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INTRODUCTION: It has been almost 100 years

since the sled dog Balto helped save the com-

munity of Nome, Alaska, from a diphtheria

outbreak. Today, Balto symbolizes the indom-

itable spirit of the sleddog.He is immortalized in

statue and film, and is physically preserved and

on display at the Cleveland Museum of Natural

History. Balto represents a dog population that

was reputed to tolerateharsh conditions at a time

whennorthern communitieswere reliant on sled

dogs. InvestigatingBalto’sgenomesequenceusing

technologies for sequencing degraded DNA of-

fers a newperspective on this historic population.

RATIONALE: Analyzing high-coverage (40.4-fold)

DNA sequencing data fromBalto through com-

parisonwith large genomicdata resources offers

an opportunity to investigate genetic diversity

and genome function.We leveraged the genome

sequence data from 682 dogs, including both

working sled dogs and dog breeds, as well

as evolutionary constraint scores from the

Zoonomia alignment of 240 mammals, to re-

construct Balto’s phenotype and investigate

his ancestry and what might distinguish him

from modern dogs.

RESULTS: Balto shares just part of his diverse

ancestry with the eponymous Siberian husky

breed and was more genetically diverse than

both modern breeds and working sled dogs.

Both Balto and working sled dogs had a lower

burden of rare, potentially damaging variation

than modern breeds and fewer potentially

damaging variants, suggesting that they rep-

resent genetically healthier populations. We

inferred Balto’s appearance on the basis of

genomic variants known to shape physical

characteristics in dogs today. We found that

Balto had a combination of coat features atyp-

ical for modern sled dog breeds and a slightly

smaller stature, inferences that are confirmed

by comparison to historical photographs. Balto’s

ability to digest starchwas enhanced compared

to wolves and Greenland sled dogs but reduced

compared to modern breeds. He carried a

compendium of derived homozygous coding

variants at constrained positions in genes con-

nected to bone and skin development, which

may have conferred a functional advantage.

CONCLUSION: Balto belonged to a population

of small, fast, and fit sled dogs imported from

Siberia. By sequencing his genome from his

taxidermied remains and analyzing these data

in the context of large comparative and canine

datasets, we show that Balto and his working

sled dog contemporaries were more geneti-

cally diverse thanmodern breeds andmay have

carried variants that helped them survive the

harsh conditions of 1920s Alaska. Although the

era of Balto and his contemporaries has passed,

comparative genomics, supported by a growing

collection of modern and past genomes, can

provide insights into the selective pressures

that shaped them.▪
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Balto, famed 20th-century Alaskan sled dog, shares common ancestry with modern Asian and Arctic canine lineages. In an unsupervised admixture analysis,

Balto’s ancestry, representing 20th-century Alaskan sled dogs, is assigned predominantly to four Arctic lineage dog populations. He had no discernable wolf ancestry.

The Alaskan sled dogs (a working population) did not fall into a distinct ancestry cluster but shared about a third of their ancestry with Balto in the supervised admixture

analysis. Balto and working sled dogs carried fewer constrained and missense rare variants than modern dog breeds.IM
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dog, captures lost diversity of 1920s sled dogs
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We reconstruct the phenotype of Balto, the heroic sled dog renowned for transporting diphtheria

antitoxin to Nome, Alaska, in 1925, using evolutionary constraint estimates from the Zoonomia alignment

of 240 mammals and 682 genomes from dogs and wolves of the 21st century. Balto shares just part

of his diverse ancestry with the eponymous Siberian husky breed. Balto’s genotype predicts a

combination of coat features atypical for modern sled dog breeds, and a slightly smaller stature. He

had enhanced starch digestion compared with Greenland sled dogs and a compendium of derived

homozygous coding variants at constrained positions in genes connected to bone and skin development.

We propose that Balto’s population of origin, which was less inbred and genetically healthier than

that of modern breeds, was adapted to the extreme environment of 1920s Alaska.

