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Great progress has been made in the past decade in under-
standing the genetics of ASD, establishing de  novo muta-
tions, including copy number variants (CNVs) and point 

mutations that likely disrupt protein-coding genes, as important 
causes of ASD1,2. However, when combined, all the known ASD-
associated genes explain only a small fraction of new cases and 
it is estimated that, overall, de  novo mutations in protein-coding 
genes (including CNVs) contribute to no more than 30% of sim-
plex ASD cases2,3. The vast majority of identified de novo mutations 
are located within intronic and intergenic regions; however, little is 
known regarding their contribution to the genetic architecture of 
ASD or for any other complex disease.

A potential role for noncoding mutations in complex human dis-
eases including ASD has long been speculated. Human regulatory 
regions show signs of negative selection4, suggesting that mutations 
within these regions lead to deleterious effects. Studies of inherited 
common variants have also shown enriched disease association in 
noncoding regions5. Furthermore, noncoding mutations that affect 
gene expression have been found to cause Mendelian diseases6 and 
to be enriched in cancer7. Expression dosage effects have also been 
suggested to underlie the link between CNVs and ASD8. Recently, 
parentally inherited structural noncoding variants have been linked 
to ASD9. Also, in a small cohort of ASD families, some trends with 
limited sets of mutations have been reported10–12. Likewise, despite 
the major role that RNA-binding proteins (RBPs) have in post-
transcriptional regulation, little is known of the pathogenic effect of 
noncoding mutations affecting RBPs (other than the effect of muta-
tions in canonical splice sites). Thus, noncoding mutations could be 
a cause of ASD, but no conclusive connection between regulatory 

de novo noncoding mutations (either transcriptional or post-tran-
scriptional) and the etiology of ASD has been established.

Recent developments make it possible to perform large-scale 
studies that reliably identify de  novo noncoding mutations at the 
whole-genome scale. The Simons Simplex Collection (SSC) of 
whole-genome sequencing (WGS) data for 1,790 families differs 
from many previous large-scale studies in its design, which includes 
matched unaffected siblings3,13–16. These provide critical background 
controls for detecting excess mutation burden in probands, as it is 
otherwise hard to distinguish excess levels of mutations that are rel-
evant to disease from irrelevant biological and technical variation, 
such as differences in genetic background or artificial biases origi-
nating from sequencing, variant calling and filtering procedures.

However, even with study designs using matched control individ-
uals, detecting the contribution of de novo noncoding mutations is 
still challenging and establishing the role of the vast noncoding space 
in the genetic basis of autism remains difficult. Two recent studies17,18 
have demonstrated that, even when considering a wide variety of 
possible functional annotation categories (for example, mutations 
in known regulatory sites, mutations at the location of known his-
tone marks and mutations near ASD- or disease-relevant gene sets), 
no significant signal specific to noncoding mutations in ASD pro-
bands was observed, and that approach would require a very large 
cohort to detect signal17. This is consistent with the expectation that 
noncoding mutations, in contrast to loss-of-function (LoF) coding 
mutations, can vary highly in functional impact, with potentially 
only a small fraction of variants having strong effect sizes. Thus, 
the challenge is to move beyond simple mutation counts, which are 
susceptible to both statistical power challenges and confounding  
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factors, such as the rise in mutation counts with parental age. This 
difficulty is shared in other psychiatric diseases with complex genetic 
bases, such as intellectual disabilities and schizophrenia. In fact, lit-
tle is known about the contribution of noncoding rare variants or 
de novo mutations to human diseases beyond the less common cases 
that exhibit Mendelian inheritance patterns.

To address this challenge, we used a systematic approach  
(Fig. 1a) that reliably identifies impactful noncoding mutations, 
which is analogous to using the genetic codon code to distin-
guish nonsynonymous mutations from synonymous mutations in 
protein-coding genes. This enables comparison of the mutational 
burden of probands and their siblings not simply in terms of the 
number of mutations but in terms of the functional impact of muta-
tions. Specifically, we used biochemical data demarcating interac-
tions between DNA- and RNA-binding proteins and their targets 
to train and deploy a deep convolutional-neural-network-based 
framework that predicts the functional and pathogenic impact of 
de novo mutations in the SSC using models trained for DNA and 
RNA. Our framework estimates, with single-nucleotide resolution, 
the quantitative impact of each variant on 2,002 specific transcrip-

tional and 232 specific post-transcriptional regulatory features, 
including histone marks, transcription factors and RBP profiles.

