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Objective: Genome-wide association studies (GWASs) of

the Alcohol Use Disorders Identification Test (AUDIT), a

10-item screen for alcohol use disorder (AUD), have

elucidated novel loci for alcohol consumption and mis-

use. However, these studies also revealed that GWASs

can be influenced by numerous biases (e.g., measure-

ment error, selection bias), which may have led to

inconsistent genetic correlations between alcohol in-

volvement and AUD, as well as paradoxically negative

genetic correlations between alcohol involvement and

psychiatric disorders and/or medical conditions. The au-

thors used genomic structural equation modeling to

elucidate the genetics of alcohol consumption and

problematic consequences of alcohol use as measured

by AUDIT.

Methods: To explore these unexpected differences in ge-

netic correlations, the authors conducted the first item-

level and the largest GWAS of AUDIT items (N5160,824)

and applied a multivariate framework to mitigate previous

biases.

Results: The authors identified novel patterns of similarity

(and dissimilarity) among the AUDIT items and found evidence

of a correlated two-factor structure at the genetic level

(“consumption” and “problems,” rg50.80). Moreover, by ap-

plying empirically derived weights to each of the AUDIT items,

the authors constructed an aggregate measure of alcohol

consumption that was strongly associated with alcohol de-

pendence (rg50.67), moderately associated with several oth-

er psychiatric disorders, and no longer positively associated

with health and positive socioeconomic outcomes. Lastly, by

conducting polygenic analyses in three independent cohorts

that differed in their ascertainment and prevalence of AUD,

the authors identified novel genetic associations between al-

cohol consumption, alcohol misuse, and health.

Conclusions: This work further emphasizes the value of

AUDIT for both clinical and genetic studies of AUD and

the importance of using multivariate methods to study

genetic associations that are more closely related to AUD.
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Over the past decade, genome-wide association studies

(GWASs) have advanced our understanding of alcohol

use disorder (AUD) (1). Many of these studies have relied

on a categorical approach to AUD phenotypes, comparing

clinically ascertained case and control subjects (e.g., 2),

but recent studies have increasingly employed a comple-

mentary approach leveraging dimensional measures of al-

cohol consumption and screen-based AUD symptoms in

population-based cohorts (e.g., 3–6). Compared to clinical

diagnostic phenotypes, these dimensional measures can

often be administered more easily at scale via self-report

questionnaires, thus accelerating genetic discovery

through drastic increases in sample size. The Alcohol Use

Disorders Identification Test (AUDIT) (7), a 10-item

questionnaire that screens for drinking habits and prob-

lems by measuring aspects of alcohol use and misuse in

the past year, is one such measure. A recent GWAS meta-

analysis of AUD and AUDIT phenotypes identified 29

novel loci (5), representing one of the biggest advances of

AUD genetics to date (2–4, 6).
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Notably, several studies using self-report instruments have

revealed that not all aspects of alcohol involvement are inter-

changeable. While AUDIT can be used as a unidimensional

screen (i.e., AUDIT total score), previous research has shown

that AUDITcan differentiate between two related but distinct

facets of AUD: alcohol consumption (sum of items 1–3, AU-

DIT-C), which is necessary but not sufficient for a diagnosis

of AUD, and problematic consequences of alcohol consump-

tion (sum of items 4–10, AUDIT-P), which more closely re-

semble the diagnostic criteria of AUD. We previously found

that AUDIT-C and AUDIT-P have distinct genetic relation-

ships with clinically defined AUD (6) as well as other forms

of psychopathology. Surprisingly, AUDIT-C was positively as-

sociated with socioeconomic variables, negatively associated

with some forms of psychopathology, and only moderately

positively associated with alcohol dependence, whereas AU-

DIT-P exhibited strong positive associations with alcohol de-

pendence and numerous other psychiatric disorders.

Although this divergence may reflect true differences be-

tween the biological mechanisms underlying alcohol con-

sumption and problems, it may be confounded by other

factors, such as sources of selection bias, genetic heterogene-

ity among the individual items, and measurement error (1, 8).

Because AUDIT-C and AUDIT-P are computed using an

unweighted composite score approach, they inherently rely

on the assumptions that the scale is unidimensional and

that each item is equally informative of the construct being

measured. This approach is not based on any empirical ev-

idence but rather reflects a holdover from the original use

of AUDIT as a screen for use in primary health care set-

tings. Therefore, it is possible that the lack of item-specific

weights introduces error in downstream analyses. While

these issues have been thoroughly studied at the phenotypic

level via factor analysis (see Table S1 in the online supple-

ment), they have not yet been investigated at the genetic

level. Using methods that can account for, or mitigate, such

measurement problems will allow researchers to better cap-

italize on the potential of dimensional measures like AUDIT

for genetic discovery.

In the present study, we sought to elucidate the genetics

of alcohol consumption and problematic consequences of al-

cohol use measured via AUDIT using genomic structural

equation modeling (9), a novel multivariate framework that

allows structural equation modeling techniques to be applied

to genetic covariance matrices based on GWAS results. Ac-

cordingly, we undertook the first item-level and the largest-

to-date GWAS meta-analyses of AUDIT (N5160,824), using

data from three population-based cohorts of European ances-

try. We then used genomic structural equation modeling to

analyze the item-level GWAS results with the aims of 1) in-

vestigating the latent genetic factor structure of AUDIT,

based on prior knowledge (see Table S1 in the online supple-

ment), and 2) conducting multivariate GWASs of the result-

ing latent genetic factor(s). We posited that applying this

approach would lead to more nuanced, empirically derived

weights to each of the AUDIT items when constructing our

aggregate measures (as opposed to giving each item equiva-

lent weight), which is a novel approach for GWASs of AUD

phenotypes. Finally, to characterize the biology and liability

associated with each latent genetic factor, we used a variety

of in silico tools and polygenic analyses spanning three inde-

pendent cohorts that varied in method of ascertainment and

prevalence of AUD.

We hypothesized that a higher resolution of each of the

alcohol phenotypes measured in AUDIT would further our

understanding of the differences among indices of alcohol

consumption (items 1–3) and problematic alcohol use (items

4–10) and how they relate to health.We anticipated that the

genetic contributions to alcohol consumption and problem-

atic use would not be completely overlapping and that geno-

mic modeling using item-level data would ameliorate the

confounding issues between alcohol consumption, AUD, and

indices of health that complicated previous GWAS efforts.

METHODS

Discovery Samples and Phenotype Construction

We collected AUDIT and genotype data from three popula-

tion-based cohorts: the UK Biobank (maximum N5147,267),

the Netherlands Twin Register (maximum N59,975), and

the Avon Longitudinal Study of Parents and Children

(ALSPAC; maximum N53,582). We used the same pheno-

typing strategies across the three cohorts, which are de-

scribed in section 2 of the online supplement. AUDIT scores

and demographic characteristics for each cohort are re-

ported in Table S2 in the online supplement. Genotyping,

imputation, and quality control procedures have been exten-

sively described in previous publications (10–12). Because

AUDIT was administered with skip logic in UK Biobank, we

used multiple imputation by chained equations to minimize

the impact of missing data on our item-level GWAS (see

section 2.1 in the online supplement for details).