T
echnological advances in the recovery of

ancient DNA make it possible to gener-

ate high-coverage nuclear genomes from

historic and fossil specimens, but inter-

preting genetic data frompast individuals

is difficult without data from their contempo-

raries. Comparative genomic analysis offers a

solution: By combining population-level geno-

mic data and catalogs of trait associations in

modern populations, we can infer the genetic

and phenotypic features of long-dead individ-

uals and the populations from which they

were born. Zoonomia is a new comparative re-

source that addresses limitations of previous

datasets (1) to support interpretation of paleo-

genomics data. With 240 placental mammal

species, Zoonomia has sufficient power to

distinguish individual bases under evolution-

ary constraint—a useful predictor of functional

importance (2)—in coding and regulatory ele-

ments (3). Zoonomia’s reference-free genome

alignment (4, 5) allows evolutionary constraint

to be scored in any of its 240 species, in-

cluding dogs.

Here, we generate a genome for Balto, the

famous sled dog who delivered diphtheria

serum to the children of Nome, Alaska, during

a 1925 outbreak. Following his death, Balto

was taxidermied, and his remains are held

by the Cleveland Museum of Natural History.

We generated a 40.4-fold coverage nuclear ge-

nome from Balto’s underbelly skin using pro-

tocols for degraded samples. His DNA was

well preserved, with an average endogenous

content of 87.7% in sequencing libraries, low

(<1%) damage rates (fig. S1), and short [68

base pairs (bp)] average fragment sizes, con-

sistent with the age of the sample.

Balto was born in the kennel of sled dog

breeder Leonard Seppala in 1919. Although

Seppala’s small fast dogs were known as

Siberian huskies (6), they were a working pop-

ulation that differed from the dog breed re-

cognized by the American Kennel Club (AKC)

today.Modern dog breeds are genetically closed

populations that conform to a tightly delineated

physical standard (7). Balto’s relationship to

AKC-recognized sled dog breeds such as the

Siberian husky (established in 1930) and

Alaskan malamute (1935) (8) is unclear. Balto

himself was neutered at 6 months of age and

had no offspring.

Working populations of sled dogs survive.

Alaskan sled dogs are bred solely for physical

performance, including outcrossing with var-

ious breeds (9). Greenland sled dogs are an in-

digenous land-race breed that have been used

for hunting and sledging by Inuit in Greenland

for 850 years, where they have been isolated

from contact with other dogs (10). Here, we use

the term “breed” exclusively to refer to modern

breeds recognized by the AKC or other kennel

clubs (e.g., sled dog breeds), as distinct from

the less rigidly defined populations of Green-

land sled dogs and Alaskan sled dogs (work-

ing sled dogs). This is a genetic distinction;

AKC-registered dogs can be successful work-

ing sled dogs.

We compared Balto to working sled dogs,

sled dog breeds, other breeds, village dogs (free-

breeding dogs without known breed ancestry),

and other canids. Our whole-genome dataset

comprised 688 dogs (table S1) representing

135 breeds or populations, including three

Alaskan sled dogs and five Greenland sled dogs

(10). We identified evolutionarily constrained

bases using phyloP evolutionary constraint

scores from the dog-referenced version of the

240-species Zoonomia alignment (3).

Ancestry analysis places Balto in a clade of

sled dog breeds and working sled dogs and

closest to the Alaskan sled dogs (Fig. 1, A

and B). Most of his ancestry is assigned to

clades of Arctic-origin dogs (68%) and, to a

lesser extent, Asian-origin dogs (24%) in an

unsupervised admixture analysis with 2166

dogs and 116 clusters (Fig. 1C and tables S2

and S3). He carried no discernible wolf an-

cestry. The more recently established Alaskan

sled dog population (9) did not fall into a dis-

tinct ancestry cluster in the unsupervised an-

alysis but comprised 34% of Balto’s ancestry in

a supervised analysis defining them as a clus-

ter (fig. S2).

