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A
lcohol use and alcohol use disorder (AUD) are leading 
causes of death and disability worldwide1. Genome-wide 
association studies of AUD and problematic drinking as 

measured by different assessments have identified potential risk 
genes primarily in European populations2–5. Quantity-frequency 
measures of drinking—for example, the Alcohol Use Disorders 
Identification Test–Consumption (AUDIT-C), which sometimes 
reflect alcohol consumption in the normal range—differ genetically 
from AUD and measures of problematic drinking (for example, the 
Alcohol Use Disorders Identification Test–Problems (AUDIT-P)), 
and show a divergent set of genetic correlations3,4. The estimated 
single-nucleotide polymorphism (SNP)-based heritability (h2) of 

AUD ranges from 5.6 to 10.0% (refs. 2–5). To date, more than ten risk 
variants have been significantly associated with AUD and AUDIT-P 
(P < 5 × 10–8). Variants that have been mapped to several risk genes in 
multiple studies include ADH1B (Alcohol Dehydrogenase 1B (class I),  
Beta Polypeptide), ADH1C (Alcohol Dehydrogenase 1 C (class I), 
Gamma Polypeptide), ALDH2 (Aldehyde Dehydrogenase 2 Family 
Member, but only in some Asian samples), SLC39A8 (Solute Carrier 
Family 39 Member 8), GCKR (Glucokinase Regulator) and CRHR1 
(Corticotropin Releasing Hormone Receptor 1). In the context of 
the known extensive polygenicity underlying AUD and AUDIT-P, 
we anticipate that additional significant risk loci can be identified 
by increasing sample size; this is also the pattern for genome-wide 
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association studies (GWAS) of heterogenous complex traits in 
general. We characterize both AUD per se and AUDIT-P as PAU. 
To identify additional risk variants and enhance our understand-
ing of the genetic architecture of PAU, we conducted genome-wide 
meta-analysis of AUD and AUDIT-P in 435,563 individuals of 
European ancestry. Our understanding of the genetic architecture 
of PAU in African populations lags far behind that in Europeans; 
the largest sample of African-ancestry individuals published to date 
is 56,648, in the Million Veteran Program (MVP)3, and results have 
not moved beyond a single genomic region that includes ADH1B. 
We limited the focus here to European samples because we could 
not achieve a substantial increment in African-ancestry subjects 
over previous studies.

Results
Figure 1 provides an overview of the meta-analysis of the four major 
datasets. The first is the GWAS of AUD in European Americans 
(EA) from MVP6 (herein designated MVP phase1), compris-
ing 202,004 individuals phenotyped for AUD (ncase = 34,658, ncon-

trol = 167,346, neffective = 114,847) using International Classification 
of Diseases (ICD) codes3. The second, MVP phase2, included an 
additional 65,387 EA individuals from MVP (ncase = 11,337, ncon-

trol = 54,050, neffective = 37,485) not previously analyzed. The third 
dataset is a GWAS of Diagnostic and Statistical Manual of Mental 
Disorders (DSM-IV) alcohol dependence (AD) from the Psychiatric 
Genomics Consortium (PGC), which included 46,568 European 
participants (ncase = 11,569, ncontrol = 34,999, neffective = 26,853)2. The 
fourth dataset is a GWAS of AUDIT-P (a measure of problematic 
drinking) scores from a UK Biobank (UKB) sample7 that included 
121,604 European participants4.

The genetic correlation (rg) between MVP phase1 AUD and PGC 
AD was 0.965 (s.e.m. = 0.15, P = 1.21 × 10–10)3. The rg between the 
entire MVP (meta-analysis of phase1 and phase2) and PGC was 

0.98 (s.e.m. = 0.11, P = 1.99 × 10–19), justifying the meta-analysis 
of AUD across the three datasets (neffective = 179,185). We detected 
24 risk variants in 23 loci in this intermediary meta-analysis  
(Fig. 2a and Supplementary Table 1). The rg between UKB AUDIT-P 
and AUD (MVP + PGC) was 0.71 (s.e.m. = 0.05, P = 8.15 × 10–52) 
and the polygenic risk score (PRS) of AUD was associated with 
AUDIT-P in UKB (best P value threshold (PTbest) = 0.001, R2 = 0.25%, 
P = 3.28 × 10–41; Supplementary Table 2 and Supplementary Fig. 1), 
justifying the proxy-phenotype meta-analysis of PAU across all four 
datasets (AUD and AUDIT-P, though highly correlated genetically, 
are not identical traits). The total sample size was 435,563 in the 
discovery analysis (neffective = 300,789).

Association results for PAU. Of 42 lead variants (mapping to 
27 loci; Fig. 2b and Supplementary Table 3) that were genome-wide 
significant (GWS) for PAU, 29 were independently associated after 
conditioning on lead SNPs in the regions (see below and Table 1). 
Ten variants were previously identified through the same index 
SNPs or tagged SNPs located in or near the following genes: GCKR, 
SIX3, KLB, ADH1B, ADH1C, SLC39A8, DRD2 and FTO2–5. Thus, 
19 variants reported here are novel, of which 11 were located in 
gene regions, including PDE4B (phosphodiesterase 4B), THSD7B 
(thrombospondin type 1 domain containing 7B), CADM2 (cell 
adhesion molecule 2), ADH1B (different from the locus identi-
fied previously), DPP6 (dipeptidyl peptidase like 6), SLC39A13 
(solute carrier family 39 member 13), TMX2 (thioredoxin related 
transmembrane protein 2), ARID4A (AT-rich interaction domain 
4 A), C14orf2 (chromosome 14 open reading frame 2), TNRC6A 
(trinucleotide repeat containing adaptor 6 A) and FUT2 (fucosyl-
transferase 2). A novel rare ADH1B variant, rs75967634 (P = 1.07 × 
10–9, with a minor allele frequency of 0.003), which causes a substi-
tution of histidine for arginine, is in the same codon as rs2066702  
(a well-known variant associated with AUD in African  
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Fig. 1 | overview of the analysis. The four datasets that were meta-analyzed as the discovery sample for PAU included MVP phase1, MVP phase2, 

PGC and UKB. MVP phase1 and phase2 were meta-analyzed, and the result was used to test the genetic correlation with PGC AD. An intermediary 

meta-analysis (AUD meta) combining MVP phase1, phase2 and PGC was then conducted to measure the genetic correlation with UKB AUDIT-P. Due to 

sample overlap between UKB and GSCAN, we used the AUD (intermediary) meta-analysis for MR analysis rather than the PAU (that is, from the final) 

meta-analysis. MTAG, which used the summary data from PAU and DrnkWk (DrnkWk) in GSCAN (without 23andMe samples, as those data were not 

available) as input to increase the power for each trait without introducing bias from sample overlap, returned summary results for PAU and DrnkWk 

separately. TWAS, transcriptome-wide association study.
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populations3,8, but not polymorphic in European populations).This 
association is independent of rs1229984 in ADH1B and rs13125415 
(a tag SNP of rs1612735 in MVP phase1 (ref. 3)) in ADH1C. The 
identification of rs75967634 demonstrates the greater power of the 
present study to detect risk variants in this region, beyond the fre-
quently reported ADH1B*rs1229984.