Univariate Genome-Wide Association and Meta-Analyses

In UK Biobank, we used BOLT-LMM, version 2.3.2 (13), to

conduct GWASs for each of the 10 AUDIT items with the

first 40 ancestry principal components, sex, age, sex-by-age

interactions, and batch as covariates. In the Netherlands

Twin Register, we used the fastgwa function of GCTA (14)

and included the first five ancestry principal components,

sex, birth year, and genotyping platform as covariates. In

ALSPAC, we used PLINK, version 2.0 (15), to analyze un-

related participants, including the first 10 ancestry princi-

pal components, sex, and age as covariates. Note that both

BOLT-LMM and fastgwa are capable of analyzing related in-

dividuals. Further details are included in section 3 in the on-

line supplement and in previous work (16). We then used

METAL (17) to conduct sample-size-weighted meta-analyses

of the cohort-level GWAS summary statistics for each AUDIT

item after quality control procedures (see section 4 in the on-

line supplement). A total of 8,596,116 single-nucleotide poly-

morphisms (SNPs) were included in the meta-analyses.
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Phenotypic and Genetic Correlations

We used the lavaan package, version 0.6.5 (18), in R to esti-

mate polychoric phenotypic correlations (rp) among AUDIT

items.We used the GenomicSEM package, version 0.0.2, in R,

which is based on linkage disequilibrium (LD) score regres-

sion (19), to estimate the heritability of each of the 10 AUDIT

items and the genetic correlations between them.We applied

standard quality control procedures prior to all analyses (e.g.,

use of precomputed LD scores, exclusion of the major histo-

compatibility region, restriction of SNPs to HapMap 3, appli-

cation of minor allele frequency $1%, and information score

.0.90 filters). Lastly, we used GenomicSEM (9) to estimate

genetic correlations between latent genetic factors and com-

plex traits and disorders broadly related to human health

(see section 5.1.2 in the online supplement). We applied a

standard Benjamini-Hochberg false discovery rate correction

(FDR 5%) to account for multiple testing.

Phenotypic and Genetic Factor Analysis

To empirically model the phenotypic and genetic relation-

ships among AUDIT items, we used lavaan and Genomic-

SEM to conduct phenotypic and genetic confirmatory factor

analyses, respectively, using weighted least squares estima-

tion. This process has been described extensively elsewhere

(9, 16, 20, 21), and further details are provided in section 5.1

in the online supplement.We tested three models: a parallel

factor model (i.e., a sum-score model), a common factor mod-

el, and a correlated factors model. The common and correlat-

ed factors models were selected based on prior research (see

Table S1 in the online supplement), and the parallel factor

model served to test the restrictive assumptions of sum-score

approaches.We assessed model fit using conventional indices

that were available in both the lavaan and GenomicSEM soft-

ware packages (see section 5 in the online supplement). Only

data from UK Biobank (the largest sample) were included in

the phenotypic factor analyses. For the genetic factor analy-

ses, GWAS summary statistics from the meta-analyses for

each AUDIT item were subjected to standard quality control

practices, as described above. GenomicSEM’s multivariable

version of LD score regression was then used to estimate the

genetic covariance and sampling covariance matrices for the

AUDIT items, which were used to test the specified confir-

matory factor models. The sampling covariance matrix was

smoothed beforehand, as it was slightly non-positive-definite.

Factor extension analysis was used to estimate the expected

factor loading of item 6 (i.e., “eye opener”; see section 5.1.1 in

the online supplement), as it was excluded from the final ge-

netic confirmatory factor model because of nonsignificant

SNP heritability.

Multivariate GWASs

Using GenomicSEM (9), we conducted multivariate GWAS

analyses by estimating SNP associations with the AUDIT la-

tent genetic factors from the best-fitting model. The details of

these analyses are provided in section 5.1 in the online supple-

ment. Individual SNP effects were estimated for the latent

genetic factors in each model if they were available in all uni-

variate summary statistics, had a minor allele frequency

$0.5%, and were present in the 1000 Genomes Phase 3 (ver-

sion 5) reference panel. The effective sample size for each la-

tent factor was estimated using the approach described by

Mallard et al. (16).

Biological Annotation, Gene, and Transcriptome-Based

Association Analyses

We performed multiple in silico analyses to compare the results

from each of the AUDIT latent genetic factors. First, we used

FUMA, version 1.2.8 (22), to identify independent SNPs and

study their functional consequences, which included ANNO-

VAR categories, Combined Annotation Dependent Depletion

scores, and RegulomeDB scores. Second, we used MAGMA,

version 1.08 (22, 23), to conduct competitive gene-set and path-

way analyses for each of the AUDIT genetic latent factors.

SNPs were mapped to 18,546 protein coding genes from En-

sembl, build 85. Gene sets were obtained fromMSigDB, version

7.0 (“curated gene sets,” “GO terms”). We also used an exten-

sion of this method, Hi-C-coupledMAGMA (H-MAGMA) (24),

to assign noncoding (intergenic and intronic) SNPs to genes

based on their chromatin interactions. Exonic and promoter

SNPs are assigned to genes based on physical position.We used

four Hi-C data sets, which were derived from fetal brain, adult

brain, and induced pluripotent stem cell–derived neurons and

astrocytes (https://github.com/thewonlab/H-MAGMA). Lastly,

we used S-PrediXcan, version 0.6.2 (25), to predict gene expres-

sion levels in 13 brain tissues and to test whether the predicted

gene expression showed divergent correlation patterns with

each of the AUDIT latent genetic factors. Precomputed tissue

weights from the Genotype-Tissue Expression (GTEx, version

8) project database (https://www.gtexportal.org/) were

used as the reference transcriptome data set. Further details

are provided in section 6 in the online supplement.

Polygenic Risk Score Analyses

Prediction of alcohol phenotypes in UK Biobank and COGA.

We used the PRS-CS “auto” version (26) to compute poly-

genic risk scores (PRSs) for the latent genetic AUDIT factors

(“consumption” and “problems”) and their sum-score coun-

terparts (AUDIT-C and AUDIT-P) in two independent sam-

ples: an independent subset of unrelated individuals of

European ancestry in the UK Biobank who did not fill out

the AUDIT and a subset of individuals of European ancestry

from the Collaborative Study on the Genetics of Alcoholism

(COGA) (27), which includes probands meeting criteria for

alcohol dependence, their family members, and community

control families. Using the score algorithm in PLINK, version

1.90,we computed individual-level PRSs to predict additional

alcohol phenotypes (drinking quantity, drinking frequency,

and lifetime AUD diagnosis) measured in UK Biobank and

COGA (see section 7 in the online supplement). We tested

for associations between AUDIT PRSs and alcohol pheno-

types using linear (quantity and frequency phenotypes) or

logistic (AUD) regression models in R, version 3.6.3. In UK

ITEM-LEVEL GWAS OF THE ALCOHOL USE DISORDERS IDENTIFICATION TEST
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Biobank,we included sex, age at first assessment, Townsend

deprivation index score (28), and the first 10 ancestry prin-

cipal components as covariates. In COGA, we included age,

sex, array type, income, and the first 10 ancestry principal

components as fixed-effect covariates, with family identity

included as a random effect (i.e., allowing the intercept to

vary by family).

