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P
TSD is a serious mental disorder that can occur after expo-
sure to extreme, life-threatening stress1,2. Although 50–85%  
of Americans experience traumatic events over a lifetime, 

most do not develop PTSD—lifetime PTSD prevalence is approx-
imately 7% (ref. 3), suggesting differential resilience to stress  
and vulnerability to the disorder4. There is a substantial heritable  
basis for PTSD risk5,6, and evidence from genome-wide association 
studies (GWAS) shows that PTSD, like other mental disorders7, is 
highly polygenic8–13. PTSD symptoms vary widely among individu-
als, and the current Diagnostic and Statistical Manual of Mental 
Disorders-5 (DSM-5) definition permits up to 163,120 unique 
conformations for assembly of the disorder14. Given that this phe-
notypic heterogeneity may impede the detection of genetic risk 
factors15, alternative phenotypes or subphenotypes (for exam-
ple, re-experiencing (also known as intrusion) symptoms) that 
may reflect more biologically homogeneous entities have been 
examined16.

The use of biobanks with relatively large numbers of PTSD cases 
gives the opportunity to provide unprecedented sample size and, 
importantly, uniformity of phenotypic and genotypic platforms17. 
This investigation was conducted within the US Veterans Affairs 

Million Veteran Program (MVP)18 and included several PTSD phe-
notypic definitions: a validated, algorithmically defined case-control 
definition using data from the electronic health record (EHR), which 
was subsequently meta-analyzed with the case-control Psychiatric 
Genomics Consortium (PGC)-PTSD GWAS13; and quantitative 
trait definitions encompassing PTSD subdomains based on recent 
self-reported symptoms: re-experiencing (in an expanded sample 
from that previously reported16), avoidance, hyperarousal and a total 
index of recent symptom severity (PCL-Total). These analyses were 
conducted separately in veterans of EUR and AFR ancestry (and in 
transancestral meta-analyses)19,20. The heritability of each of these 
phenotypes, as well as phenotypic and genetic (rg) correlations, were 
examined with the aim of determining coherence among them; rg 
with other behavioral and health-related traits was also exam-
ined. Results for the phenotype with the largest single-nucleotide 
polymorphism (SNP) heritability estimate were used to charac-
terize PTSD genomic architecture with partitioned heritability, 
and transcriptome-wide analyses21 were utilized to identify genes 
regulated in the brain regions of greatest relevance. Genomic struc-
tural equation modeling was used to determine genetic relation-
ships between PTSD and clinically comorbid phenotypes from the 
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internalizing spectrum22: major depressive disorder, anxiety and 
neuroticism.

The aims of these analyses are to provide: (1) a large, uniformly 
phenotyped GWAS of PTSD in military veterans; (2) thorough 
exploration of subphenotypes; (3) replication of key associations 
in other datasets; (4) demonstration of the architecture of genetic 
association with other health-related phenotypes; (5) investiga-
tion of brain regions implicated; and (6) extension to possible drug  
targets. These aims were all accomplished with the overarching goal 
of deepening biological understanding to advance precision medi-
cine for PTSD.

Results
GWAS of algorithmically defined case-control PTSD. We first 
performed GWAS of PTSD in American veterans of EUR and AFR 
ancestry, basing diagnosis on a validated EHR algorithm23 that had 
excellent discriminative ability for lifetime PTSD cases versus con-
trols as determined by chart review (0.90 sensitivity, 0.97 specificity, 
0.87 positive predictive value and 0.90 negative predictive value), and 
substantial agreement with gold-standard, clinician-administered 
PTSD scale interview (90.2% agreement and κ = 0.75 (95% confi-
dence interval (CI): 0.62, 0.88))17. GWAS analyses were carried out 
(on two tranches of data genotyped on the same array platform at 
two different times) on SNP dosages imputed from 1000 Genomes 
Phase 3, using logistic regression for case-control traits and linear 
regression for continuous traits in PLINK 2.0 (ref. 24) and separately 
by ancestry, adjusting for age, sex and the first ten within-ancestry 
principal components. Meta-analysis by tranche (and later by 
ancestral group) was performed using METAL25. Combat exposure 
information was available for only a subset (51.2%) of the sample 
(Supplementary Table 1), and GWAS of that subset yielded no 
genome-wide significant (GWS) findings (Supplementary Table 2  
shows findings at P < 10−6). However, genetic correlation (rg) 
between the categorical trait (that is, diagnosis of) PTSD in those 
combat exposed and in all subjects irrespective of combat exposure 
status was 0.969 (s.e. = 0.049, P = 7.64 × 10−89), and therefore results 
for the latter larger, more informative, sample are presented here.

The PTSD case-control GWAS for the EUR sample 
included 36,301 algorithmically defined probable PTSD cases 
and 178,107 controls. Considering linkage disequilibrium 
(LD)-independent loci (r2 > 0.1), we identified three distinct GWS 
(P < 5 × 10−8) genomic risk loci (Fig. 1 (top) and Supplementary 
Table 3a): on Chr11:28707675, rs10767744 (minor allele frequencies 
(MAF) = 0.39, P = 1.75 × 10−10), proximity mapped to METTL15; on 
Chr7:70219946, rs137999048 (MAF = 0.047, P = 1.03 × 10−8), prox-
imity mapped to AUTS2; and on Chr7:1855531, rs7680 (MAF = 0.14, 
P = 4.17 × 10−8), proximity mapped to mitotic arrest deficient 1-like 1 
(MAD1L1). Regional Manhattan plots for each region are presented 
in Supplementary Fig. 1a–c.

The GWAS for the AFR sample included 11,920 probable PTSD 
cases and 39,116 controls (Extended Data Fig. 1 and Supplementary 
Table 3b) and identified two distinct GWS loci, one on Chr3:1259951, 
rs4684090 (MAF = 0.04, P = 3.59 × 10−8) intronic to CNTN6 and 
one on Chr20:6724577, rs112149412 (MAF = 0.02, P = 3.19 × 10−9) 
near BMP2. GWAS for the 48,221 cases and 217,223 controls in the 
transancestral analysis (meta-analysis of EUR and AFR samples) 
(Supplementary Table 3c) identified as GWS SNPs in two of the 
same regions found GWS in the EUR GWAS: a different lead SNP 
on Chr7:1959634 (rs137944087, an indel/deletion) in moderate LD 
with the variant identified in the EUR sample (r2 = 0.38), and a dif-
ferent lead SNP on Chr11:28678870 (rs10767739) in LD with the 
variant identified in the EUR sample (r2 = 0.54).