Balto was more genetically diverse than

breed dogs today and similar to working sled

dogs (Fig. 1D). Balto had shorter runs of ho-

mozygosity than any breed dog, and fewer

runs of homozygosity than all but one Tibetan

mastiff (table S4). When inbreeding is calcu-

lated from runs of homozygosity, Balto and

dogs from the two working sled dog popula-

tions have lower inbreeding than almost any

breed dog (fig. S3). When inbreeding is cal-

culated using an allele frequency approach

(method-of-moment), Greenland sled dogs have

high inbreeding coefficients, reflecting their

long genetic isolation in Greenland (fig. S3).

To evaluate the genetic health of Balto’s pop-

ulation of origin, we developed an analytical

approach that leveraged the Zoonomia 240-

species constraint scores and required only a

single dog from each population (necessary

because Balto is the only available represen-

tative of his population). Briefly, we selected

one individual at random from each breed or

population (57 dogs in total) and scored var-

iant positions as either evolutionarily con-

strained [and more likely to be damaging (2)]

or not using the Zoonomia phyloP scores (3).

We also identified variants likely to be “rare”

(low frequency) in each dog’s breed or popu-

lation. Because we could not directly measure

population allele frequencies with only a sin-

gle representative dog, we defined “rare” var-

iants as heterozygous or homozygous variants
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specific to that dog among all 57 representa-

tive dogs. This metric effectively identifies var-

iants occurring at unusually low frequencies

(fig. S4).

Balto and modern working sled dogs had a

lower burden of rare, potentially damaging

variation, indicating that they represent genet-

ically healthier populations (11) than breed

dogs. Balto and the working sled dogs had

significantly fewer potentially damaging var-

iants (missense or constrained) than any breed

dog, including the sled dog breeds (Fig. 1E).

The pattern persists even in the less genet-

ically diverse Greenland sled dog. Selection for

fitness in working sled dog populations ap-

pears more effective in removing damaging

genetic variation than selection to meet a

breed standard.

Balto’s physical appearance predicted from

his genome sequence (Fig. 2A and table S5)

matches historical photos (Fig. 2B) and his

taxidermied remains, indicating that the same

variants that shaped modern breed pheno-

types also explained natural variation in his

pre-breed working population. We predict that

he stood 55 cm tall at his shoulders (12) (Fig.

2C), within the acceptable range for today’s

Siberian husky breed [53 to 60 cm (8)], and

had a double-layered coat (13) that was most-

ly black with only a small amount of white

(14). He was homozygous for an allele con-

ferring tan points (15) and one for blue eyes

(16), but both were masked by his melanistic

facial mask (17), and his predicted light-tan

pigmentation (18) may have been indisting-

uishable from white. He carried neither the

“wolf agouti” nor “Northern domino” patterns

that are common in the Siberian husky and

other sled dog breeds today (19).

Both Balto and Alaskan sled dogs had un-

expected evidence of adaptation to starch-rich

diets. They carry the dog version of MGAM, a

gene involved in starch processing that is dif-

ferentiated between dogs and wolves (20) and

1 of 14 regions analyzed for evidence of selective
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Fig. 1. Balto clusters most closely with Alaskan sled dogs, but had high

genetic diversity and a lower burden of potentially damaging variants.

(A) Neighbor-joining tree clusters Balto (★) most closely with the outbred,

working population of Alaskan sled dogs, and a part of a clade of sled

dog populations. (B) Similarly, principal component analysis puts Balto near,

but not in, a cluster of Alaskan sled dogs. (C) Unsupervised admixture

analysis of Balto alongside the Alaskan sled dogs and other dogs and canids

(K = 116 putative populations and N = 2166 individuals) infers substantial

ancestral similarity to Siberian huskies, Greenland sled dogs, and outbred

dogs from Asia (table S2). The remainder of his ancestry (8%) matches

poorly (<5%) to any other clusters. (D and E) Balto and working sled dogs

(D) had lower levels of inbreeding and (E) carried fewer constrained (pwilcox =

0.0019) and missense (pwilcox = 0.0023) rare variants than modern dog

breeds (table S10).
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pressure in Balto’s lineage using a gene tree

