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E
stimating genetic correlation is a key step toward understand-
ing the shared genetic architecture between complex traits 
and diseases. The genetic correlation parameter describes 

how genome-wide genetic effects align between two complex phe-
notypes. To estimate genetic correlations using GWAS data, there 
are two widely used approaches—when individual-level data are 
available, genetic correlation is commonly estimated by restricted 
maximum likelihood (REML) for linear mixed models (LMMs)1,2; 
when only GWAS summary-level data are available, LDSC3,4 can 
be used. A major appeal of summary statistics is their wide avail-
ability for many traits without the need to access individual-level 
data. As using GWAS summary statistics is more straightforward 
and computationally light, LDSC has been widely applied since  
its inception5.

Although easy to use, the standard error (s.e.) values of genetic 
correlation estimates by LDSC are substantially larger than those 
of REML4,6, affecting the power and precision in the detection and 
estimation of genetic correlations. This accuracy gap is often attrib-
uted to the mismatch between the GWAS sample and the reference 
sample from which the LD scores are estimated7. This mismatch 
introduces measurement errors into the LD scores and, conse-
quently, decreases the accuracy of estimation. However, even when 
the GWAS sample and the reference sample are matched, the accu-
racy of LDSC is still evidently lower than that of REML6.

In this report, we introduce an essential source that reveals the 
‘missing accuracy’ of LDSC: LDSC uses only a small part of the LD 
information in the modeling of summary association statistics. To 
thoroughly exploit the information from GWAS summary-level 
data, we develop HDL, a full likelihood-based method for estimat-
ing genetic correlation using GWAS summary statistics. The full 
likelihood naturally extends the regression formula of LDSC. We 
compare the accuracy of HDL and LDSC based on simulated and 
real data from the UKBB8. We find that HDL is more accurate than 
LDSC, with a relative efficiency (ratio of estimator variance, which is 
equivalent to the ratio of sample size) of more than 2.5 in simulations.  

This leads to higher statistical power to detect genetic correlations 
between phenotypes and also more precise estimates. For the real 
data, of the 435 tests for genetic correlations across 30 behavioral 
and disease-related phenotypes, 57 significant genetic correlations 
were identified by HDL only, compared with 2 significant genetic 
correlations by LDSC only.

Results
Overview of methods. HDL is a natural extension of LDSC. LDSC 
is based on the fact that, for a polygenic trait, if a SNP is in higher 
LD with other SNPs, it will have a higher χ2 test statistic on average 
due to more causal variants being tagged. Mathematically, under a 
polygenic model9 where true genetic effects are normally distrib-
uted and population stratification is absent (Supplementary Note), 
for a single SNP j, the variance of its GWAS test statistic zj is related 
to its LD with other SNPs as

Var zj
 

¼ E z2j

h i

¼
Nh2

M
ljj þ 1 ð1Þ

where N is the sample size; h2 is the narrow-sense heritability; M is 
the number of SNPs; and ljj ¼

PM
k¼1

rjkrkj ¼
PM

k¼1
r2jk

I

 is defined as 
the LD score of j. LDSC is then developed using this relationship 
between the LD score of a single SNP and the variance of its test 
statistic.

In fact, not just the variance of the single-SNP test statistic but 
the whole variance–covariance matrix is determined from the 
LD matrix. For any two SNPs j and j′, the covariance or expected  
product of zj and zj′ is given by

Cov zj; zj0
� �

¼ E zjzj0
� �

¼
Nh2

M
ljj0 þ rjj0 ð2Þ

where rjj′ is the LD between SNP j and SNP j′ and ljj0 ¼
PM

k¼1
rjkrkj0

I

.  
When j = j′, equation (2) becomes equation (1); the derivation is  
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shown in the Supplementary Note. To rewrite equation (2) in gen-
eral matrix form, denoting the M × M full LD matrix as R with 
entries frjj0g

I

, we defined the LD score matrix L := R′R with entries 
fljj0g
I

. Then, for the vector of test statistics z, its covariance matrix is 
given as

Cov z½  ¼
Nh2

M
Lþ R ð3Þ

Note that the M diagonal elements of L are exactly the same 
as the LD scores of the M SNPs, and the M diagonal elements of 
Cov[z] are the expected values of χ2 statistics. Therefore, LDSC is 
actually a method of moments that only uses the diagonal informa-
tion in equation (3).

For two traits, assuming the true genetic effects follow a joint 
normal distribution (Supplementary Note), LDSC can estimate 
their genetic covariance h12 based on

Cov z1j; z2j
 

¼ E z1jz2j
 

¼
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
h12

M
ljj þ

N0ðh12 þ ρ12Þ
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p ð4Þ

where z1j and z2j are the z-scores for a single SNP j from two studies 
of trait 1 and trait 2, respectively; Ni is the sample size of study i; N0 
is the overlapping sample size; and ρ12 is the residual covariance. 
Similarly to the extension in the one-trait scenario, equation (4) can 
be extended to

Cov z1; z2½  ¼
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
h12

M
Lþ N0ðh12 þ ρ12Þ

ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p R ð5Þ

where z1 and z2 are z-score vectors of the M SNPs from two studies 
of trait 1 and trait 2, respectively. Under the same assumption of 
normality as for LDSC, from the likelihood based on equations (3) 
and (5), HDL exploits the information within the whole L matrix 
and the covariance matrix of z-scores, not only the information in 
their diagonal elements as used by LDSC.

Normalizing genetic covariance by heritabilities gives genetic 
correlation. The literature has suggested that, for LDSC, the esti-
mates of genetic correlations are less susceptible to bias than the 
estimates of heritabilities4,6,7,10. Although HDL improves accuracy in 
estimating both heritability and genetic correlation, we also focus 
on the estimation of genetic correlation in this report. Similarly to 
LDSC, HDL can be applied to quantitative traits and binary traits, 
regardless of whether the samples overlap.

