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Abstract

Purpose of review A polygenic risk score (PRS) is a measure of genetic liability to a disease and is typically normally dis- 

tributed in a population. Individuals in the upper tail of this distribution often have relative risk equivalent to that of monogenic  

form of the disease. The majority of currently available PRSs for coronary heart disease (CHD) have been generated from 

cohorts of European ancestry (EUR) and vary in their applicability to other ancestry groups. In this report, we review the 

performance of PRSs for CHD across different ancestries and efforts to reduce variability in performance including novel 

population and statistical genetics approaches.

Recent Findings PRSs for CHD perform robustly in EUR populations but lag in performance in non-EUR groups, particularly 

individuals of African ancestry. Several large consortia have been established to enable genomic studies in diverse ancestry 

groups and develop methods to improve PRS performance in multi-ancestry contexts as well as admixed individuals. These 

include fine-mapping to ascertain causal variants, trans ancestry meta-analyses, and ancestry deconvolution in admixed 

individuals.

Summary PRSs are being used in the clinical setting but enthusiasm has been tempered by the variable performance in 

non-EUR ancestry groups. Increasing diversity in genomic association studies and continued innovation in methodologi-

cal approaches are needed to improve PRS performance in non-EUR individuals for equitable implementation of genomic 

medicine.

Keywords Coronary heart disease · Polygenic risk score · Risk prediction · Multi-ancestry · Diverse · Transethnic

Introduction

Coronary heart disease (CHD), a leading cause of morbidity  

and mortality worldwide [1, 2], has an estimated heritabil- 

ity of 40–60%. Monogenic CHD is typically a result  

of pathogenic variants in LDLR, APOB, or PCSK9, leading This article is part of the Topical Collection on Cardiovascular 

Genomics
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to familial hypercholesterolemia (FH), and significantly 

elevated plasma low density lipoprotein cholesterol levels 

[3]. The prevalence of heterozygous FH is estimated to be ~  

1:250. In most of the population, heritable risk for CHD 

is polygenic, i.e., due to aggregation of low-impact effects 

across many genetic variants [3]. Genetic testing for CHD 

typically involves sequencing of FH-related genes alone and 

does not account for polygenic risk.

A polygenic risk score (PRS) for CHD  (PRSCHD) is the 

(effect-size) weighted sum of risk alleles, and provides a 

measure of genetic predisposition to CHD [3]. As a summa-

tion of many small effect size risk alleles, a PRS inherently 

has a normal distribution in the population. Those at the tail 

ends of this distribution may possess significantly greater or 

reduced genetic predisposition to CHD compared to those in 

the middle of the distribution.

PRSs for CHD have been evaluated in several studies [4–6, 

7•, 8••, 9–14] and found to be associated with CHD inde-

pendent of clinical risk factors such as diabetes, hypercho-

lesterolemia, smoking, obesity, hypertension, and family his-

tory of CHD [7•, 8••, 9, 12, 15, 16]. Individuals likely to be  

impacted the most would be those at intermediate risk where 

initiation of lipid-lowering therapy is subject to uncertainty, 

younger individuals among whom prevalence of clinical risk 

factors is low, and those at the extremes of the PRS distribu-

tion since their risk category is more likely to change [17•, 

18]. These studies collectively highlight the potential of 

PRS to refine CHD risk estimates, thereby guiding manage-

ment since genetic risk is modifiable by lifestyle and medi-

cal therapy such as the use of lipid lowering drugs. Initial 

PRSs included only genome-wide significant variants and 

were modestly associated with CHD; typically the hazard  

ratio (HR) was 1.1–1.3 for incident CHD events per 1-standard  

deviation (1-SD) increase in PRS [4, 5, 19] and the loci 

explained only a small proportion of CHD heritability [20]. 

Recent PRSs include millions of variants across the genome 

and are more strongly associated with CHD—with a HR/

OR as high as 1.7 per 1-SD increase in PRS and conferring 

roughly threefold increased risk at the tail end of the PRS 

distribution, similar to the risk associated with a monogenic 

cause such as FH [7•, 8••, 9]. This observation suggests that 

heritability of CHD is highly polygenic [21].