Moderate genetic correlation between AUD and alcohol con-
sumption and pervasive pleiotropic effects of SNPs was demon-
strated previously2–4. Some of the novel variants (10 of 19) identified 
in this study were also associated with other alcohol-related traits, 
including AUDIT-C score3, total AUDIT score4 and DrnkWk from 
the GWAS & Sequencing Consortium of Alcohol and Nicotine use 
(GSCAN) study9 (described below and in Supplementary Table 3). 
Rs1402398, close to VRK2, was associated with AUDIT-C score 
(tagged by rs2683616)3; rs492602 in FUT2 was associated with 
DrnkWk9 and total AUDIT score4; and rs6421482, rs62250713, 
rs2533200, rs10717830, rs1783835, rs12296477, rs61974485 and 
rs72768626 were associated with DrnkWk, either directly or 
through tag SNPs in high-linkage disequilibrium (LD)9. Analysis 
conditioned on DrnkWk shows that 11 of the 29 independent vari-
ants were independently associated with PAU (that is, not mediated 
by DrnkWk; Supplementary Table 3).

Gene-based association analysis identified 66 genes that were 
associated with PAU at GWS (P < 2.64 × 10–6; Supplementary Table 4).  

DRD2, which has been extensively studied in many fields of neuro-
science, was among these genes and was previously reported in both 
UKB4 and MVP phase1 (ref. 3). Among the 66 genes, 46 are novel, 
including ADH4 (alcohol dehydrogenase 4 (class II), pi polypep-
tide), ADH5 (alcohol dehydrogenase 5 (class III), chi polypeptide) 
and ADH7 (alcohol dehydrogenase 7 (class IV), mu or sigma poly-
peptide), extending alcohol-metabolizing gene associations beyond 
the well-known ADH1B and ADH1C; SYNGAP1 (synaptic Ras 
GTPase activating protein 1), BDNF (brain-derived neurotrophic 
factor) and others. Certain genes show associations with multiple 
traits, including previous associations with AUDIT-C (four genes in 
MVP phase1, 12 in UKB), total AUDIT score (19 genes in UKB) and 
DrnkWk (46 genes in GSCAN, which includes results for DrnkWk 
after multi-trait analysis of GWAS (MTAG)10 analysis).

Examination of the 66 associated genes for known drug–gene 
interactions through the Drug Gene Interaction Database v.3.0.2 
(ref. 11) showed 327 interactions between 16 genes and 325 drugs 
(Supplementary Table 5). Of these 16 genes with interactions, DRD2 
had the most drug interactions (n = 177) followed by BDNF (n = 68) 
and PDE4B (n = 36).

SNP-based h2 and partitioning heritability enrichment. We used 
linkage disequilibrium (LD) score regression (LDSC)12 to estimate 
SNP-based h2 in the different datasets and meta-analyses (Fig. 3).  

10

20

30

40

50

60

ADH1B, rs1229984, P = 2.88 × 10–107

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22

0

10

20

30

40

–
lo

g
1

0
(P

 v
a

lu
e

)

50

λ = 1.14
LDSC intercept: 1.02 (0.01)

60

ADH1B, rs1229984, P = 2.88 × 10–107

λ = 1.19
LDSC intercept: 1.01 (0.01)

a

b

–
lo

g
1

0
(P

 v
a

lu
e

)

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22

Fig. 2 | Association results for AuD and PAu meta-analyses. a, Manhattan and quantile–quantile plots for AUD (MVP + PGC), ncase = 57,564, 

ncontrol = 256,395 and neffective = 179,185. b, Manhattan and quantile–quantile plots for PAU, n = 435,563 and neffective = 300,789. Effective sample size-weighted 

meta-analyses were performed using METAL. Red lines indicate GWS after correction for multiple testing (P < 5 × 10–8).
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Because of the unbalanced case/control ratio, we used effective 
sample size rather than actual sample size in MVP (following 
the PGC AD GWAS2). The h2 of PAU (the meta result) was 0.068 
(s.e.m. = 0.004). The h2 of AUD in the MVP meta-analysis (phases 
1 and 2) was 0.095 (s.e.m. = 0.006) and 0.094 (s.e.m. = 0.005) in the 
meta-analysis that combined MVP and PGC.

Partitioning heritability enrichment analyses using LDSC13,14 
showed the most significantly enriched cell type group to be cen-
tral nervous system (CNS; P = 3.53 × 10–9), followed by adrenal 
and pancreas (P = 1.89 × 10–3) and immune and hematopoietic 
(P = 3.82 × 10–3; Supplementary Fig. 2). Significant enrichments 
were also observed in six baseline annotations, including con-
served regions, conserved regions with 500 bp extended (ext), 
fetal DHS (DNase I hypersensitive sites) ext, weak enhancers ext, 
histone mark H3K4me1 ext and transcription start site (TSS) ext 
(Supplementary Fig. 3). We also investigated heritability enrich-
ments using Roadmap data, which contain six annotations (DHS, 
H3K27ac, H3K4me3, H3K4me1, H3K9ac and H3K36me3) in a 
subset of 88 primary cell types and tissues14,15. Significant enrich-
ments were observed for H3K4me1 and DHS in fetal brain, 

and H3K4me3 in both fetal brain and brain germinal matrix 
(Supplementary Table 6). Although no heritability enrichment 
was observed in tissues using gene expression data from the 
Genotype-Tissue Expression Project (GTEx)16, the top nominally 
enriched tissues were all in brain (Supplementary Fig. 4).

Functional enrichments. MAGMA tissue expression analysis17,18 
using GTEx showed significant enrichments in several brain tissues, 
including cerebellum and cortex (Supplementary Fig. 5). Although 
no enrichment was observed via MAGMA gene set analysis using 
gene-based P values of all protein-coding genes, the 152 genes pri-
oritized by positional, expression quantitative trait loci (eQTL) and 
chromatin interaction mapping were enriched in several gene sets, 
including ethanol metabolic processes (Supplementary Table 7).