Simulations. We performed a series of simulations to compare the 
performance of HDL and LDSC and to evaluate the robustness of 
HDL with respect to the choice of reference samples and model 
assumptions. The simulations were mainly based on the UKBB 
Axiom Array data from 336,000 British individuals in the UKBB. 
For consistency with the literature4,11, we took SNPs with minor 
allele frequency (MAF) above 5%. Further quality-control steps 
resulted in 307,519 SNPs (Methods). For both HDL and LDSC, the 
LD matrix was computed using these 307,519 SNPs from 336,000 
individuals. Of these, a proportion of SNPs were randomly selected 
as causal variants. In each simulation replicate, to generate two phe-
notypes for genetic correlation estimation, we first drew true effect 
sizes of each causal variant from a bivariate normal distribution. 
Thereafter, the phenotypic values were generated by adding errors 
from another bivariate normal distribution. The summary statistics 
were then computed by genome-wide association analysis of the 
simulated phenotypes against the genotypes.

Figure 1 shows the genetic correlation estimates from 100 simu-
lations where 30,752 (10% of 307,519) SNPs were causal. The true 
genetic correlation was set to 0.5. For both high- and low-heritability 
pairs of traits, HDL produced unbiased and more accurate estimates 

than those of LDSC. The relative efficiency was 2.58 (Levene’s test, 
P value = 7.1 × 10−5) for high-heritability traits (with heritabili-
ties of 0.6 and 0.8) and 2.93 (Levene’s test, P value = 1 × 10−5) for 
low-heritability traits (with heritabilities of 0.2 and 0.4). The s.e. 
values from block jackknifing were consistent with the observed 
s.d. values (Supplementary Table 1). To further compare HDL 
and LDSC, we performed simulations when (1) all of the SNPs 
were simulated to be causal (Extended Data Fig. 1) and (2) model 
assumptions were violated (Extended Data Figs. 2 and 3). To com-
pare HDL and LDSC when a large set of imputed SNPs were used as 
the reference panel, we first built an imputed reference panel based 
on 1,029,876 quality-controlled HapMap3 SNPs (Methods); we next 
simulated true phenotypes using these SNPs and then implemented 
HDL and LDSC, both using the imputed reference panel (Extended 
Data Fig. 4). Under all scenarios, the relative efficiency was around 
2 or above.

Application to summary statistics from the UKBB. With higher 
efficiency, we can estimate genetic correlations more accurately 
and obtain higher statistical power to detect genetic correlations 
between phenotypes. To illustrate this using real data, we applied 
HDL and LDSC to estimate genetic correlations across 30 pheno-
types in the UKBB. Most of the 30 phenotypes were behavioral 
traits, together with some disease-related and anthropometric 
traits. Based on our imputed reference panel including 1,029,876 
quality-controlled HapMap3 SNPs, we obtained the genetic cor-
relation estimates from HDL for the 435 pairwise combinations of 
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Fig. 1 | Relative efficiency of HDL against LDSc when 10% of SNPs are 

causal. Overall, 30,752 of 307,519 SNPs were randomly selected as causal 

variants. In each group, 100 replicates were simulated, where the true 

genetic and phenotypic correlations were both set to 0.5 for each pair of 

traits. In the high-heritability group, the heritability of the two traits was set 

to 0.6 and 0.8; in the low-heritability group, the heritability of the two traits 

was set to 0.2 and 0.4. Both HDL and LDSC were based on the LD matrix 

computed from 307,519 array SNPs from 336,000 individuals in the UKBB. 

Inside each box, the horizontal line represents the median, the central box 

indicates the interquartile range (IQR) and whiskers extend up to 1.5 times 

the IQR. 
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the 30 phenotypes and compared the results to the LDSC estimates 
(Fig. 2). For each pair of traits, the point estimates from the two 
methods were close. The s.e. values from HDL were generally (422 
of 435) smaller than those from LDSC, with median relative effi-
ciency = 2.35. The relative efficiency was positively correlated with 
the s.e. given by LDSC (Extended Data Fig. 5). The efficiency gains 
were larger among binary traits. Of the 435 tests for the genetic cor-
relations (Supplementary Table 2), following Bonferroni correction 
(P < 1.15 × 10−4), 154 genetic correlations were significant for both 
methods, 57 correlations were significant for only HDL (Table 1) 
and 2 correlations were significant for only LDSC. Similar power 
gain was found when both HDL and LDSC used UKBB array SNPs 
as the reference panel (Extended Data Fig. 6).

Comparison with LMM results. An LMM fitted using 
individual-level data is known to be more accurate than LDSC in the 
estimation of heritability and genetic correlation4,6. If HDL has higher  
efficiency than LDSC, the gap of the genetic correlation estimates  
between HDL and LMM would be smaller than the gap between 
LDSC and LMM. To validate this, we extracted the results by 
Canela-Xandri et al.11, where an LMM was fitted on UKBB 
individual-level data to estimate genetic correlations between hun-
dreds of traits. Among the 30 traits analyzed, LMM-based results for 
11 traits were available for comparison (Fig. 3 and Supplementary 
Table 3). For most pairs of traits, HDL estimates were close to LMM 

estimates (R2 = 0.80), while LDSC estimates deviated more from 
LMM estimates (R2 = 0.67).

Discussion
We have presented HDL, a full likelihood-based method for esti-
mating genetic correlation using GWAS summary statistics. In con-
trast, LDSC uses only partial information based on the diagonal of 
the covariance matrix of z-scores. In both simulation and empiri-
cal applications, we have shown that HDL produces more accurate 
estimates than LDSC. As a result, HDL can detect more significant 
genetic correlations that might be missed by LDSC. Theoretically, 
the efficiency gain by HDL can be attributed to two reasons: (1) 
HDL uses more information on the relationship between test sta-
tistics and the LD structure than LDSC; and (2) likelihood-based 
methods such as HDL are more efficient than a method of moments 
such as LDSC when the underlying distributional assumption holds, 
which is typically the case for polygenic traits.

