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Robust genetic nurture effects on education:
A systematic review and meta-analysis
based on 38,654 families across 8 cohorts
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Summary

Similarities between parents and offspring arise from nature and nurture. Beyond this simple dichotomy, recent genomic studies have

uncovered ‘‘genetic nurture’’ effects, whereby parental genotypes influence offspring outcomes via environmental pathways rather than

genetic transmission. Such genetic nurture effects also need to be accounted for to accurately estimate ‘‘direct’’ genetic effects (i.e., ge-

netic effects on a trait originating in the offspring). Empirical studies have indicated that genetic nurture effects are particularly relevant

to the intergenerational transmission of risk for child educational outcomes, which are, in turn, associated withmajor psychological and

health milestones throughout the life course. These findings have yet to be systematically appraised across contexts. We conducted a

systematic review and meta-analysis to quantify genetic nurture effects on educational outcomes. A total of 12 studies comprising

38,654 distinct parent(s)-offspring pairs or trios from 8 cohorts reported 22 estimates of genetic nurture effects. Genetic nurture effects

on offspring’s educational outcomes (bgenetic nurture ¼ 0.08, 95% CI [0.07, 0.09]) were smaller than direct genetic effects (bdirect genetic ¼

0.17, 95% CI [0.13, 0.20]). Findings were largely consistent across studies. Genetic nurture effects originating from mothers and fathers

were of similar magnitude, highlighting the need for a greater inclusion of fathers in educational research. Genetic nurture effects were

largely explained by observed parental education and socioeconomic status, pointing to their role in environmental pathways shaping

child educational outcomes. Findings provide consistent evidence that environmentally mediated parental genetic influences

contribute to the intergenerational transmission of educational outcomes, in addition to effects due to genetic transmission.

Introduction

Educational attainment is defined as the highest education

level a person attains. A related construct is educational

achievement, which refers to one’s school performance.

These two constructs are prospectively associated with ma-

jor psychological, social, economic, and health milestones

throughout the life course.1–3 Parents’ educational levels

are important early predictors of their offspring’s own

educational attainment and achievement.4 It is crucial to

understand the processes underlying this transmission of

educational attainment and achievement, which can lead

to cycles of disadvantage across generations.

Positive associations between parents’ education and

their offspring’s education are found in nearly every soci-

ety.5 For example, correlations between parents’ and off-

spring’s educational outcomes were consistent across 12

Western countries with estimates ranging from r ¼ 0.30

(Denmark) to 0.46 (U.S.).6 Parent-offspring resemblance

in educational outcomes can be attributed to nature (ge-

netic variants that offspring inherit from their parents)

and nurture (the environment that parents provide for

their offspring).7 These nature and nurture effects are com-

plex and intertwined. For example, the environment

created by parents can be partly shaped by genetic influ-

ences; parents with a higher genetic propensity for

learning may have a greater interest in activities such as

reading that, in turn, nurture learning in their offspring.

‘‘Genetic nurture’’ is used to describe the phenomenon

by which parental nature (i.e., parental genotype) influ-

ences offspring outcomes by shaping the environment

that parents provide.8Genetic nurture effects can therefore

be considered to be indirect effects from parental genotype

to offspring outcomes that are mediated through environ-

mental pathways whereas ‘‘nature’’ effects correspond to

the direct transmission of parental genotypes to the child.

Importantly, such direct genetic transmission from parent

to offspring can generate correlations between parental

and child educational outcomes in the absence of any ef-

fect of parental nurture in shaping child outcomes (a phe-

nomenon akin to passive gene-environment correlation).

Conversely, genetic nurture effects are free from genetic

confounding arising from genetic variants shared between

parents and offspring. As such, evidence of genetic nurture

effects suggests that environmental pathwaysmatter when

it comes to shaping children’s educational outcomes, even

after accounting for genetic transmission. The interpreta-

tion of genetic nurture effects must be considered in light
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of some limitations and assumptions, outlined here and

further developed in the discussion section. First, despite

the term ‘‘nurture,’’ genetic nurture may exist without

actual parent-offspring nurturing behavior but instead op-

erate through distal factors, inside or outside the home,

that are correlated with parental genotypes, such as in-

come or school quality. Thus, detecting genetic nurture ef-

fects does not, per se, identify which environmental path-

ways are implicated. In addition, genetic nurture effects

only reflect genuine environmental pathways of transmis-

sion when population stratification and assortative mating

are entirely accounted for. In the presence of population

stratification and assortative mating, spurious genetic

nurture effects may be detected even in the absence of

what has been termed cultural transmission (i.e., the causal

effect of the environment on child outcomes).9

Recent methodological advances combined with

genome-wide data have enabled the estimation of genetic

nurture and direct genetic effects. These methods rely on

genome-wide association studies (GWASs) for educational

attainment (EA) to generate polygenic scores. Specifically,

polygenic scores (PGSs) can be derived from GWASs of

EA to provide a single value reflecting an individual’s ge-

netic propensity to educational attainment (referred to as

‘‘EA PGS’’; it is a sum of an individual’s effect alleles

weighted by effect sizes obtained from the EA GWAS).