Genetic correlations with other traits. We estimated the genetic 
correlations between PAU and 715 publicly available sets of 
GWAS summary statistics, which included 228 published sets 
and 487 unpublished sets from UKB. After Bonferroni correc-
tion (P < 6.99 × 10–5), 138 traits were significantly correlated with 

Table 1 | GWS associations for PAu

Chr Pos (hg19) rs iD Gene A1 A2 EAF Z P Direction

1 66419905 rs6421482 PDE4Ba A G 0.4363 –6.315 2.7 × 10–10 ----

1 73848610 rs61767420 [] A G 0.3999 5.714 1.11 × 10–8 ++++

2 27730940 rs1260326 GCKRa T C 0.4033 –9.296 1.4 × 10–20 --+-

2 45141180 rs494904 SIX3b T C 0.5961 –7.926 2.26 × 10–15 ----

2 58042241 rs1402398 VRK2b A G 0.6274 7.098 1.27 × 10–12 ++++

2 104134432 rs9679319 [] T G 0.4797 –6.01 1.86 × 10–9 ----

2 138264231 rs13382553 THSD7Ba A G 0.766 –6.001 1.97 × 10–9 ----

2 227164653 rs2673136 IRS1b A G 0.6387 –5.872 4.31 × 10–9 ----

3 85513793 rs62250713 CADM2a A G 0.368 6.049 1.46 × 10–9 ++++

4 39404872 rs13129401 KLBb A G 0.4532 –8.906 5.29 × 10–19 ----

4 100229016 rs75967634 ADH1Ba T C 0.003 –6.098 1.07 × 10–9 --?-

4 100239319 rs1229984 ADH1Ba T C 0.0302 –22 2.9 × 10–107 ---?

4 100270452 rs13125415 ADH1Ca A G 0.5849 –9.073 1.16 × 10–19 ----

4 103198082 rs13135092 SLC39A8a A G 0.9192 11.673 1.75 × 10–31 ++++

7 153489074 rs2533200 DPP6a C G 0.5163 –5.631 1.79 × 10–8 ----

8 57424874 rs2582405 PENKb T C 0.237 5.751 8.86 × 10–9 ++++

10 72907951 rs7900002 UNC5Bb T G 0.6012 -5.503 3.7 × 10–8 --+-

10 110537834 rs56722963 [] T C 0.2551 -6.374 1.85 × 1–10 ----

11 47423920 rs10717830 SLC39A13a G GT 0.674 6.422 1.34 × 10–10 ++++

11 57480623 rs576859 TMX2a A C 0.3272 5.67 1.43 × 10–8 +++?

11 113357710 rs138084129 DRD2b A AATAT 0.6274 7.824 5.13 × 10–15 ++++

11 113443753 rs6589386 DRD2b T C 0.4323 –7.511 5.88 × 10–14 ----

11 121542923 rs1783835 SORL1b A G 0.4569 –5.979 2.24 × 10–9 ----

12 51903860 rs12296477 SLC4A8b C G 0.5469 5.484 4.15 × 10–8 ++++

14 58765903 rs61974485 ARID4Aa T C 0.2646 5.506 3.67 × 10–8 ++++

14 104355883 rs8008020 C14orf2a T C 0.4175 6.062 1.35 × 10–9 ++++

16 24693048 rs72768626 TNRC6Aa A G 0.9448 5.591 2.26 × 10–8 ++++

16 53820813 rs9937709 FTOa A G 0.585 6.602 4.06 × 10–11 ++++

19 49206417 rs492602 FUT2a A G 0.5076 –6.143 8.08 × 10–10 ----

The total sample size is 435,563; effective sample size from each cohort was used for sample size-weighted meta-analyses (neffective = 300,789) using METAL. Listed are the 29 independent variants that 

were significant genome-wide. Variants labeled in bold are novel associations with PAU. Chr, chromosome. A1, effect allele; A2, other allele; EAF, effective allele frequency. Directions are for the A1 allele in 

MVP phase1, MVP phase2, PGC and UKB datasets. Pos (hg19), the position of human genome assembly GRCh37/hg19; [], no protein-coding gene within 500 kb. aProtein-coding gene containing the lead 

SNP. bProtein-coding gene nearest to the lead SNP.
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PAU (Supplementary Table 8). Among the 26 published correlated 
traits, DrnkWk showed the highest correlation with PAU (rg = 0.77, 
s.e.m. = 0.02, P = 3.25 × 10–265), consistent with the overall quantity 
of alcohol consumed being a key domain of PAU5,19. Several smoking 
traits and lifetime cannabis use were positively genetically correlated 
with PAU, consistent with the high comorbidity between alco-
hol and other substance use disorders in the general population20.  
Among psychiatric disorders, major depressive disorder (MDD; 
rg = 0.39, s.e.m. = 0.03, P = 1.43 × 10–40) showed the highest genetic 
correlation with PAU, extending the evidence for a shared genetic 
contribution to MDD- and alcohol-related traits21,22. PAU was 
positively correlated with risk-taking behavior, insomnia, CYP2A6 
activity and other traits, and negatively correlated with cognitive 
traits and parents’ age at death. These findings are in line with the 
known adverse medical, psychiatric and social consequences of 
problem drinking (Fig. 4).

Transcriptomic analyses. We used S-PrediXcan23 to predict gene 
expression and the mediating effects of variation on gene expres-
sion on PAU. Forty-eight tissues from GTEx16 release v.7 and whole 
blood samples from the Depression Genes and Networks (DGN) 
study24 were analyzed as reference transcriptomes (Supplementary 
Table 9). After Bonferroni correction, 103 gene–tissue associations 
were significant, representing 39 different genes, some of which 
were identified in multiple tissues (Supplementary Table 10). For 
example, C1QTNF4 (C1q and TNF related 4) was detected in 18 tis-
sues, including brain, gastrointestinal, adipose and liver. None of 
the four significant alcohol dehydrogenase genes (ADH1A, ADH1B, 
ADH4 and ADH5) was associated with expression in brain tissue, 
but they were associated with expression in other tissues—adipose, 
thyroid, gastrointestinal and heart. These cross-tissue associations 
indicate that there are widespread functional consequences of PAU 
risk-associated genetic variation at the expression level.

Although the sample size for tissues used for eQTL analysis lim-
its our ability to detect associations, there are substantial common 
eQTLs across tissues16. Integrating evidence from multiple tissues 
can increase the power to detect genes relative to the tissues tested 
individually, at least for shared eQTLs. We applied S-MultiXcan25 
to the summary data for PAU using all 48 GTEx tissues as reference 
transcriptomic data. The expression of 34 genes was significantly 
associated with PAU, including ADH1B, ADH4, ADH5, C1QTNF4, 
GCKR and DRD2 (Supplementary Table 11). Among the 34 genes, 
27 overlapped with genes detected by S-PrediXcan.