As an extension of LDSC, given that the underlying model is 
correct, HDL can also be used to quantify various properties. In 
single-trait HDL, the slope can be transformed to be an estimate 
of heritability (Extended Data Figs. 7 and 8), and the intercept 
evaluates population stratification; in double-trait HDL, the inter-
cept implies phenotypic correlation and sample overlap. However, 
some concerns have been raised about estimating these quantities 
using LDSC10,12–14; therefore, we are cautious about interpreting the 
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Fig. 2 | Genetic correlation estimates from HDL and LDSc among 30 phenotypes in the uKBB. Lower triangle: HDL estimates; upper triangle: LDSC 

estimates. The areas of the squares represent the absolute value of corresponding genetic correlations. After Bonferroni correction for 435 tests at a 5% 

significance level, genetic correlation estimates that were significantly different from zero in both methods (dot) and in only one method (asterisk and 

black square) are shown. 
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Table 1 | Genetic correlation estimates significant in HDL but not in LDSc

Phenotype 1 Phenotype 2 r
HDL

g

I

 (s.e.) r
LDSC

g

I

 (s.e.) PHDL PLDSC

Carbohydrate Length of mobile phone use −0.17 (0.03) −0.24 (0.07) 1.2 × 10−6 7.7 × 10−4

Carbohydrate Mother’s age at death 0.26 (0.07) 0.43 (0.14) 1.0 × 10−4 1.9 × 10−3

Drinking water intake Length of mobile phone use 0.12 (0.03) 0.20 (0.06) 4.6 × 10−5 6.6 × 10−4

Drinking water intake Alcohol intake frequency −0.15 (0.04) −0.19 (0.06) 2.5 × 10−5 2.6 × 10−3

Drinking water intake Standing height 0.13 (0.03) 0.14 (0.04) 3.6 × 10−7 6.6 × 10−4

Coffee consumed Standing height 0.15 (0.03) 0.18 (0.06) 5.7 × 10−7 2.9 × 10−3

Pulse rate, automated reading Year ended full-time education −0.08 (0.02) −0.10 (0.03) 1.8 × 10−5 3.5 × 10−4

Pulse rate, automated reading Mother’s age at death −0.17 (0.03) −0.15 (0.04) 4.5 × 10−8 4.1 × 10−4

Pulse rate, automated reading Type 2 diabetes 0.21 (0.04) 0.23 (0.06) 1.8 × 10−8 2.9 × 10−4

Frequency of friend/family visits Salad/raw vegetable intake −0.11 (0.03) −0.12 (0.04) 5.6 × 10−5 1.6 × 10−3

Frequency of friend/family visits Alcohol intake frequency −0.11 (0.02) −0.11 (0.03) 1.2 × 10−8 4.2 × 10−4

Frequency of friend/family visits Wearing glasses or contact lenses 0.16 (0.03) 0.18 (0.05) 3.4 × 10−6 2.6 × 10−4

Frequency of friend/family visits Basal metabolic rate −0.08 (0.02) −0.09 (0.02) 3.5 × 10−7 1.4 × 10−4

Frequency of friend/family visits Standing height 0.06 (0.01) 0.07 (0.02) 6.9 × 10−6 2.0 × 10−3

Length of mobile phone use Salad/raw vegetable intake 0.09 (0.02) 0.10 (0.03) 3.4 × 10−5 8.9 × 10−4

Length of mobile phone use Mother’s age at death −0.13 (0.03) −0.21 (0.06) 2.3 × 10−6 7.9 × 10−4

Sleep duration Smoking status: current −0.14 (0.02) −0.12 (0.03) 7.7 × 10−11 6.8 × 10−4

Sleep duration General happiness 0.13 (0.03) 0.10 (0.04) 2.8 × 10−6 1.5 × 10−2

Sleep duration Lifetime number of sexual partners −0.10 (0.02) −0.09 (0.03) 2.3 × 10−8 5.2 × 10−3

Sleep duration Year ended full-time education 0.11 (0.02) 0.12 (0.03) 1.9 × 10−6 1.2 × 10−4

Sleep duration Mother’s age at death 0.13 (0.03) 0.05 (0.06) 7.7 × 10−5 4.3 × 10−1

Sleep duration Standing height 0.07 (0.01) 0.05 (0.02) 2.4 × 10−8 3.0 × 10−3

Sleep duration Usual walking pace 0.08 (0.01) 0.05 (0.02) 2.4 × 10−7 2.8 × 10−2

Getting up in morning Alcohol intake frequency 0.08 (0.02) 0.08 (0.02) 4.9 × 10−6 4.8 × 10−4

Getting up in morning Body mass index 0.07 (0.02) 0.07 (0.02) 8.9 × 10−6 9.0 × 10−4

Getting up in morning Lifetime number of sexual partners −0.12 (0.02) −0.09 (0.03) 8.4 × 10−11 7.1 × 10−4

Getting up in morning Standing height −0.05 (0.01) −0.06 (0.02) 5.8 × 10−5 3.8 × 10−4

Snoring Fresh fruit intake 0.10 (0.02) 0.08 (0.03) 3.8 × 10−7 2.8 × 10−3

Salad/raw vegetable intake Risk taking 0.12 (0.02) 0.13 (0.03) 2.7 × 10−7 1.3 × 10−4

Fresh fruit intake Birth weight 0.09 (0.02) 0.06 (0.03) 6.7 × 10−6 2.0 × 10−2

Fresh fruit intake Major coronary heart disease event −0.12 (0.02) −0.12 (0.04) 8.5 × 10−9 2.0 × 10−3

