance–covariance structure of 
genetic values is described by genetic relationships in 
the GRM constructed from observed genome-wide SNP 
data rather than from pedigree data. SNP-based herita­
bility is expected to be lower than heritability estimated 
from epidemiological family records because it aims 
to capture only causal variation that is in linkage dise­
quilibrium (LD) with the measured SNPs. Therefore, it 
provides insight into the relative importance of common 
SNP variation, which can differ among traits. Relatives 
closer than second or third cousins are excluded from 
the analysis to ensure that short haplotype segments are 
tracked by the shared genetic relationships between pairs 
of individuals. Compared to close relatives, distant rela­
tives share negligible non-additive genetic variation26 
and are expected to have lower phenotypic correlation 

Linear mixed model
(LMM). A linear model that 
includes both fixed and 
random effects to describe 
phenotypic values and  
that allows a correlation 
structure between the random 
effect levels.

Restricted maximum 
likelihood
(REML). A method for 
maximum likelihood estimation 
of variance–covariance 
components of the parameters 
in linear mixed models.

Liability threshold model
A model that describes a 
dichotomous trait (disease)  
as a threshold partitioning of 
‘liability’, which is a latent 
variable assumed to follow  
a standard normal distribution 
in the population. The liability 
threshold (T) defines lifetime 
risk (K) of disease as the 
proportion of individuals 
exceeding this threshold.

Risk ratio
Ratio between the risk of 
disease in a specific group  
(for example, relatives of 
affected individuals) and the 
risk of disease in the general 
population.

Tetrachoric correlation
The correlation between two 
latent normally distributed 
liability phenotypes assumed 
to underlie dichotomous 
population data and estimated 
from an observed 2 × 2 
frequency table.

Genomic relationship 
matrix
(GRM). A matrix whose 
off-diagonal elements 
represent a coefficient of 
genetic sharing between 
individuals to describe the 
variance–covariance structure 
between their genetic values 
calculated from observed 
single-nucleotide 
polymorphism (SNP) data. 
GRM coefficients can be 
calculated based on different 
assumptions of the expected 
distribution of per-SNP 
heritability.
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Table 1 | summary of methods and software packages

name Description input source Refs

Estimate genetic correlation

polycor Estimate tetrachoric correlation 
through MLE

2 × 2 contingency tables from 
pedigrees

https://cran.r-project.org/web/packages/
polycor/

22

GCTA (—reml-bivar) Bivariate GREML; includes 
options for different model 
assumptions

Individual-level genotypes http://cnsgenomics.com/software/gcta/ 23,46

MTG2 Computationally efficient 
bivariate GREML

Individual-level genotypes https://sites.google.com/site/
honglee0707/mtg2

114

BOLT-REML Computationally efficient 
approximate bivariate GREML 
with GRM with fully overlapping 
individuals for both traits

Individual-level genotypes https://data.broadinstitute.org/
alkesgroup/BOLT-LMM/

115

LDSC (—rg) Weighted regression of product 
of GWAS summary statistics on 
LD scores

GWAS summary statistics https://github.com/bulik/ldsc 28,29

LDAK Calculate weighted kinship 
matrix to model distribution of 
causal variants across LD and/or 
MAF spectrum

Individual-level genotypes http://dougspeed.com/ldak 41,43

SumHer (—sum-cors) Analogue to LDSC, but adopts 
‘LDAK model’

GWAS summary statistics http://dougspeed.com/sumher/ 44

GCTA (—HEreg-bivar) Bivariate Haseman–Elston 
regression

Individual-level genotypes http://cnsgenomics.com/software/gcta/ 46,51

S-PCGC Phenotype correlation genotype 
correlation regression. Extension 
of Haseman–Elston regression, 
robust to ascertainment and 
covariates

GWAS summary statistics • https://github.com/omerwe/S-PCGC
• https://data.broadinstitute.org/

alkesgroup/PCGC/

49,50,116

Popcorn Bayesian estimate of transethnic 
genetic correlation

GWAS summary statistics https://github.com/brielin/Popcorn 37

LD Hub Server to estimate genetic 
correlation from published 
GWAS using LDSC

GWAS summary statistics http://ldsc.broadinstitute.org/ldhub/ 30

GNOVA Annotation-partitioned genetic 
correlation

GWAS summary statistics https://github.com/xtonyjiang/GNOVA 35

ρHESS Local genetic correlation GWAS summary statistics https://github.com/huwenboshi/hess 11

Power calculation genetic correlation estimation

GCTA power calculator Calculate the power of bivariate 
GREML analysis in GCTA

User-defined parameters https://cnsgenomics.shinyapps.io/
gctaPower/

34

Multitrait association analysis

MultiMeta Inverse variance-weighted 
meta-analysis

SNP effects and standard errors https://CRAN.R-project.org/
package=MultiMeta

61

ASSET Subset meta-analysis which can 
include correlated traits

SNP effects and standard errors https://bioconductor.org/packages/
release/bioc/html/ASSET.html