PAU PRS for phenome-wide associations. We calculated PRS for 
PAU in 67,589 individuals of European descent from the Vanderbilt 

University Medical Center’s biobank, BioVU. We conducted a 
phenome-wide association study (PheWAS) of PRS for PAU, adjust-
ing for sex, age (calculated as the median age across an individual’s 
medical record) and the top ten principal components (PCs) of 
ancestry. We standardized the PRS so that the odds ratios (ORs) 
correspond to a s.d. increase in the PRS. After Bonferroni correc-
tion, 31 of the 1,372 phenotypes tested were significantly associ-
ated with PAU PRS, including alcohol-related disorders (OR = 1.46, 
s.e.m. = 0.03, P = 3.34 × 10–40), alcoholism (OR = 1.33, s.e.m. = 0.03, 
P = 3.85 × 10–28), tobacco use disorder (OR = 1.21, s.e.m. = 0.01, 
P = 2.71 × 10–38), 6 respiratory conditions and 17 additional psychi-
atric conditions (Fig. 5 and Supplementary Table 12).

PAU PRS with AD in independent samples. We tested the asso-
ciation between PAU PRS and AD in three independent samples: 
the iPSYCH group (ncase = 944, ncontrol = 11,408, neffective = 3,487); 
University College London (UCL) Psych Array (ncase = 1,698, ncon-

trol = 1,228, neffective = 2,851); and UCL Core Exome Array (ncase = 637, 
ncontrol = 9,189, neffective = 2,383). The PAU PRSs were significantly asso-
ciated with AD in all three samples, with the most variance explained 
in the UCL Psych Array sample, which includes the most AD cases 
(PTbest = 0.001, R2 = 2.12%, P = 8.64 × 10–14). In the iPSYCH group and 
UCL Core Exome Array samples, the maximal variance explained 
was 1.61% (PTbest = 0.3, P = 1.87 × 10–22) and 0.77% (PTbest = 5 × 10–8, 
P = 1.65 × 10–7), respectively (Supplementary Table 13).

Mendelian randomization. We tested the bidirectional causal 
effects between other traits and AUD (MVP + PGC), rather than 
PAU; the UKB AUDIT-P GWAS sample was excluded to minimize 
overlap with other GWAS for putative exposures. (When we refer to 
exposure having causal effect on outcome, this should be understood 
to mean susceptibility or liability to exposure having causal effect 
on susceptibility or liability to outcome.) We limited the exposures 
to those genetically correlated with PAU and which yielded more 
than ten available instruments providing a robust causal estimate.  
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0.10
h

2

MVP

n
effective
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n
effective
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n
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n
effective

 = 300,789

GSCAN

n
effective

 = 537,352

Studies

Fig. 3 | Estimated SNP-based h2. Shown are h2 results for single datasets or 

meta-analysis between datasets, from published studies or analyzed here. 

MVP is the phase1–phase2 MVP meta-analysis and PAU is the discovery 

meta-analysis. Effective sample sizes (neffective) were used in LDSC. Center 

values are the estimated h2, and error bars indicate 95% confidence intervals.
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Fig. 4 | Genetic correlations with published traits. LDSC was applied to 
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values are the estimated genetic correlation, and error bars indicate 95% 

confidence intervals.
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Among the 15 tested exposures on AUD, seven showed evidence 
of a causal effect on liability to AUD (Table 2). DrnkWk and ever 
smoked regularly have a positive causal effect on AUD risk by all 
four methods, without violating Mendelian randomization (MR) 
assumptions through horizontal pleiotropy (MR–Egger intercept. 
P > 0.05). General risk tolerance was causally related to AUD risk, 
and the estimate was robust after correction for horizontal pleiot-
ropy. The ‘worry’ subcluster of neuroticism and number of sexual 
partners shows evidence of positive causal effects on liability to 
AUD with at least one method, while cognitive performance and 
educational attainment show evidence of negative causal effects. As 
an exposure, AUD has a positive causal effect on DrnkWk and a 
negative causal effect on educational attainment, indicating bidirec-
tional causality. There is no evidence of a causal effect of AUD on 
other traits (Table 3).

Joint analysis of PAU and DrnkWk using MTAG. We conducted 
a joint analysis of PAU and DrnkWk using MTAG, which can 
increase the power for each trait without introducing bias from 
sample overlap10. MTAG analysis increased the GWAS-equivalent 
sample size (nEq) for PAU to 514,790 (that is, a 71.1% increase from 
the original effective sample size (nEq = 300,789, n = 435,563). In 
this analysis, we observed an increase in the number of inde-
pendent variants for PAU to 119, 76 of which were conditionally 
independent (Supplementary Fig. 6a and Supplementary Table 
14). For DrnkWk, MTAG analysis increased nEq to 612,968 from 
537,352, which yielded 141 independent variants, 86 of which 
were conditionally independent (Supplementary Fig. 6b and 
Supplementary Table 15).

The MTAG analysis also increased the power for the functional 
enrichment analysis. MAGMA gene set analysis for PAU after MTAG 
analysis detected ten enriched Gene Ontology terms, including 

‘regulation of nervous system development’ (PBonferroni = 8.80 × 10–4), 
‘neurogenesis’ (PBonferroni = 0.010) and ‘synapse’ (PBonferroni = 0.046) 
(Supplementary Table 16).

Discussion
We report here a genome-wide meta-analysis of PAU in 435,563 indi-
viduals of European ancestry from the MVP, PGC and UKB datas-
ets. MVP is a mega-biobank that has enrolled >750,000 subjects (for 
whom genotype data on 313,977 subjects were used in this study), 
with rich phenotype data assessed by questionnaires and from elec-
tronic health records (EHRs). Currently, MVP is the largest single 
cohort available with diagnostic information on AUD3,6. PGC is a 
collaborative consortium that has led the effort to collect smaller 
cohorts with DSM-IV AD2. UKB is a population-level cohort with 
the largest available sample with AUDIT-P data4.

Our discovery meta-analysis of PAU yielded 29 independent 
variants of which 19 were novel, with 0.059–0.113 of the pheno-
typic variance explained in different cohorts or meta-analyses. 
The value of h2 in the phase1–phase2 MVP meta-analysis was 
0.095 (s.e.m. = 0.006), which was higher than MVP phase1: 0.056 
(s.e.m. = 0.004, in MVP phase1, where only the actual (as opposed 
to effective) sample size was used)3. The h2 of AD in PGC was 0.098 
(s.e.m = 0.018), comparable to the reported liability-scale h2 (0.090, 
s.e.m. = 0.019)2. Functional and heritability analyses consistently 
showed enrichments in brain regions and gene expression regula-
tory regions, providing biological insights into the etiology of PAU. 
Variation associated with gene expression in the brain is central 
to PAU risk, a conclusion that is also consistent with our previous 
GWAS in MVP of both alcohol consumption and AUD diagnosis3. 
The enrichments in regulatory regions point to specific brain tissues 
relevant to the causative genes; the specific interactions between 
16 genes and 325 drugs may provide targets for the development of 
medications to manage PAU. Potential targets identified include the 
D2 dopamine receptor (encoded by DRD2) and phosphodiesterase 
4B (encoded by PDE4B). The presence of risk variation at these loci 
also suggests that they may be ‘precision medicine’ targets.