Using this approach, we discovered a significantly (multiple-
hypothesis-corrected) increased burden of mutations that disrupt 
transcriptional regulation (transcriptional-regulation-disrupting 
(TRD) mutations) and separately an increased burden of mutations 
that disrupt RBP regulation (RBP-regulation-disrupting (RRD) 
mutations) in ASD probands. This provides evidence of a causal role 
for de novo noncoding regulatory mutations in autism. Notably, the 
difference in functional impact between proband and sibling muta-
tions is significant when considering de  novo mutations genome 
wide, with increased effect sizes observed around LoF-intolerant 
genes (ExAC19). We also identify specific pathways and tissues 
affected by these mutations, experimentally verify the differential 
regulatory effect of prioritized variants and explore a link between 
the noncoding mutations and intelligence quotient (IQ) in ASD. We 
provide an interactive interface for the biomedical research commu-
nity to explore the predicted impact of de novo mutations at https://
hb.flatironinstitute.org/ASDbrowser/.

Results
Contribution of mutations affecting transcriptional and post-
transcriptional regulation to ASD. Analysis of the contribution 
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Fig. 1 | The increased effect burden of noncoding regulatory mutations in 
ASD. a, The overall study design for deciphering the contribution to ASD 
of de novo noncoding mutations genome wide. Whole genomes of 1,790 
ASD simplex families were sequenced to identify de novo mutations in 
the ASD probands and unaffected siblings. De novo SNV mutations were 
analyzed for their predicted transcriptional (chromatin and transcription 
factors) and post-transcriptional (RBPs) regulatory effects for comparison 
between probands and siblings. b, ASD probands possess mutations with 
significantly higher predicted DISs as compared to their unaffected siblings. 
In probands, we observed a significant burden of mutations altering both 
transcriptional (DNA, all variants; n = 127,140) and post-transcriptional 
(RNA, all transcribed variants; n = 77,149) regulation. This proband excess 
was stronger when analysis was restricted to mutations near all genes for 
DNA (n = 69,328) and near alternatively spliced exons for RNA (n = 4,871), 
and was even stronger near ExAC LoF-intolerant genes (DNA, n = 14,873; 
RNA, n = 1,355). For analyses that included gene sets, variants were 
associated with the closest gene within 100 kb of the representative TSS 
for analysis of TRD. For analysis of RRD, variants located in introns within 
400 bp of flanking exons in regions known to regulate alternative splicing 
were used. A Wilcoxon rank-sum test (one sided) was used for computing 
the significance levels. All predicted DISs were normalized by subtracting 
the average predicted DIS of mutations in siblings for each comparison 
(data are shown as mean DIS and the error bars indicate the 95% 
confidence interval). All results are significant after multiple-hypothesis 
correction (FDR < 0.05) and robust to inclusion or exclusion of mutations 
in protein-coding regions (Supplementary Fig. 6). c, Analysis with genomic 
variant set analysis of mutational burden for transcriptional and post-
transcriptional disruptions. For each gene set and distance cutoff, the effect 
size (defined as the difference between the average DIS in probands and 
siblings) is shown on the x axis. A Wilcoxon rank-sum test (one sided) was 
used for computing the significance levels. For each category, significance 
levels before and after correction are listed in Supplementary Table 2. The 
categories shown in b are included in the annotation. All gene lists were 
obtained from Werling et al.17. Distance cutoffs for DNA were 10 kb, 50 kb, 
100 kb, 500 kb and ∞ to TSSs; distance cutoffs for RNA were 200 bp, 
400 bp and ∞ to all exons or to all alternatively spliced exons. DNA 
results are shown in blue and RNA results are shown in orange; dot size 
corresponds to sample size (number of variants in a category); total sample 
size n = 127,140. Variant sets with more than 500 mutations are displayed. 
A full list of results is available in Supplementary Table 2. Uncorrected P 
values are shown on the y axis and the dashed line indicates categories 
below the FDR = 0.05 threshold after Benjamini–Hochberg correction. 
Results are robust to inclusion or exclusion of mutations in protein-coding 
regions (Supplementary Fig. 7).
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of noncoding mutations to ASD is challenging due to the diffi-
culty of assessing which noncoding mutations are functional and, 
of these, which contribute to the disease phenotype. To predict 
the regulatory impact of noncoding mutations, we constructed a 
deep convolutional-network-based framework to directly model 
the functional impact of each mutation and provide a biochemical 
interpretation, including disruption caused to transcription factors 
binding and the establishment of chromatin marks at the DNA level 
and to RBP binding at the RNA level (Supplementary Figs. 1 and 2). 
At the DNA level, the framework includes cell-type-specific models 
of transcriptional regulatory effects from over 2,000 genome-wide 
profiles of histone marks, transcription factor binding and chro-
matin accessibility (from the ENCODE and Roadmap Epigenomics 
projects20,21). This extends the deep-learning-based method that 
we described previously10 with a redesigned architecture, leading 
to significantly improved performance (P = 6.7 × 10−123, Wilcoxon 
rank-sum test; Supplementary Fig. 2). At the RNA level, our deep-
learning-based method was trained on the precise biochemical 
profiles of over 230 RBP–RNA interactions (derived from cross-
linking immunoprecipitation (CLIP) data); such data can iden-
tify a wide range of post-transcriptional regulatory binding sites, 
including those involved in RNA splicing, localization and stabil-
ity22. At both the transcriptional and post-transcriptional level, our 
models are accurate and robust in whole-chromosome-holdout 
evaluations (Supplementary Fig. 1b). Our models utilize a large 
sequence context to provide accurate single-nucleotide-resolution 
predictions, while also capturing dependencies and interactions 
between various biochemical factors (for example, histone marks 
or RBPs). This approach is data driven and does not rely on known 
sequence information, such as transcription factor-binding motifs, 
and it predicts the impact of any mutation regardless of whether 
it has been previously observed, which is essential for the analy-
sis of de novo mutations in ASD. Finally, to link the biochemical 
disruption caused by a variant with phenotypic impact, we trained 
a regularized linear model using a set of curated regulatory non-
coding mutations identified in human disease6 (from the Human 
Gene Mutation Database (HGMD)) and rare variants from healthy 
individuals in the 1000 Genomes populations23. The linear model 
generates a predicted disease impact score (DIS) for each autism 
mutation independently, based on its predicted transcriptional and 
post-transcriptional regulatory effects.