Meta-analysis of MVP and PGC-PTSD case-control GWAS. We 
next conducted meta-analyses of the EUR MVP and PGC-PTSD 
case-control GWAS13 (Fig. 1 (bottom) and Supplementary Table 4a). 

The EUR meta-analysis yielded four distinct GWS loci, two of which 
were nearest to genes found to be GWS in the MVP case-control 
analysis (MAD1L1 and METTL15), although with different lead 
SNPs: one new SNP (nearest to LOC645949) and one lead SNP clos-
est to PACRG, a gene linked in a head-to-head arrangement and 
coregulated with PARK2—a gene found to be GWS in PGC. There 
were no GWS SNPs for the AFR MVP/PGC-PTSD meta-analysis, 
but two SNPs were GWS in the transancestral meta-analysis 
with lead SNPs closest to PARK2 and MAD1L1, respectively 
(Supplementary Table 4b,c).

GWAS of PTSD symptom subphenotypes and total symptoms. 
The MVP surveys included the PTSD checklist for DSM-IV (PCL), 
a widely used, 17-item self-report measure of past-month PTSD 
symptoms covering the three DSM-IV symptom cluster criteria—
re-experiencing, avoidance and hyperarousal—and a total symptom 
severity score (PCL-Total) as the sum of those three subphenotypes26. 
GWAS with these phenotypes in the EUR sample (n = 186,689 indi-
viduals) using linear regression identified multiple independent 
GWS SNPs, including some that were associated with PCL-Total as 
well as multiple subdomains, and others that were more strongly 
associated with specific subdomains (Table 1). Overlap in risk loci 
for the case-control and quantitative phenotypes in the EUR and 
AFR samples is shown in Fig. 2. Supplementary Table 5 shows 
PCL-Total GWAS results in the transancestral sample.

Fine-mapping and variant prioritization. For PCL-Total, we identified 
15 GWS loci in the EUR population; for the case-control phenotype, 
we observed three loci in the EUR population and two in the AFR 
population. Each locus that included more than ten GWS SNPs was 
fine-mapped27 to prioritize variants in each locus, defined as credi-
ble sets (Supplementary Data 1). Regions associated with PCL-Total 
scores had multiple variants with combined annotation-dependent 
depletion (CADD) score > 10 (that is, these variants were among 
the top 10% of pathogenic variants across the human genome)28. 
For example, in the region Chr3:49734229–50176259 associated 
with PCL-Total, there were four subregions with one or more exonic 
SNPs with CADD > 10. Fine-mapping results of causal variant iden-
tification in associated regions (CAVIAR)27 and CADD scores are 
included in Supplementary Data 1.

To understand the biological effect of SNPs associated with 
PTSD phenotypes, we analyzed top SNPs (at suggestive threshold 
P < 5 × 10−6) for their distinct and overlapping distribution across 
the four subphenotypes. The top SNPs for each phenotype were LD 
pruned to obtain independent signals. We found 87 (hyperarousal), 
49 (avoidance), 62 (re-experiencing) and 36 (PCL-Total) SNPs that 
were nonoverlapping or phenotype-specific (Supplementary Data 2).  
These nonoverlapping SNPs were assessed for their quantitative 
trait loci (QTL) protein associations (all tissues), DNA methylation 
(brain tissues) and splicing (brain tissues) from QTLbase29. Most 
QTL associations were observed for methylation expression and are 
shown as Venn diagrams for each phenotype (Supplementary Data 2);  
detailed tabular results are also given in Supplementary Data 2.

Replication of GWAS findings. We compared top SNP associations 
from the PTSD case-control and PCL-Total results against the larg-
est available external PTSD dataset, from the PGC-PTSD13. For the 
EUR case-control phenotype, there was nominal replication for one 
of three SNPs: for rs7680*A nearest to MAD1L1, with a log(odds 
ratio(OR)) of −0.0712 (s.e. = 0.013, P = 4.17 × 10−8) in MVP and a 
log(OR) of −0.0639 (s.e. = 0.0215, P = 0.00312) in PGC-PTSD. For 
the EUR PCL-Total symptom scores, there were six of 15 possible 
nominal replications (Supplementary Table 6).

We applied a polygenic risk score (PRS) in EUR with MVP as 
the base and PGC as the target. The MVP case-control and MVP 
PCL-Total PRS explained approximately 0.4% (P = 2.4 × 10−74) and 
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0.7–0.8% of the variance (P = 2.2 × 10−134), respectively, in the PGC 
case-control phenotype at P value threshold (PT) ≤ 0.05 (Extended 
Data Fig. 2). The low phenotypic variance explained is probably due to 
different characteristics of the MVP and PGC-PTSD cohorts: across 
three MVP hold-out PRS analyses we observed phenotypic variance 
explained ranging from 4 to 5.3% (P < 6 × 10−92; Supplementary 
Table 7). Evaluating the extent to which cross-ancestral PRS  
were useful, we found PRS biased by ancestry, with density  
plots of EUR and AFR PRS being substantially different (Extended 
Data Fig. 3).

SNP-based heritability estimates and genetic correlations across 
PTSD phenotypes and with other health-related traits. Figure 3 
shows SNP-based heritability estimates (on the left) and the phe-
notypic (above the diagonal) and genetic (below the diagonal) cor-
relations in EUR between the algorithmic case-control diagnosis 

and each of the four continuous PTSD symptoms (re-experiencing, 
avoidance, hyperarousal and their total; and the genetic correla-
tions for the MVP/PGC case-control meta-analysis). Genetic cor-
relations were consistently high (rg > 0.9) across all PTSD traits, 
indicating that the traits investigated are all informative with 
respect to PTSD genetics. The PCL-Total quantitative trait (95% 
CI SNP heritability (SNP-h2)= 0.08–0.10) has significantly higher 
SNP-based heritability than either the MVP case-control defini-
tion (95% CI SNP-h2 = 0.05–0.07, Pdifference = 1.85 × 10−4) or the 
MVP/PGC case-control meta-analysis (95% CI SNP-h2 = 0.07–
0.08, Pdifference = 5.83 × 10−3), and significantly larger SNP heritabil-
ity z-score (MVP PCL-total SNP-h2 z = 17.73; MVP case-control 
SNP-h2 z = 11.62; MVP/PGC SNP-h2 z = 14.80).