We also found that PAU was significantly genetically correlated 
with 138 other traits. The top correlations were with substance use 
and substance-related disorders, MDD, schizophrenia and several 
other neuropsychiatric traits. In a conceptually similar analysis, we 
performed a PheWAS of PAU PRS in BioVU, which confirmed in 
an independent sample the genetic correlations between PAU and 
multiple substance use disorders, mood disorders and other psy-
chiatric traits. We also used MR to infer causal effects of the above 
traits on liability to AUD (we tested AUD excluding UKB samples 
to avoid sample overlap) using selected genetic instruments. We 
found evidence of positive causal relationships from DrnkWk (bidi-
rectional), ever smoked regularly, worry subcluster and number 
of sexual partners, while cognitive performance and educational 
attainment (bidirectional) showed protective effects on liability to 
AUD. In comparison, we detected few causal effects from AUD to 
other traits, possibly because of lack of power since there are fewer 
instrumental variants for AUD available in our study than for many 
comparison GWAS.

The study has other limitations. First, only European popula-
tions were included; therefore, the genetic architecture of PAU in 
other populations remains largely unknown. To date, the largest 
non-European sample to undergo GWAS for alcohol-related traits 
is African American, which was reported in the MVP phase1 
sample (17,267 cases; 39,381 controls, an effective sample size of 
48,015), with the only associations detected on chromosome 4 in 
the ADH gene locus (where several ADH genes map)3. The collec-
tion of substantial numbers of non-European subjects will require 
a concerted effort by investigators in our field. Second, despite the 
high genetic correlation between AUD and AUDIT-P, they are not 
identical traits. We conducted a meta-analysis of the two traits to 
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increase the power for the association study of PAU and, conse-
quently, associations specific to AUD or AUDIT-P could have been 
attenuated. Third, there was no opportunity for replication of the 
individual novel variants. Because the variants were detected in 
more than 430,000 subjects and have small effect sizes, a replica-
tion sample with adequate power would also have to be very large 
and no such sample is currently available. To validate the findings, 
we conducted PRS analyses in three independent cohorts which 
showed strong association with AUD. Although this indicates that 
our study had adequate power for variant detection, it does not 
address the validity of the individual variants discovered.

The present GWAS study of PAU is very large. Previous work 
has shown that the genetic architecture of AUD (and PAU) differs 
substantially from that of alcohol consumption2–4. There have been 
larger studies of alcohol quantity/frequency measures9,26; alcohol 
consumption data are available in many EHRs, and thus they were 
included in many studies of other primary traits including cardiac 
disease. AUD diagnoses are collected much less commonly. The 
three-item AUDIT-C is a widely used measure of alcohol consump-
tion that is often available in EHRs, but the full ten-item AUDIT, 
which allows the assessment of AUDIT-P, is not as widely available. 
Despite the high genetic correlation between, for example, PAU and 
DrnkWk (rg = 0.77), very different patterns of genetic correlation 
and pleiotropy have been observed via LDSC and other methods 
for these different kinds of index of alcohol use2–5. PAU captures 
pathological alcohol use: physiological dependence and/or signifi-
cant psychological, social or medical consequences. Quantity/fre-
quency measures may capture alcohol use that is in the normal, or 
any way nonpathological, range. As such, we argue that although 
quantity/frequency measures are important for understanding the 
biology of habitual alcohol use, PAU is the more clinically important 
trait. Thus, we did not meta-analyze PAU with DrnkWk directly, 
but used MTAG analysis instead, recognizing that they are different 
traits. These circumstances underscore the need to assemble a large 
GWAS sample of PAU to inform its biology, and our study moves 
towards this goal via the identification of numerous and previously 
unidentified risk loci—we increased known PAU loci from 10 to 
29, nearly tripling our knowledge of specific risk regions. Similarly, 
we identified 66 gene-based associations of which 46 were novel—
again roughly tripling current knowledge. MTAG analysis increased 
locus discovery to 119, representing 76 independent loci, by lever-
aging information from DrnkWk9. By the same token, we provide 
a major increment in information about the biology of PAU, offer-
ing considerable fodder for future studies that will be required to 
delineate the biology and function associated with each risk variant. 
We anticipate that knowledge of the functional effects of the vari-
ants will contribute eventually to personalized treatment of PAU, 
facilitating identification of individuals with PAU who may be most 
treatment responsive or for whom a specific medication may be 
most efficacious.
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Methods
MVP datasets. The MVP is a mega-biobank supported by the US Department 
of Veterans Affairs (VA), enrollment for which began in 2011 and is ongoing. 
Phenotypic data were collected using questionnaires and the VA electronic health 
records, and a blood sample was obtained from each participant for genetic 
studies. Two phases of genotypic data have been released and were included in 
this study. MVP phase1 contains 353,948 subjects, of whom 202,004 EA with AUD 
diagnoses were included in a previous GWAS and the summary statistics were used 
in this study3. MVP phase2 released data on another 108,416 subjects, of whom 
65,387 EAs with AUD diagnosis information were included in this study. Following 
the same procedures as for MVP phase1, participants with at least one inpatient or 
two outpatient alcohol-related ICD-9/10 codes from 2000 to 2018 were assigned a 
diagnosis of AUD.

Ethics statement: The Central VA Institutional Review Board (IRB) and 
site-specific IRBs approved the MVP study. All relevant ethical regulations for 
work with human subjects were followed in the conduct of the study, and informed 
consent was obtained from all participants.

Genotyping for both phases of MVP was performed using a customized 
Affymetrix Biobank Array. Imputation and quality control methods for MVP 
phase1 were described in detail in Kranzler et al.3. Similar methods were used 
for MVP phase2. Before imputation, phase2 subjects or SNPs with genotype call 
rate <0.9 or high heterozygosity were removed, leaving 108,416 subjects and 
668,324 SNPs. Imputation for MVP phase2 was done separately from phase1; both 
were performed with EAGLE2 (ref. 44) and Minimac3 (ref. 45) using 1000 Genomes 
Project phase3 data46 as the reference panel. Imputed genotypes with posterior 
probability ≥0.9 were transferred to best-guess genotypes (the remainder  
were treated as missing genotype calls). A total of 6,635,093 SNPs with INFO  
scores >0.7, genotype call rates or best-guess rates >0.95, Hardy–Weinberg 
equilibrium (HWE) P > 1 × 10−6 and minor allele frequency (MAF) > 0.001 
remained for GWAS.