62

HIPO Heritability-based weighting of 
correlated traits

SNP effects and standard errors https://github.com/gqi/hipo 63

MTAG Pleiotropy-informed SNP 
association analysis for single trait

SNP effects and standard errors https://github.com/omeed-maghzian/mtag 64

CPMA Test SNP pleiotropy through 
distribution of p-values

SNP p-values http://coruscant.itmat.upenn.edu/
software.html

117

LEP Heterogeneous sharing of risk 
variants

SNP effects and standard errors https://github.com/daviddaigithub/LEP 118

metaUSAT Score-based association test SNP effects and standard errors https://github.com/RayDebashree/
metaUSAT

65

TATES Multivariate analysis of single SNPs SNP p-values https://ctg.cncr.nl/software/tates 73

metaCCA Multivariate analysis of multiple 
SNPs using canonical correlation 
analysis

SNP effects and standard errors https://bioconductor.org/packages/
release/bioc/html/metaCCA.html

74
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name Description input source Refs

Multitrait association analysis (cont.)

genomic SEM Identify SNPs associated with 
general dimensions of cross-trait 
liability through SEM

SNP effects and standard errors https://github.com/MichelNivard/
GenomicSEM

72

cFDR Bayesian conditional analysis SNP p-values https://github.com/jamesliley/
cFDR-common-controls

75,76

CPBayes Bayesian conditional analysis 
allowing >2 traits

SNP effects and standard errors https://CRAN.R-project.org/
package=CPBayes

77

GPA , GPA-MDS Bayesian association analysis 
incorporating SNP annotation

SNP p-values https://github.com/dongjunchung/GPA 78,79

EPS Bayesian association analysis 
incorporating SNP annotation

SNP p-values https://github.com/gordonliu810822/EPS 119

Multitrait prediction

MTAG Predictor based on β coefficients 
from pleiotropy-informed SNP 
associations

GWAS summary 
statistics + individual-level 
genotypes

https://github.com/omeed-maghzian/
mtag

64

SMTpred Combine SNP weights 
(β coefficient or BLUP) from 
multiple single-trait predictors

GWAS summary 
statistics + individual-level 
genotypes

https://github.com/uqrmaie1/smtpred 90

PleioPred Bayesian framework for 
multitrait prediction potentially 
modelling genome annotation 
(PleioPred-anno)

GWAS summary 
statistics + individual-level 
genotypes

https://github.com/yiminghu/PleioPred 91

Inferences on causality

MR-Egger MR using Egger regression GWAS summary statistics https://cran.r-project.org/web/packages/
MendelianRandomization/index.html

94

MRBase Server for MR analysis using 
published GWAS

GWAS summary statistics http://www.mrbase.org/ 95

MR Steiger Detect directionality in causal 
relationships

GWAS summary statistics https://github.com/explodecomputer/
causal-directions

97

GSMR Generalized summary 
data-based MR , including 
HEIDI test to exclude SNPs 
with evidence for horizontal 
pleiotropy

GWAS summary statistics http://cnsgenomics.com/software/gsmr/ 9

MR-PRESSO MR after detecting and 
correcting for horizontal 
pleiotropy

GWAS summary statistics https://github.com/rondolab/
MR-PRESSO

10

LCV Latent causal variable model 
to infer causality , less biased by 
horizontal pleiotropy

GWAS summary statistics https://github.com/lukejoconnor/LCV 103

Conditional analysis

Multi-trait conditional 
GWAS analysis

Multitrait conditional analysis of 
GWAS in same individuals

GWAS summary statistics https://github.com/yangq001/conditional 104

GCTA-mtCOJO Multitrait conditional analysis of 
independent GWAS

GWAS summary statistics http://cnsgenomics.com/software/gcta/ 9

GWIS Approximate conditioned GWAS 
summary statistics

GWAS summary statistics https://sites.google.com/site/mgnivard/
gwis

105

Fine-mapping causal variants

RiVIERA Bayesian framework to combine 
multitrait SNP associations and 
annotation for fine mapping

GWAS summary statistics https://github.com/yueli-compbio/
RiVIERA-beta

106

fastPAINTOR Bayesian framework to combine 
multitrait SNP associations and 
annotation for fine mapping

GWAS summary statistics https://github.com/gkichaev/
PAINTOR_V3.0

107

BLUP, best linear unbiased predictor; GCTA, genome-wide complex trait analysis; GCTA-mtCOJO, genome-wide complex trait analysis–multitrait conditional and 
joint analysis; GREML, genetic restricted maximum likelihood; GRM, genomic relationship matrix; GWAS, genome-wide association study; HEIDI, heterogeneity in 
dependent instruments; LD, linkage disequilibrium; LDAK, linkage disequilibrium adjusted kinship; LDSC, linkage disequilibrium score regression; MAF, minor allele 
frequency; MLE, maximum likelihood estimation; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; SEM, structural equation modelling.

Table 1  (cont.) | summary of methods and software packages
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associated with the shared environment24,25,27, so esti­
mates are unlikely to be biased by these factors. Bivariate 
GREML analysis simultaneously estimates the genetic 
variances of the two traits and the genetic covariance 
between them that best fit the data given the model.  
It can be applied to data sets that have been collected 
independently because pairs of individuals across data 
sets are distantly related. Hence, bivariate models include 
a GRM that has two block diagonal matrices represent­
ing the two univariate GRMs, with the off-diagonal 
block representing the genetic relationships between 
pairs of individuals represented in the two data sets.