The majority of genomic association studies to date have  

consisted of European-ancestry (EUR) populations; in 

2009 ~ 14% of GWAS participants were of non-European 

descent which increased to ~ 20% by 2016 [22, 23]. There is 

insufficient empirical data for other ancestry groups, resulting 

in subpar performance of PRSs in non-EUR individuals [17•,  

24–26]. A large-scale multi-ancestry GWAS for CHD  

[25] recently identified the first eight genome-wide sig-

nificant loci among AFR and Hispanic ethnicity groups,  

15 years after the first GWAS for CHD were published 

[31–33]. Before the goal of using polygenic risk predic-

tion in the clinical setting can be realized, there is a need 

to improve performance of PRS across ancestrally diverse  

populations.

In this paper, we review the performance of PRSs for 

CHD across different ancestry populations, current efforts 

to improve genomic risk prediction in these groups, and 

clinical implications of these findings.

Reduced Transferability of  PRSCHD Across 
Diverse Ancestries

The portability of PRSs to non-EUR groups is affected by 

differences in allele frequencies, effect sizes, and the degree 

of correlation of alleles between nearby variants (i.e., link-

age disequilibrium) among ancestral groups [27, 28]. The 

discrepancy in performance is most noticeable when EUR-

derived scores are applied to individuals of African ances-

try (AFR) since this population differs the most in terms of  

stretches of sequences of allele combinations across the 

genome (i.e., haplotype structure) which influences the cor-

relation between measured and causal variants [27–29]. In 

the electronic Medical Records and Genomics (eMERGE) 

Network, a US-based multi-site cohort with EHR-linked 

biorepositories [17•], a 1-SD increase in a genome-wide 

 PRSCHD derived and validated using UK Biobank cohort 

[7•] was associated with a relative risk of 1.53 in EUR indi-

viduals but only 1.27 in the AFR subpopulation of the same 

cohort (p-interaction = 0.003) (Table 1) [17•]. Another 

study assessed the strength of association of a EUR-derived 

genome-wide  PRSCHD with CHD derived from six studies 

across five major ancestral/ethnic groups [24]. Based on 

1-SD increase in  PRSCHD in ancestry-level meta-analyzed 

results, the strength of association with CHD for EUR, 

South Asian, East Asian, and Hispanic groups was simi-

lar with an OR of 1.60, 1.47, 1.66, and 1.52, respectively. 

The association was noticeably weaker in AFR individuals 

with an OR of 1.25 [24] (Table 1). This same genome- 

wide  PRSCHD [7•] when applied to a diverse validation  

cohort within the Million Veteran Program showed,  

based on ratio of log-transformed ORs, a relative strength 

of association of 80% and 35% in EUR- and AFR- 

subpopulations, respectively [25]. Similar results were also 

observed in another study [30] where a  PRSCHD was associ-

ated with CHD with an OR per 1-SD of 1.52, 1.50, and 1.2 

among EUR, Hispanic, and AFR subgroups of the Mount 

Sinai BioMe cohort, respectively (Table 1). 
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Table 1  Ancestry-stratified evaluation of  PRSCHD

Evaluated PRS 

(PGS Catalog ID)

Ancestry Sample Size Study Reference CHD PRS Effect Size 

per 1-SD increase 

[95% CI]

Discrimination 

Metrics

GPS_CAD 

(PGS000013)

African Ancestry 6,979  [30] Prevalent OR: 1.29 [1.23, 

1.34]

AUROC: 0.58

GPS_CAD 

(PGS000013)

European Ancestry 10,344  [30] Prevalent OR: 1.52 [1.46, 

1.58]

AUROC: 0.63

GPS_CAD 

(PGS000013)

Hispanic or Latin 

American Ancestry

7,048  [30] Prevalent OR: 1.50 [1.44, 

1.57]

AUROC: 0.63

GPS_CAD 

(PGS000013)

European Ancestry 39,758  [17•] Incident HR: 1.50 [1.43, 

1.56]

C-index: 0.72

metaGRS_CAD 

(PGS000018)

European Ancestry 39,758  [17•] Incident HR: 1.53 [1.46, 

1.60]

C-index: 0.72

GPS_CAD 

(PGS000013)

African Ancestry 7,070  [17•] Incident HR: 1.19 [1.07, 

1.33]

C-index: 0.66

metaGRS_CAD 

(PGS000018)

African Ancestry 7,070  [17•] Incident HR: 1.27 [1.13, 

1.43]

C-index: 0.66

GPS_CAD 

(PGS000013)

Hispanic or Latin 

American Ancestry

2,194  [17•] Incident HR: 1.16 [0.96, 

1.41]

C-index: 0.66

metaGRS_CAD 

(PGS000018)

Hispanic or Latin 

American Ancestry

2,194  [17•] Incident HR: 1.53 [1.23, 

1.90]