In the EUR sample, we estimated genetic correlations (rg) between 
PTSD case-control and PCL-Total scores and health-related traits 
available from UK Biobank and the PGC (Supplementary Table 8 
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Fig. 1 | Manhattan plots for MVP case-control GWAS and MVP/PGC GWAS meta-analysis in euR samples. a, MVP case-control GWAS. b, MVP/PGC  

GWAS meta-analysis. GWAS was performed using logistic regression, covarying for age, sex and the first ten principal components of ancestry. 

Meta-analysis was conducted with METAL25 using the inverse variance weighting method. Bonferroni correction was used to correct for multiple 

comparisons; associations with P < 5 × 10−8 (indicated by the horizontal red bar) were considered to be GWS, and those with P < 10–5 (indicated by the 

horizontal blue bar) are also shown.
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Table 1 | GWS (P < 5 × 10−8) findings using linear regression with lead SNPs for euR PCL-total and subphenotype GWAS analyses 
(n = 186,689 individuals)

LD-independent lead SNP Chr effect allele β P iNFO score SNP location Nearest gene

PCL-total

rs542933551 17 AAAAACAAAAC 0.4585 2.02 × 10–13 0.95 43557054 PLEKHM1

rs10235664 7 C –0.3667 1.82 × 10–11 0.93 2086814 MAD1L1

rs35761884 1 C –0.3076 3.46 × 10–10 0.92 73787732 LINC01360

rs111488606 3 CA 0.3102 1.72 × 10–9 0.83 49864924 TRAIP

rs13262595 8 G –0.2823 2.20 × 10–9 1.00 143316970 TSNARE1

rs2314662 19 C –0.3614 3.78 ×10–9 0.93 18702515 C19orf60

rs10171148 2 A 0.2811 5.87 × 10–9 0.96 22466171 LOC102723362

rs62465629 7 C –0.3929 6.30 × 10–9 0.85 110153866 IMMP2L

rs1496246 11 G 0.2973 6.60 × 10–9 0.90 133548061 OPCML

rs251350 5 C –0.2538 1.03 × 10–8 1.12 140225137 PCDHA1

rs11507683 9 T 0.4137 1.15 × 10–8 0.96 140262424 EXD3

rs599550 18 A 0.3948 1.18 × 10–8 0.95 53252388 TCF4

rs4364183 3 A 0.3043 1.22 × 10–8 0.93 18809536 SATB1-AS1

rs62417832 6 T 0.2922 2.90 × 10–8 1.00 88640221 SPACA1

rs111950471 5 TATTA –0.2769 4.34 × 10–8 0.98 107450098 FBXL17

Re-experiencing

rs35371867 18 A 0.1006 1.24 × 10–10 0.97 53193027 TCF4

rs2777888 3 G 0.0929 2.26 × 10–10 0.98 49898000 CAMKV

rs10235664 7 C –0.1055 4.66 × 10–10 0.93 2086814 MAD1L1

rs242925 17 T –0.0931 5.50 × 10–10 0.94 43888866 CRHR1

rs139356208 11 CACAAAACAAA –0.0897 9.63 × 10–9 0.90 28631779 RASEF

rs1501485 1 G –0.0839 1.22 × 10–8 0.97 73995259 LRRIQ3

rs11773880 7 G –0.0977 1.97 × 10–8 0.93 106540171 PIK3CG

rs34177209 19 A 0.1205 2.34 × 10–8 0.62 18474978 PGPEP1

rs10977193 9 A –0.0934 4.17 × 10–8 0.96 8542019 PTPRD

Avoidance

rs55925547 17 C 0.1932 2.08 × 10–13 0.98 43556807 PLEKHM1

rs199913382 17 C 0.1772 1.05 × 10–12 0.98 44625866 LRRC37A2

rs35761884 1 C –0.1388 9.72 × 10–11 0.92 73787732 LINC01360

rs251350 5 C –0.1192 8.15 × 10–10 1.12 140225137 PCDHA1

rs4129585 8 C –0.125 1.25 × 10–9 1.00 143312933 TSNARE1

rs2314662 19 C –0.1599 2.74 × 10–9 0.93 18702515 C19orf60

rs62465629 7 C –0.175 3.54 × 10–9 0.85 110153866 IMMP2L

rs62417832 6 T 0.1335 7.04 × 10–9 1.00 88640221 SPACA1

rs11507683 9 T 0.1834 7.74 × 10–9 0.96 140262424 EXD3

rs10171148 2 A 0.1211 1.07 × 10–8 0.96 22466171 LOC102723362

rs10235664 7 C –0.1337 2.17 × 10–8 0.93 2086814 MAD1L1

rs1496246 11 G 0.1234 3.66 × 10–8 0.90 133548061 OPCML

Hyperarousal

rs377112142 17 CT 0.1323 3.06 × 10–13 0.84 43663455 MAPK8IP1P2

rs55789728 7 G –0.1303 4.62 × 10–13 0.93 2107649 MAD1L1

rs576430065 9 CA –0.1206 1.67 × 10–11 0.78 96373697 PHF2

rs140288713 17 A 0.1286 3.11 × 10–11 0.90 44690708 NSFP1

rs1496246 11 G 0.1037 1.77 × 10–10 0.90 133548061 OPCML

rs547649546 3 CA –0.0937 1.59 × 10–9 0.91 49789921 IP6K1

rs2887882 1 T –0.1118 1.89 × 10–9 0.98 113170389 CAPZA1

Continued
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shows rg for all traits with h2 z-score of 4 or more). The many sig-
nificant genetic correlations with both PTSD traits include positive 
rg with major depression, neuroticism and related symptoms, and 
negative rg with educational attainment and cognitive performance 
(Fig. 4). Although the magnitudes of rg observed with PCL-Total and 
case-control PTSD were highly correlated (Spearman’s rho = 0.970, 
P = 2.20 × 10−16), ten phenotypes exhibited significantly greater rg 
with PCL-Total relative to case-control PTSD (Fig. 4a).

Taken together, the higher heritability, the greater magnitude 
of the heritability z-score (indicative of a stronger polygenic sig-
nal) and the higher value of rg with other health-related traits con-
firm that PCL-Total is similar to, but more informative than, the 
case-control definition (for either MVP alone or the MVP/PGC 
meta-analysis). Accordingly, all subsequent post-GWAS analyses 
are based on the more powerful PCL-Total quantitative trait dataset 
in the EUR sample.