GWAS summary statistics for unrelated individuals. 
Linkage disequilibrium score regression (LDSC)28 was 
the first method to propose estimation of genetic cor­
relation from GWAS summary statistics. It is based on 
the observation, expected under polygenicity, that the 
greater the total amount of LD a SNP has with other 
genetic variants, the greater its chance of being corre­
lated with causal variants, and the higher its expected 
association test statistic. Exploiting this relationship 
allows estimation of SNP-based heritability when 
using association test statistics for a single trait or esti­
mation of SNP-based coheritability when combining 
association test statistics from two traits. Specifically, 
bivariate LDSC29 uses a weighted regression frame­
work to estimate the coheritability (hxy) from GWAS 
association statistics for SNP j of both traits (zxj and zyj) 
and the SNP LD scores (lj). The LD score of SNP j is the 
sum of r2 LD of SNP j with other SNPs obtained from 
sequencing data and can thus be regarded as a measure 
of the genetic variation that is ‘tagged’ by SNP j. The 
regression relationship also depends on the sample size 

for the two traits (Nx, Ny) and the total number of SNPs 
(M). The intercept term estimates sample overlap (Ns) 
and hence reflects the proportion of shared individuals 
( )N

N Nx y

s  and their phenotypic correlation (ρp):

∣E z z l
ρ N

N N

N N h

M
l[ ] = + (10)xj yj j

p

x y

x y xy
j

s

LDSC SNP-based heritabilities, which are needed 
to estimate the genetic correlation, are calculated sim­
ilarly with x = y (and with an additional intercept term 
to account for residual confounding, such as population 
stratification, within a data set). As LDSC is computa­
tionally very efficient, summary statistics from GWAS 
are widely shared and there is no bias introduced by 
sample overlap, genetic correlations between hundreds 
of traits can be studied29–31. LD Hub30 provides a pub­
licly available server that hosts LDSC calculations and a 
library of published GWAS summary statistics.

Genome partitioning. A question of key interest is 
whether causal variants for a trait are found randomly 
across the genome or are enriched based on genomic 
annotation. The univariate GREML approach can model 
multiple random effects and hence estimate multiple 
genetic variances using multiple GRMs, each built with 
SNPs selected on different annotations32. The REML 
approach optimizes the partitioning of the variance 
to these annotations. The computational efficiency of 
LDSC in estimating the enrichment of SNP-based 
heritability in sets of variants with particular genomic 
annotations has enabled study of genomic partitioning 
of genetic variance using a stratified LDSC33 approach. 
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Fig. 3 | Relation between cross-disorder relative risk (cDRR) and genetic correlation. The graphs show the 
relationship between genetic correlation (ρg) and the risk ratio (RR) with varying coefficient of relationship (aR) (part a), 
heritability of disease x (hx

2) (part b) and lifetime risk of disease x (Kx) (part c). Reference parameters are hy
2 = 0.4, Ky = 0.15 

(typical of major depression), hx
2= 0.65, Kx = 0.01 (typical of schizophrenia) and aR = 0.5 (that is, full sibling). In part a, the 

sibling (aR = 0.5) of someone with major depressive disorder (hy
2 = 0.4, Ky = 0.15) has a 1.56-fold increased chance of having 

schizophrenia hx
2 = 0.65, Kx = 0.01, ρg = 0.47) compared to the general population. The risk ratio is lower for more distant 

relatives (1.26-fold and 1.13-fold increase for aR = 0.25 and 0.125, respectively ; dotted black lines). Using similar 
parameters, part b shows that the relative risk for the sibling increases with increasing heritability of disease x (1.21, 1.49 
and 1.72 for hx

2= 0.1, 0.5 and 1, respectively ; dotted black lines). In part c, the relative risk for the sibling increases with 
decreasing lifetime risk of disease x (1.35, 1.57 and 1.75 for Kx = 0.1, 0.01 and 0.001, respectively ; dotted black lines). 
The Supplementary note provides the theoretical background and code for this figure.

SNP-based heritability
An estimate of the proportion 
of the total phenotypic 
variance attributable to the 
additive effects of the class  
of variants (that is, common 
single-nucleotide 
polymorphisms (SNPs)) that 
are typically genotyped and 
imputed in pursuit of a 
genome-wide association 
study. It is often shortened  
to SNP heritability, but this 
should be avoided.
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effects and/or population-specific allele frequencies. 
With this in mind, Popcorn estimates the correlation 
of SNP effect sizes (the genetic-effect correlation) and  
the correlation of per SNP heritability (the genetic- 
impact correlation); the genetic-impact correlation is 
dependent on differences between populations in terms 
of both effect sizes and allele frequencies. Both in simu­
lations and in application to real data, the estimates were 
found to be similar37.