We sought to compare the performance of the latent fac-

tor–based PRSs (the consumption and problems PRSs)

against the performance of their sum-score counterparts (the

AUDIT-C and AUDIT-P PRSs) in predicting different alcohol

phenotypes. To this end, we applied two approaches to our

PRS analyses: cross-dimension PRS models (i.e., the con-

sumption and problems PRSs included as simultaneous pre-

dictors) and cross-method PRS models (i.e., the consumption

and AUDIT-C PRSs included as simultaneous predictors in a

model, and the problems and AUDIT-P PRSs included as si-

multaneous predictors in a model).We corrected for the total

number of outcome phenotypes across the validation samples

using a conservative Bonferroni p value of 8.333 1023, since

the same PRSs were used as predictors across models (and

were correlated with each other).

Phenome-wide association study in BioVU. To examine ex-

ploratory associations between PRSs and hundreds of medi-

cal diagnoses, we used the PRS-CS method (26) described

above to compute consumption and problems PRSs for each

of the 66,915 unrelated genotyped individuals of European

ancestry from the Vanderbilt University Medical Center bio-

bank (BioVU) (29). Using electronic health record data in

BioVU, we performed phenome-wide association studies

(PheWASs) for consumption and problems PRSs using the

PheWAS package, version 0.12 (30), in R. Specifically, we fit-

ted a logistic regression model to each of the 1,335 case/con-

trol phenotypes in BioVU (“phecodes”; see section 7.3 in the

online supplement) in order to estimate the effect of a given

PRS on each diagnosis. Sex, median age of the longitudinal

electronic health record measurements, and the first 10

principal components were included as covariates. We then

repeated the PheWAS analyses using AUD diagnoses (phec-

odes 317, 317.1) as additional covariates. A standard Benjami-

ni-Hochberg false discovery rate (FDR 5%) correction was

applied to account for multiple testing.

RESULTS

Phenotypic and Genetic Analyses Reveal a Consistent

Two-Factor Structure of Alcohol Consumption and

Problematic Use

Phenotypic and genetic analyses showed that AUDIT items

were positively correlated with each other, with correlation

estimates ranging from moderate to large (see Tables S3

and S4 in the online supplement). The one exception to

this pattern was item 1 (frequency of consumption), which

was generally less correlated with the other AUDIT items.

Moreover, we found that genetic correlations tended to be

moderately larger than the phenotypic correlations (mean

absolute difference50.198), an effect that was driven by

stronger genetic correlations among items 4 through

10 (the problematic alcohol use phenotypes). Of note, all

AUDIT items exhibited significant SNP heritability, with

the exception of item 6 (see Table S5 in the online supple-

ment). We suspect this may be attributable to the low

rates of endorsement for the item in all three cohorts (see

Table S2 in the online supplement). For this reason, we

excluded item 6 from all subsequent analyses, and a factor

extension analysis was used to estimate its expected fac-

tor loading in the final model.

We found that a correlated factors model provided the best

fit to both the genetic and the phenotypic covariance matrices

(phenotypic model: x254252.963, df526, comparative fit in-

dex50.994, standardized root mean square residual50.041;

genetic model: x
2
5142.689, df526, comparative fit in-

dex50.982, standardized root mean square residual50.067)

(Figure 1; see also Tables S6 and S7 in the online supplement).

That is, the patterns of genetic and phenotypic correlations

among the AUDIT items could both be represented by a factor

model with two correlated factors: one that captured the co-

variance among alcohol consumption items (items 1–3) and

one that captured the covariance among alcohol-related prob-

lems (items 4–10). These two latent factors were highly corre-

lated with each other, phenotypically (rp50.825, SE50.002)

and genetically (rg50.801, SE50.037). Nearly all items had

large factor loadings across both levels of analyses except item

1,which consistently had markedly smaller factor loadings and

larger residual variances.

The two correlated factors model was compared with oth-

er solutions. A model with a single common factor provided

acceptable fit for the phenotypic (x2514,967.064, df527, com-

parative fit index50.978, standardized root mean square re-

sidual50.070) and genetic (x25350.785, df527, comparative

fit index50.949, standardized root mean square re-

sidual50.094) factor analyses, but it did not minimize the

standardized difference between the observed and predicted

correlations as well as the correlated factors model (see

Table S7 in the online supplement). The parallel factor model

(i.e., the sum-score model) exhibited poor fit, reflected by the

strong, unanimous bias observed in the model-implied corre-

lations (phenotypic model: x2543,655.530, df534, compara-

tive fit index50.936, standardized root mean square

residual50.143; genetic model: x25607.196, df543, compar-

ative fit index50.911, standardized root mean square re-

sidual50.470). Accordingly, we identified the correlated

factors model as the best fitting and most appropriate model

for further genetic analyses.

Latent Variable Approach Characterizes and Ameliorates

Bias in GWAS of Alcohol Consumption

By estimating genetic correlations in a genomic structural

equation modeling framework, we identified interesting pat-

terns of relationships between 100 exogenous phenotypes

(chosen based on previous findings or hypothesized
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relationships) and the consumption and problems latent ge-

netic factors.We also examined correlations with the residu-

al genetic variance in item 1 (i.e., the genetic variance in

item 1 that is unrelated to other AUDIT items; henceforth

the “frequency residual”). Results are reported in Table S8

in the online supplement.

For the consumption and problems factors, we found that

their patterns of genetic correlation with other phenotypes

were much more similar than previously reported for AU-

DIT-C and AUDIT-P (4). Both the consumption and prob-

lems factors showed strong positive genetic correlations

with alcohol dependence. The consumption and problems

factors were also positively related to other measures of

substance use (e.g., cannabis use disorder, impulsivity).

Furthermore, the previous positive associations that we ob-

served between AUDIT and indices of socioeconomic status

(e.g., educational attainment) were now attenuated.

We did still observe that, compared with the consump-

tion factor, the problems factor was more strongly related to

psychopathology (e.g., posttraumatic stress disorder,

depression, bipolar disorder, schizophrenia). We also identi-

fied novel divergent associations with pain phenotypes, mal-

nutrition, and measures of social satisfaction (e.g., the

problems factor showing genetic overlap with these condi-

tions), suggesting that, as we anticipated, the genetic contri-

butions to alcohol consumption and misuse reflect both

complementary and distinct genetic factors.