Two studies8,10 adopted a novel design to assess the magni-

tude of genetic nurture effects by constructing a parental

PGS based on alleles that are not transmitted to the

offspring. The association of such a PGSwith offspring out-

comes cannot arise from genetic transmission but can

occur through environmental pathways and thereby re-

flects genetic nurture effects by design. This approach is

termed the ‘‘virtual parent design’’ (further description in

supplemental note 1.1). Notably, because the effect of a

child’s genotype on their outcomes can reflect both direct

and genetic nurture effects, the association between a

child’s PGS and their own outcomes can be overestimated

when genetic nurture is not accounted for.8 Direct genetic

effects represent genetic influences that originate in the

child genotype and must be corrected for genetic nurture

effects. In addition to assessing non-transmitted and trans-

mitted alleles, genetic nurture and direct genetic effects

can also be obtained by estimating the effect of parental

PGS(s) on offspring outcomes, while statistically control-

ling for the offspring PGS (for further description see sup-

plemental note 1.2). This statistical control approach has

been applied in several studies.11,12 The statistical control

approach requires genotyped trios (mother-father-child)

to obtain unbiased estimates but can nonetheless provide

an approximation of genetic nurture effects when only ge-

netic data of parent-child pairs are available.13,14

Such approaches have now been implemented to esti-

mate genetic nurture and direct effects on child educa-

tional outcomes in different contexts, such as using co-

horts from different countries, using maternal and/or

paternal PGS(s), or capitalizing on increasingly larger

genomic datasets.15,16 However, these findings have yet

to be systematically appraised and moderators fully inves-

tigated. Here we present a meta-analysis of (1) genetic

nurture effects on child educational outcomes, (2) direct

genetic effects child educational outcomes, and (3) key

moderators of these effects.

Subjects and methods

Search strategy and study selection

This systematic review and meta-analysis was performed in line

with the Preferred Reporting Items for Systematic Reviews and

the Meta-Analyses (PRISMA17) statement and Meta-Analyses of

Observational Studies in Epidemiology (MOOSE18) guidelines (Ta-

bles S1 and S2). The protocol was registered on the Open Science

Framework (https://osf.io/q8b25/). The literature search was per-

formed in July 2020. We searched Ovid (MEDLINE, EMBASE, Psy-

cINFO), Web of Science Core Collection, and PubMed for peer-re-

viewed articles written in English. To estimate genetic nurture

effects on educational outcomes, we considered articles estimating

genetic nurture in parent(s)-offspring samples using EA PGSs.

Therefore, the publication period was limited to 2013 onward,

when the first EA GWAS19 became available. To retrieve relevant

publications, the search included terms related to: (1) educational

outcomes, (2) polygenic scores, and (3) genetic nurture effects. A

detailed literature search strategy and terms are presented in sup-

plemental note 2.1. Two authors (B.W. and T.S.) independently

screened titles and abstracts of all articles retrieved during the

search before reviewing the full text of potentially eligible studies

(see criteria below). Disagreements were resolved through discus-

sion with the senior researcher (J.-B.P.).

Eligible studies met the following criteria: (1) they assessed

offspring educational attainment (e.g., years of education, highest

degree obtained) or educational achievement (e.g., national test

scores or levels, school grades) in the general population, (2) the

exposure variable(s) included genomic proxies for education in

parents and offspring, measured in the form of PGSs20 derived

from the EA GWASs, and (3) they derived estimates for genetic

nurture effects on education based on one of the following designs

that rely on genotype data from parents and their biological

offspring: (a) virtual parent: testing whether the PGSs calculated

from parents’ non-transmitted alleles predict offspring educa-

tional outcomes; or (b) statistical control: testing whether parents’

PGSs predict offspring educational outcomes over and above off-

spring’s own PGS. For more information on inclusion criteria,

see supplemental note 2.2.