Interpretation of SNP-based estimates
SNP-based genetic correlation estimates are robust to 
most model assumptions. There is an ongoing debate 
about model assumptions of GREML and LDSC and 
their impact on SNP-based heritability estimates41–45. 
By contrast, estimates of genetic correlations are gen­
erally shown to be robust to these assumptions29,44. To 
support this conclusion, we summarize the current dis­
cussions for SNP-based heritability estimation and then 
justify why the issues have little impact on estimates of 
genetic correlations. Briefly, the basic GREML model, 
one of the models implemented in the genome-wide 
complex trait analysis (GCTA) software46, assumes 
an infinitesimal model and that causal effects are drawn 
from a normal distribution. In simulations41, estimates 
of SNP-based heritability were found to be robust 
to three key underlying assumptions relating to the 
genetic architecture of the trait: extent of polygenicity, 
normality of genetic effects and the inverse relationship 
between minor allele frequency (MAF) and effect size. 
However, the estimates were found to be sensitive to the 
assumption that causal variants are found randomly 
with respect to the LD patterns of the genome. This led 
to the introduction of the LD adjusted kinship (LDAK) 
REML methods41,43, in which contributions from SNPs 
in low LD regions are assigned higher weights when con­
structing the GRM. Instead of using a weighted GRM, 
LD and MAF stratified GREML (GREML-LDMS)42 
introduced multiple-component GREML models that 
estimate multiple genetic variances stratified by LD and 
MAF which sum to the SNP-based heritability. In turn, 
a multivariance-component LDAK model with LDAK 
GRM stratified by MAF was also introduced43. A com­
prehensive comparison of analyses that use single or 
multiple-component GRM constructed with different 
underlying assumptions on LD and/or MAF-dependent 
architectures, and based on simulations from genome- 
sequence data, showed that multicomponent models 
performed better than single-component models, but 
biases were observed in all methods depending on the 
underlying architecture47. It is therefore difficult to 
foresee which biases may occur in real data, as the true 
genetic architecture is unknown. In these comparisons, 
LDSC estimates were biased downwards by 5–10% when 
causal variants were common, and this bias increased 
as causal variants became less common. Recently, the 
summary statistics-based method SumHer44 was intro­
duced, which includes the assumption that low LD SNPs  
should have higher effect sizes.

Discussion about model assumptions has focused 
mostly on the estimates of SNP-based genetic variance 
and heritabilities, but the same concerns apply to the 

Extension of these methods to investigate differences in 
genetic correlations between traits based on genomic 
annotations is appealing, but they would generate esti­
mates with high standard errors (which depend on the 
number of SNPs contributing to the estimates as well as 
sample sizes34). Heritability Estimation from Summary 
Statistics (ρHESS), which was developed to partition 
genetic correlations based on genomic regions, addresses 
this issue by reducing the noise in the LD matrix through 
principal component-based regularization (that is, block 
diagonalization)11. By contrast, the GeNetic cOVariance 
Analyzer (GNOVA), which partitions genetic correla­
tions based on functional annotations, uses the method 
of moments as the underlying framework instead of 
the weighted regression in LDSC35. Both methods have  
shown that the genetic correlation is not constant 
across the genome for different trait pairs. For exam­
ple, 11 regions of statistically significant local genetic 
correlation (four positive, seven negative) were found 
between LDL and HDL cholesterol in the absence of 
genome-wide genetic correlation11.

Same trait measured in different environments. 
Bivariate methods can be used to analyse data for the same 
trait that have been intentionally recorded in two differ­
ent environments (or populations); data from the two  
environments are treated as different traits in the analy­
sis. The resulting genetic correlation estimates can 
reflect the sensitivity of the genetic effects to the cho­
sen environments, and estimates less than one may be 
indicative of genotype by environment (G × E) interaction. 
An important caveat, especially for GWAS-derived esti­
mates, is that these analyses should always be bench­
marked against estimates from different cohorts of the 
same trait recorded in the same environment. In this 
case, the true genetic correlation parameter is one, but, 
in practice, small sample sizes, differences in participant 
ascertainment or unrecognized differences in pheno­
type definition can induce sample heterogeneity, which 
results in lower estimates15,36. Estimates of genetic corre­
lation between samples of different ethnicities are addi­
tionally affected by differences in allele frequency and 
LD structure that may lead to rg estimates <1 (ref.37). In 
LMM methods, the bivariate GRM can be constructed 
using allele frequencies estimated from the two different 
samples, which accounts for both allele frequency and 
LD differences between the populations38. For example, 
the estimated genetic correlation between European 
cohorts and East Asian cohorts was 0.76 (s.e. 0.04) for 
Crohn’s disease and 0.79 (s.e. 0.04) for ulcerative colitis39.  
By contrast, the genetic correlation between these ethni­
cities for attention-deficit hyperactivity disorder 
(ADHD) was only 0.39 (s.e. 0.15)40; however, the genetic 
correlation estimated between two European ancestry 
ADHD cohorts was only 0.71 (s.e. 0.17)15, which indi­
cates sample heterogeneity in these ADHD GWAS. The 
Popcorn method37 extends LDSC to allow estimation 
of genetic correlation between two traits from GWAS 
conducted in populations of different ethnicity using LD 
reference panels from both populations. In the absence 
of sample heterogeneity, an interesting question is 
whether rg < 1 is because of population-specific allelic 

Genotype by environment 
(G × E) interaction
Differences in size and/or 
direction of the effect of 
genotype on disease risk  
in two different environments.

Sample heterogeneity
Differences in the effects of 
genotype on disease risk in  
two different cohorts. Potential 
causes include differences  
in phenotype criteria, 
ascertainment methods and 
unknown environmental 
differences with genotype  
by environment interaction.