Finally, the frequency residual was negatively associated

with alcohol dependence (Figure 2). We also found positive

genetic correlations between the frequency residual and so-

cioeconomic outcomes, including educational attainment,

household income, and intelligence. Furthermore, we ob-

served consistently negative genetic correlations between the

frequency residual and other psychiatric and substance use

disorders, such as major depressive disorder and cannabis

use disorder. This result suggests that many of the puzzling

genetic correlations previously reported for alcohol consump-

tion were driven by variance related to socially stratified dif-

ferences in behavior rather than variance related to the

alcohol phenotypes of clinical interest.

FIGURE 1. Genetic relationships between AUDIT itemsa
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a The figure is a path diagram of the best-fitting genetic confirmatory factor model for the Alcohol Use Disorders Identification Test (AUDIT), as

estimated with genomic structural equation modeling. All parameter estimates are standardized, and standard errors are presented in

parentheses. The genetic components of items and factors (denoted by g) are inferred variables that are represented as circles. Regression

relationships between variables are represented as straight one-headed arrows pointing from the independent variable(s) to the dependent

variable(s). Covariance relationships are depicted as curved two-headed arrows linking two variables. The variances for factors are represented

as a two-headed arrow connecting the variable to itself, as are the residual variances for individual items (denoted by u). As item 6 was

included via factor extension, its parameter estimates are illustrated using dashed lines.
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Multivariate GWAS Confirms a Distinct Genetic Basis

Between Alcohol Consumption and Misuse

The results of our multivariate GWAS for the consumption

and problems factors are presented in Figure 3. We identi-

fied eight independent loci that were associated with the

consumption factor (see Table S9 in the online supple-

ment). For the problems factor, we replicated two loci on

chromosome 4, located in the ethanol metabolizing gene

ADH1B (see Table S10 in the online supplement). The sig-

nal associated with the latent factors is convergent with

that of the sum scores, with a few exceptions (see section

6.1.1 and Tables S11 and S12 in the online supplement).

Some loci included genes that were only associated

with the consumption factor (see Table S31 in the online

supplement). For example, KLB, RCF1, and the MAPT/

CRHR1 region, which were previously associated with

FIGURE 2. Genetic correlations between latent AUDIT phenotypes and other complex traitsa
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a The bar charts show the genetic correlation (rg) results for three Alcohol Use Disorders Identification Test (AUDIT) phenotypes: consumption,

problems, and frequency residual. Point estimates and corresponding standard errors are displayed for selected phenotypes related to

substance use, psychopathology, impulsivity, cognition, and socioeconomic factors. Full results are reported in Table S8 in the online

supplement. SES5socioeconomic status.
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alcohol consumption behaviors (3–5, 31), were only as-

sociated with the consumption factor. We also identified

other novel candidate genes for alcohol consumption,

such as CPS1, which has previously been associated

with metabolic conditions (see Table S13 in the online

supplement).

We performed in silico gene-based and transcriptome-

based analyses (see Tables S15–S30 in the online supple-

ment), which revealed both convergent and divergent as-

sociations for the consumption and problems factors (see

Table S31 in the online supplement). For example, both fac-

tors robustly implicated ethanol metabolizing genes

(ADH1B, ADH1C) and dopamine transmission (DRD2, in-

volved in mediating the rewarding effects of drugs [32]), as

well as pleiotropic genes previously implicated in anthropo-

metric and metabolic traits (e.g., CELF1 [5, 33]), and intelli-

gence (e.g., MTCH2 [34], FAM180B/NDUFS3 [35]).

Lastly, gene-set analyses revealed that genes more closely

linked to cellular responses to alcohol drinking (e.g., cellular

response to retinoic acid) were associated with the con-

sumption factor (see Table S17 in the online supplement),

while the gene sets related to postsynaptic modulation of

chemical synaptic transmission were associated with the

problems factor (see Table S18 in the online supplement).

Polygenic Risk Analyses

UK Biobank. In UK Biobank, we found that both the con-

sumption and problems PRSs were robustly associated with

drinking frequency, drinking quantity, and lifetime AUD

(Figure 4). However, the consumption PRS outperformed

(i.e., explained more variance) the problems PRS for alcohol

consumption phenotypes (see Table S32 in the online sup-

plement). When the latent-factor PRSs and sum-score PRSs

for the same construct were both included in the multiple

regression model (e.g., the consumption and AUDIT-C

PRSs), the consumption PRS outperformed the AUDIT-C

PRS in predicting AUD diagnosis and drinking quantity (but

not frequency), while the AUDIT-P PRS outperformed the

problems PRS across all three phenotypes (see Table S33 in

the online supplement).

COGA. In COGA, PRS results aligned with those observed

in UK Biobank, with a few exceptions. When both the con-

sumption and problems PRSs were included in the same

FIGURE 3. Multivariate genome-wide association analyses for the latent genetic factorsa
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model, only the consumption PRS showed significant associ-

ations with drinks per week, maximum number of drinks

per 24-hour period, and AUD (see Table S34 in the online

supplement). As observed in UK Biobank, when latent-factor

PRSs and sum-score PRSs for the same construct were both

included in the multiple regression model, the consumption

PRS outperformed the AUDIT-C PRS, and the AUDIT-P

PRS outperformed the problems PRS (see Table S35 in the

online supplement). Interestingly, in those models, we found

that the strongest associations were between the con-

sumption PRS and AUD and between the AUDIT-P PRS

and AUD.

BioVU. We performed two independent PheWASs of the

consumption and problems PRSs to identify whether these

two variables would show different patterns of genetic asso-

ciations with medical outcomes. Of 1,335 phenotypes, 15

were FDR-significantly associated with the consumption

PRS (Figure 5; see also Table S36 in the online supplement)

and 17 with the problems PRS (see Table S37 in the online

supplement). Both PRSs were significantly associated with

AUD and other tobacco and substance use disorders. Repli-

cating our previous results for AUDIT-C and AUDIT-P, we

observed paradoxical negative associations between the con-

sumption PRS and metabolic conditions, including diabetes

mellitus and obesity phenotypes, whereas the problems PRS

was primarily positively associated with other psychiatric

disorders, including depression, anxiety disorder, bipolar

disorder, schizophrenia, and suicidal ideation or attempt. In-

triguingly, the problems PRS was also negatively associated

with type 2 diabetes with renal manifestations. Most of the

associations did not persist after correcting for AUD, although

the direction of effects remained consistent (see Tables S38

and S39 in the online supplement).