We removed subjects with mismatched genotypic and phenotypic sex and 
one subject randomly from each pair of related individuals (kinship coefficient47 
threshold = 0.0884), leaving 107,438 phase2 subjects for subsequent analyses. 
We used the same processes as in MVP phase1 to define EAs. First, we ran PC 
analysis (PCA) on 74,827 common SNPs (MAF > 0.05) shared by MVP and the 
1000 Genomes phase3 reference panels using FastPCA48. We then clustered each 
participant into the nearest reference population according to the Euclidean 
distances between the participant and the centers of the five reference populations 
using the first ten PCs. A second PCA was performed for participants who were 
clustered to the reference European population, and outliers were removed if any of 
the first ten PCs were >3 s.d. from the mean, leaving 67,268 EA subjects.

Individuals <22 or >90 years of age and those with a missing AUD diagnosis 
were removed from the analyses, leaving 65,387 phase2 EAs (11,337 cases and 
54,050 controls). GWAS was then performed on the MVP phase2 dataset. We 
used logistic regression implemented in PLINK v.1.90b4.4 (ref. 49) for the AUD 
GWAS, correcting for age, sex and the first ten PCs. The mean age wass 63.2 years 
(s.d. = 13.4) in the entire MVP sample, with 92.5% male. Data collection and 
analysis were not performed blind to the conditions of the experiments.

PGC summary statistics. We used the 46,568 European-ancestry subjects 
(11,569 cases and 34,999 controls) from 27 cohorts that were analyzed by the PGC. 
The phenotype was lifetime DSM-IV diagnosis of AD. The summary data were 
downloaded from the PGC website (https://www.med.unc.edu/pgc/) with full 
agreement to the PGC conditions. Allele frequencies were not reported in the 
summary data. We used allele frequencies from the 1000 Genome European sample 
as proxy measures in PGC for certain downstream analyses.

UKB summary statistics. The UKB included 121,604 White-British unrelated 
subjects with available AUDIT-P scores. Past-year AUDIT-P was assessed by seven 
questions: (1) frequency of inability to cease drinking; (2) frequency of failure to 
fulfill normal expectations due to drinking alcohol; (3) frequency of needing a 
morning drink of alcohol after a heavy drinking session; (4) frequency of feeling 
guilt or remorse after drinking alcohol; (5) frequency of memory loss due to 
drinking alcohol; (6) been injured or injured someone else through drinking 
alcohol; and (7) had a relative, friend or health worker who was concerned 
about, or suggested, a reduction in alcohol consumption. The AUDIT-P was 
log10-transformed for GWAS (see ref. 4 for details). We removed SNPs with 
INFO <0.7 or call rate <0.95.

Meta-analyses. Meta-analyses were performed using METAL50. The meta-analysis 
within MVP (for the purpose of genetic correlation analysis with PGC AD) was 
conducted using an inverse variance-weighted method, because the two subsets 
were from the same cohort. The meta-analyses for AUD (MVP + PGC) and PAU 
(MVP + PGC + UKB) were performed using the sample size-weighted method. 
Given the unbalanced ratios of cases to controls in MVP samples, we calculated 
effective sample sizes for meta-analysis following the approach used by the PGC:

neffective ¼
4

1

ncase
þ

1

ncontrol

The calculated effective sample sizes in MVP and reported effective sample 
sizes in PGC were used in meta-analyses and all downstream analyses. Because 
AUDIT-P in UKB is a continuous trait, we used actual sample sizes for that trait. 
For the AUD meta-analysis, variants present in only one sample (except MVP 
phase1, which is much larger than the others), or with heterogeneity  
test P < 5 × 10–8, were removed, leaving 7,003,540 variants. For the PAU 
meta-analysis, variants present in only one sample (except MVP phase1 or UKB), or 
with heterogeneity test P < 5 × 10–8, and variants with effective sample size <45,118 
(15% of the total effective sample size) were removed, leaving 14,069,427 variants.

AUD polygenic risk score in UKB. We calculated AUD PRS for each of the 
82,930 unrelated subjects in UKB (application no. 41910) who had nonmissing 
AUDIT-P information7. A PRS was calculated as the sum of the number of effective 
alleles with P values less than a given threshold, weighted by the effect sizes from 
AUD meta-analysis (MVP + PGC). We analyzed ten P value thresholds: 5 × 10–8, 
1 × 10–7, 1 × 10–6, 1 × 10–5, 1 × 10–4, 0.001, 0.05, 0.3, 0.5 and 1.0, and clumped the 
AUD summary data by LD with r2 < 0.3 in a 500-kb window. We then tested the 
association between AUD PRS and AUDIT-P, corrected for age, sex and ten PCs. 
The analysis was performed using PRSice-2 (ref. 51).

Independent variants and conditional analyses. We identified the independent 
variant (P < 5 × 10−8) in each locus (1-Mb genomic window) based on the smallest 
P value and r2 < 0.1 with other independent variants, and assigned these variants 
to the independent variant clump. Any two independent variants <1 Mb apart 
and whose clumped regions overlapped were merged into one locus. Given the 
known long-range LD for the ADH gene cluster on chromosome 4, we defined 
chr4q23–q24 (~97.2–102.6 Mb) as one locus. When multiple independent variants 
were present in a locus, we ran conditional analyses using GCTA-COJO52 to 
define conditionally independent variants. For each variant other than the most 
significant (index), we tested the marginal associations conditioning on the index 
variant using Europeans (n = 503) from the 1000 Genomes as the LD reference 
sample. Variants with significant marginal associations (P < 5 × 10−8) were defined 
as conditionally independent variants (that is, independent when conditioned on 
other variants in the region) and subject to another round of conditional analyses 
for each significant association.

For the conditionally independent variants for AUD or PAU, we also conducted 
a multi-trait analysis conditioning on GSCAN DrnkWk9 using GCTA-mtCOJO31 
to identify variants associated with AUD or PAU, but not DrnkWk (that is, not 
alcohol consumption per se). Europeans from the 1000 Genomes were used as the 
LD reference. For variants missing in GSCAN, we used proxy variants (P < 5 × 10−8) 
in high LD with the locus for analyses. Whereas conditional analyses require the 
beta (effect size) and s.e.m., we calculated these using Z-scores (z), allele frequency 
(p) and sample size (n) from the meta-analyses53:

beta ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1�pÞðnþz2Þ
p

s:e:m: ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1�pÞðnþz2Þ
p

Gene-based association analysis. Gene-based association analysis for PAU was 
performed using MAGMA implemented in FUMA17,18, which uses a multiple 
regression approach to detect multimarker effects that account for SNP P values 
and LD between markers. We used default settings to analyze 18,952 autosomal 
genes, with P < 2.64 × 10−6 (0.05/18,952) considered GWS.