Genomic relationship between PTSD and other mental disor-
ders. We used multitrait conditional and joint analysis (mtCOJO)30 
to address the genetic relationship between PTSD and other major 
mental disorders in two ways. First, we conditioned PTSD PCL-Total 
on a single mental disorder; then, we conditioned PTSD PCL-Total 
on all eight mental disorders simultaneously: autism spectrum dis-
order, major depression, anorexia nervosa, anxiety (case-control), 
alcohol dependence, schizophrenia, bipolar disorder and atten-
tion deficit hyperactivity disorder31–38. The result of this analysis 
is treated as genetic signal attributable to PTSD in the absence of 
shared genetic liabilities of other mental disorders. PCL-Total 
remained highly genetically correlated with unconditioned GWAS 
when conditioned on genetically correlated psychiatric disorders, 
both independently (that is, PTSD PCL-Total conditioned on major 
depreesive disorder) and simultaneously (that is, PTSD PCL-Total 
conditioned on all eight mental disorders; Fig. 5). Conditioning 

LD-independent lead SNP Chr effect allele β P iNFO score SNP location Nearest gene

rs7519147 1 T –0.0906 1.90 × 10–9 0.96 73994416 LRRIQ3

rs13032994 2 C –0.0968 3.73 × 10–9 1.00 52709559 NRXN1

rs113341106 7 GC 0.0923 3.82 × 10–9 0.93 114039998 FOXP2

rs12420134 11 G 0.1229 6.45 × 10–9 0.87 16260861 SOX6

rs17209774 9 C –0.0907 7.97 × 10–9 0.97 4145163 GLIS3

rs60958094 14 T 0.0961 1.99 ×10–8 0.81 54711168 CDKN3

rs4129585 8 C –0.0835 2.07 × 10–8 1.00 143312933 TSNARE1
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re-experiencing traits. LD-independent SNPs for each phenotype and the nearest gene are labeled. The donut chart summarizes the number of hits for each 

phenotype in the two ancestral populations. The genes labeled are significant following regression testing for a two-sided P value with applied Bonferroni 

threshold for multiple testing (P < 5 × 10−8).

Table 1 | GWS (P < 5 × 10−8) findings using linear regression with lead SNPs for euR PCL-total and subphenotype GWAS analyses 
(n = 186,689 individuals) (continued)
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on all eight mental disorder traits significantly reduced the 
observed scale of SNP heritability (h2) of PCL-Total (PCL-Total 
original h2 = 9.21%, P = 1.39 × 10−67; PCL-Total conditioned  

h2 = 4.11%, P = 2.61 × 10−52) relative to unconditioned GWAS 
(Pdifference = 1.52 × 10−13), but this reduction in heritability did not 
significantly alter associations with biological pathways or tissues 
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case-control
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n = 141,076
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0.964–0.965

n = 160,504
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n = 162,348
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h2 = 9.3%

0.971

0.945–0.996

0.977

0.903–1.014
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0.944
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0.935
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0.943

0.929–0.958

Fig. 3 | Phenotypic and genetic correlations between case-control, PCL-total and subscale scores. Shown are correlation point estimates (top of box), 

95% CIs (middle) and n (bottom; sample size); phenotypic: above black-boxed diagonal; genetic: below diagonal. SNP heritability (h2) is shown in the 

left-hand column. For phenotypic correlations, those for case-control are point-biserial while all others are Pearson correlations. Re-exp, re-experiencing; 

avoid, avoidance; hyper, hyperarousal.
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associated with genetic risk for PTSD, as evidenced by the lin-
ear relationships between tissue and pathway enrichment effects 
(Extended Data Fig. 4).

Genomic structural equation modeling. Genomic structural 
equation models were analyzed to answer two question: (1) do 
PTSD subdomains (hyperarousal, re-experiencing and avoidance) 
load onto one latent factor? (2) Does latent factor architecture and 
subdomain loading change in the presence of PTSD genetic and 
phenotypic correlates—major depressive disorder, anxiety and neu-
roticism? These traits—all part of the internalizing spectrum22,39—
are highly phenotypically and genetically correlated with PTSD.

The three PTSD phenotypic subdomains loaded onto a single 
latent common factor (Supplementary Fig. 2). There were no sig-
nificant differences in loading values between these PTSD subdo-
mains, suggesting roughly equal contribution of all three to the 
common factor (comparative fit index (CFI) = 0.996). Next, we 
included PTSD genetic and phenotypic correlates from internal-
izing disorders—anxiety, neuroticism and major depressive disor-
der (all from PGC). Genomic exploratory factor analysis identified 
a two-factor model as best suited to represent the six phenotypes 
(that is, PTSD subdomains and the three internalizing measures). 
In genomic confirmatory factor analysis of the two-factor model, 
PTSD subdomains independently loaded onto factor 1 while the 
PTSD correlates loaded onto a second factor (CFI = 0.999) (Fig. 6). 
The PTSD subdomain hyperarousal loads onto both factors (load-
ing onto factor 1 = 0.90 ± 0.05; loading onto factor 2 = 0.10 ± 0.04; 
correlation between factors 1 and 2 = 0.72 ± 0.03), indicating that 
this subdomain has a genetic correlation with the internalizing psy-
chopathologies that is not shared by the other PTSD subdomains.

Partitioned heritability of PCL-Total. Partitioning heritability 
of PCL-Total in EUR revealed enrichment of SNPs (by 1.28- to 
1.39-fold) associated with four genotype–tissue expression (GTEx) 
cortical tissue types: cortex, frontal cortex (BA9), anterior cingu-
late cortex (BA24) and nucleus accumbens (false discovery rate 

(FDR) q < 0.05; Supplementary Table 9). Intronic regions showed 
1.29-fold enrichment (FDR q < 0.05). Cell-type partitioning anal-
yses support SNP-h2 enrichment of the frontal cortex (BA9) gene 
sets (Tau-C = 3.42 × 10−9, P = 0.002) above other annotations in the 
model, and frontal cortex (BA9), anterior cingulate cortex (BA24) 
and multiple basal ganglia (putamen, caudate and nucleus accum-
bens) gene expression profiles (Tau-C ranging from 1.02 × 10−9 
to 3.43 × 10−9, FDR q < 0.05) above that of all other genomic 
annotations. These tissues were prioritized when considering 
transcriptome-wide association results, to constrain interpretation 
of those results to the most pertinent and evidence-driven tissues40.