DISCUSSION

In this study, we performed the first item-level and the larg-

est GWAS of AUDIT to date (N5160,824), and we used ge-

nomic structural equation modeling to elucidate the genetic

etiology of alcohol consumption and problematic alcohol

use. By conducting phenotypic and genetic factor analyses

of the individual AUDIT items, we provide evidence that

two correlated latent factors (consumption and problems)

parsimoniously explained the covariance in measures of al-

cohol consumption and problematic alcohol use across both

levels of analysis. Moreover, by applying empirically derived

weights to the AUDIT items in a genomic structural equa-

tion modeling framework, we demonstrated that our meth-

od can ameliorate confounding biases that have complicated

previous work with consumption phenotypes (in particular,

the bias present in item 1). Notably, both the consumption

and problems factors share a strong positive genetic corre-

lation with alcohol dependence (both rg values �0.7), and

FIGURE 4. Associations between consumption and problems PRSs and selected alcohol-related phenotypesa
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Complete results are available in Tables S32–S35 in the online supplement. AUD5alcohol use disorder.
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we show, for the first time, that the polygenic signal of the

consumption factor is strongly associated with several AUD

phenotypes in three independent cohorts. Finally, the re-

sults of our bioinformatic analyses further illustrate that the

consumption and problems factors have unique components

of their genetic etiology. Collectively, our novel framework

provides a means to study two genetic liabilities that are

more closely related to AUD and advances our understand-

ing of the associated biology in several ways, as we delin-

eate below.

First, we built on recent investigations of the genetic eti-

ology of AUD and related traits by analyzing each of the 10

unique items that comprise AUDIT. At this higher resolu-

tion, we were able to identify sources of genetic heterogene-

ity among the items, such as the consistently weaker genetic

correlations between frequency of alcohol consumption

(item 1) and other drinking patterns (items 2–3) and AUD

symptoms (items 4–10). Our item-level approach also al-

lowed us to empirically model the genetic relationships be-

tween AUDIT items, providing the first empirical evidence

of a correlated, two-factor structure for AUD symptoms at

the genetic level. In doing so, we also generated empirically

derived weights to determine how individual items contrib-

ute to aggregate measures of alcohol consumption and prob-

lematic use. This is an important advance from most

quantitative or dimensional genetic studies of AUD (and

other forms of psychopathology), which often use composite

score measures that lack statistical justification.

Second, and perhaps most importantly, we found that the

consumption factor was a good genetic proxy of AUD when

appropriate weights were applied to the individual items us-

ing genomic structural equation modeling. This is a striking

change from previous investigations into the divergent ge-

netic bases of alcohol consumption and problematic use, in-

cluding our own prior analyses of AUDIT. GWASs of

alcohol consumption phenotypes have consistently reported

low to moderate overlap with AUD, which has surprised

many researchers (2–5), and even paradoxical negative asso-

ciations with a variety of diseases and disorders. Our multi-

variate approach has ameliorated these issues, producing an

aggregate measure of alcohol consumption that is more con-

sistent with the known patterns of alcohol phenotype asso-

ciations established in the literature, such as a strong

genetic correlation with alcohol dependence. Furthermore,

we used genetic correlation analyses to characterize the re-

sidual genetic variance in frequency of consumption (fre-

quency residual) that is unrelated to other AUDIT items.

These analyses revealed that the frequency residual had

consistently positive associations with measures of socioeco-

nomic status and consistently negative associations with

measures of substance use and psychopathology. Indeed,

these genetic correlations are very similar to those observed

in GWASs of AUDIT-C (4, 5) and other GWASs of alcohol

consumption (3, 4), suggesting that single-item frequency-

based measures of alcohol consumption may be particularly

susceptible to confounding and/or selection bias. For

FIGURE 5. Results of a phenome-wide association study of polygenic risk scores for the consumption and problems PRSs against
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example, Marees et al. (36) reported that greater frequency

of alcohol consumption was associated with higher socio-

economic status and lower risk of other psychiatric and sub-

stance use disorders in UK Biobank. In population-based

cohorts with a “healthy volunteer” bias, such as the UK Bio-

bank, the relationship between frequency of alcohol con-

sumption and aspects of physical and mental health may not

be fully generalizable (37). This degree of bias, we speculate,

will likely vary from population to population.

Third, we confirmed that the genetic contributions to al-

cohol consumption are partially distinct from those pertain-

ing to problematic consequences of alcohol use. In silico

analyses revealed the value of dissecting the two pheno-

types, as gene- and transcriptome-based analyses identified

partially divergent biological mechanisms for the consump-

tion and problems factors. For example, the corticotropin

receptor gene (CRHR1), which has been associated with al-

cohol use in animals and humans (38, 39), was associated

with consumption only. As a result, we are now beginning to

uncover genetic signals for aspects of alcohol involvement

that have the potential to be further analyzed at the molec-

ular, cellular, and circuit levels in cellular and animal mod-

el systems.

Fourth, we found that the consumption PRS was strongly

associated with AUD even in higher-risk cohorts like COGA.

This demonstrates the important downstream effects of al-

lowing items to have different weights in phenotype con-

struction. Whereas our current and previous PRSs for

AUDIT-C have been disproportionately influenced by a sin-

gle item (frequency of consumption) (40), our consumption

PRS was composed of the genetic effects shared among all

consumption-focused items. The consumption and problems

PRSs were both strongly associated with AUD in UK Bio-

bank, even when both scores were entered in the same

model. In COGA, both the consumption and problems PRSs

were associated with AUD, but the consumption PRS was

more strongly associated than the problems PRS. The in-

creased influence of binge drinking (item 3), which had a

large factor loading on the consumption factor, may be par-

tially responsible for these stronger associations in a high-

risk sample. However, it is perhaps more likely that these

differences might be simply explained by differences in item

endorsement and thus predictive power of the discovery

GWASs (e.g., the consumption factor had a greater mean

chi-square than the problems factor).

Finally, our comprehensive PheWAS analyses have linked

different facets of AUD liability (via the latent factor–based

consumption and problems PRSs) to a myriad of health-

related outcomes in a large, independent biobank.We found

that the consumption PRS was consistently negatively asso-

ciated with a broad range of metabolic and congenital con-

ditions.While it is possible that there is still residual bias in

the discovery GWAS, it is important to note that this pattern

of paradoxical associations with consumption is not ob-

served in the genetic correlation analyses. Thus, it is possible

that these negative associations are illustrative of selection

bias or other confounding in BioVU (41), where patients with

certain conditions may elect not to drink because of unmeas-

ured factors (e.g., family history, medical advice, contraindica-

tions for prescribed medications). Mirroring the genetic

correlation results, we also found that the problems PRS was

uniquely associated with numerous psychiatric disorders that

are commonly reported to co-occur with AUD. However, we

determined that the associations between problems PRS and

mental health did not persist in the absence of the clinical

manifestation of AUD. These findings suggest that the associ-

ations with mental health are not a result of horizontal pleiot-

ropy. Instead, they may be a consequence of AUD, be

correlated with other risk factors for AUD (along with and/or

aside from genetic risk), or be related to ascertainment of pa-

tients with diagnosed AUD in the medical record. These re-

sults also encouragingly suggest that treating AUD could

have widespread improvements in overall health.