C-index: 0.68

GPS_CAD 

(PGS000013)

European Ancestry 474,498  [24] Prevalent OR: 1.60 [1.44, 

1.78]

N/A

GPS_CAD 

(PGS000013)

African Ancestry 16,755  [24] Prevalent OR: 1.25 [1.12, 

1.40]

N/A

GPS_CAD 

(PGS000013)

East Asian Ancestry 3,988  [24] Prevalent OR: 1.66 [1.47, 

1.86]

N/A

GPS_CAD 

(PGS000013)

Hispanic or Latin 

American Ancestry

9,085  [24] Prevalent OR: 1.52 [1.43, 

1.62]

N/A

GPS_CAD 

(PGS000013)

South Asian Ancestry 8,102  [24] Prevalent OR: 1.47 [1.36, 

1.59]

N/A

GPS_CAD 

(PGS000013)

European Ancestry 3,081  [11] Early-onset  

mycardial 

infarction 

(age ≤ 55 years)

OR: 2.06 [1.89, 

2.25]

N/A

GPS_CAD 

(PGS000013)

African Ancestry 1,298  [11] Early-onset  

mycardial 

infarction 

(age ≤ 55 years)

OR: 1.46 [1.28, 

1.66]

N/A

GPS_CAD 

(PGS000013)

Asian Ancestries 544  [11] Early-onset  

mycardial 

infarction 

(age ≤ 55 years)

OR: 2.16 [1.35, 

1.59]

N/A

GPS_CAD 

(PGS000013)

East Asian Ancestry 919  [11] Early-onset  

mycardial 

infarction 

(age ≤ 55 years)

OR: 1.56 [1.29, 

1.88]

N/A

MetaPRS_CAD 

(PGS000337)

East Asian Ancestry 10,999  [44] Prevalent OR: 1.84 [1.74, 

1.94]

AUROC: 0.67 [95% 

CI 0.66, 0.69]

metaGRS_CAD 

(PGS000018)

African Ancestry 64,840  [25] Prevalent and 

Incident

OR: 1.21 [1.10–

1.14]

N/A

metaGRS_CAD 

(PGS000018)

European Ancestry 225,603  [25] Prevalent and 

Incident

OR: 1.38 [1.36–

1.39]

N/A

metaGRS_CAD 

(PGS000018)

Hispanic or Latin 

American Ancestry

30,641  [25] Prevalent and 

Incident

OR: 1.39 [1.34–

1.43]

N/A

GPS_CAD 

(PGS000013)

African Ancestry 64,840  [25] Prevalent and 

Incident

OR: 1.10 [1.08–

1.12]

N/A
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New Insights into Predictive Performance 
of PRS in Diverse Ancestry Groups and Novel 
Methods Development

In general, the accuracy of PRS risk prediction is highest in 

the population from which GWAS summary statistics were 

derived [27]. The strong Euro-centric bias in large GWAS 

and lack of well-powered studies in minority groups [22, 

23] lead to poor generalizability of PRS [28]. Due to lack of 

available data, attempting to extend existing PRS to other 

populations or to create de novo PRS in these groups is chal-

lenging regardless of the phenotype of interest.

In a recent study [29], 245 different PRSs were constructed 

for a large set of traits in the UK Biobank and applied to 

nine ancestry groups in the same cohort. When averaged  

over 245 phenotypes, in reference to Northwest European 

ancestry individuals from the United Kingdom, relative pre-

dictive ability of PRS was highest in Northeast (93.8%) and  

Southern Europeans (85.6%), progressively decreasing in 

Middle Eastern (72.2%), South Asians (64.7%) and East 

Asians (48.6%), and lowest in the West African group (18%). 

These findings illustrate how prediction performance decays 

with increasing genetic distance between derivation and vali-

dation cohort [29].

An example of how large diverse consortia can improve 

performance of PRSs in non-EUR groups is the Global 

Lipids Genetics Consortium which published one of the 

largest and most diverse GWAS to date for blood lipid traits 

including ~ 1.6 M individuals across 201 studies and five 

genetic ancestry groups with roughly 1.3 M EUR, 146 k 

East Asian, 100 k AFR, 48 k Hispanic, and 41 k South Asian  

individuals [34]. This study demonstrated a significant  

increase in statistical power to identify potential causal 

variants within trait-associated regions in GWAS (i.e., fine- 

mapping) in multi-ancestry analyses rather than analy- 

ses including EUR, alone. Interestingly, PRSs derived from 

multi-ancestry meta-analysis showed equivalent or better 

performance across ancestry groups compared to ancestry-

specific or EUR-derived PRS [34]. These results suggest 

that increasing diversity in GWAS as opposed to studying 

additional EUR individuals will improve fine-mapping of 

causal variants and increase portability of PRS across ances-

try groups.