Quality assessment, data extraction, and effect size

calculation

The methodological quality of each included study was indepen-

dently assessed by two of the authors (B.W. and one additional

author among J.R.B., W.B., and R.C.) using an adapted version of

the Newcastle-Ottawa scale (NOS21). The NOS was adapted for

use on genetically informed studies and included nine questions

tapping into four wider aspects relevant to study quality, including

the quality of cohort selection, the assessment of exposure, the

level of comparability of the cohort, and the assessment of out-

comes. Overall study quality was indexed as a sum score ranging

from 0 to 9 (see supplemental note 2.3 for detailed scoring criteria

and Table S3 for scores of included studies).
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Data extraction for each included study was independently per-

formed by two of the authors (B.W. and one additional author

among J.R.B., W.B., and R.C.). The following data were extracted:

publication characteristics (study name, first author, year), sample

characteristics (cohort name, sample size, population source,

ethnicity, sex distribution), study design (virtual parent or statisti-

cal control), calculation of PGSs (the GWAS used to derive the PGS,

PGS threshold, source/parent of origin of genotype, whether stan-

dardized), education-related outcomes assessed (educational

outcome, outcome type, age at assessment, whether standardized),

effect size (estimation type, estimation, 95% CI or standard error

of the estimation), and confounding variables adjusted for. Where

information was missing, original study authors were contacted to

request the information.

As a common metric, we extracted (or converted effect sizes to)

standardized beta coefficients and corresponding standard errors

from all individual studies. These data were then included in our

meta-analytical models to derive the pooled estimate of genetic

nurture effects. For studies using the virtual parent design, we ex-

tracted standardized regression coefficients for the non-trans-

mitted PGS. For studies using the statistical control design, we ex-

tracted adjusted standardized regression coefficients for the

parental PGS(s), while controlling for the offspring’s PGS. For

studies reporting effect estimates in metrics other than standard-

ized beta or without corresponding standard errors, we trans-

formed the reported statistics using the formulae included in the

R package compute.es_0.2-4.22 One estimate of genetic nurture

derived from an average parental PGS was recalibrated to be com-

parable with other studies using PGSs of individual parents (for

justification see supplemental note 7.2). Estimates of direct genetic

effects were extracted when available or imputable (i.e., the differ-

ence between standardized regression coefficients of transmitted

PGS and non-transmitted PGS in the virtual parent design or

adjusted standardized regression coefficients of offspring’s PGS

while statistically controlling for parental PGSs). Whenever appli-

cable, we also derived unadjusted parental or child effects, namely

unadjusted regression coefficients of the effect of parental or off-

spring’s PGSs on offspring educational outcomes. For more infor-

mation on the effect size transformation and calculation, see sup-

plemental note 3.1.

With each article reviewed and coded by two authors, the two

coders had inter-rater reliabilities of 92.6% on quality assessment

and 97.8% on data extraction. Before moving on to analyses, dis-

crepancies were reviewed and arbitrated by the two coders, and

disagreements were resolved through discussion with the senior

researcher (J.-B.P.).

Statistical analysis

Analyses were conducted in R v.3.6.123 using the metafor package

(v.2.4-0).24 Since multiple effect sizes were reported in individual

studies and cohorts, we used three-level Multilevel Random-Ef-

fects Models (MREMs) to account for dependencies among effect

sizes within single studies/cohorts (i.e., correlation between effect

sizes). These models incorporate three variance components;

namely sampling variance at level 1 (variance that is unique for

each estimated effect size), within-cohort variance at level 2 (vari-

ance across outcomes within a cohort), and between-cohort vari-

ance at level 3 (variance across cohorts). For more information

on multilevel random-effects models, see supplemental note 3.2.

We assessed the heterogeneity between studies using the I2 statis-

tic and tested whether heterogeneity of effect sizes at level 2

(within-cohort heterogeneity) and level 3 (between-cohort hetero-

geneity) were statistically significant by conducting two separate

one-sided log-likelihood ratio tests.25 Publication bias was visually

assessed by checking the asymmetry of funnel plots and more

formally tested by using precision (sampling variance) as a moder-

ator in meta-analysis models.26

Meta-regression analyses were performed to explore potential

sources of heterogeneity in effect sizes. We tested four main cate-

gorical moderators: (1) whether the parental PGS was constructed

based onmaternal, paternal, or the mixture of both parents’ geno-

types, (2) the type of analytic method used to estimate the genetic

nurture effects (virtual parent, partial or full statistical control), (3)

the type of educational outcome assessed (educational attainment

or educational achievement), and (4) the specific GWAS summary

statistics used to derive PGSs (EA1 with N¼ 101,069,19 EA2 with N

¼ 293,723,27 or EA3 with N ¼ 1,131,88128). In addition, we tested

the moderating role of study characteristics (i.e., methodological

quality, sample size, and attrition in cohorts). For more informa-

tion on moderator analyses, see supplemental note 5. To explore

potential environmental pathways genetic nurture operates

through, we tested the extent to which genetic nurture effects

attenuated in estimates that adjusted for observed parental educa-

tional levels and family socioeconomic status (SES) (details in sup-

plemental note 6).