These findings should be interpreted in light of several

limitations. AUDIT is a self-report measure that can be in-

fluenced by misreporting, and it only captures alcohol use in

the past year, so it can be influenced by longitudinal changes

in drinking that may be a consequence of, for example, oth-

er illnesses (42). People who stopped drinking or who never

drank may represent genetically distinct groups; in our data

set, 4,511 individuals were never drinkers, and 4,290 were

previous drinkers. While our approach has substantially re-

duced bias in AUDIT without excluding any individuals

from discovery, future studies might consider employing

multiple techniques (e.g., separate never drinkers from for-

mer drinkers) to further alleviate potential biases associated

with frequency of alcohol use in population-based cohorts.

Additionally, while the AUDIT PRSs tended to perform sim-

ilarly in UK Biobank and COGA, the portability of PRSs can

be influenced by demographic characteristics such as socio-

economic status, age, and sex (43). It remains to be deter-

mined how generalizable the genetics of AUDIT are across

different populations, especially in samples of different an-

cestries (as we included only individuals of European an-

cestry in the present study) or cultures (e.g., United

Kingdom versus United States). A similar point also applies

to sex-stratified samples, considering that AUDIT scores

differ in men and women. Finally, it is important to note

that the problems PRS exhibited weaker associations with

AUD and other alcohol phenotypes in comparison to its

AUDIT-P counterpart. Although the two predictors general-

ly had similar effects in single-PRS models, the problems

PRS was rendered redundant in the cross-method analyses

when both of the highly correlated AUDIT-P and problems

PRSs (e.g., r50.84 in UK Biobank) were included in the re-

gression models. However, we caution against the interpre-

tation that the univariate GWAS approach is preferable.

The multivariate GWAS function of genomic structural

equation modeling is not only more flexible than traditional

univariate GWAS, but its results may be more robust to

confounding, as the software automatically applies a correc-

tion for population stratification (9). Furthermore, genomic
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structural equation modeling is better suited to investigate

nuanced genetic influences, including the possibility of

identifying SNPs with heterogeneous effects across symp-

toms or items.

Analyzing alternative phenotypes as a complementary ap-

proach to studying clinically defined AUD, and psychiatric

disorders in general, has generated considerable interest in

recent years (44). Collectively, our work demonstrates how

AUDIT can inexpensively facilitate such efforts. Here, we

have shown that, after correcting for some potential biases,

item- or symptom-level analyses can help unpack the genetic

etiology of AUD by breaking down genetic influences into

specific and shared components; notably, this is possible only

because we can contrast our results against gold-standard,

clinically ascertained AUD GWAS data sets.While composite

scores have shown some utility in previous genetic associa-

tion studies, such studies often rely on strong assumptions

that the scale is unidimensional and that each item is equally

informative of the construct being measured. In this study,

we have shown that the latter assumption is false for AUDIT.

In particular, a large proportion of the genetic variance of

item 1 appears to be uninformative about a broader con-

sumption construct, as it is related to socially stratified dif-

ferences in behavior rather than the alcohol phenotypes of

clinical interest. Moreover, although we found a notable de-

gree of unidimensionality among the AUDIT items, our re-

sults demonstrate that the consumption and problems

factors remain distinct in their associations with health.

AUTHOR AND ARTICLE INFORMATION

Department of Psychology, University of Texas at Austin (Mallard, Grot-

zinger, Harden); Department of Complex Trait Genetics, Center for

Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam

(Savage); Department of Psychiatry, Washington University School of

Medicine, Saint Louis (Johnson, Anokhin, Agrawal); Department of Psy-

chiatry (Huang, Jennings, Palmer, Sanchez-Roige) and Institute for Ge-

nomic Medicine (Palmer), University of California San Diego, La Jolla;

Virginia Institute for Psychiatric and Behavioral Genetics, Richmond

(Edwards); Department of Biological Psychiatry, Vrije Universiteit Am-

sterdam (Hottenga, Nivard, de Geus, Boomsma); Department of Medi-

cine, Division of Genetic Medicine, Vanderbilt University Medical

Center, Nashville, Tenn. (Gustavson, Davis, Sanchez-Roige); Depart-

ment of Psychology, Virginia Commonwealth University, Richmond

(Dick); Department of Biochemistry and Molecular Biology (Edenberg)

and Department of Medical and Molecular Genetics (Lai), Indiana Uni-

versity School of Medicine, Indianapolis; Department of Psychiatry,

Carver College of Medicine, University of Iowa, Iowa City (Kramer); De-

partment of Psychiatry and Behavioral Sciences, SUNY Downstate

Health Sciences University, Brooklyn, N.Y. (Meyers, Pandey); Depart-

ment of Psychiatry and Behavioral Sciences and Department of Bio-

medical Informatics, Vanderbilt University Medical Center, Nashville,

Tenn. (Davis); Division of Psychiatry, University of Edinburgh, Edin-

burgh, U.K. (Clarke).

Send correspondence to Dr. Sanchez-Roige (sanchezroige@ucsd.edu).

Data availability: The GWAS summary statistics for each latent AUDIT

factor and the sum-score counterparts (AUDIT-C and AUDIT-P) will be

made available on the PGC website.

This research was conducted using the UK Biobank Resource under

application numbers 11425 and 16406. The AUDIT data collection in

ALSPAC was funded by NIH grant AA018333. This national collaborative

study is supported by NIH grant U10AA008401 from the National Insti-

tute on Alcohol Abuse and Alcoholism (NIAAA) and the National Insti-

tute on Drug Abuse (NIDA). For the Netherlands Twin Register, funding

was obtained from the Netherlands Organization for Scientific Re-

search (NWO) and the Netherlands Organization for Health Research

and Development (ZonMW) grants 904-61-090, 985-10-002, 912-10-

020, 904-61-193,480-04-004, 463-06-001, 451-04-034, 400-05-

717, Addiction-31160008, 016-115-035, 481-08-011, 400-07-080,

056-32-010, Middelgroot-911-09-032, OCW_NWO Gravity program

024.001.003, NWO-Groot 480-15-001/674, Center for Medical Sys-

tems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024),

Biobanking and Biomolecular Resources Research Infrastructure

(BBMRI-NL, 184.021.007 and 184.033.111), X-Omics 184-034-019; Spi-

nozapremie (NWO 56-464-14192), KNAW Academy Professor Award

(PAH/6635) and University Research Fellow grant (URF) to Dr. Booms-

ma, Amsterdam Public Health research institute (former EMGO1), Neu-

roscience Amsterdam research institute (former NCA), the European

Community’s Fifth and Seventh Framework Program (FP5-LIFE QUALI-

TY-CT-2002-2006, FP7-HEALTH-F4-2007-2013, grant 01254: Ge-

nomEUtwin, grant 01413: ENGAGE and grant 602768: ACTION), the

European Research Council (ERC Starting 284167, ERC Consolidator

771057, ERC Advanced 230374), Rutgers University Cell and DNA Re-

pository (NIMH U24 MH068457-06), NIH (grants R01D0042157-01A1,

R01MH58799-03, MH081802, DA018673, R01 DK092127-04, Grand

Opportunity grants 1RC2 MH089951, and 1RC2 MH089995), and the

Avera Institute for Human Genetics, Sioux Falls, S.D. Part of the geno-

typing and analyses was funded by the Genetic Association Information

Network (GAIN) of the Foundation for the National Institutes of Health.