Several population and statistical genetics methods are 

being explored to increase the performance of PRSs across 

ancestry groups [35–38]. This is a rapidly evolving field of 

research and we describe a few examples below. Amariuta 

et al. [36] used functional annotations, which involves link-

ing biological information such as impact on gene expres-

sion and protein structure/function, to risk associated vari-

ants, prioritizing those with regulatory roles to improve 

trans-ancestry portability of PRS. This approach assumes 

that causal variants are largely shared between populations 

but obscured by population-specific linkage disequilibrium 

patterns. The authors demonstrated high-concordance of  

variant-heritability of shared regulatory elements between 

EUR and East Asian populations as well as an average 

increase of 49.9% in explained trait variability by PRS (as 

measured by  R2) across 21 phenotypes when applying EUR-

derived functional variant prioritized PRS versus traditional 

PRS to East Asian individuals [36]. Another method, Poly-

Pred [37], similarly uses fine-mapping to improve cross-

population risk scores. Across 49 phenotypes, this method 

improved prediction accuracy by 7% to 77% in South Asians 

Table 1  (continued)

Evaluated PRS 

(PGS Catalog ID)

Ancestry Sample Size Study Reference CHD PRS Effect Size 

per 1-SD increase 

[95% CI]

Discrimination 

Metrics

GPS_CAD 

(PGS000013)

European Ancestry 225,603  [25] Prevalent and 

Incident

OR: 1.36 [1.35–

1.37]

N/A

GPS_CAD 

(PGS000013)

Hispanic or Latin 

American  

Ancestry

30,641  [25] Prevalent and 

Incident

OR: 1.32 [1.28–

1.36]

N/A

GPS_CAD_SA 

(PGS000296)

South Asian  

Ancestry

491  [43] Myocardial  

infarction (first-

ever)

OR: 1.60 [1.32, 

1.94]

AUROC: 0.66

GPS_CAD_SA 

(PGS000296)

South Asian  

Ancestry

2,963  [43] Prevalent and 

Incident

OR: 1.66 [1.53, 

1.81]

AUROC: 0.71

GPS_CAD 

(PGS000013)

South Asian  

Ancestry

2,963  [43] Prevalent and 

Incident

OR: 1.58 [1.42, 

1.76]

AUROC: 0.71

GPS_CAD 

(PGS000013)

South Asian  

Ancestry

7,244  [43] Prevalent and 

Incident

OR: 1.53 [N/A] AUROC: 0.80

* PRS performance metrics obtained from PGS catalog. PRS = polygenic risk score; CHD = coronary heart disease; SD = standard deviation; 

CI = confidence interval; OR = odds ratio; HR = hazard ratio; AUROC = area under the receiver operating characteristic curve
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and 32% to 164% in AFR individuals in comparison to  

traditional PRS methods. Finally, PRS-CSx [35], a  

novel Bayesian method, aims to overcome hurdles in PRS  

transferability by integrating GWAS summary statistics 

from multiple populations via a continuous shrinkage prior 

shared across ancestry groups, to facilitate information 

sharing among ancestry-specific GWAS summary statistics  

and increase accuracy of variant effect size estimates. This 

method increased prediction accuracy by 53.3% in East 

Asians and 45.1% in AFR individuals in the UK Biobank 

compared to another popular method LDpred2 which per-

forms single ancestry PRS prediction [35, 39].

Accounting for Admixture in PRS 
Construction

PRS methods will also need to account for recently admixed 

individuals’ unique mosaic of ancestry. Estimates of local 

ancestry (e.g., 0, 1, or 2 African ancestry alleles), such as 

based on a conditional random-field based approach, RFMix 

[40], can be used to weigh the contribution of each genetic 

variant's regression coefficient to the PRS. In a recent 

study, local-ancestry deconvolution, i.e., elucidating unique 

tiling of ancestry blocks for each admixed individual, was 

used to compute ancestry-specific partial PRSs [38]. The 

authors demonstrated improvement in trait prediction, but 

the study was limited in the number of studied phenotypes 

(i.e., type 2 diabetes, breast cancer, height, and BMI) and 

ancestry groups. This approach will likely perform best 

when the effect size of a genetic variant has a large dif-

ference among different populations but may over-adjust 

when the effect sizes are not very different and lose predic-

tive power [41].