Lastly, we undertook a series of sensitivity checks to evaluate the

robustness of our results including computing robust confidence

intervals, evaluating the impact of recalibrating effects derived

from average parental PGS in one study,29 assessing the impact

of a potentially influential study,8 performing jackknife leave-

one-out analyses, and assessing the moderating effect of outcome

type within studies (i.e., when educational attainment and

achievement were measured in the same study). For more infor-

mation on sensitivity analyses, see supplemental note 7. In all

tests, a 2-tailed p < 0.05 was considered statistically significant.

Results

Study description

Twelve studies met the inclusion criteria (see Figure 1 for

the study selection procedure, Table 1 for a study summary,

and Table S4 for further details). The studies comprised

38,654 distinct offspring individuals with at least one gen-

otyped parent (for computation of total sample size, see

supplemental note 5.4) across eight study cohorts from

the United Kingdom, Australia, the United States, the

Netherlands, and Iceland. We derived k ¼ 22 estimates of

genetic nurture effects on educational outcomes and k ¼

16 estimates of direct genetic effects. The majority of ge-

netic nurture estimates were derived from studies using

the statistical control approach (68.2% [k ¼ 15]) and the

rest from the virtual parent design (31.8% [k ¼ 7]). Slightly

more studies focused on educational achievement (54.5%

[k ¼ 12]) versus educational attainment (45.5% [k ¼ 10]).

Genetic nurture effects on offspring educational

outcomes

Genetic nurture had a small but robust effect on offspring

educational outcomes (bgenetic nurture ¼ 0.08, 95% CI [0.07,

0.09], robust CI [0.06, 0.10]; Table 2; Figure 2). Variances
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among different estimates of genetic nurture effects was

largely attributed to sampling differences (I2Level 1 ¼

76.80%). Within-cohort heterogeneity was close to null

(I2Level 2 ¼ < 0.01%) and between-cohort heterogeneity

was minimal (I2Level 3 ¼ 23.20%), suggesting largely homo-

geneous genetic nurture effects across studies. We found

some evidence of publication bias in genetic nurture ef-

fects (Q ¼ 6.12, p ¼ 0.0134) although the funnel plot

was visually symmetric (Figure S1). This bias was no longer

present in the sensitivity analysis when excluding the

potentially influential study8 (Q¼ 0.88, p¼ 0.3486, see Ta-

ble S5). Results from jackknife analyses suggested no

unduly large effects arising from any individual study

(Figure S2). The supplemental material includes more find-

ings regarding unadjusted effects of parental PGS on

offspring educational outcomes (supplemental note 4.1,

Table S6, Figures S3, S5, and S6).

Direct genetic effects on offspring educational

outcomes

Direct genetic effects on offspring educational outcomes

were greater in magnitude than genetic nurture effects

(bdirect genetic ¼ 0.17, 95% CI [0.13, 0.20], robust CI [0.12,

0.21]; Table 2; Figure 2). Variance among estimates of direct

genetic effects was largely attributable to between-cohort

heterogeneity (I2Level 3 ¼ 82.33%), with 17.67% (i.e., I2Level

1) explained by random sampling and negligible within-

cohort heterogeneity (I2Level 2 ¼ < 0.01%). The funnel

plot (Figure S1) and formal test with precision as a moder-

ator (Table 2) suggested no publication bias in estimates of

Figure 1. Flow chart of identification of
eligible studies

direct genetic effects. Jackknife ana-

lyses suggested that no single study

unduly influenced meta-analysis esti-

mates (Figure S2). For findings

regarding unadjusted effects of child

PGS on educational outcomes, see

supplemental note 4.2, Table S6, Fig-

ures S4–S6.

Sources of heterogeneity in genetic

nurture and direct genetic effects

on educational outcomes

Moderator analyses (Table 3) sug-

gested similar effects of genetic

nurture on educational outcomes

regardless of whether effect sizes

were obtained using polygenic scores

derived from mothers only (bmother ¼

0.08, 95% CI [0.07, 0.10]), from fa-

thers only (bfather ¼ 0.07, 95% CI

[0.06, 0.09]), or from either parent or

a mean parental PGS (bparents ¼ 0.08,

95% CI [0.06, 0.10]). Likewise, whether PGSs were based

onmothers, fathers, or the mixture of both did not moder-

ate direct genetic effects (bmother ¼ 0.17, 95% CI [0.12,

0.23], bfather ¼ 0.20, 95% CI [0.13, 0.27], bparents ¼ 0.16,

95% CI [0.12, 0.20]). There was no evidence for moder-

ating effects of parent of origin (pgenetic nurture ¼ 0.6680

and pdirect genetic ¼ 0.4885). These findings were robust to

the removal of the potentially influential study8 (Table

S8). Results for other potential moderators are reported in

supplemental note 5 and Table S7. After adjusting for

phenotypic family-level factors (i.e., parental educational

level or family SES), genetic nurture effects attenuated to

a large extent (kunadjusted ¼ 22, bunadjusted ¼ 0.07, 95% CI

[0.07, 0.08] versus kadjusted ¼ 18, badjusted ¼ 0.02, 95% CI

[0.01, 0.03], padjustment < 0.0001); for more details, see sup-

plemental note 6.