Computing was supported by NWO through grant 2018/EW/

00408559, BiG Grid, the Dutch e-Science Grid, and SURFsara.

PRS analyses using UK Biobank data were carried out on the Genetic

Cluster Computer hosted by the Dutch National computing and Net-

working Services SURFsara. The data sets used for the PheWAS analyses

described were obtained from Vanderbilt University Medical Center’s

BioVU, which is supported by numerous sources: institutional funding,

private agencies, and federal grants. These include the NIH-funded

Shared Instrumentation Grant S10RR025141 and CTSA grants

UL1TR002243, UL1TR000445, and UL1RR024975. Genomic data are

also supported by investigator-led projects that include

U01HG004798, R01NS032830, RC2GM092618, P50GM115305,

U01HG006378, U19HL065962, and R01HD074711; and additional

funding sources listed at https://victr.vumc.org/biovu-funding.

Dr. Johnson was supported by funding from NIAAA grant F32AA027435.

Ms. Huang, Ms. Jennings, Dr. Palmer, and Dr. Sanchez-Roige were sup-

ported by funds from the California Tobacco-Related Disease Research

Program (grants 28IR-0070 and T29KT0526). Dr. Edwards was sup-

ported by NIAAA grant R01AA027522. Dr. Anokhin was supported by

funding from NIH grants K02 DA32573, MH109532, and U10AA008401.

Dr. Edenberg and Dr. Kramer were supported by NIAAA grant

U10AA008401. Dr. Nivard is supported by NIMH grant R01MH120219,

ZonMW grants 849200011 and 531003014 from the Netherlands Orga-

nization for Health Research and Development, and a VENI grant

awarded by NWO (VI.Veni.191G.030), and he is a Jacobs Foundation

Fellow. Dr. Davis obtained support from NIMH grants 1R01MH113362,

1R01MH118233, and 1R56MH120736. Dr. Sanchez-Roige was sup-

ported by a NARSAD Young Investigator Award from the Brain and Be-

havior Foundation (grant 27676).

The Collaborative Study on the Genetics of Alcoholism (COGA): princi-

pal investigators, B. Porjesz, V. Hesselbrock, T. Foroud; scientific direc-

tor, A. Agrawal; translational director, D. Dick. The study includes 11

different centers: University of Connecticut (V. Hesselbrock); Indiana

University (H.J. Edenberg, T. Foroud, J. Nurnberger Jr., Y. Liu); Universi-

ty of Iowa (S. Kuperman, J. Kramer); SUNY Downstate (B. Porjesz, J.

Meyers, C. Kamarajan, A. Pandey); Washington University in St. Louis (L.

Bierut, J. Rice, K. Bucholz, A. Agrawal); University of California at San

ITEM-LEVEL GWAS OF THE ALCOHOL USE DISORDERS IDENTIFICATION TEST

68 ajp.psychiatryonline.org Am J Psychiatry 179:1, January 2022



Diego (M. Schuckit); Rutgers University (J. Tischfield, A. Brooks, R. Hart);

Children’s Hospital of Philadelphia, University of Pennsylvania (L. Al-

masy); Virginia Commonwealth University (D. Dick, J. Salvatore); Icahn

School of Medicine at Mount Sinai (A. Goate, M. Kapoor, P. Slesinger);

and Howard University (D. Scott). Other COGA collaborators include L.

Bauer (University of Connecticut); L. Wetherill, X. Xuei, D. Lai, S. O’Con-

nor, M. Plawecki, S. Lourens (Indiana University); L. Acion (University of

Iowa); G. Chan (University of Iowa; University of Connecticut); D.B.

Chorlian, J. Zhang, S. Kinreich, G. Pandey (SUNY Downstate); M. Chao

(Icahn School of Medicine at Mount Sinai); A. Anokhin, V. McCutcheon,

S. Saccone (Washington University); F. Aliev, P. Barr (Virginia Common-

wealth University). H. Chin and A. Parsian are the NIAAA staff collabora-

tors. The authors also owe a debt of gratitude to Henri Begleiter and

Theodore Reich, founding principal investigator and co–principal in-

vestigator of COGA, and other past organizers of COGA, including

Ting-Kai Li, P. Michael Conneally, Raymond Crowe, and Wendy Reich,

for their critical contributions.

The authors report no financial relationships with commercial interests.

Received September 21, 2020; revisions received January 13 and Feb-

ruary 16, 2021; accepted February 19, 2021; published online May 14,

2021.

REFERENCES

1. Sanchez-Roige S, Palmer AA, Clarke T-K: Recent efforts to dis-

sect the genetic basis of alcohol use and abuse. Biol Psychiatry

2020; 87:609–618

2. Walters RK, Polimanti R, Johnson EC, et al: Transancestral

GWAS of alcohol dependence reveals common genetic under-

pinnings with psychiatric disorders. Nat Neurosci 2018; 21:

1656–1669

3. Liu M, Jiang Y, Wedow R, et al: Association studies of up to 1.2

million individuals yield new insights into the genetic etiology of

tobacco and alcohol use. Nat Genet 2019; 51:237–244

4. Kranzler HR, Zhou H, Kember RL, et al: Genome-wide association

study of alcohol consumption and use disorder in 274,424 individ-

uals from multiple populations. Nat Commun 2019; 10:1499

5. Zhou H, Sealock JM, Sanchez-Roige S, et al: Meta-analysis of

problematic alcohol use in 435,563 individuals identifies 29 risk

variants and yields insights into biology, pleiotropy, and causality.

Nat Neurosci 2020; 23:809–818

6. Sanchez-Roige S, Palmer AA, Fontanillas P, et al: Genome-wide

association study meta-analysis of the Alcohol Use Disorders

Identification Test (AUDIT) in two population-based cohorts.