Infinitesimal model
This model assumes that a trait 
is shaped by a very large 
number of variants with small 
(infinitesimal) effects resulting 
in a normally distributed 
phenotype. A polygenic 
architecture of >~10 causal 
variants is approximated  
well by normal distribution 
infinitesimal model theory.
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estimates of SNP-based genetic covariances and coherit­
abilities between two traits44. The key point of discussion 
is whether the genetic architecture assumed in a model 
of analysis matches the true, but unknown, genetic archi­
tecture of the trait under analysis. A particular concern is 
the LD properties of causal variants, but for causal vari­
ants shared by two traits the same LD properties apply as 
they are a property of the genome not of the trait. Hence, 
differences in estimates of (co)variances are expected to 
approximately cancel out through their impact on both 
the numerator and the denominator. Therefore, esti­
mates of genetic correlations are observed to be much 
more robust to underlying assumptions in simulations 
conducted across different methods29,44,48,49.

Precision and required sample size for genetic cor-
relation estimates. The standard error of GREML 
SNP-based heritability estimates depend only on sam­
ple size (N) and SNP density (accurately approximated 
as 316/N for GWAS data34), but the standard errors of 
genetic correlation estimates are several-fold larger 
because they reflect errors of three estimated parame­
ters, that is, the heritabilities of the two traits and the 
genetic correlation parameter itself (Fig. 4a). Because 
standard errors can be estimated with good accuracy, 
power calculations can be undertaken before conduct­
ing a study34. Empirical standard errors of summary 
statistics-based methods such as LDSC are ~2× higher 
than those of GREML. Therefore, LDSC is less powerful 
to detect genetic correlations that are significantly differ­
ent from zero or one, for a given sample size, compared 
to GREML28,48 (Fig. 4b). The major advantage of summary 

statistics-based methods is that larger sample sizes can 
be achieved and they require only a small fraction  
of the computational expertise and resources required for  
the methods that use individual-level data.

Genetic correlation estimates are robust to scale 
transformations. For disease traits, SNP-based herita­
bility estimates are made relative to the phenotypic vari­
ance in the sample, which is a function of the proportion 
of cases in the sample. The raw estimates are transformed 
based on normal distribution theory to account for sam­
ple ascertainment, so that they are interpretable and can 
be compared across different samples21,47. Likewise, raw 
coheritability estimates reflect the proportions of cases 
in the two samples. As the transformations apply to the 
numerator and the denominator, the estimated genetic 
correlation is scale independent29.

Genetic correlation estimates are robust to ascertain-
ment and strong environmental factors. Ascertainment 
of cases (resulting in oversampling of individuals with 
both high genetic and environmental values) or the 
presence of environmental factors with strong effects 
can violate GREML (and hence also LDAK) assump­
tions that environmental values are normally distributed 
and lead to a downward bias of SNP-based heritability 
estimates49,50. Haseman–Elston regression is robust to this 
assumption but gives ~1.5× higher standard errors than 
GREML-based approaches51. Phenotype correlation 
genotype correlation (PCGC) regression is an extension 
of Haseman–Elston regression that accounts for ascer­
tainment and covariates in estimation of SNP-based 
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maximum likelihood (GREML). We use equal sample sizes for the two traits and show that the standard errors for genetic 
correlation estimates are substantially larger than for heritability estimates, meaning that larger sample sizes are needed 
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Haseman–Elston regression
Regression of the product of 
the standardized phenotypes 
of pairs of individuals on their 
coefficient of genetic sharing as 
defined in the genomic 
relationship matrix.
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heritability. However, extensive simulations suggest 
that genetic correlation estimates obtained by GREML, 
LDSC and PCGC are not biased by strong ascertainment 
or strong environmental factors49.

Impact of population stratification on genetic cor-
relation estimates. Confounding bias due to popula­
tion stratification can inflate (co)heritability estimates 
from GREML. Moreover, population and technical 

confounding is more likely to occur with a binary trait24. 
Hence, stringent SNP quality control is needed when 
applying GREML to disease data, as well as inclusion 
of ancestry-informative principal components as fixed- 
effect covariates. LDSC and SumHer attempt to model 
inflation of association statistics due to any residual 
population stratification when estimating SNP-based 
heritability, but bias may still remain52. The impact of 
population stratification on coheritability estimates and 
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Confounding bias
A type of bias that emerges 
when a covariate, a 
‘confounder’, causally 
influences the predictor variable 
and outcome variable. When 
the confounder is not 
accounted for, the relationship 
between predictor and outcome 
may be biased (confounded).
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genetic correlation estimates for these methods has not 
been thoroughly investigated; however, for LDSC, theory 
predicts that it affects the bivariate LDSC intercept but 
not coheritability estimates53.

Positive assortative mating increases genetic 
correlation. Compared to random mating, positive 
assortative mating on a trait (x) increases its genetic 
variance at equilibrium ( _hx eq

2 ) and the genetic variance 
of any correlated trait (y)54. Their genetic correlation at 
equilibrium, ρg_eq, compared to the genetic correlation 
under random mating (ρg) can be expressed as54:

_
_ ( )

ρ ρ
ρ h ρ

= 1

1− 1−
(11)g g

x g

eq

m eq
2 2

where ρm is the phenotypic correlation between mates 
for the assortatively-mated trait x. For disease traits, ρm 
would be the correlation between liability to disease. As 
a result, assortative mating increases genetic correlation 
estimates at equilibrium (Fig. 5a). For assortative mating 
typical of humans (ρm < 0.3)55, ρg_eq/ρg has a maximum 
of ~1.2.