analysis (table S6). In earlier work, the high

frequency of the wolf version of MGAM in

Greenland sleddogs prompted speculation that

reduced starch digestion might be a working

sled dog trait (10). Our findings suggest that

this phenomenon is specific to Greenland sled

dogs. Gene tree analysis places one of Balto’s

chromosomes in the ancestral wolf cluster and

one in the derived dog cluster (fig. S5). Most

Alaskan sled dogs carry the dog version (fre-

quency = 0.83). However, read coverage of the

gene AMY2B suggests that Balto had fewer

copies of this gene than many modern dogs

and thus comparatively lower production of

the starch-digesting enzyme amylase (21, 22).

Taken together, we suggest that Balto’s ability

to digest starch was enhanced compared to

wolves and Greenland sled dogs but reduced

compared to modern breeds.

Of the other 14 regions tested, most (10 out

of 14) lacked sufficient diversity in dogs to re-

solve phylogenetic relationships. Bootstrap sup-

port was weak for two other genes selected in

Greenland sled dogs (CACNA1A and MAGI2).

As expected, Balto did not carry versions of

EPAS1 associated with high-altitude adapta-

tion (23).

We found an enrichment for unusual func-

tion variation in Balto’s population consistent

with adaptation to the extreme environments

inwhich early–20th century sled dogsworked.

We identified variants in Balto’s genome that

were new (not seen in wolves) and likely to be

common in his population (homozygous in

Balto; fig. S4). We further filtered for variants

that were both protein-altering (missense) and

evolutionarily constrained [false discovery rate

(FDR) <0.01], and thus likely to be functional.

Balto was nomore likely to carry such variants

than dogs from 54 other populations (fig. S6),

but in Balto these variants tended to disrupt

tissuedevelopment genes [GeneOntology (GO):

0009888; 24 genes; 3.02-fold enrichment;

pFDR = 0.013] (table S7). This enrichment was

specific to Balto (Fig. 2D and fig. S7), andmost

of the variants were rare or missing in other

dog populations (fig. S8). Even when all GO

biological process gene sets are tested in all

57 dogs, Balto’s enrichment in tissue develop-

ment genes is highly unusual. It ranks fourth

out of 888,573 dog/gene set pairs tested (fig. S7

and table S8). Phenotype associations from

human disease studies suggest that these var-

iants could have influenced skeletal and epith-

elial development including joint formation,

body weight, coordination, and skin thickness

(table S9) (24). Modern sled dog breeds and

working sled dogs are only slightly more sim-

ilar to Balto than other dogs at these variants

(fig. S9).

Balto was part of a famed population of

small, fast, and fit sled dogs imported from

Siberia. After his famous run, the Siberian

husky breed was recognized by the AKC. By

sequencing his genome from his taxidermied

remains and analyzing it in the context of

large comparative and canine datasets, we

show that Balto shared only part of his an-

cestry with today’s Siberian huskies. Balto’s

working sled dog contemporaries were health-

ier and more genetically diverse than modern

breeds and may have carried variants that

helped them survive the harsh conditions of

1920s Alaska (6). Further work is still needed

to assess the impact of the evolutionarily con-

strained missense variants that Balto carried.

Although the era of Balto andhis fellowhuskies

has passed, comparative genomics, supported

by a growing collection of modern and past

genomes, can provide a snapshot of individ-

uals and populations from the past, as well

as insights into the selective pressures that

shaped them.