Discussion

Across 12 studies that included 38,654 distinct parent(s)-

offspring pairs or trios from 8 cohorts, we found strong ev-

idence to support the notion that genetic nurture plays an

important role in children’s educational outcomes. The

magnitude of genetic nurture effects was largely consistent

across studies, was similar in both parents, and was largely

explained by parental educational level and family socio-

economic status. After accounting for genetic nurture, we

also observed substantial direct genetic effects on offspring

education, due to genetic inheritance.
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Table 1. Studies investigating genetic nurture effects on educational outcomes

Cohorta Publication Outcomeb Effective Nc Design GWASd NOS scoree

Born in Bradford birth cohort (BiB), UK Armstrong-Carter et al.13 key stage 1 school-based exam score 1,267 statistical control EA3 6.5

The Brisbane Adolescent Twin Study (BATS),
Australia

Bates et al.10 The Queensland Core Skills Test 2,335 virtual parent EA2 7.5

The Brisbane Adolescent Twin Study (BATS),
Australia

Bates et al.15 The Queensland Core Skills Test 2,335 virtual parent EA3 7.5

The Environmental Risk Longitudinal Twin
Study (E-Risk), UK

Belsky et al.30 GCSE academic qualification level 1,574 statistical control EA3 7.0

The Framingham Heart Study (FHS), USA Conley et al.12 years of schooling 968 statistical control EA1 5.0

The Netherlands Twin Register (NTR), the
Netherlands

de Zeeuw et al.16 highest obtained degree;
nationwide educational achievement test

1,931;1,120 virtual parent EA3 7.0

The Icelandic quantitative trait cohorts
(deCODE), Iceland

Kong et al.8 years of education completed 21,637 virtual parent EA2 7.5

The Framingham Heart Study (FHS), USA Liu14 years of education completed 6,298 statistical control EA2 6.5

The Avon Longitudinal Study of Parents and
Children (ALSPAC), UK

Morris et al.11 key stage 4 school-based exam score 1,095 statistical control EA3 7.0

The Minnesota Twin Family Study (MTFS),
USA

Rustichini et al.31 years of education completed;high school
grades

1,690;
1,583

statistical control EA3 6.0

The Environmental Risk Longitudinal Twin
Study(E-Risk), UK

Wertz et al.32 GCSE academic qualification level 860 statistical control EA3 6.0

The Minnesota Center for Twin and Family
Research (MCTFR) a, USA

Willoughy et al.29 years of education completed 2,517 statistical control EA3 5.5

aParticipants in the MCTFR cohort were drawn from several longitudinal studies including the MTFS cohort, so in the meta-analysis they were considered as the same cohort.
bEducational outcomes consists of two broad categories, i.e., attainment and achievement. Years of schooling/education completed and highest obtained degree are categorized as educational attainment; the rest are cate-
gorized as educational achievement. More details of outcomes, including assessment time, are provided in Table S3.
cThe largest sample size used to assess genetic nurture effects.
dGWASs (genome-wide association studies) used to derive the polygenic scores, including EA1 with N ¼ 101,069,19 EA2 with N ¼ 293,723,27 and EA3 with N ¼ 1,131,881.28
eQuality score ranged from 0 (lowest) to 9 (highest) on methodological quality using an adjusted version of the Newcastle-Ottawa scale, criteria showed in subjects and methods and detailed scoring showed in Table S4.
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Genomic prediction of education: Evidence for genetic

nurture and direct genetic effects

We observed a small effect of genetic nurture (bgenetic nurture

¼ 0.08) on educational outcomes. Scaled with reference to

two of the included studies, this could be translated to

approximately 2 months of schooling14,29 or 0.07 of GPA

(4.0 scale)31 gained in the United States for every standard

deviation change in parental EA PGS(s). Our pooled esti-

mate of direct genetic effects (bdirect genetic ¼ 0.17) free

from inflation due to genetic nurture corresponds to the

lower bound of previous genomic predictions of educa-

tional outcomes within twin pairs (e.g., b ¼ 0.17–27).29,33

While we did observe substantial heterogeneity across co-

horts in estimates of direct genetic effects, this may reflect

differences in cohort characteristics (i.e., measurement of

achievement or attainment) rather than actual heteroge-

neity in direct genetic effects between populations. Previ-

ous findings suggested that differential effects of the

same variants across environmentsmay reflect heterogene-

ity in phenotypic measurement or gene-environment in-

teractions rather than true genetic heterogeneity.28,34

It is worth noting that our pooled estimate of genetic

nurture represents the effects from an individual parent

and should therefore be recalibrated to compare its relative

size to the pooled estimate for direct genetic effects. With

genetic nurture from both parents explaining potentially

1.28% (2*bgenetic nurture
2) of variance in offspring educa-

tional outcomes, the standardized effect size of genetic

nurture from both parents can be estimated to be 0.11

(i.e., O1.28%). As such, the ratio of genetic nurture effects

originating in both parents and direct genetic effects orig-

inating in the offspring is about 0.65 (further information

regarding this ratio is provided in supplemental note 7.2).