Misclassification inflates genetic correlation esti-
mates. Misclassification, or misdiagnosis, may occur 
when two traits share phenotypic characteristics, such 
as Crohn’s disease and ulcerative colitis, and can lead to 
spurious estimates of genetic correlation56. The impact 
of misclassification on the estimated genetic correlation 
can be quantified from theory56, and the bias is greatest  
when two diseases are genetically unrelated (Fig. 5b). 
However, if two diseases are truly genetically corre­
lated then perhaps phenotypic overlap in clinical pres­
entation leading to diagnostic ambiguity is expected. 
For example, in schizophrenia and bipolar disorder57, 
changing diagnoses over time is likely a real reflection 
of the longitudinal symptom profile in some people. 

Hence, the likelihood of overestimation of genetic cor­
relation should be guided by the context of realistic 
misclassification rates for each disease pair.

Individual-level genotype data can help detect 
potential misclassification. The Breaking Up Hetero­
geneous Mixture Based On cross(X)-locus correlations 
(BUHMBOX) algorithm leverages correlation patterns 
of disease risk loci to detect subgroup heterogeneity58. 
There have been few applications to real data but one 
example used rheumatoid arthritis data and indicated 
that the genetic correlation between seropositive and 
seronegative types was (partly) due to subgroup hetero­
geneity possibly introduced by false-negative serum 
rheumatoid blood factor tests (misclassification)58. 
Notably, subgroup heterogeneity can theoretically also 
result from (molecular) subtypes or vertical pleio­
tropy, which can, in contrast to misclassification, be of 
great interest.

Double-screening control cohorts can inflate genetic 
correlation estimates. In addition to screening controls 
to exclude the case trait, it is also common to exclude 
control subjects with potentially related diseases in what 
we term here as double-screening of control cohorts. 
Although this ascertainment bias may increase power 
for detection in GWAS, it can induce biased estimates of 
genetic parameters (Fig. 5c). When the true genetic corre­
lation is zero, a non-zero estimate reflects the increased 
prevalence of risk alleles for the secondary trait in the 
cases relative to the doubly-screened controls. This bias 
increases with increased population risk (Fig. 5c) and 
increased differences in heritability between the primary 
and secondary trait.

Collider bias can affect genetic correlation estimates. 
Collider bias can introduce spurious correlations when 
two traits both influence a third ‘collider’ variable and 
their association is conditioned on this third variable. 
A special form of collider bias arises through selection 
bias in which both traits influence the probability that 
an individual is included in the study (Fig. 5d). Collider 
bias has been acknowledged as a potential pitfall in the 
use of large-scale biobanks59, in which there may be a 
high degree of self-ascertainment. For example, in the 
UK Biobank study, only 5% of invitations to participate 
were accepted60, with participants having higher educa­
tional status and lower prevalence of smoking59. Hence, 
the genetic correlation estimated between educational 
status and smoking obtained from UK Biobank data may 
be biased.

Uses of genetic correlations
If non-zero genetic correlations are estimated between 
two traits, analyses can be constructed that could 
improve power to detect new disease-associated vari­
ants, improve genetic risk prediction, make inferences 
on causality, perform conditional analyses and describe 
the biological aetiology of complex traits. Methods and 
software packages (Table 1) that can be used to achieve 
these aims are discussed below, with a focus on those 
that use GWAS summary statistics because these are 
broadly applicable.

Fig. 5 | Bias in estimated genetic parameters. a | Positive assortative mating increases 
genetic correlation estimates at equilibrium (ρg_eq). Here, ρm is the phenotypic correlation 
between mate pairs for trait x, heritability of trait x (hx

2) = 0.65 and heritability of trait  
y (hy

2) = 0.4. b | Misclassification inflates genetic correlation estimates (rg). Here,  
MTx represents the misclassification rate of trait x as trait y. There is no misclassification 
of trait y, hx

2= 0.65 and hy
2 = 0.4. c | Extending the methodology that considered disease 

misclassification56, double-screening controls can yield inflated estimates for heritability 
and genetic correlation. This bias is modest when at least one trait is relatively rare, for 
example (left) for major depressive disorder (hx

2 = 0.4, Kx = 0.15) and schizophrenia 
(hy

2 = 0.65, Ky = 0.01), but can be substantial for two common traits such as hayfever 
(hx

2 = 0.15, Kx = 0.15) and asthma (hy
2 = 0.18, Ky = 0.25)113 (right). Dashed lines reflect true 

parameters. d | In the panel on the left, collider bias results in a downward bias of the 
genetic correlation estimates when both traits are associated with the probability 
of being included in the study , here modelled on the liability scale (ρincl,x = ρincl,y as 
presented on x axis). This bias is most pronounced when a smaller proportion of 
samples is included in the study (Kincl). For this panel, hx

2 = hy
2 = 0.4 and ρg = 0. In the 

panel on the right, trait parameters are chosen to reflect major depressive disorder  
(hx

2= 0.4, Kx = 0.15) and schizophrenia (hy
2 = 0.65, Ky = 0.01). Again, ρincl,x = ρincl,y and we 

set ρg = ρe as presented on the x axis. The bias in genetic correlation estimates due to 
collider bias is most pronounced when traits are uncorrelated. The Supplementary note 
provides the theoretical background and code for all panels of this figure. ρg, genetic 
correlation.