Materials and methods

Assembly of comparative canid genetic variants

We collated a reference set of comparative canid

genetic variants starting from the curated

Broad-UMass Canid Variant set (https://data.

broadinstitute.org/DogData/) and comprising

whole-genome sequencing data for 531 dogs of

known breed ancestry distributed among 132

breeds, 28 dogs ofmixed breed ancestry, 12 dogs

of unknown ancestry, 69 worldwide indigenous

or village dogs, 33wolves, and 1 coyote (table S1).
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Fig. 2. Genomic recreation of Balto’s physical appearance. (A) Prediction of Balto’s coat features based

on his genome sequence with details on each trait and genotype in blue boxes. (B) A photo of Balto with

musher Gunnar Kaasen. From the photo and his taxidermied remains, Balto was a black dog with dark

eyes and some white patches on his chest and legs. He had a double-layered coat and stood just under knee-

high relative to Kaasen. [Photo credit: Cleveland Museum of Natural History] (C) Using a random forest

model based on 1730 dogs and 2797 height-associated genetic variants (12), we predicted that Balto

would stand around 55 cm tall (value: 2.3) at his withers, close to the average height for the Siberian husky

breed. Circles show dogs from other breeds. (D) Gene set enrichment testing of genes with common and

constrained missense variants in 57 different dog populations shows a significant enrichment (pFDR = 0.013)

in the GO Tissue Development pathway only for Balto’s population.
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Ancient DNA extraction, library preparation, and

genome assembly

WeextractedDNA froma~5mmby 5mmpiece

of Balto’s underbelly skin tissue, in two repli-

cates (HM246 andHM247) with an extraction

negative, using the ancient DNA–specific pro-

tocol in Dabney et al. 2013 (25). We prepared 32

~1-pmol input Illumina libraries from these

extracts following the Santa Cruz library pre-

paration method (26), including positive and

negative controls. All 32 libraries passed qual-

ity control (QC), and so we sequenced them

to a depth of ~2.3 billion on a NovaSeq 6000

platform 150 bp paired end (see table S11 for

the number of reads produced per library).

We used SeqPrep v.1.1 (27) to trim adapters,

remove reads shorter than 28 bp, and merge

remaining paired-end reads with a minimum

overlap of 15 bp. We then used the Burrows-

Wheeler Aligner (BWA) v.0.7.12 (28) with a

minimum quality cut off of 20 to align reads

to the Canis lupus familiaris (dog) reference

genome (CanFam3.1) (NCBI: GCA_000002285.2).

All 32 bam files (one for each library) were

merged into one with PCR duplicates removed.

We used both Qualimap (v2.2.1) and samtools

(v1.7) to calculate metrics and assess the qua-

lity of the alignment (table S12).

Variant calling

We used GATK HaplotypeCaller to call variants

in Balto aswell as 10 previously publishedGreen-

land sled dogs (10) and 3 Alaskan sled dogs

sequenced for this study (see materials and

methods for details on sampling, DNA extrac-

tion, and sequencing) against theUMass-Broad

Canid Variant set using parameter–genotyping-

mode GENOTYPE_ GIVEN_ALLELES –alleles

(known alleles). Then, we merged variant call

records from these 14 dogs with records from

the UMass-Broad Candid Variants set, for var-

iant calls in a full set of 688 individuals: Balto

(this study), 3 modern Alaskan sled dogs (this

study), 10 modern Greenland sled dogs (10),

531 dogs from modern breeds, 40 dogs of

unknown or admixed ancestry, 69 village or

indigenous dogs, 33 wolves, and 1 coyote.

Phylogenetic analysis and neighbor-joining trees

Usingadataset of 100 representative canids (table

S1 for samples selected in the “Phylogenetic

Analysis”) we confirmed Balto’s phylogenetic po-

sition by generating a neighbor-joining (NJ)

phylogenetic tree and conducting a principal

component analysis (PCA).We converted the var-

iant calls into a FASTA file and used MEGA-CC

(29) with 1000 bootstraps to assess tree topology.

We also ran a PCA on this set using PLINK (v1.9)

and then visualized the first two principal compo-

nents in R (v. 3.6.3) using the “ggplot2” package.