Enrichment in biological tissues using transcriptome-wide 
analysis and colocalization. PrediXcan-S41 was used to correlate 
imputed tissue-specific, genetically regulated gene expression deter-
mined by association with reference transcriptome datasets with 
PCL-Total results. We observed significant negative correlation 
with predicted expression of the protein product of the pseudogene 
LRRC37A4P in amygdala, substantia nigra, putamen, frontal and 
anterior cingulate cortex, adrenal gland and whole-blood tissues. 
Also noted were significant positive correlations with predicted 
expression of corticotropin-releasing hormone receptor 1 (CRHR1) 
in amygdala, hippocampus, frontal and anterior cingulate cortex, 
adrenal and whole blood (although negative correlation was seen 
for nucleus accumbens); significant positive correlation with pre-
dicted expression of PLEKHM1, ARL17A, LRRC37A2 and DND1P1 
(all of which are colocalized on 17q21.31) in multiple brain regions, 
including amygdala, anterior cingulate cortex and basal ganglia; 
and significant negative correlation with predicted expression of 
RBM6 in frontal cortex, hippocampus, nucleus accumbens, adrenal 
and whole blood. The complete list of PrediXcan-S results is avail-
able in Supplementary Table 10. The significant genes for 13 brain 
tissues were then tested for shared causal loci. The coloc method42 
reports posterior probability for a pair of traits under the hypoth-
esis (H4) that traits are associated and share a single causal vari-
ant. The genetically regulated transcriptomic profiles of ARL17A, 
LRRC37A2, RNF123, FAM212A and PLEKHM1 showed high prob-
ability (≥90%) of a shared causal locus (coloc H4) with PCL-Total 
across multiple brain regions. CRHR1 probability was highest (85%) 
for hippocampus tissue expression (Supplementary Data 2).

Drug repositioning analyses. We selected genes significantly 
associated with PCL-Total in the PrediXcan-S analyses and, as rec-
ommended40, prioritized those genes with predicted expression 
regulation in at least one of the four tissues identified by LD score 
regression (LDSC) partitioned heritability analyses: cortex, frontal 
cortex, anterior cingulate and nucleus accumbens (Fig. 7).

We imported this list of eight genes (ARHGAP27, ARL17A, 
CRHR1, DND1P1, LRRC37A2, LRRC37A4P, PLEKHM1 and 
RBM6) into the Drug Gene Interaction Database v.3.0 (dgidb.
genome.wustl.edu)43 to identify interactions with available drug 
treatments that might indicate potential new drug strategies for 
PTSD. Drug repositioning analysis was also carried out in the 
Connectivity Map (CMap) database (https://www.broadinstitute.
org/connectivity-map-cmap) and PHAROS (https://pharos.nih.
gov) for the same set of eight genes44.

No currently druggable targets were identified for ARHGAP27, 
ARL17A, DND1P1, LRRC37A2, LRRC37A4P or RBM6. CRHR1 was 
identified in all databases as a potential drug target with experimen-
tal medications available. Given the positive association between 
PTSD symptoms and imputed CRHR1 expression in multiple brain 
regions (with the exception of nucleus accumbens) seen in our 
dataset, a CRHR1 antagonist is hypothesized to be potentially thera-
peutic. Another gene, PLEKHM1, which was significantly associ-
ated with imputed increased expression and colocalized in caudate 
and nucleus accumbens, was considered by CMap as highly likely to 
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share biological effects with several classes of drug, including dopa-
mine receptor antagonists, acetylcholine receptor antagonists and 
alpha-2 adrenergic receptor and angiotensin receptor antagonists, 
all of which would be predicted to reduce expression and be associ-
ated with a reduction in PTSD symptoms.

Discussion
The past decade has seen a proliferation in the use and usefulness 
of GWAS, with the prediction—and, to date, the experience—that 
continued sample size growth will result in even richer findings45. 
The field of psychiatric genomics has capitalized on GWAS, with 
substantial gains made in the understanding of serious mental dis-
orders such as schizophrenia, major depression, bipolar disorder7,46 
and their interrelatedness47. We present here a large, uniformly phe-
notyped and genotyped case-control GWAS of PTSD in military 
veterans. We augment this analysis with the GWAS of a quantita-
tive trait corresponding to symptom severity, which proved more 
statistically powerful than the case-control analysis even when our 
case-control GWAS was meta-analyzed with the next largest PTSD 
case-control GWAS available, from the PGC13.

These analyses revealed several GWS associations with PTSD 
visible at the case-control level, and numerous GWS associations 
with various dimensions of symptom severity. When combined with 
imputed genetically regulated expression results and enrichment 
analyses, these results help to illuminate the neurobiology of PTSD 
and begin to uncover new avenues for therapeutic development.

This study directly compares the heritability of binary (diag-
nostic) and continuous (symptom-based) phenotypes for PTSD. 
Although PTSD symptoms can have a very diverse phenotypic 
presentation14, we show here that their genetic overlap is very high 
(rg > 0.9). This is an important insight into the biology of PTSD. The 
quantitative (PCL-Total) trait—which reflects the most informa-
tion—was the most heritable and therefore the most informative 
for biological inference. Partitioned heritability analyses of that trait 
indicated overrepresentation of SNPs in frontal (BA9) and anterior 
cingulate cortex (BA24), consistent with prevailing neural circuit 

theories of PTSD pathophysiology2 that emphasize hypofunc-
tion of these regions and their connections with the limbic cortex 
in the regulation of emotion and extinction of fear memories48,49. 
However, these analyses also pointed to the nucleus accumbens—an 
important component of the reward system—as being involved in 
PTSD symptoms. These results suggest that more extensive study 
of the nucleus accumbens and reward systems in PTSD may shed 
further light on aspects of the syndrome (for example, its strong 
association with alcohol dependence)50,51 that are currently not well 
understood.

Several genes—most notably MAD1L1—were repeatedly impli-
cated across the various conceptualizations of the PTSD phenotype. 
The variants in MAD1L1 also show QTL associations with DNA 
methylation and splicing. MAD1L1, widely expressed in all tis-
sues and thought to play a role in cell cycle control, has emerged 
as being GWS associated with at least two other major mental dis-
orders, schizophrenia31 and bipolar disorder38—both of which were 
excluded among participants in this study but have strong genetic 
correlations with PTSD in MVP and other cohorts13. These obser-
vations, and the recent finding of GWS association with anxiety52, 
suggest that MAD1L1 may be a general risk factor for psychopathol-
ogy, possibly contributing to the p factor thought to underlie many 
serious mental disorders53.