Alcohol intake frequency Birth weight −0.06 (0.01) −0.06 (0.02) 3.9 × 10−6 7.5 × 10−3

Alcohol intake frequency Lifetime number of sexual partners −0.08 (0.02) −0.06 (0.02) 3.9 × 10−6 1.3 × 10−2

Birth weight Year ended full-time education 0.11 (0.02) 0.12 (0.03) 1.4 × 10−8 1.5 × 10−4

Birth weight Major coronary heart disease event −0.14 (0.03) −0.15 (0.04) 7.4 × 10−8 1.8 × 10−4

Smoking status: current Wearing glasses or contact lenses −0.19 (0.03) −0.18 (0.05) 5.1 × 10−10 3.1 × 10−4

Smoking status: current Type 2 diabetes 0.16 (0.04) 0.19 (0.08) 8.4 × 10−5 1.4 × 10−2

Risk taking Mother’s age at death −0.15 (0.04) −0.19 (0.07) 4.4 × 10−5 5.1 × 10−3

Risk taking Neoplasms 0.13 (0.03) 0.16 (0.05) 2.5 × 10−5 2.6 × 10−3

Risk taking Bipolar disorder 0.19 (0.04) 0.25 (0.08) 3.5 × 10−6 3.5 × 10−3

Body mass index Depression 0.13 (0.02) 0.11 (0.03) 8.7 × 10−9 3.2 × 10−4

Lifetime number of sexual partners Basal metabolic rate 0.07 (0.01) 0.08 (0.02) 2.6 × 10−6 1.8 × 10−4

Lifetime number of sexual partners Mother’s age at death −0.15 (0.03) −0.20 (0.06) 3.5 × 10−6 1.4 × 10−3

Lifetime number of sexual partners Major coronary heart disease event 0.10 (0.02) 0.08 (0.04) 4.1 × 10−6 2.2 × 10−2

Lifetime number of sexual partners Neoplasms 0.14 (0.03) 0.16 (0.04) 2.8 × 10−7 1.3 × 10−4

Lifetime number of sexual partners Depression 0.14 (0.03) 0.10 (0.04) 5.3 × 10−7 1.5 × 10−2

Year ended full-time education Depression −0.19 (0.04) −0.17 (0.05) 4.4 × 10−7 9.3 × 10−4

Year ended full-time education Bipolar disorder 0.19 (0.04) 0.22 (0.09) 7.6 × 10−6 1.2 × 10−2

Continued
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intercept term and the single-trait HDL results, although HDL does 
improve heritability estimation (Extended Data Fig. 7). On the other 
hand, the LDSC estimates of genetic correlations have been shown 
to be unbiased under different circumstances4,6,7,10. This robustness 
has mainly been attributed to the ratio form of genetic correlation: 
the biases on the numerator and the denominator are in the same 
direction and therefore cancel out4. Given these considerations, we 
focused the application of HDL on estimating genetic correlations.

In application, the efficiency gain by HDL was more substantial 
when LDSC generated large s.e. values (Extended Data Fig. 5). This 
phenomenon was consistent with the simulation results—when the 
traits’ heritabilities were low, LDSC s.e. values were larger and the 
relative efficiency was higher—indicating that it is more important 
to use the full LD information when the amount of genetic variance 
is limited. For example, as the observed heritabilities of binary traits 
are usually low, when they are involved in the genetic correlation 
estimation, the gain of HDL is higher (Extended Data Fig. 5). As 
diseases are mostly recorded as binary traits and are of interest in 
many GWAS projects and consortia, HDL would be more beneficial 
in such applications.

In some cases15, the estimates of genetic correlations from LDSC 
are above 1. This is because the genetic covariance estimate is not 
constrained in the cross-trait LD score regression. Consequently, 
the randomness of genetic covariance estimates may result in a 
genetic correlation estimate above 1. HDL makes this less problem-
atic by estimating heritability and genetic covariance parameters 
more precisely.

Although both the estimates from HDL and LDSC were com-
pared to LMM estimates, it should be noted that, for binary phe-
notypes, LMM estimates were not used as the gold standard. The 
use of individual-level data allows LMMs to incorporate the full LD 
information; however, for binary outcomes, fitting a normal linear 
mixed model mis-specifies the likelihood function and thus is not 
optimal for statistical inference, while the HDL method models the 
GWAS test statistics whose distribution does not violate the normal 
assumption, even for binary outcomes. This is another theoretical 
advantage of applying HDL on summary association statistics for 
binary phenotypes.

Handling a large LD matrix requires numerical regularization. To 
regularize the LD matrix, instead of directly using the original LD 
matrix, we performed eigen-decomposition on the LD matrix and 
passed its top eigenvalues and eigenvectors to HDL. The selected 
eigenvalues and eigenvectors captured most of the information in 
the LD matrix (Extended Data Fig. 9). There are three benefits of this 
decomposition step: (1) improving the efficiency of HDL (Extended 
Data Fig. 10 and Supplementary Fig. 1), (2) saving computation 
time by avoiding matrix multiplication (Supplementary Note) and 

(3) saving storage space by only storing leading eigenvalues and 
eigenvectors for the reference panel that can be used across many 
GWAS summary-level data. Simulations suggest that taking the 
leading eigenvalues explaining 90% of the variance of the LD matrix 
has the highest estimation efficiency for the array SNP reference 
panel (Extended Data Fig. 10), and the top eigenvalues explaining 
99% of the variance of the LD matrix have the highest estimation 
efficiency for the imputed SNP reference panel (Supplementary 
Fig. 1). Hence, in this report, when the array SNP reference panel 
was used, we implemented HDL based on the leading eigenvalues 
explaining 90% of the variance and their corresponding eigenvec-
tors; when the imputed SNP reference panel was used, we imple-
mented HDL based on the leading eigenvalues explaining 99% of 
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Fig. 3 | comparing genetic correlation estimates from HDL and LDSc 

with those from LMMs across 11 phenotypes in the uKBB. HDL and LDSC 

estimates are shown as dots and crosses, respectively. For each pair of 

traits, genetic correlation estimates are in the same color and connected 

by a gray vertical dashed line. The black diagonal dashed line represents 

identity. BMI, body mass index; T2D, type 2 diabetes. 