Global ancestry inference

We inferred Balto’s ancestral similarity to that

of modern dog breeds, sled dog type breeds,

and working sled dogs using a custom built

reference panel of modern dogs and canids of

the 21st century (table S3). InPLINK (v2.00a3LM)

(30), we identified 4,267,732 biallelic single nucle-

otide polymorphisms with <10% missing geno-

types, and calculated Wright’s F-statistics using

Hudsonmethod (31,32) for (i) eachdogbreedand

sled dog population versus all other dogs; (ii)

all village dogs versus all other dogs; (iii) each

regional village dog population; (iv) all wolves

versus all other dogs; (v) all coyotes versus all

other canids; and (vi) North American wolves

versus Eurasian wolves. We selected 1,858,634

single-nucleotide polymorphisms (SNPs) with

FST > 0.5 across all comparisons, and per-

formed LD-based pruning in 250-kb windows

for r
2
> 0.2 to extract 136,779 markers for

global ancestry inference. Wemerged Balto’s

genotypes for these SNPs with genotypes from

the reference samples. For reference samples

also represented in the whole-genome dataset,

population labels used in the admixture anal-

ysis are given in the “Representative in Global

Ancestry Inference” column of table S1. We

performed global ancestry inference using

ADMIXTURE (33) in both supervised mode

(random seed: 43)with 20 bootstrap replicates

to estimate parameter standard errors, and in

unsupervised mode for the same number of

populations (K = 116), which showed low

levels of error (0.3) in 10-fold cross-validation

analysis of chromosome 1 for K clusters be-

tween 50 and 150 (table S13).

Homozygosity and inbreeding metrics

We removed samples with any missing data

from the dataset of 100 representative individ-

uals used in the phylogenetic analyses, leaving

86 individuals (see table S1 for samples se-

lected in the “Homozygosity Analysis”). Using

this pruned dataset, we detected runs of homo-

zygosity (RoH) using awindow-based approach

implemented in PLINK (v1.9) (30). We calcu-

lated two measures of inbreeding: the method-

of-moments coefficient in PLINK (FMoM) and

themetric based on runs-of-homozygosity (FRoH),

as recommended by Zhao et al. 2020 (34) (table

S4). Using the R (v. 3.6.3) function “cor.test,” we

confirmed that FRoH and FMoM are significantly

correlated (RPearson= 0.6752819, p = 9.958e-13, t =

8.3913, df = 84).

Population representative sampling

As Balto is the sole representative of his pop-

ulation, we randomly selected one representa-

tive sample from each of 57 populations for the

discovery of individually represented, population-

relevant genetic variants (see table S1 for

samples selected in the “Population Variants

Analysis”) among 67,085,518 biallelic SNPs.

These populations included Balto, 1 Alaskan

sled dog, 1 Greenland sled dog, and 54modern

breed dogs, including 1 Siberian husky and

1 Alaskan malamute. Likewise, we selected,

where available, another 5 to 11 random sam-

ples from 10 modern breeds, and all remaining

Greenland sled dog samples, to assess the

population-wide allele frequency of these var-

iants (see table S1, “Population Frequency

Analysis”).

Dog-referenced mammalian evolutionary

constraint

We selected biallelic SNPs under evolutionary

constraint by examining sites overlapping phy-

loP evolutionary constraint scores from the dog-

referenced version of the 240 species Cactus

alignment (3). We calculated the constraint

score cutoffs at various FDRs.

Unique, rare, and potentially deleterious variants

We first identified all “population-unique” var-

iants, defined as those observed in the repre-

sentative dog from a population (either once or

twice) and not observed in representatives from

any of the other populations.With thismethod,

we identified 206,164 population-unique var-

iants for Balto, 120,279 for the Alaskan sled

dog, 119,482 variants for the Greenland sled

dog, 120,780 unique to the Alaskan malamute,

and 133,200 unique to the Siberian husky. We

confirmed that population-unique variants tend

to be uncommon by calculating the allele fre-

quencies in its population. We used Zoonomia

phyloP scores and SnpEff (35) annotations to

identify which population-unique variants were

either “evolutionarily constrained” (phyloP score

above the FDR 0.05 cutoff of 2.56) or a mis-

sense mutation and thus more likely to have

functional consequences (table S15).We grouped

the dogs into working dog groups including

Balto, Alaskan sled dog, and Greenland sled

dog, and modern breeds including all the other

54 dogs. We then applied Student’s t test on the

percentage of “evolutionarily constrained” or

missense mutation for the two groups.