This ratio corresponds well to the ratio of 0.63 derived

from the relatedness disequilibrium regression (RDR)

method, in which heritability is estimated by exploiting

variation in relatedness due to randomMendelian segrega-

tion.35 In addition to methods relying on genomic data of

children and their biological parent(s), a few recent studies

have implemented sibling33 and adoption36,37 designs to

investigate genetic nurture effects. As evidence from these

alternative designs accumulate, it will be key to examine

the consistency of estimates across designs.38

It is worth noting that this meta-analysis can only detect

genetic nurture and direct genetic effects to the extent that

PGS capture heritability in educational outcomes. To date,

PGSs based on the most accurate GWASs still only capture

a fraction of the corresponding heritabilities.39,40 RDR find-

ings provided a ‘‘ceiling’’ for potential gains from increasing

the predictive accuracy of PGSs.35 Our estimate of genetic

nurture based on PGSs explained 1.28% (supplemental

note 7.2) of variance in offspring educational outcomes

(versus 6.6% for RDR), while direct genetic effects based

on PGSs explained 2.89% of variance in educational out-

comes (calculated as bdirect genetic
2) (versus 17% for RDR).

While missing heritability may lead to underestimates of

the true extent of genetic nurture, assortative mating and

population stratification may have inflated our genetic

nurture effects.9 Bias resulting from assortative mating

has been found to be small in magnitude,8 although its

exact magnitude remains unclear.9 Population stratifica-

tionwas controlled for by using principal component anal-

ysis inmost studies included in themeta-analysis but resid-

ual population stratification may still exist. Emerging

methods should, in the future, better account for these po-

tential sources of bias by capitalizing further on family-

based designs.41–43

Genomic prediction of education: Sources of

heterogeneity

There are several explanations for observing genetic

nurture effects of similar magnitude in mothers and

Table 2. Three-level random effects models of genetic nurture and direct genetic effects on educational outcomes

Genetic nurture effects Direct genetic effects

kcohort 8 8

kestimate 22 16

bpooled 0.08 0.17

b95% CI 0.07–0.09 0.13–0.20

brobust CI
a 0.06–0.10 0.12–0.21

s2
Level 2 c2

< 0.01, p ¼ 0.5000 c2
< 0.01, p ¼ 0.5000

s2
Level 3 c2

¼ 1.94, p ¼ 0.0817 c2
¼ 5.09, p ¼ 0.0120

I2 Level 1 76.80% 17.67%

I2 Level 2 <0.01% <0.01%

I2 Level 3 23.20% 82.33%

Publication bias Q ¼ 6.12, p ¼ 0.0134 Q ¼ 0, p ¼ 0.9976

b, standardized regression coefficients (i.e., the metric of effect sizes); CI, confidence interval; c2 statistics from likelihood-ratio test to test within-cohort variance
(s2

Level 2) and between-cohort variance (s2
Level 3) for significance; I

2, % of the total variance accounted for by random sampling variance (level 1), variation within
cohorts (level 2), variation between cohorts (level 3); publication bias was assessed by using precision (sampling variance) to predict the effect size.
aRobust confidence intervals were cluster-robust variance estimations; for details see supplemental note 7.1.
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fathers. First, it is possible that both parents are equally

important in shaping the environment that, in turn, influ-

ences their offspring’s educational outcomes. However, our

findings do not preclude the possibility that parents may

influence child educational outcomes through different

mechanisms (e.g., via distal factors like increased family in-

come or by proximal factors like reading to the child).