Phenotype 1 Phenotype 2 r
HDL

g

I

 (s.e.) r
LDSC

g

I

 (s.e.) PHDL PLDSC

Basal metabolic rate Major coronary heart disease event 0.10 (0.02) 0.09 (0.03) 4.5 × 10−5 2.6 × 10−3

Basal metabolic rate Neoplasms 0.16 (0.02) 0.16 (0.04) 4.7 × 10−16 1.3 × 10−4

Mother’s age at death Neoplasms −0.24 (0.05) −0.25 (0.09) 2.0 × 10−6 4.1 × 10−3

Mother’s age at death Depression −0.22 (0.05) −0.24 (0.09) 6.6 × 10−6 7.6 × 10−3

Standing height Neoplasms 0.07 (0.02) 0.07 (0.04) 8.2 × 10−5 6.0 × 10−2

Standing height Depression −0.07 (0.02) −0.08 (0.02) 8.8 × 10−5 1.5 × 10−3

Usual walking pace Neoplasms −0.12 (0.03) −0.13 (0.04) 2.6 × 10−6 9.9 × 10−4

Major coronary heart disease event Type 2 diabetes 0.28 (0.06) 0.33 (0.10) 9.2 × 10−6 7.5 × 10−4

Neoplasms Depression 0.16 (0.04) 0.20 (0.07) 3.9 × 10−5 3.1 × 10−3

Results that passed Bonferroni correction (calculated by dividing the significance level by the number of tests, that is, 0.05/435) were reported as significant. rHDL
g

I

 (s.e.), genetic correlation estimate and 

s.e. given by HDL; rLDSC
g

I

 (s.e.), genetic correlation estimate and s.e given by LDSC; PHDL, P value given by HDL; PLDSC, P value given by LDSC.

Table 1 | Genetic correlation estimates significant in HDL but not in LDSc
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the variance and their corresponding eigenvectors. Note that, for 
heritability estimation, as mentioned above, consistent estimates 
are difficult to achieve for summary-statistics-based methods. For 
HDL, too little regularization of the LD matrix would lead to down-
ward bias, whereas too much regularization would lead to lower 
estimation efficiency due to loss of information (Supplementary 
Fig. 2). Nevertheless, bias is not a concern for genetic correlation 
estimation (Supplementary Fig. 1).

In LDSC, 378 Europeans from the 1000 Genomes Project are 
often used as a reference sample to compute LD scores. However, 
because HDL uses more information from the LD matrix, a larger 
reference sample is preferred. Therefore, in the HDL software pack-
age, we took 336,000 genomic British individuals from the UKBB 
as a reference sample to compute the LD matrices and perform 
eigen-decomposition. These are stored in the software package so that 
the computation on user-input GWAS summary statistics is fast. In 
this report, the LD reference panel and GWAS summary statistics are 
both from UKBB, but in other applications this might not be the case. 
Hence, we performed a series of simulations to test the performance 
of HDL when the GWAS and reference samples were independent. 
In these simulations, we also evaluated the robustness of HDL under 
different scenarios where the LD matrix was (1) computed from dif-
ferent reference sample sizes (Supplementary Figs. 3 and 4) and (2) 
approximated by different numbers of its top eigenvalues and cor-
responding eigenvectors (Extended Data Fig. 10 and Supplementary 
Figs. 1 and 2). The results suggest that (1) when a large independent 
reference sample is used, HDL provides unbiased estimates of genetic 
correlation, the efficiency is almost equal to the efficiency when the 
GWAS sample and reference sample are identical and HDL is robust 
against the choice of top eigenvalues and corresponding eigenvectors; 
(2) HDL based on the leading eigenvalues explaining 90% of the vari-
ance still gives the optimal efficiency for the array SNP panel; and (3) 
when a small independent reference sample is used, HDL can still be 
unbiased but is less efficient and less robust against the choice of top 
eigenvalues and corresponding eigenvectors.
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ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Modeling and estimation of genetic correlation. Suppose there are two cohorts 
for two traits with sample sizes N1 and N2, where N0 individuals are included in 
both cohorts. The number of SNPs is M in both cohorts. The z-score vector of 
the M SNPs from study i of trait i is denoted as zi. Then, under a polygenic model 
without population stratification9, the covariance matrices are given as

Cov zi½  ¼
Nih

2

i

M
Lþ R ð6Þ

Cov z1; z2½  ¼
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
h12

M
Lþ N0ðh12 þ ρ12Þ

ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p R ð7Þ

where R is the LD matrix of the M SNPs, L := R′R is the LD score matrix, h2
i

I

 is the 
narrow-sense heritability of trait i, h12 is the genetic covariance of the two traits and 
ρ12 is the environmental covariance. Denoting

Σii ¼
Nih

2

i

M
Lþ R

Σ12 ¼
ffiffiffiffiffiffiffiffi

N1N2

p
h12

M
Lþ N0ðh12þρ12Þ

ffiffiffiffiffiffiffiffi

N1N2

p R

based on equations (6) and (7), we have

zi  Nð0;ΣiiÞ ð8Þ

z2jz1  N Σ12Σ
�1

11
z1;Σ22 � Σ12Σ

�1

11
Σ12

� �

ð9Þ

Following equations (8) and (9), we used maximum likelihood to estimate h2
1

I

, 

h
2

2

I

 and rg :¼ h12=
ffiffiffiffiffiffiffiffiffi

h2
1
h2
2

p

I

 (see the Supplementary Note for complete derivations).