Am J Psychiatry 2019; 176:107–118

7. Saunders JB, Aasland OG, Babor TF, et al: Development of the

Alcohol Use Disorders Identification Test (AUDIT): WHO Col-

laborative Project on Early Detection of Persons With Harmful

Alcohol Consumption–II. Addiction 1993; 88:791–804

8. Litten RZ, Ryan ML, Falk DE, et al: Heterogeneity of alcohol use

disorder: understanding mechanisms to advance personalized

treatment. Alcohol Clin Exp Res 2015; 39:579–584

9. Grotzinger AD, Rhemtulla M, de Vlaming R, et al: Genomic structur-

al equation modelling provides insights into the multivariate genetic

architecture of complex traits. Nat Hum Behav 2019; 3:513–525

10. Boyd A, Golding J, Macleod J, et al: Cohort profile: the “children

of the 90s”: the index offspring of the Avon Longitudinal Study

of Parents and Children. Int J Epidemiol 2013; 42:111–127

11. Boomsma DI, Vink JM, van Beijsterveldt TCEM, et al: Nether-

lands Twin Register: a focus on longitudinal research. Twin Res

2002; 5:401–406

12. Bycroft C, Freeman C, Petkova D, et al: The UK Biobank re-

source with deep phenotyping and genomic data. Nature 2018;

562:203–209

13. Loh P-R, Tucker G, Bulik-Sullivan BK, et al: Efficient Bayesian

mixed-model analysis increases association power in large co-

horts. Nat Genet 2015; 47:284–290

14. Jiang L, Zheng Z, Qi T, et al: A resource-efficient tool for mixed

model association analysis of large-scale data. Nat Genet 2019;

51:1749–1755

15. Chang CC, Chow CC, Tellier LC, et al: Second-generation

PLINK: rising to the challenge of larger and richer datasets. Gig-

ascience 2015; 4:7

16. Mallard TT, Linn�er RK, Grotzinger AD, et al: Multivariate GWAS

of psychiatric disorders and their cardinal symptoms reveal two

dimensions of cross-cutting genetic liabilities. BioRxiv, Septem-

ber 8, 2020 (doi: https://doi.org/10.1101/603134)

17. Willer CJ, Li Y, Abecasis GR: METAL: fast and efficient meta-

analysis of genomewide association scans. Bioinformatics 2010;

26:2190–2191

18. Rosseel Y: lavaan: an R package for structural equation modeling.

J Stat Softw 2012; 48:1–36

19. Bulik-Sullivan BK, Loh P-R, Finucane HK, et al: LD score regres-

sion distinguishes confounding from polygenicity in genome-

wide association studies. Nat Genet 2015; 47:291–295

20. Linn�er RK, Mallard TT, Barr PB, et al: Multivariate genomic

analysis of 1.5 million people identifies genes related to addiction,

antisocial behavior, and health. Nat Neurosci (in press)

21. Cross-Disorder Group of the Psychiatric Genomics Consortium:

Genomic relationships, novel loci, and pleiotropic mechanisms

across eight psychiatric disorders. Cell 2019; 179:1469–1482.e11

22. Watanabe K, Taskesen E, van Bochoven A, et al: Functional mapping

and annotation of genetic associations with FUMA. Nat Commun

2017; 8:1826

23. de Leeuw CA, Mooij JM, Heskes T, et al: MAGMA: generalized

gene-set analysis of GWAS data. PLOS Comput Biol 2015;

11:e1004219

24. Sey NYA, Hu B, Mah W, et al: A computational tool (H-MAGMA)

for improved prediction of brain-disorder risk genes by incorpo-

rating brain chromatin interaction profiles. Nat Neurosci 2020;

23:583–593

25. Barbeira AN, Dickinson SP, Bonazzola R, et al: Exploring the pheno-

typic consequences of tissue specific gene expression variation in-

ferred from GWAS summary statistics. Nat Commun 2018; 9:1825

26. Ge T, Chen C-Y, Ni Y, et al: Polygenic prediction via Bayesian regres-

sion and continuous shrinkage priors. Nat Commun 2019; 10:1776

27. The Collaborative Study on the Genetics of Alcoholism. Alcohol

Health Res World 1995; 19:228–236

28. Messer LC, Laraia BA, Kaufman JS, et al: The development of a

standardized neighborhood deprivation index. J Urban Health

2006; 83:1041–1062

29. Dennis J, Sealock J, Levinson RT, et al: Genetic risk for major de-

pressive disorder and loneliness in sex-specific associations with

coronary artery disease. Mol Psychiatry 2019 (https://doi.org/

10.1038/s41380-019-0614-y)

30. Carroll RJ, Bastarache L, Denny JC: R PheWAS: data analysis

and plotting tools for phenome-wide association studies in the R

environment. Bioinformatics 2014; 30:2375–2376

31. Evangelou E, Gao H, Chu C, et al: New alcohol-related genes

suggest shared genetic mechanisms with neuropsychiatric disor-

ders. Nat Hum Behav 2019; 3:950–961

32. Volkow ND, Morales M: The brain on drugs: from reward to ad-

diction. Cell 2015; 162:712–725

33. Hinney A, Albayrak O, Antel J, et al: Genetic variation at the

CELF1 (CUGBP, elav-like family member 1 gene) locus is ge-

nome-wide associated with Alzheimer’s disease and obesity. Am

J Med Genet B Neuropsychiatr Genet 2014; 165B:283–293

34. Davies G, Marioni RE, Liewald DC, et al: Genome-wide associa-

tion study of cognitive functions and educational attainment in

UK Biobank (N5112 151). Mol Psychiatry 2016; 21: 758–767

35. Savage JE, Jansen PR, Stringer S, et al: Genome-wide association

meta-analysis in 269,867 individuals identifies new genetic and

functional links to intelligence. Nat Genet 2018; 50:912–919

MALLARD ET AL.

Am J Psychiatry 179:1, January 2022 ajp.psychiatryonline.org 69



36. Marees AT, Smit DJA, Ong J-S, et al: Potential influence of socio-

economic status on genetic correlations between alcohol con-

sumption measures and mental health. Psychol Med 2020;

50:484–498

37. Fry A, Littlejohns TJ, Sudlow C, et al: Comparison of sociodemo-

graphic and health-related characteristics of UK Biobank partici-

pants with those of the general population. Am J Epidemiol 2017;

186:1026–1034

38. Gelernter J, Sun N, Polimanti R, et al: Genome-wide association

study of maximum habitual alcohol intake in .140,000 US Euro-

pean and African American veterans yields novel risk loci. Biol

Psychiatry 2019; 86:365–376

39. Zorrilla EP, Logrip ML, Koob GF: Corticotropin releasing factor:

a key role in the neurobiology of addiction. Front Neuroendocri-

nol 2014; 35:234–244

40. Johnson EC, Sanchez-Roige S, Acion L, et al: Polygenic contribu-

tions to alcohol use and alcohol use disorders across population-

based and clinically ascertained samples. Psychol Med (Online

ahead of print, January 20, 2020)

41. Munaf�o MR, Tilling K, Taylor AE, et al: Collider scope: when se-

lection bias can substantially influence observed associations. Int

J Epidemiol 2018; 47:226–235

42. Xue A, Jiang L, Zhu Z, et al: Genome-wide analyses of behaviou-

ral traits are subject to bias by misreports and longitudinal

changes. Nat Commun 2021; 12:20211

43. Mostafavi H, Harpak A, Agarwal I, et al: Variable prediction accuracy

of polygenic scores within an ancestry group. eLife 2020; 9:e48376

44. Sanchez-Roige S, Palmer AA: Emerging phenotyping strategies

will advance our understanding of psychiatric genetics. Nat Neu-

rosci 2020; 23:475–480

ITEM-LEVEL GWAS OF THE ALCOHOL USE DISORDERS IDENTIFICATION TEST

70 ajp.psychiatryonline.org Am J Psychiatry 179:1, January 2022