Behavioral studies have shown that the relationship be-

tween parental involvement and children’s educational

achievement was equally strong for fathers and

mothers.44,45 In light of this and our findings, a renewed

emphasis on the role of fathers is needed and, whenever

possible, fathers should be included in research and inter-

vention efforts. Research should also examine genetic

nurture effects in alternative family arrangements (e.g.,

single-parent families) and in families with varying levels

of parental involvement. In the presence of genuine

nurturing effects, we would expect genetic nurture effects

Figure 2. Forest plot of multilevel random effects model for genetic nurture effects and direct genetic effects on educational out-
comes
Effect sizes were standardized beta coefficients, which represent howmany standard deviations of change in educational outcome occur
per standard deviation of change in EA PGS.
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Table 3. Moderator analysis: sources of heterogeneity in MREM of genetic nurture effects and direct genetic effects

Genetic nurture effects Direct genetic effects

Moderator Subgroup kcohort kestimate bpooled b95% CI pmoderator kcohort kestimate bpooled b95% CI pmoderator

Parental PGSa Maternal 6 9 0.08 0.07–0.10 .6680 4 4 0.17 0.12–0.23 .4885

Paternal 4 6 0.07 0.06–0.09 – 2 2 0.20 0.13–0.27 –

mixed parental 5 7 0.08 0.06–0.09 – 6 10 0.16 0.12–0.20 –

Designb virtual parent 3 7 0.07 0.06–0.08 .0443 3 5 0.15 0.08–0.21 .5039

partial statistical control 5 9 0.09 0.07–0.10 – 5 8 0.18 0.13–0.24 –

full statistical control 2 6 0.09 0.06–0.11 – 2 3 0.15 0.08–0.22 –

Outcomec educational attainment 4 10 0.09 0.07–0.11 .3079 4 7 0.14 0.08–0.19 .0466

educational achievement 6 12 0.07 0.05–0.10 – 6 9 0.19 0.14–0.24 –

GWASd EA3 6 15 0.09 0.08–0.11 .0066 6 11 0.18 0.14–0.23 .1784

EA2 3 7 0.07 0.06–0.08 – 3 5 0.14 0.08–0.20 –

Methodological qualitye NOS score 8 22 �0.02 �0.03–0.00 .0072 8 16 0.01 �0.07–0.08 .8692

Sample sizef effective N 8 22 0.00 0.00–0.00 .0225 8 16 0.00 �0.01–0.00 .7390

Attrition in cohortg attrition rate 8 22 �0.01 �0.05–0.03 .7046 8 16 0.03 �0.07–0.13 .5466

Parental education/ family SESh unadjusted 8 22 0.07 0.07–0.08 <.0001 8 16 0.17 0.13–0.20 .0098

adjusted 5 18 0.02 0.01–0.03 – 3 11 0.14 0.10–0.18 –

For moderators marked with footnotes a–d and h, dummy variables were created for each category of the potential moderator. In order to obtain the mean effect (including significance and confidence interval) of all cat-
egories, separate meta-regressions were conducted, taking each category as the reference category in turn.
For moderators marked with footnotes e–g, the moderator was treated as a continuous variable.
aParental genotype used to calculate polygenic score (PGS) as a categorical moderator with three categories: maternal (PGS derived from maternal genotype), paternal (PGS derived from paternal genotype), and mixed
parental (PGS derived from mixed information from mothers and fathers, such as PGS from maternal or paternal genotype, PGS from the average of maternal and paternal genotype).
bStudy design applied as a categorical moderator with three categories: virtual parent (using non-transmitted PGS to predict offspring EA), partial statistical control (using PGS of one parent to predict offspring educational
outcomes while controlling for child’s PGS), and full statistical control (using PGS of one parent to predict offspring educational outcomes while controlling for child’s and the other parent’s PGS).
cType of the outcome assessed as a dichotomized moderator (educational attainment [the highest level of education completed, e.g., year of schooling], educational achievement [performance at school, e.g., high school
grades]).
dGWASs used to compute PGS as a dichotomized moderator: EA328 (N¼ 1,131,881) and EA227 (N¼ 293,723). One study used EA119 (N¼ 101,069) but only reported estimates adjusted for parental education level, and thus
was not included in the main meta-analysis but was included in the moderator analysis (moderator h).
eQuality score assessed by the adapted NOS (see details in Table S3), reflecting the methodological rigor of the study, as a continuous moderator.
fNumber of participants to compute the estimate, reflecting the effective sample size, as a continuous moderator.
gAttrition in the cohort due to selective genotyping or outcome availability, reflecting the cohort representativeness, as a continuous moderator.
hFamily-level adjustment as a binary moderator (0, unadjusted estimates; 1, adjusted estimates [estimates adjusted for parental education level or family socioeconomic status]).
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on educational outcomes to vary accordingly (e.g., be

stronger for the most involved parent), which could help

shed further light on environmental factors mediating ge-

netic nurture effects. Second, genetic nurture may operate

through the broad family-level environments shared by

both parents (e.g., neighborhood). Future investigations

are required to identify such environmental mediators. A

new genomic variance decomposition method46 makes it

possible to estimate the total variance explained by

maternal versus paternal indirect genetic effects (not

limited to PGS), and the covariance between maternal

and paternal effects. This opens up opportunities to under-

stand intrafamilial mechanisms in more depth. Third,

spurious genetic nurture effects can arise from residual

population stratification, in the absence of cultural trans-

mission. This may help to explain why intergenerational

twin studies, which are not affected by population stratifi-

cation, report very weak or no evidence for cultural trans-

mission. For example, twin studies found very little evi-

dence of cultural transmission for intelligence,47,48

reading performance,49,50 and educational attainment.51

Alternatively, it is possible that the polygenic score for ed-

ucation captures genuine genetic nurture effects reflecting

a multiplicity of small environmentally mediated effects

via a large range of intermediate variables within or outside

the home. In which case, we would expect intergenera-

tional twin studies to find only weak effects for any partic-

ular phenotype. We discuss additional sources of heteroge-

neity in genetic nurture in supplemental note 5.