Current Efforts to Develop Trans‑Ancestry 
 PRSCHD

There is growing interest in derivation of ancestry-specific 

and trans-ancestry PRSs with increasing availability of 

diverse datasets (Fig. 1a and b). To date, the majority of the 

scientific efforts have been concentrated on either validating 

existing EUR-derived  PRSCHD across closely related EUR-

individuals [42] or across non-EUR individuals [17•, 24, 

25, 30]. Ancestry-specific  PRSCHD for groups such as South 

Fig. 1  Polygenic risk scores for diverse ancestry groups. A  Assem-

bling large multi-ancestry consortia for GWAS and sharing of indi-

vidual and/or summary level data between these initiatives is a criti-

cal step to generate ancestrally diverse datasets for PRS development. 

B Development of novel methods to derive ancestry optimized PRS 

and public resources enabling fast and reliable dissemination of these 

scores to researchers will help close the gap in PRS performance 

between EUR and non-EUR populations. C Creation of population-

based reference frameworks will help adjust scores for population 

structure and facilitate clinical interpretation. D Finally, incorporation 

of PRSs into clinical risk factors to create comprehensive risk predic-

tion models, following validation of performance and calibration, is 

needed for clinical implementation of genomic risk prediction across 

globally diverse populations. GWAS = Genome-wide association 

study; PRS = Polygenic risk score; EUR = European ancestry. This 

figure was created with BioRender.com
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Asians [43] and East Asians [44] have revealed performance 

comparable to that in EUR cohorts (Table 1).

CARDIoGRAMplusC4D [45], a large consortium estab-

lished to facilitate genomic discovery for CHD, is currently 

leading efforts to create a multi-ancestry PRS for CHD by 

leveraging its extensive collaboration network including 

the Million Veteran Program, UK Biobank, Biobank Japan, 

eMERGE network, and several National Heart, Lung, and 

Blood Institute (NHLBI) studies. Furthermore, eMERGE 

network [46] in its current phase (IV) is validating PRSs 

for diverse ancestries for several common complex diseases 

including CHD as well as communicating genomic risk pro-

files and relevant clinical recommendations based on PRS, 

family history, and other clinical data.

The National Human Genome and Research Insti-

tute (NHGRI) has initiated the  multi-site Polygenic Risk 

Methods in Diverse Populations (PRIMED) consortium, 

to improve the applicability of PRS in diverse populations 

by optimizing the integration of large-scale, harmonized 

genomic and phenotypic data [47]. The consortium is 

composed of 7 US-based institutions and includes work-

ing groups such as genotype and phenotype harmoniza-

tion of both individual level DNA-linked health data and 

GWAS summary statistics and development of methods and 

software for PRS construction with a focus on non-EUR 

ancestry and admixed populations [47]. CHD is one of the 

main phenotypes of interest in the PRIMED consortium. 

Additionally, diverse genomic datasets include the All of 

Us research program [48], the Million Veteran Program 

from the Department of Veterans Affairs [49] and NHLBI’s 

Trans-Omics for Precision Medicine (TOPMed) program 

[50]. Other global initiatives that will improve genomic 

diversity include The Emirati Genome Program [51], H3Af-

rica [52], Qatar Cardiovascular Biorepository [53], Biobank 

Japan [54], United Kingdom Biobank [55], China Kadoorie 

Biobank [56], and Taiwan Biobank [57]. Creation of these 

resources will ultimately enable construction of robust 

multi-ancestry  PRSCHD with performances comparable to 

what is currently available for EUR populations.

Practical Considerations Regarding Clinical 
Application of  PRSCHD in Globally Diverse 
Populations

Performance of  PRSCHD across ancestry groups can be com-

pared using relative risk measures including OR/HR, discrim-

inatory ability with metrics such as AUROC and C-statistic,  

risk reclassification measures like net reclassification index, 

and the amount of phenotypic variance explained with met-

rics such as pseudo  R2. In clinical practice, clinicians use 

absolute risk to make medical decisions, e.g., 10-year or 

lifetime risk of a cardiovascular event for patients [58–61]. 

Commonly used cardiovascular risk calculators include 

American College of Cardiology (ACC)/American Heart 

Association (AHA) Pooled cohort equation [58], Framing-

ham risk score [59], QRISK [60], SCORE2 [62, 63], and 

MESA risk scores [61]. Both the US and European guide-

lines incorporate these clinical risk scores with certain risk 

thresholds to guide clinical decision making for primary pre-

vention such as initiation of lipid lowering therapy [64, 65].