◀

Assortative mating
Mating selection on a trait 
where the phenotypes of 
mates are positively 
correlated. Examples of 
assortative mating in humans 
include height or educational 
attainment.

Collider bias
A type of bias that emerges 
when estimates are 
conditioned on a covariate,  
a ‘collider,’ that is causally 
influenced by both the 
predictor variable and  
outcome variable.
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Identification of new trait-associated variants. The 
combined association analyses of correlated traits can 
increase power to detect new SNP–trait associations.  
A wide variety of methods is available that combine GWAS 
summary statistics to identify trait-associated SNPs  
(Table 1). In general, methods encompass extensions of  
(inverse-variance weighted) meta-analysis61–65, the score- 
based association test65, linear combinations of GWAS 
test statistics66–71, structural equation modelling72, multi­
variate models73,74 and Bayesian methods where the 
prior is informed by SNP associations in correlated 
traits35,75–79. A detailed description of these methods is 
beyond the scope of this review and is provided else­
where80,81. The increase in power of the combined 
analyses compared to single-trait analyses can be inter­
preted as equivalent to the increase in sample size for 
the single-trait association analysis. For example, the 
multitrait analysis of the genetically correlated (ρg ≈ 0.7) 
traits depressive symptoms (N = 354,311), neuroticism 
(N = 168,105) and subjective well-being (N = 388,542) 
with a large proportion of overlapping individuals led to 
an increase in power compared to the single-trait analy­
sis, which is equivalent to a 27%, 55% and 55% increase 
in sample size, respectively64.

Improved genetic risk prediction. Genetic risk pre­
diction is of great interest for common complex traits 
because it can inform diagnostic decision-making 

and early intervention (prevention) strategies82–84. 
The accuracy of genetic risk prediction is dictated by 
disease characteristics (such as heritability and life­
time risk)82, but also study design (including reference 
sample size, population and trait)85. Leveraging SNP 
effect estimates from GWAS of genetically correlated 
traits is equivalent to increasing the effective discovery 
sample size of the focal trait86 (Fig. 6a). Predictors for 
case–control traits with relatively low heritability can 
particularly benefit from this multitrait approach87. The 
increase in predictive accuracy, measured as the area 
under the receiver operator curve, can be predicted 
from theory85,88 (Fig. 6b). An increase in prediction 
accuracy has indeed been observed when combining 
individual-level genotypes for psychiatric traits using 
ridge regression89 or for inflammatory bowel diseases 
using best linear unbiased predictors of SNP effects, 
such as MT-GBLUP86. Methods for multitrait prediction 
have also been extended to work with single-trait GWAS 
summary statistics (such as SMTPred90 and Multi-Trait 
Analysis of GWAS (MTAG)64) and can include genome 
annotation in the prediction model (for example, 
PleioPred-anno)91.

Inferences on causality. When traits x and y are found 
to be genetically correlated, it may be of interest to 
understand whether the correlation has been induced 
by a causal relationship, that is, trait x causes trait y  
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Fig. 6 | Prediction accuracy increases when correlated traits are combined. Based on the theory in quantitative 
trait genetics described in ref.85, the prediction accuracy of a genetic predictor (parameterized as the area under 
receiver operating characteristic curve (AUC)) in the target population sample increases when two genetically 
correlated traits are combined to calculate single-nucleotide polymorphism (SNP) weights for 1,000,000 SNPs (M).  
The target trait in this example is major depressive disorder (heritability (h2) = 0.40, lifetime risk (K) = 0.15, proportion  
of cases (P) = 0.5). The genetically correlated trait is schizophrenia (h2 = 0.65, K = 0.01, P = 0.5). The effective number of 
chromosome segments is chosen to reflect an unrelated sample of the European population (Meff = 50,000). 
Part a illustrates the increase in prediction accuracy that is achieved by including information from the correlated  
trait equivalent to the increase in the sample size of the first trait (N1) in a single-trait analysis. Compared to the 
single-trait analysis in 10,000 individuals, adding a secondary trait with estimated genetic correlation (rg) = 0.2, 0.4  
or 0.6 and sample size N2 = 50,000 results in an increase in prediction accuracy equivalent to an increase in sample  
size of focal trait genome-wide association studies (GWAS) (N1) of 40%, 260% and 510%, respectively (dotted black 
lines). In part b, the prediction accuracy increases with increasing genetic correlation and increasing sample size of  
the discovery GWAS of the correlated trait (N2), here N1 = 20,000. The Supplementary note provides the theoretical 
background and code for this figure. ρg, genetic correlation.
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(or vice versa). Identifying causality is particularly 
important if the putative causal trait is potentially 
modifiable, such as smoking or LDL cholesterol levels. 
However, only formal tests for causality justify these 
claims. The gold standard to prove causality is a rando­
mized clinical trial, which can be costly and, in some 
instances, unethical or impossible to conduct. Genetic 
correlations can be leveraged to aid inferences on cau­
sality through Mendelian randomization (MR, reviewed 
elsewhere92,93) and is a cost-effective way to explore cau­
sality. Briefly, if trait x (for example, diabetes) increases 
the risk of trait y (for example, cardiovascular disease), 
then all risk factors (the instrumental variables), includ­
ing genetic risk factors, for trait x will, to some consist­
ent proportional extent, also increase the risk of trait y. 
A strong assumption in MR analyses is the absence of 
horizontal pleiotropy, that is, the instrumental variable 
does not affect trait y directly. Numerous methods for 
performing MR analyses9,94,95 and detecting horizontal 
pleiotropy9,10,96 are available (Table 1). MR Steiger97 can 
help to detect directionality of causal relationships and to 
disentangle causal relationships between multiple related 
risk factors, and multivariate98,99 or conditional9 MR 
analyses can be applied. An illustrative example of con­
ditional MR identified a causal effect of LDL cholesterol 
levels, but not HDL cholesterol levels, on cardiovascular 
disease9, which is reflected in the results of randomized 
trials100–102. The latent causal variable (LCV) method103 
has been proposed to better differentiate causality and 
partial causality from horizontal pleiotropy, but a lim­
itation is that it has not been extended to multitrait  
conditional analyses.