The literature has shown that LDSC with a co nstrained intercept may produce 
substantially biased estimates6,10, but LDSC with an unconstrained intercept is 
much more robust; therefore, in equations (6) and (7), we introduced parameters 
fc11; c22; c12g
I

 that were analogous to the unconstrained intercept in LDSC:

Cov zi½  ¼
Nih

2

i

M
Lþ ciiR ð10Þ

Cov z1; z2½  ¼
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
h12

M
Lþ c12

N0
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p R ð11Þ

The diagonal elements in equations (10) and (11) are coincident with 
unconstrained-intercept LDSC. If the two traits are measured in the same study, 
and given that the underlying model is correct, c12 ¼ h12 þ ρ

12

I

 will be the 
phenotypic correlation between the two traits. However, as mentioned in the 
Discussion, we should be cautious of interpreting the estimate of c12 in practice. 
Nevertheless, residual correlation does not have any obvious impact on the 
performance of HDL (Supplementary Fig. 5).

Quality control of UKBB genotype array data. In the UKBB, about 500,000 
individuals aged 40–69 years were recruited between 2006 and 2010 from across 
the country. By March 2018, most of the participants had been genotyped on 
an Affymetrix chip including about 800,000 variants. Among the genotyped 
individuals, approximately 336,000 were identified as genetically unrelated white 
British individuals by the UKBB. These participants and their genotypes were 
taken forward. Because we used GWAS summary statistics by Neale's group 
(‘Data availability’) and compared HDL with LDSC, we took the SNPs overlapping 
between (1) UKBB array SNPs, (2) the list of SNPs for LDSC and (3) the SNPs in 
the GWAS from Neale's group to make a fair comparison when array SNPs were 
used as the reference panel. Following ref. 10 and LDSC, we excluded the major 
histocompatibility complex (MHC) region and SNPs with sample MAF below 5%. 
We further performed LD pruning and filtering on missing call rates with PLINK16 
using flags --geno 0.1 and --indep-pairwise 1000 5 0.95. We ended up with 307,519 
autosomal SNPs for the analysis related to array SNPs in this report. For both 
simulation and application in which the reference panel consisted of array SNPs, 
the LD matrices used in HDL and LDSC were computed with 307,519 SNPs from 
336,000 genetically unrelated white British individuals. This dataset was also used 
to simulate phenotypes in the simulation section whenever the comparison was 
based on array SNPs.

Quality control of imputed genotype data from the UKBB. When imputed 
SNPs were used as the reference panel, we took the SNPs overlapping between (1) 
the list of SNPs for LDSC and (2) the SNPs in the GWAS from Neale’s group. We 
excluded SNPs that (1) were in the MHC region, (2) had sample MAF below 5%, 
(3) were multiallelic and (4) had an imputation quality < 0.9 and (5) had a call 
rate < 0.95. We converted the remaining genotype probabilities to hard calls for the 
construction of the LD reference. We ended up with 1,029,876 autosomal SNPs for 
the analysis related to imputed markers in this report. This panel was applied in 
HDL for analyses related to real UKBB GWAS summary statistics in the Results.

UKBB GWAS summary statistics. The UKBB GWAS summary statistics used in 
this report were from the second wave of results released in July 2018 by Neale’s 
group. They performed association tests on the unrelated individuals of British 
ancestry for over 2,000 of the available phenotypes. For continuous traits, we 
took the GWAS version where phenotypes had been inverse rank normalized. We 
adjusted for the following covariates: age, age squared, inferred sex, age × inferred 
sex, age squared × inferred sex and principal components 1–20.

LDSC settings. When the reference panel consisted of array SNPs, the LD scores 
based on the 307,519 SNPs were computed using flags --l2 and --ld-wind-snps 
500. We used 500-SNP windows to compute LD scores, because the LD matrix was 
computed by 500-SNP windows in HDL. Nevertheless, the LD scores computed 
by 500-SNP windows were highly consistent with those computed using a 
window size of 1 cM (Supplementary Fig. 6). When the reference panel consisted 
of imputed SNPs, the default 1000 Genomes panel was used. The estimation of 
genetic correlation was under the default setting with an unconstrained intercept. 
The same LD scores for both --w-ld-chr and --ref-ld-chr flags were used as 
recommended. For analyses related to real UKBB GWAS summary statistics in the 
Results, the default 1000 Genomes panel was applied.

Computational details of HDL. To speed up computation, we split the whole 
genome into pieces. When the reference panel consisted of array SNPs, each 
chromosome was on average cut into pieces with fewer than 10,000 SNPs, which 
resulted in 43 pieces for the whole genome. For each piece, we first banded 
its LD matrix into a band matrix with bandwidth 500. Then, we performed 
eigen-decomposition on the LD matrix and chose the leading eigenvalues 
explaining 90% of the variance and their correspondent eigenvectors (Extended 
Data Fig. 10). When the reference panel consisted of imputed SNPs, each 
chromosome was on average divided into pieces with fewer than 20,000 SNPs, 
resulting in 61 pieces for the whole genome. In eigen-decomposition, the leading 
eigenvalues explaining 99% of the variance and their correspondent eigenvectors 
were selected. After estimating heritabilities and genetic covariance for each piece, 
the piecewise results were integrated into one estimate for the whole genome. The 
s.e. of the genetic correlation estimate was computed via block jackknife with one 
piece left out (Supplementary Note).

Run times. When the leading eigenvalues and their corresponding eigenvectors of 
the LD matrices were available for loading, HDL took around 1.5 min to obtain the 
point estimate using 307,519 array SNPs as the reference panel on a single 2.8 GHz 
Intel Core i7 and another 4 min to obtain the s.e. values via jackknifing. When 
using 1,029,876 imputed markers as the reference panel on a single core, it took 
around 7 min to obtain the point estimate and another 8 min to get the s.e. values 
via jackknifing. The overall computation required about 1 GB of memory. When 
running in parallel with four threads, it took 5 min in total to acquire both the 
estimate and s.e. values.