Notably, accounting for observed measures of parental

education or family SES decreased the effect of genetic

nurture by three quarters. This suggests that a substantial

amount of genetic nurture effects may be attributed to

environmental pathways directly related to parental edu-

cation, occupation, and income. It echoes the evidence

that children’s educational outcomes are influenced by

the availability of resources in their family, indicated either

by socioeconomic background or the education of their

parents.5,52,53 Future investigations should explore specific

family-level pathways through which genetic nurture op-

erates to inform compensatory interventions (e.g., finan-

cial support versus schooling access). Importantly, the

finding that broad family-level social economic character-

istics largely explain genetic nurture effects does not pre-

clude the importance of proximal factors such as parenting

in the chain of factors leading to educational outcomes.

Implications

Our study highlights that the environment created by par-

ents relates to their offspring’s educational outcomes inde-

pendent of genetic transmission. Although the magnitude

of this genetic nurture effect is small based on conven-

tional metrics,54 it is likely to be an underestimate given

that PGSs capture only a fraction of heritability in educa-

tional outcomes—and thus will likely increase as the

explanatory power of PGS increases. Understanding the

specific environmental pathways through which genetic

nurture operates may help to design better compensatory

interventions to break the intergenerational cycle of

educational underachievement. Such interventions could

target environmental pathways by either targeting distal

risk factors for educational outcomes (e.g., parental educa-

tion, income distribution, equal access to good quality

schooling) or more proximal pathways (rearing environ-

ment such as parenting). Nevertheless, it is important to

note that how well children do in school does depend to

a substantial degree on the genetic lottery (i.e., inheriting

more genetic variants associated with educational success),

a finding that policy makers often overlook55 or arguably

misinterpret.56 At a broader level, our findings provide

strong evidence that differences in education are consis-

tently influenced by both endogenous sources of educa-

tional inequalities (e.g., one’s own genetics) and exoge-

nous sources of inequalities including genetic nurture

effects originating in parents and mediated partially

through broad-level family characteristics like SES. All

these endogenous and exogenous sources of educational

inequalities are largely beyond a child’s responsibility/con-

trol and each may therefore further motivate compensa-

tory interventions.

Limitations

First, we cannot completely rule out bias from unmeasured

assortative mating, residual population stratification, and

sibling genetic nurture,41,42 which may inflate genetic

nurture effects. Second, all included studies were conduct-

ed in a few developedWestern countries. The similarities in

populations and social contextsmay lead to an overestima-

tion of the homogeneity of genetic nurture effects. Third,

all included studies were based on European ancestry pop-

ulations and thus have a profound Eurocentric bias. The

generalizability of our estimates to non-European popula-

tion is unclear as genomic measures are not necessarily ac-

curate across populations.57 For example, the PGS con-

structed from EA3, which was conducted in white

Europeans, captures 10.6% of the variation of educational

attainment in white Americans but only about 1.6% of the

variation among African Americans.28 Fourth, differential

measurement error in outcomes may affect genetic

(nurture) effect sizes. Comparison between different

outcome types (e.g., educational attainment versus

achievement) should therefore be interpreted with

caution.

Conclusions

This meta-analysis demonstrates that the genetics of par-

ents influence their children’s educational outcomes

through the rearing environments that parents provide.

This ‘‘genetic nurture’’ effect is largely consistent across

studies and is similar for mothers and fathers. Genetic

nurture effects originating in both parents are about two

thirds of the size of direct genetic effects originating in

the offspring due to genetic transmission. The effect of ge-

netic nurture on child educational outcomes is largely

1788 The American Journal of Human Genetics 108, 1780–1791, September 2, 2021



explained by observed parental education and socioeco-

nomic status. Further research is required to explore other

downstream environmental pathways through which ge-

netic nurture affects the intergenerational cycle of educa-

tional achievement.

Data and code availability

The dataset generated during this study can be retrieved by using

the search strategy and term reported in supplemental notes 2 and

3.1. All included estimates are reported in detail in Table S4. The

code supporting the current study is available on the Open Science

Framework (https://osf.io/gau5y/).

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.07.010.
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