Conditional analysis. When it is known that two 
traits are genetically correlated and potentially causally 
related, it can be equally interesting to focus on which 
SNPs induce phenotypic heterogeneity and cause dis­
ease x to be different from disease y. Multitrait condi­
tional analyses that condition a SNP–trait association 
on a second disease can provide this insight. When only 
summary statistics are available, conditional analyses 
can be performed for GWAS with fully overlapping indi­
viduals104 and for completely independent GWAS (for 
example, using genome-wide complex trait analysis– 
multitrait conditional and joint analysis (GCTA-
mtCOJO)9). If the genetic correlation between the 
traits reflects a purely causal relationship, then the SNP 
effects for trait y conditional on trait x are expected to 
be uncorrelated with SNP effects of trait x (r = 0gy x x, ). 
However, if the genetic correlation between the traits 
includes horizontal pleiotropy where the genetic shar­
ing may not be the same across the genome, then rgy x x,  
may differ from zero. The Genome-Wide Inferred 
Statistics (GWIS)105 method conditions trait y on trait x, 
forcing r = 0gy x x, . This approach was used to disentan­
gle the genetic correlation between schizophrenia and 
educational attainment, attributing the observed genetic 
correlation to only those SNPs that are shared between 
schizophrenia and bipolar disorder105. Like GCTA-
mtCOJO, GWIS assumes that the same adjustment 
applies across the genome. Therefore, both approaches 
may generate results that are difficult to interpret 

when the true sharing of genetic risk is variable across  
the genome.

Improved interpretation of GWAS results. The devel­
opment of frameworks to include multiple correlated 
traits to translate GWAS results to functional biology 
is still in the early stages but is likely to become an area 
of active research. Similar to single-trait heritability 
enrichment analyses33, the GNOVA framework aims to 
elucidate the biological processes underpinning genetic 
correlations by identifying functionally annotated sets 
of SNPs that contribute most to genetic correlations35. 
Furthermore, genetic correlations can be leveraged to 
help fine-map causal variants in GWAS loci, under an 
assumption of shared causal variants between traits, 
as illustrated by the Risk Variant Inference using 
Epigenomic Reference Annotation (RiVIERA)106 
method; this Bayesian framework approach identified 
more causal variants that regulated gene expression in 
disease-relevant tissue when multiple correlated traits 
were combined compared to single-trait analyses. 
Similarly, the Probabilistic Annotation INtegraTOR 
(fastPAINTOR)107 algorithm combines multiple corre­
lated traits and genome annotation to prioritize causal 
variants in GWAS loci, explicitly modelling multiple 
causal variants within a locus.

Conclusions and future perspectives
The past decade has seen great advances in our under­
standing of complex traits and common diseases and 
disorders. It is now well recognized that pleiotropy is 
ubiquitous29,31,108 and that the number of uncorrelated 
traits is constrained109,110. The availability of large inde­
pendently collected data sets for multiple traits and the 
sharing of GWAS summary statistics enable genetic 
correlations to be estimated and used on an unprece­
dented scale. Although ongoing discussion focuses on 
model assumptions and how they can bias estimates of 
genetic variances and covariance, simulation studies 
consistently conclude that genetic correlation estimates 
are robust to these assumptions. Large-scale genotype–
phenotype resources show that a genetic contribution 
can be attributed to the vast majority of measured traits 
and lifestyle factors, further increasing the potential of 
studies on genetic correlation to describe disease bio­
logy111. In the short term, genetic correlation estimates 
will help to find disease-associated genetic variation and 
improve polygenic risk prediction as it makes its way 
into clinical practice83,112. They may also contribute to  
improved nosology and diagnosis, risk stratification  
to inform clinical trials and lifestyle interventions. Here, 
our focus is common, polygenic, disease traits, coded as 
a simple dichotomy of health and disease. However, the 
disease process and its estimated genetic contribution 
can be conceptualized as the complex product of multi­
ple intermediate phenotypes at the level of gene expres­
sion, cumulative over time and cell types. The coming 
decades may generate the data that, through studies  
of genetically correlated traits, enable deconstruction of 
disease risk at the molecular level.
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