Several other genes were discovered to be associated with 
PTSD and replicated in the largest available independent 
PTSD-informative dataset, the PGC-PTSD GWAS13. Included 
among these were TSNARE1 (T-SNARE Domain Containing 1) and 
EXD3 (Exonuclease 3′–5′ Domain Containing 3). TSNARE1, the 
product of which is involved in intracellular protein transport, has 
been associated with risk taking54, which may predispose to PTSD 
through increasing the likelihood of exposure to traumatic events; 
twin studies suggest that risk for exposure to traumatic events is 
partially heritable5. EXD3, the product of which is involved in 
nucleic acid binding, has been associated with mathematical55 
and other cognitive abilities, which have been found in our study 
and others to be genetically negatively correlated with PTSD and 
mediated by socioeconomic status56. The MVP/PGC case-control 
meta-analyses also identified associations with PARK2 and PACRG, 
both of which are associated with susceptibility to both leprosy and 
intracellular pathogens57. It remains to be determined to what extent 
these associations reflect systems or processes that underlie PTSD 
pathophysiology, but we now have gene candidates discovered and 
replicated through unbiased searches that can be further examined 
in relation to their putative biological relationships to PTSD and 
other stress- and anxiety-related conditions. Supplementary Note 
includes a discussion of fine-mapping, functional annotation and 
CADD scores.

Analyses adjusting for genetic signals attributable to other major 
psychiatric disorders verified shared heritability with these other 
disorders while simultaneously confirming residual, distinct heri-
tability for PTSD. The high value of rg between PTSD symptom 
subdomains, which do not include overlapping items, supports 
the coherence of PTSD as a diagnostic construct from a biologi-
cal perspective: that is, the same genetic predisposition underlies 
different symptoms previously identified as syndromic. Genomic 
structural equation modeling recapitulated genetic and phenotypic 
correlations between PTSD subdomains, suggesting that each PTSD 
subdomain is largely explained by the same genetic architectures. 
Our model also suggests that, whereas PTSD symptoms constitute a 
genetically distinct and cohesive module, hyperarousal may be a rel-
evant subdomain linking the genetic and phenotypic relationships 
between PTSD, anxiety, major depressive disorder and neuroticism.

CRHR1 is in a large LD block on chromosome 17, making it dif-
ficult to discern its association with PTSD apart from other genes 
in that LD block. In our previous study of intrusive re-experiencing 
symptoms in MVP, we supported CHRH1 as the gene with the 
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strongest association using transancestral meta-analysis16. We now 
provide additional biological evidence that CRHR1 may be caus-
ally related to PTSD. PrediXcan-S analyses pointed to increased 
expression of CRHR1 in amygdala, hippocampus (the structure 
with the highest colocalization probability), frontal cortex and 
anterior cingulate, regions repeatedly implicated as structurally or 
functionally abnormal in PTSD2. These results must be replicated 
and extended to other brain regions such as ventromedial prefron-
tal cortex, shown to be integral to fear learning and extinction58, 
processes hypothesized to be central to PTSD onset and recov-
ery, respectively2,59. In concert with strong preclinical and clinical 
priors for the involvement of corticotropin-releasing hormone in 
stress-related disorders60, these observations position drugs that 
influence CRHR1 as strong therapeutic candidates for PTSD and 
related conditions. Whereas a placebo-controlled trial of a CRHR1 
antagonist in 128 women with PTSD produced unimpressive 
results61, our findings (albeit predominantly in men) suggest that 
there are potential unfulfilled opportunities with CRHR1 antago-
nists for PTSD that should be further explored, taking into account 
individual variation in CRHR1—including epigenetic variation62—
as a source of differential antagonist efficacy, in keeping with the 
march toward precision psychiatry63. Furthermore, our unexpected 
finding of a negative association between PTSD symptom severity 
and predicted CRHR1 expression in nucleus accumbens—which 
suggests that an agonist might be therapeutic—requires further 
investigation.

Our findings also tentatively support consideration of several 
drug classes as therapeutic repurposing candidates for PTSD. For 
example, acetylcholine receptor antagonists could be considered 
given their association in CMap with PLEKHM1. In a recent rodent 
study, the muscarinic receptor antagonist, scopolamine, augmented 
extinction in conjunction with exposure64 (although other studies 
suggest that positive allosteric modulation of M1 muscarinic activ-
ity enhances contextual fear conditioning)65. These results together 
suggest that a therapeutic role for cholinergic modulation in PTSD 
and other fear-related conditions, possibly in concert with exposure 

therapy, should be investigated. Angiotensin receptor antagonists, 
also identified as drug candidates through CMap, have a strong 
preclinical rationale for use in PTSD66–68 and are, in fact, currently 
undergoing testing in a randomized, placebo-controlled trial of 
losartan for PTSD (ClinicalTrials.gov Identifier: NCT02709018).

Our study has limitations. It is not currently known whether 
genetic risk for PTSD differs by trauma type (for example, combat 
exposure versus civilian trauma exposure) or developmental tim-
ing (for example, childhood maltreatment versus adult assault). 
Such differences could possibly underlie clinically and biologi-
cally important heterogeneity69. Studies of even larger sample size  
(which MVP will attain in the coming years) and greater granular-
ity with regard to types and chronology of trauma exposure will be 
needed to address these questions. It is also important to note that 
the PCL is a state, not a trait measure, and therefore reflects cur-
rent—but not necessarily worst-ever lifetime—severity. Our study 
also reports on a large AFR-ancestry sample, which we leveraged by 
inclusion of those individuals in our transancestral meta-analyses, 
but we relied, out of necessity, on the EUR ancestry sample for the 
post-GWAS analyses. We found, as might have been anticipated 
given previous work70, that PRS derived in the European sample 
did not predict well into the AFR sample. Nevertheless, we aspire 
to using new tools in the future to make better use of the ancestral 
diversity in MVP20.