Statistical testing. In simulations, Levene’s test was used to assess the equality of 
variances between HDL estimates and LDSC estimates. As 100 replicates were 
simulated in each setting, the test statistic approximately followed an F distribution 
with 1 and 198 degrees of freedom. To test whether a genetic correlation was 
significantly different from 0, we used a two-sided Wald test with 1 degree of freedom.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The individual-level genotype and phenotype data are available by application from 
the UKBB (http://www.ukbiobank.ac.uk/). The UKBB GWAS summary statistics 
by the Neale laboratory can be obtained from http://www.nealelab.is/uk-biobank/. 
Source data are provided with this paper.

code availability
HDL software is available at https://github.com/zhenin/HDL/. LDSC software is 
available at https://github.com/bulik/ldsc/. PLINK 2.0 (https://www.cog-genomics.
org/plink/2.0/) was used to extract individual-level data of imputed SNPs from 
the UKBB. PLINK 1.9 (https://www.cog-genomics.org/plink/) and LDAK (http://
dougspeed.com/ldak/) were used in LD correlation calculation and simulations.
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Extended Data Fig. 1 | Relative efficiency of HDL against LDSc when 100% SNPs are causal. In each heritability group, we generated 100 pairs of 

traits, where true genetic correlation and phenotypic correlation are 0.5. In the high heritability group, the heritability of the pair of traits is 0.6 and 0.8 

separately; in the low heritability group, the heritability of the pair of traits is 0.2 and 0.4 separately. The 307,519 array SNPs of ~336,000 UKBB genomic 

British individuals were used to simulate true phenotypes and to compute the LD matrix for both HDL and LDSC. The P-values are from Levene’s test for 

variance heterogeneity. Inside each box, the line indicates the median value, the central box indicates the interquartile range (IQR), and whiskers extend up 

to 1.5 times the IQR. 
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Extended Data Fig. 2 | Relative efficiency of HDL against LDSc under different model setups when 10% SNPs with MaF > 1% are causal. 52,914 out 

of 529,139 array SNPs with MAF > 1% were randomly selected as causal variants. 100 pairs of traits were generated, where true genetic correlation and 

phenotypic correlation are 0.5. The true phenotypes of trait i is generated from model yi ¼
P

M

k¼1
Xikβik þ ϵi

I

, where Xik ¼ ðZik � 2pk1Þ½2pkð1� pkÞ
α=2

I

; Zik 

are the original genotypes of SNP k for trait i; pk is the MAF of SNP k; M is the number of causal variants. Four scenarios were simulated: (1) α = −1, and 

the marginal distribution of βik is Nð0; h2
i
=MÞ

I

; (2) α = −1, and the marginal distribution of βik is Nð0;wkh
2

i
=MÞ

I

, where wk is the LDAK weight of SNP k which 

is inversely proportional to its LD score; (3) α = −0.25, and the marginal distribution of βik is Nð0; h2
i
=MÞ

I

 and (4) α = −0.25, and the marginal distribution 

of βik is Nð0;wkh
2

i
=MÞ

I

. After βi were generated, they were rescaled by multiplying the same constant so that the true heritabilities were 0.5 for both traits. 

The 307,519 array SNPs of ~336,000 UKBB genomic British individuals were used to simulate true phenotypes and to compute LD matrix for both HDL and 

LDSC. The P-values are from Levene’s test for variance heterogeneity. Inside each box, the line indicates the median value, the central box indicates the 

interquartile range (IQR), and whiskers extend up to 1.5 times the IQR. 
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Extended Data Fig. 3 | Relative efficiency of HDL against LDSc under different model setups when 10% SNPs with 5% > MaF > 1% are causal. 

52,914 out of 221,620 array SNPs with 5% > MAF > 1% were randomly selected as causal variants. 100 pairs of traits were generated, where 

true genetic correlation and phenotypic correlation are 0.5. The true phenotypes of trait i is generated from model yi ¼
P

M

k¼1
Xikβik þ ϵi

I

, where 

Xik ¼ ðZik � 2pk1Þ½2pkð1� pkÞ
α=2

I

; Zik are the original genotypes of SNP k for trait i; pk is the MAF of SNP k; M is the number of causal variants. Four 

scenarios were simulated: (1) α = −1, and the marginal distribution of βik is Nð0; h2
i
=MÞ

I

; (2) α = −1, and the marginal distribution of βik is Nð0;wkh
2

i
=MÞ

I

, 

where wk is the LDAK weight of SNP k which is inversely proportional to its LD score; (3) α =−0.25, and the marginal distribution of βik is Nð0; h2
i
=MÞ

I

 

and (4) α =−0.25, and the marginal distribution of βik is Nð0;wkh
2

i
=MÞ

I

. After βi were generated, they were rescaled by multiplying the same constant 

so that the true heritabilities were 0.5 for both traits. The 307,519 array SNPs of ~336,000 UKBB genomic British individuals were used to simulate true 

phenotypes and to compute LD matrix for both HDL and LDSC. The P-values are from Levene’s test for variance heterogeneity. Inside each box, the line 

indicates the median value, the central box indicates the interquartile range (IQR), and whiskers extend up to 1.5 times the IQR. 
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Extended Data Fig. 4 | Relative efficiency of HDL using imputed reference panel against LDSc. 100 pairs of traits were generated, where true 

heritabilities are 0.5, genetic correlation and phenotypic correlation are 0.5. The 1,029,876 imputed SNPs of ~336,000 UKBB genomic British individuals 

were used to simulate true phenotypes. LDSC and LDSC.1kG stand for the LDSC software using UKBB imputed reference panel and default 1000 Genomes 