Drug–gene interaction. For the genes identified as significant by MAGMA, we 
examined drug–gene interaction through the Drug Gene Interaction Database 
v.3.0.2 (ref. 11) (http://www.dgidb.org/), a database of integrated drug–gene 
interaction information based on 30 sources.

SNP-based h2 and partitioning heritability enrichment. We used LDSC12 to 
estimate the SNP-based h2 for common SNPs mapped to HapMap3 (ref. 54), 
with Europeans from the 1000 Genomes Project46 as the LD reference panel. We 
excluded the major histocompatibility complex region (chr6: 26–34 Mb).

We conducted portioning h2 enrichment analyses for PAU using LDSC in 
different models13,14. First, we analyzed a baseline model consisting of 52 functional 
categories that included genomic features (coding, intron, untranslated region 
and so on), regulatory annotations (promoter, enhancer and so on), epigenomic 
annotations (H3K27ac, H3K4me1, H3K3me3 and so on) and others (see ref. 13 for 
details; Supplementary Fig. 3). We then analyzed cell type group h2 enrichments 
with ten cell types: CNS, adrenal and pancreas, immune and hematopoietic, 
skeletal muscle, gastrointestinal, liver, cardiovascular, connective tissue and 
bone, kidney and other (see ref. 13 for details; Supplementary Fig. 2). Third, 
we used LDSC to test for enriched heritability in regions surrounding genes 
with the highest tissue-specific expression, using 53 human tissue or cell type 
RNA-seq data from GTEx16, or enriched heritability in epigenetic markers from 
396 human epigenetic annotations (six features in a subset of 88 primary cell types 
or tissues) from the Roadmap Epigenomics Consortium15 (see ref. 14 for details; 
Supplementary Fig. 4 and Supplementary Table 6). For each model, the number 
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of tested annotations was used to calculate a Bonferroni corrected P < 0.05 as a 
significance threshold.

Gene set and functional enrichment. We performed gene set analysis for PAU 
for curated gene sets and Gene Ontology terms using MAGMA17,18. We then 
used MAGMA for gene property analyses to test the relationships between 
tissue-specific gene expression profiles and PAU–gene associations. We analyzed 
gene expression data from 53 GTEx (v.7) tissues. We also performed gene set 
analysis on the 152 prioritized genes using MAGMA. Gene sets with adjusted 
P < 0.05 were considered as significant.

Genetic correlation. We estimated the genetic correlation (rg) between traits 
using LDSC55. For PAU, we estimated rg with 218 published traits in LD Hub56, 
487 unpublished traits from UKB (integrated in the LD Hub) and recently 
published psychiatric and behavioral traits9,32,34–39,42,57,58, bringing the total number 
of tested traits to 715 (Supplementary Table 8). For traits reported in either 
multiple studies or UKB, we selected the published version of the phenotype or 
used the largest sample size. Bonferroni correction was applied, and correlation 
was considered significant at a P value threshold of 6.99 × 10–5.

S-PrediXcan and S-MultiXcan. To perform transcriptome-wide association 
analysis, we used S-PrediXcan23 (a version of PrediXcan that uses GWAS summary 
statistics59) to integrate transcriptomic data from GTEx16, and DGN24 to analyze the 
summary data from the PAU meta-analysis. Forty-eight tissues with sample size 
>70 from GTEx release v.7 were analyzed, totaling 10,294 samples. DGN contains 
RNA sequencing data from the whole blood of 992 genotyped individuals. The 
transcriptome prediction model database and the covariance matrices of the SNPs 
within each gene model were downloaded from the PredictDB repository (http://
predictdb.org/, released 8 January 2018). Only individuals of European ancestry 
in GTEx were analyzed. S-PrediXcan was performed for each of the 49 tissues (48 
from GTEx and 1 from DGN), for a total of 254,345 gene–tissue pairs. Significant 
association was determined by Bonferroni correction (P < 1.97 × 10–7).

Considering the limited eQTL sample size for any single tissue and the 
substantial sharing of eQTLs across tissues, we applied S-MultiXcan25, which 
integrates evidence across multiple tissues using multivariate regression to improve 
association detection. Forty-eight tissues from GTEx were analyzed jointly. The 
threshold for condition number of eigenvalues was set to 30 when truncating 
singular-value decomposition components. In total, 25,626 genes were tested in 
S-MultiXcan, leading to a significant P value threshold of 1.95 × 10–6 (0.05/25,626).

PAU PRS for phenome-wide associations. Polygenic scores were generated 
using polygenic risk scores–continuous shrinkage (PRS-CS)60 on all genotyped 
individuals of European descent (n = 67,588) in BioVU. PRS-CS uses a Bayesian 
framework to model linkage disequilibrium from an external reference set and 
a continuous shrinkage prior on SNP effect sizes. We used the 1000 Genomes 
Project Phase 3 European sample46 as the LD reference. Additionally, we used 
the PRS-CS auto option, which allows the software to learn the continuous 
shrinkage prior from the data. Polygenic scores were constructed from PRS-CS 
auto-adjusted summary statistics containing 811,292 SNPs. All individuals used 
for polygenic scoring were genotyped on the Illumina Multi-Ethnic Global Array 
(MEGA). Genotypes were filtered for SNP (95%) and individual (98%) call rates, 
sex discrepancies and excessive heterozygosity. For related individuals, one of each 
pair was randomly removed (pi_hat > 0.2). SNPs showing significant associations 
with genotyping batch were removed. Genetic ancestry was determined by 
PCA performed using EIGENSTRAT61. Imputation was completed using the 
Michigan Imputation Server45 and the Haplotype Reference Consortium62 as the 
reference panel. Genotypes were then converted to hard calls, and filtered for SNP 
imputation quality (R2 < 0.3), individual missingness (>2%), SNP missingness 
(>2%), MAF ( < 1%) and HWE (P < 1 × 10–10). The resulting dataset contained 
9,330,483 SNPs on 67,588 individuals of European ancestry.

We conducted PheWAS63 of the PAU PRS by fitting a logistic regression model 
to 1,372 case/control phenotypes to estimate the odds of each diagnosis given the 
PAU polygenic score, controlling for sex, median age across the medical record, top 
ten PCs of ancestry and genotyping batch. We required the presence of at least two 
ICD codes that mapped to a PheWAS disease category (Phecode Map 1.2) to assign 
‘case’ status. A phenotype was required to have at least 100 cases to be included in 
the analysis. PheWAS analyses were run using the PheWAS R package64. Bonferroni 
correction was applied to test for significance (P < 3.64 × 10–5, 0.05/1,372).