Derived, common, and potentially beneficial variants

We identified “homozygous derived” variants,

defined as those observed twice in the repre-

sentative dog from a population and not ob-

served in wolves, for each of the populations.

With this method, we identified 176,135 homo-

zygous derived variants for Balto, 148,036

variants for Alaskan sled dog, 260,457 variants

for Greenland sled dog, 225,270 variants for

Alaskan Malamute, and 189,188 variants for

Siberian husky. We confirmed that homozy-

gous variants in each representative dog tend

to be “common” in their population by calcu-

lating the allele frequency of the homozygous

derived variants in its own breed. We also

used aWilcox test against randomly selected

SNPs to show that population-unique SNPs

are rare, whereas homozygous derived SNPs

are rather common, among their population.

We further defined variants likely to be

functional as those that were both “highly
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evolutionarily constrained” (defined by phyloP

score above the FDR >0.01 cutoff of 3.52) and a

missense mutation. We annotated the variant

by genes, and performed gene set enrichment

against all Gene Ontology Biological Process

gene sets (http://geneontology.org/) using the

R package rbioapi v. 0.7.4 (36, 37) (tables S7

and S8). We also tested for overlap between

Balto’s variant genes and genes implicated in

particular phenotypes in human studies using

the Human Phenotype Ontology (24) and the

“Investigate gene sets” feature provided by

GSEA (http://www.gsea-msigdb.org/) (table S9).

Prediction of Balto’s aesthetic phenotypes

We extracted Balto’s genotypes for a panel of

27 genetic variants associated with physical

appearance in domestic dogs (table S5) to infer

his coat coloration, patterning, and type. We

also phased haplotypes from Balto’s genotypes

usingEAGLE (v.2.4.1) (38) with reference haplo-

types from the phased UMass-Broad Canid

Variants and constructed the haplotype con-

sensus sequences of the MITF-M promoter

length polymorphism locus (chr 20: 21,839,331

to 21,839,366) and upstream SINE (short in-

terspersed nuclear element) insertion locus

(chr 20: 21,836,232 to 21,836,429) usingBCFtools

to investigate the MITF variants that putatively

affect white spotting. We also ran a body-size

prediction for Balto using a random forest

model (R packages “caret” and “randomForest”)

built on the relative heights (defined as where

a dog’s shoulders fall relative to an “average

person,” and surveyed on a Likert scale from

ankle-high and shorter, or survey option 0, to

hip-high and taller, or survey option 4) of 1730

modern pet dogs surveyed and 2797 size-

associated SNPs genotyped by the Darwin’s

Ark project described previously (12) (see sup-

porting files for model and scripts used to

run prediction).

Balto’s physiological adaptations

We examined the genotypes underlying 14 re-

gions (table S6), which included 1 region un-

der selection in high altitude individuals (39)

[endothelial PAS domain–containing protein

1 (EPAS1)], 2 regions previously identified as

under selection in sleddogs (10) [calciumvoltage-

gated channel subunit alpha1 A (CACNA1A)

and maltase-glucoamylase (MGAM)], 8 regions

identified by population branch statistics as

potentially under selection in sled dog breeds

(12), and 3 regions responsible for aesthetic

phenotypes described previously in domestic

dogs [melanocortin 1 receptor (MC1R) (40),

agouti signaling protein (ASIP) (41), and a

chr 28 cis-regulatory region associated with

single-layered coats (13)]. Following the method

outlined in Bergström et al. (21), we also in-

vestigated the number of amylase alpha 2B

(AMY2B) copies Balto had by quantifying the

ratio of reads (reads/total length of region)

mapping to the AMY2B regions in CanFam3.1

(ratio: 0.20) to the number of reads mapping

to 75 randomly chosen 1-kb windows of the

genome (ratio: 0.59), given that higher copy

numbers are suggested for dog adaptation to

starch-rich diets (22).
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