We used transcriptome-wide association approaches to inform 
our drug repurposing inquiries. As recommended40, we attempted 
to limit tissue biases inherent to these approaches by constrain-
ing our sphere of interest to brain regions that were associated 
with PTSD severity through our partitioned heritability analyses. 
Nonetheless, the drug repurposing propositions, while hypothesis 
generating and intriguing, are just that. They are one piece of infor-
mation that might increase interest in testing the proposed drug 
classes in patients with PTSD; they must be buttressed by addi-
tional preclinical models, postmortem PTSD brain studies71 and 
complementary bioinformatic approaches72 supporting their use, 
as well as by serious consideration of their safety in this popula-
tion. We also remind readers that the present analyses rested solely 
on GWAS, thereby limiting inquiry to common genetic variants (to 
MAF = 0.01, which still capture significant heritable variance) and 
that roles for rare variants and structural variation should also be 
explored. Epigenetic factors almost certainly also play a role in a dis-
order such as PTSD10,73, which has traumatic stress as its precursor. 
Many other functional genomics tools can, and should, be brought 
to bear on the study of PTSD, expanding the scope of inquiry to 
encompass a holistic, integrative functional genomic analysis74 of 
this common, serious and yet still poorly understood and inade-
quately treated neuropsychiatric disorder.
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Methods
Subjects. All subjects are enrollees in the MVP18. Active users of the Veterans 
Health Administration healthcare system learn of MVP via an invitational mailing 
and/or through MVP staff while receiving clinical care, with informed consent 
and Health Insurance Portability and Accountability Act of 1996 authorization as 
the only inclusion criteria. As of July 2020, >825,000 veterans have enrolled in the 
program; for the current analyses, genotype data were available from approximately 
375,000 participants. Individuals with an EHR diagnosis of schizophrenia or 
bipolar disorder were excluded from participation in this study of PTSD. Research 
involving MVP is approved by the VA Central Institutional Review Board (IRB); 
the current project was also approved by VA IRBs in Boston, San Diego and  
West Haven.

PTSD case-control (binary) EHR-derived phenotype. Details on the validation and 
psychometric properties of this phenotype are reported in our recent publication23. 
In brief, we used manual chart review (n = 500) as the gold standard. For both the 
algorithm and chart review, three classifications were possible: probable PTSD, 
possible PTSD or no PTSD. We used Lasso regression with cross-validation, first 
to select statistically significant predictors of PTSD from the EHR and then to 
generate a predicted probability score of being a PTSD case for every participant 
in the study population. Probability scores ranged from 0 to 1. Comparing the 
performance of our probabilistic approach (Lasso algorithm) to a rule-based 
approach (International Classification of Diseases (ICD) algorithm), the former 
showed modestly higher overall percentage agreement with the latter compared  
to the ICD algorithm (80 versus 75%), higher sensitivity (0.95 versus 0.84) and 
higher overall accuracy (area under the curve = 0.95 versus 0.90). For purposes  
of the case-control binary EHR-derived phenotype used here, we applied a  
cutoff point of P = 0.7 to the Lasso results to determine final PTSD case-control 
status; we also selected a threshold score of 30 on the PCL from the MVP survey  
to minimize false-negative classifications (for example, due to an absence of  
PTSD screening information in the EHR). This final algorithm had 0.96  
sensitivity, 0.98 specificity, 0.91 positive predictive value and 0.99 negative 
predictive value for PTSD classification in the transancestral sample as  
determined by chart review.

PTSD symptom severity (quantitative trait) subphenotypes. The second optional 
questionnaire, the MVP Lifestyle Survey, includes the PTSD Symptom Checklist 
(PCL; DSM-IV version)26, which asks respondents to report the extent to which 
they had been affected in the previous month by symptoms in response to  
stressful life experiences. The PCL has 17 items, each scored on a five-point severity 
scale (1 = Not at all to 5 = Extremely). The re-experiencing (REX) symptom 
domain is covered by five items (score range 5–25), the avoidance (AVOID) 
domain by seven items (score range 5–35) and the hyperarousal (HYPER) domain 
by five items (score range 5–25), yielding an overall severity score (TOTAL) for  
the 17 items (score range 17–85). After accounting for missing phenotype data,  
the final sample size for TOTAL was 186,689 in the EUR sample and 25,318 in  
the AFR sample.

Genotyping, imputation and quality control. Genotyping, imputation and 
quality control within MVP have previously been described18. Briefly, samples were 
genotyped using a 723,305-SNP Affymetrix Axiom biobank array, customized 
for MVP. Imputation was performed with minimac3 (ref. 75) using data from the 
1000 Genomes Project. For postimputation quality control, SNPs with imputation 
INFO scores of <0.3 or MAF < 0.01 were removed from analysis. For the first 
tranche of data, 22,183 SNPs were selected through LD pruning using PLINK24,76, 
and Eigensoft77 was then used to conduct principal component analysis on 343,286 
and 2,504 MVP and1000 Genomes Project samples, respectively78. The reference 
population groups in the 1000 Genomes samples were used to define the groups 
EUR (n = 241,541) and AFR (n = 61,796) used in these analyses. Similar methods 
were used in the second data tranche, which contained 108,416 new MVP samples 
and the same 2,504 1000 Genomes Project samples. In the second tranche, 
80,694 participants were defined as EUR and 20,584 as AFR. In this manuscript, we 
report results as the meta-analysis of data from both tranches, either for EUR and 
AFR separately or as a transancestral meta-analysis.

Association analyses. Genome-wide association studies analysis was carried out 
by either logistic (for the two binary traits) or linear (for the quantitative traits) 
regression for each ancestry group and tranche using PLINK 2.0 (ref. 24) on dosage 
data, covarying for age, sex and the first ten PCs. Meta-analysis was performed 
using METAL25. We applied a standard genome-wide multiple testing correction 
(P < 5 × 10–8). No additional multiple testing correction was applied with respect 
to the number of phenotypes tested, due to their high genetic correlation (rg > 0.9). 
The association results were populated and visualized using Phenogram79. Risk 
loci were enumerated using FUMA80, and each locus containing more than ten 
SNPs was fine-mapped using CAVIAR27 for PCL-Total in the EUR population 
only, because no significant associations were observed in the AFR population; 
and using EHR case-control phenotypes for both populations. To understand 
the biological effect of SNPs associated with PTSD phenotypes, we analyzed the 
top SNPs (at suggested threshold P < 5 × 10−6) for their unique and overlapping 

distribution across the five phenotypes. The top SNPs for each phenotype were 
LD pruned (r2 = 0.2, kilobases (kb) = 250) to obtain independent signals, and 
investigated for their role as QTL for protein expression, DNA methylation and 
splicing (brain tissues) from QTLbase29.

LDSC and SNP-based heritability. Single-nucleotide polymorphism heritability 
was calculated using LDSC81 on the observed scale for continuous phenotypes, 
and on the liability scale (using prevalence of 10%) for the PTSD case-control 
definition. Genetic correlation was estimated among PTSD case-control, PCL-Total 
and all phenotypes from UK Biobank with suitable h2 accuracy for reliable rg 
estimation (h2 z ≥ 4). Heritability and genetic correlation analyses were performed 
using the 1000 Genomes Project European LD reference panel.