PAU PRS in independent samples. We calculated PAU PRS in three independent 
samples, where we tested the association between PAU PRS and AD corrected for 
age, sex and ten PCs. Ten P value thresholds were applied in all samples.

iPSYCH group. DNA samples for cases and controls were obtained from newborn 
bloodspots linked to population registry data65. Cases were identified with the ICD-
10 code F10.2 (AD; n = 944); controls were from the iPSYCH group (n = 11,408; 
neffective = 3,487). The iPSYCH sample was genotyped on the Psych Array (Illumina). 
GWAS quality control (QC), imputation against the 1,000 Genomes Project panel46 
and association analysis using the Ricopili pipeline66 were performed. The current 

study is part of a general study in iPSYCH investigating the comorbidity of alcohol 
misuse and psychiatric disorders.

UCL Psych Array. Cases were identified with ICD-10 code F10.2 (n = 1,698) and 
comprised 492 individuals with a diagnosis of alcoholic hepatitis and who had 
participated in the Steroids or Pentoxifylline for Alcoholic Hepatitis (STOPAH) 
trial (ISRCTN88782125; EudraCT no. 2009-013897-42), and 1,206 subjects 
recruited from the AD arm of the DNA Polymorphisms in Mental Health (DPIM) 
study; controls were UK subjects who had either been screened for an absence 
of mental illness and harmful substance use (n = 776), or were random blood 
donors (n = 452; total n = 1,228; neffective = 2,851). The sample was genotyped on the 
Psych Array (Illumina). GWAS QC was performed using standard methods, and 
imputation was done using the Haplotype Reference Consortium (HRC) panel67 
on the Sanger Imputation server (https://imputation.sanger.ac.uk/). Association 
testing was performed using Plink1.9 (ref. 49).

UCL Core Exome Array. Cases had an ICD-10 diagnosis of F10.2 (n = 637), 
including 324 individuals with a diagnosis of alcoholic hepatitis who had 
participated in the STOPAH trial and 313 subjects recruited from the AD arm of 
the DPIM study; controls were unrelated UK subjects from the UK Household 
Longitudinal Study (n = 9,189; neffective = 2,383). The sample was genotyped on the 
Illumina Human Core Exome Array (Illumina). GWAS QC was performed using 
standard methods, and imputation was done using the HRC panel67 on the Sanger 
Imputation server (https://imputation.sanger.ac.uk/). Association testing was 
performed with Plink1.9 (ref. 49).

MR. We used MR to investigate the bidirectional causal relationships between PAU 
liability and traits that were significantly genetically correlated (P < 6.99 × 10–5). 
However, all or most of the published traits in recent large GWAS include UKB 
data. To avoid biases caused by overlapping samples in MR analysis, we tested 
only the relationship between published traits and AUD (MVP + PGC). For robust 
causal effect inference, we limited the traits studied to those with more than ten 
available instruments (association P < 5 × 10–8). For causality on AUD, 15 exposures 
were analyzed (Table 2) and, for causality from AUD on others, 23 traits were 
tested. We applied Bonferroni correction for the 38 hypotheses, interpreting 
P < 1.32 × 10–3 (0.05/38) as significant.

Four methods—weighted median28, IVW, random-effects model27 and MR–
Egger29—implemented in the R package MendelianRandomization v.0.3.0 (ref. 68), 
MR–pleiotropy residual sum and outlier (MR–PRESSO)30, and generalized sparse 
matrix reduction (GSMR)31 were used for MR inference. Evidence of average 
pleiotropic effects was examined by the MR–Egger intercept test, where a non-zero 
intercept indicates horizontal pleiotropy29. Individual variants with horizontal 
pleiotropy were detected by MR–PRESSO, and an outlier test was applied to correct 
horizontal pleiotropy via outlier removal. Pleiotropic variants were also detected 
by the HEIDI test in GSMR, and removed from causal inference. Instrumental 
variants that are associated with outcome (P < 5 × 10–8) were removed. For 
instrumental variants missing in the outcome summary data, we used the results of 
the best-proxy variant with the highest LD (r2 > 0.8) with the missing variant. If the 
MAF of the missing variant was <0.01, or none of the variants within 200 kb had 
LD r2 > 0.8, we removed the instrumental variant from the analysis. Palindromic 
SNPs (A/T or G/C alleles) with MAF [0.4, 0.5], which can introduce ambiguity into 
the identity of the effect allele, were also removed.

MTAG between PAU and DrnkWk. Multiple trait analysis between PAU and 
DrnkWk from GSCAN was performed on summary statistics with multi-trait 
analysis of GWAS (MTAG) v.1.0.7 (ref. 10). The summary data of DrnkWk were 
generated from 537,352 subjects, excluding the 23andMe samples that were not 
available to us for inclusion. We analyzed variants with a minimum effective 
sample size of 80,603 (15%) in DrnkWk, and a minimum effective sample size of 
45,118 (15%) in PAU, which left 10,613,246 overlapping variants.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full summary-level association data from the meta-analysis are available 
through dbGaP at accession no. phs001672.v3.p1.

Code availability
Kinship analysis was performed using KING (http://people.virginia.edu/~wc9c/
KING/). PCAs were performed using EIGENSOFT (https://data.broadinstitute.
org/alkesgroup/EIGENSOFT/). Imputation was performed using EAGLE2 (https://
data.broadinstitute.org/alkesgroup/Eagle/), Minimac3 (https://genome.sph.
umich.edu/wiki/Minimac3), Sanger imputation server (https://imputation.sanger.
ac.uk/) or RICOPILI (https://data.broadinstitute.org/mpg/ricopili/), the choice 
depending on the sample. GWAS was performed using PLINK (https://www.
cog-genomics.org/plink2). Meta-analyses were performed using METAL (https://
genome.sph.umich.edu/wiki/METAL_Documentation). Polygenic risk score 
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analyses were performed using PRSice-2 (https://www.prsice.info/) or PRS-CS 
(https://github.com/getian107/PRScs). GCTA (https://cnsgenomics.com/software/
gcta/#Overview) was used for identification of independent loci (GCTA-COJO), 
multi-trait conditional analysis (GCTA-mtCOJO) and MR (GCTA-GSMR). 
LDSC (https://github.com/bulik/ldsc) was used for heritability estimation, 
genetic correlation analysis (also using LD Hub (http://ldsc.broadinstitute.
org/)) and heritability enrichment analyses. FUMA (https://fuma.ctglab.nl/) 
was used for gene association, functional enrichment and gene set enrichment 
analyses. Transcriptomic analyses were performed using S-PrediXcan and 
S-MultiXcan (https://github.com/hakyimlab/MetaXcan). PheWAS analyses were 
run using the PheWAS R package (https://github.com/PheWAS/PheWAS). The 
Mendelian Randomization R Package (https://cran.r-project.org/web/packages/
MendelianRandomization/index.html) and MR–PRESSO (https://github.com/
rondolab/MR-PRESSO) were used for MR analyses. MTAG (https://github.com/
omeed-maghzian/mtag) was used for multiple trait analysis.
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