When using PRSs in different ancestry groups, differ-

ences in disease epidemiology such as incidence and mor-

tality rates need to be accounted for to estimate absolute 

risk. For example, South Asians and African Americans 

have higher risk of cardiovascular disease than whites in the 

USA [66, 67]. We explored use of PRS in modeling absolute 

risk of CHD using age, sex, and race/ethnicity-specific CHD 

incidence rates in the US as well as non-CHD mortality rates 

as competing risk [17•]. In reference to the EUR cohort, a 

lower yet substantial proportion of AFR participants were 

reclassified from intermediate to high 10-year risk category 

(24.1% versus 19.5%) using a genome-wide  PRSCHD , due to 

higher incidence of CHD among African Americans versus 

whites in the USA. Despite a narrower relative risk gradient 

in the non-EUR populations,  PRSCHD could still facilitate 

clinical decision-making regarding prevention and treatment 

based on estimates of absolute risk of cardiovascular disease.

Clinical implementation of  PRSCHD in diverse groups 

also requires assessment of calibration [68, 69], i.e., 

discrepancy between estimated versus observed risk 

(Fig. 1d). Despite high prediction performance of a risk 

model including genetic and non-genetic risk factors, poor 

calibration can be misleading and potentially harmful in 

clinical decision making [68] such as by unnecessarily 

increasing the burden of medical testing for an individual. 

Although certain studies explored calibration of models 

incorporating both genetic and clinical data [18, 70, 71], 

the majority of studies omit these evaluations. The Poly-

genic Score (PGS) catalog [72] created a public resource 

of published PRSs with consistently curated metadata 

required for reproducibility and independent applications 

[72]. This platform currently stores 2,149 PRSs across 524 

traits obtained from over 262 publications and incorporates 

expert curation for this data including ancestry distribu-

tion of source GWAS for published PRS and cohorts used 

in validation studies. Additionally, PGS catalog, in col-

laboration with the Clinical Genome Resource (ClinGen) 

Complex Disease Working Group, published a compre-

hensive reporting framework based on input from experts 

on epidemiology, statistics, disease-specific applications, 

implementation and policy, to improve reporting standards 

for PRS studies including an emphasis on definition and 

reporting of ancestry in study populations [69]. Follow-

ing these guidelines, future studies should include relevant 

aspects of model performance for PRS.
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Additionally, to quantify polygenic risk in an individ-

ual, one must determine where an individual’s PRS falls 

within a representative cohort of the respective ancestry 

group while accounting for population structure [73]. 

Wang et al. [43] sequenced a group of individuals drawn 

from a population-based cohort and used principal com-

ponents of ancestry to adjust the raw  PRSCHD for popula-

tion structure, thus creating a reference PRS distribution. 

As a result, a newly genotyped individual could have an 

ancestry adjusted  PRSCHD along with its percentile rank 

in the general population based on the built reference dis-

tribution (Fig. 1c). In conjunction with a risk calculator 

integrating both genetic and environmental risk factors, 

such frameworks can streamline the entire process starting 

from genotyping to calculation of 10-year risk estimation 

for CHD and facilitate PRS interpretation in the clinical 

setting [73].

For translation of PRS from bench to bedside, risk predic-

tion models will need to incorporate both genetic and non-

genetic (i.e., environmental) risk factors and use reference 

frameworks to account for population structure in order to 

generate ancestry-specific absolute risk of cardiovascular 

disease [74] (Fig. 1c and d) that can inform screening/diag-

nostic workup and selection of treatment modalities [17•, 

24, 75].

Conclusions

PRSs can be integrated into clinical risk prediction tools 

to refine risk estimates of future cardiovascular events. 

Such clinical risk prediction tools should estimate ances-

try specific absolute risk to guide clinical decision making 

in primary prevention of CHD. PRSs perform robustly in 

EUR populations but lag in performance across non-EUR 

groups, particularly individuals of African descent. The 

use of EUR-derived PRS for non-EUR populations (except 

African ancestry) is an alternative until the availability of 

mature trans-ancestry or ancestry-specific PRSs for CHD. 

Ongoing efforts to assemble large and diverse consortia to 

power future genomic studies, and innovation in PRS meth-

odologies for multi-ancestry applications, will be necessary 

for equitable implementation of genomic medicine globally 

and fulfill the promise for precision medicine.
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