Conditional analysis with other psychiatric disorders. Considering the extensive 
comorbidity between major depression and PTSD82, we conducted conditional 
analysis with mtCOJO30 using genome-wide complex trait analysis software, 
with the MVP PCL-Total symptom severity summary statistics as the primary 
analysis and the PGC MDD2 (excluding 23andMe due to data unavailability)83 
summary statistics to condition the analysis for depression. Additional summary 
statistics for autism spectrum disorder, anorexia nervosa, anxiety (case-control), 
alcohol dependence, schizophrenia, bipolar disorder and attention deficit 
hyperactivity disorder were obtained from https://www.med.unc.edu/pgc/
results-and-downloads/.

Genomic structural equation modeling. Genomic structural equation 
modeling (GenomicSEM) was performed in R using the GenomicSEM 
package84. Multivariable linkage disequilibrium matrices were created using the 
1000 Genomes Project Phase 3 European reference. Exploratory factor analysis 
was used to estimate the most appropriate number of latent factors represented by 
the psychiatric phenotypes and psychopathologies tested, assuming a maximum 
number of latent factors equal to ntraits – 1. Confirmatory factor analysis was used 
to calculate factor loadings onto each latent factor(s). Standardized loading values 
are reported.

PRS analysis. The PRS (Supplementary Fig. 3) were calculated after using 
P-value-informed clumping with an LD cutoff of r2 = 0.05 within a 500-kb window, 
excluding the major histocompatibility complex region of the genome because 
of its complex LD structure. The European samples of the 1000 Genomes Project 
were used as the LD reference panel. PRS analysis was conducted based on GWAS 
summary association data using the gtx R package incorporated in PRSice v.1.25 
software81. For each PRS analysis, we calculated an approximate estimate of the 
explained variance from a multivariate regression model85. For comparison of 
cross-ancestry PRS (Supplementary Fig. 4) we clumped summary statistics from 
a recent PTSD GWAS13, applying an LD cutoff of r2 = 0.3 within a 500-kb window. 
These clumped summary statistics were used as a base for calculation of PRS in 
MVP individuals of EUR and AFR ancestry, independently, using PRSice v.2.0 
software86.

PrediXcan-S methods. To perform transcriptome-wide association analysis, 
PrediXcan-S (also known as MetaXcan)41 was used to impute gene expression 
based on GWAS summary statistics of PCL-Total with the reference gene 
expression data of 48 tissues from GTEx Release v.7. Gene expression association 
with PTSD PCL-Total was performed individually for each tissue (13 of which are 
brain tissues).

Colocalization analysis. Colocalization analysis was performed using the coloc 
R package42 for genes that were significant according to the transcriptome-wide 
association study results of brain tissues with gene expression data from GTEx 
Release v.8. The coloc.abf function was used to test for shared causal loci under 
four alternative hypotheses. Loci with posterior probability >90% were considered 
as strong evidence for the H4 hypothesis—that is, both traits are associated and 
share a single causal variant.

Drug repositioning analysis. CMap (https://clue.io/cmap) provides expression 
similarity scores for a specific expression profile with other drug-induced 
transcriptional profiles, including consensus transcriptional signatures of 83 drug 
classes—that is, transcriptional profiles induced by 2,837 drugs grouped into 
83 drug classes. Expression similarity is evaluated by means of scores that vary 
from –100 to 100, with –100 being the most extreme opposite expression profile 
and 100 the most extreme similar expression profile.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics generated and/or analyzed during the current study 
will be made available via dbGAP; the dbGaP accession assigned to the MVP is 
phs001672.v1.p. The website is https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001672.v1.p1.
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Extended Data Fig. 1 | Manhattan plot of MVP AFR case-control GWAS. Horizontal red line indicates P < 5 × 10−8. P-values are uncorrected. Results are 

based on logistic regression.
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Extended Data Fig. 2 | Polygenic risk scores in MVP and PGC-PtSD. Polygenic risk score (PRS) from MVP EUR case-control (left) and EUR PCL-total 

(right) applied to PGC-PTSD13 case-control phenotype with varying P-value thresholds (PT) on the x-axis and explained variance (R2) on the y-axis.  

The approximate estimate of the explained variance was calculated using a multivariate regression model. P values reported are two sided, and Bonferroni 

correction accounting for the number of P-value thresholds tested is P = 2.38 × 10−4.
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Extended Data Fig. 3 | Symptom and polygenic risk scores in veterans of African and european ancestry. Top shows density plot of PCL-total scores in 

veterans of AFR (salmon color) and EUR (teal color) ancestry. Bottom shows density plot of PRS scores (at P-value threshold 0.001) for MVP PCL AFR 

(salmon color) and MVP PCL EUR (teal color) derived from PGC PTSD EUR.
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Extended Data Fig. 4 | Gene Ontology (GO) term and Gtex tissue enrichment. a, Quantile-quantile plots between Gene Ontology (GO) term enrichment 

(one-sided test for positive relationship between tissue and genetic association) in original PCL-Total and conditioned PCL-Total (blue, autism spectrum 

disorder; purple, major depression; dark green, anorexia nervosa; light green, anxiety; pink, schizophrenia; light blue, bipolar disorder; orange, attention 

deficit hyperactivity disorder; red, all eight disorders simultaneously). b, Quantile-quantile relationship between GTEx tissue enrichment (one-sided 

test for positive relationship between tissue and genetic association) in original PCL-total and conditioned PCL-Total. To avoid over-plotting, enrichment 

P-values were divided into quantiles. Red diagonal lines indicate a one-to-one relationship between original and conditioned PCL-Total gene set and tissue 

enrichments. Two-sided tests were used to compare enrichment results.
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mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)
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Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.
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provided.
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was required and explain why not.
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Animals and other organisms
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Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 

caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 

say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 

photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 

information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 

how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 

in the manuscript, pose a threat to:

No Yes

Public health

National security
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Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
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Increase transmissibility of a pathogen
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ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 

provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 

enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 

number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 

used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 

repository, provide accession details.
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Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 

samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 

or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 

subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 

segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 

transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 

original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 

physiological signals (heart rate, respiration).
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Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 

second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 

ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 

mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 

subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 

etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 

metrics.
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