reference panel, respectively. 102,988 (10% of 1,029,876) randomly sampled SNPs are set to be causal variants. The P-values are from Levene’s test for 

variance heterogeneity. Inside each box, the line indicates the median value, the central box indicates the interquartile range (IQR), and whiskers extend up 

to 1.5 times the IQR. 
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Extended Data Fig. 5 | Relative efficiency and standard error of LDSc estimate among 30 phenotypes in uK Biobank. Each dot represents genetic 

correlation results for one pair of traits among 435 pairs. The x-axis represents the standard error of the LDSC estimate. The y-axis represents the relative 

efficiency of HDL against LDSC. HDL reference panel: UKBB imputed SNPs; LDSC reference panel: 1000 Genomes (default). Colors indicate the number of 

binary traits in the pair. 
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Extended Data Fig. 6 | Genetic correlation estimates from HDL and LDSc among 30 phenotypes in uK Biobank based on directly genotyped variants 

on the array. Lower triangle: HDL estimates; Upper triangle: LDSC estimates. The areas of the squares represent the absolute value of corresponding 

genetic correlations. After Bonferroni correction for 435 tests at 5% significance level, genetic correlations estimates that are significantly different from 

zero in both methods are marked with a dot; estimates that are significantly different from zero in only one method are marked with an asterisk and a black 

square. HDL reference panel: UKBB array SNPs; LDSC reference panel: UKBB array SNPs. 
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Extended Data Fig. 7 | Relative efficiency of HDL using imputed reference panel against LDSc for the estimation of heritability. a, 100 traits were 

generated using 14,867 imputed SNPs on chromosome 22 of ~336,000 UKBB genomic British individuals, where true heritability was set to 0.05. LDSC 

and LDSC.1kG stand for the LDSC software using UKBB imputed reference panel and default 1kG reference panel, respectively. 1,487 (10% of 14,867) 

randomly sampled SNPs are set to be causal variants. b, The relative efficiency, calculated as the ratio of the estimated variances of the LDSC estimates 

to those of the HDL estimates, was evaluated for 30 GWAS of real phenotypes in UKBB. HDL reference panel: UKBB imputed SNPs; LDSC reference panel: 

1000 Genomes (default). Inside each box, the line indicates the median value, the central box indicates the interquartile range (IQR), and whiskers extend 

up to 1.5 times the IQR. 
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Extended Data Fig. 8 | comparison of the heritability estimates from HDL and default LDSc across 30 uKBB phenotypes. The default LDSC uses the 

1000 Genomes reference panel. HDL uses UKBB imputed markers as reference. R represents the correlation between the two sets of estimates. The red 

dashed line represents identity. 
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Extended Data Fig. 9 | example of the eigenvalues of an LD matrix. 5,420 genotyped variants on chromosome 22 for UKBB genomic British individuals 

were used to generate the LD matrix. The red dashed line represents the cutoff where the leading eigenvalues and corresponding eigenvectors capture 

90% of the information of the LD matrix. 
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Extended Data Fig. 10 | HDL results where the LD matrix is approximated by different numbers of leading eigenvalues and eigenvectors. After 

performing eigen-decomposition to the LD matrix, leading eigenvalues explaining different amount of variances of the LD matrix and their corresponding 

eigenvectors were taken to approximate the LD matrix. In each heritability group, we generated 100 pairs of traits, where true genetic correlation and 

phenotypic correlation are 0.5. In the high heritability group, the heritability of the pair of traits is 0.6 and 0.8 separately; in low heritability group, the 

heritability of the pair of traits is 0.2 and 0.4 separately. The 307,519 array SNPs of ~336,000 UKBB genomic British individuals were used to simulate true 

phenotypes and to compute the LD matrix for HDL. 30,752 SNPs are causal (10% of 307,519). Inside each box, the line indicates the median value, the 

central box indicates the interquartile range (IQR), and whiskers extend up to 1.5 times the IQR. 
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Software and code

Policy information about availability of computer code

Data collection No data were collected (UK Biobank genotype data and publicly available GWAS summary statistics for UK Biobank were used)

Data analysis The data were analyzed with software HDL version 1.0 (https://github.com/zhenin/HDL), LDSC version 1.0.0 (https://github.com/bulik/

ldsc) and LDAK version 5 (http://dougspeed.com/ldak/). PLINK version 1.9 (https://www.cog-genomics.org/plink/1.9) and 2.0 (https://

www.cog-genomics.org/plink/2.0/) were used for data cleaning.
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The simulations and LD computation used UK Biobank Axiom Array data and imputed genotype data, which are available from UK Biobank (https://

www.ukbiobank.ac.uk/), accessible via applications. The GWAS summary statistics for UK Biobank and associated documentations are publicly available from http://

www.nealelab.is/uk-biobank. The Linear Mixed Model results for UK Biobank by Canela-Xandri et al. can be downloaded from http://geneatlas.roslin.ed.ac.uk/.
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Sample size This study develops a method, and an analysis of the UK Biobank publicly available summary-level data is given as an empirical example. We 

did not determine the sample size.

Data exclusions In simulations and construction of LD reference panel using UK Biobank directly genotyped variants and imputed markers, we excluded 

individuals who are not genetically White British. For genetic variants, we excluded the MHC region and variants with sample MAF below 5% 

and performed LD pruning and missing call rate filtering. We then took the overlapped variants across (1) UKBB genotyping array, (2) variants 

list of LDSC and (3) variants in Neale’s lab GWAS to make comparisons consistent. When imputed SNPs were used as reference panel, we took 

the overlapped SNPs between (1) SNP list of LDSC and (2) SNPs in the GWAS by Neale's lab. We excluded the SNPs which are (1) in the MHC 

region, (2) with sample MAF below 5%, (3) multi-allelic, (4) with imputation quality < 0.9, and (5) with call rate < 0.95.
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