With these approaches, we systematically assessed the functional 
impact of de novo mutations on the binding of regulatory factors 
and chromatin properties, using data derived from 7,097 whole 
genomes from the SSC cohort (total of 127,140 non-repeat-region 
single nucleotide variants (SNVs); Supplementary Table 1). When 
considering all de  novo mutations, we observed a significantly 
higher functional impact in probands as compared to unaffected 
siblings, independently at the transcriptional level (P = 9.4 × 10−3, 
one-sided Wilcoxon rank-sum test for all; false-discovery rate 
(FDR) = 0.033, corrected for all mutation sets tested) and post-tran-
scriptional level (P = 2.4 × 10−4, FDR = 0.0049) (Fig. 1b, all variants). 
This analysis is sensitive enough to discover the contribution of non-
coding mutations even if only a very small fraction of the noncod-
ing mutations are impactful (see power analysis in Supplementary  
Fig. 3). Furthermore, our finding is robust and significant at the 
level of biochemical disruptions predicted by the DNA and RNA 
deep-learning-based models as well as with alternative DIS training 
sets (Supplementary Figs. 4 and 5) or with inclusion or exclusion of 
protein-coding regions (Supplementary Figs. 6 and 7).

Werling et  al.17 raised the challenge of detecting significant 
proband-specific signal even with highly specific subsets of genes 
or genomic regions, and in relation to this, emphasized the need 
to properly correct for multiple hypotheses; this challenge was not 
resolved by a larger ASD cohort in a follow-up study18. Notably, our 
result does not rely on any selection of variant subsets (for example, 

those near predicted ASD-associated genes), is significant even 
after multiple-hypothesis correction and, unlike mutation counts, 
the predicted mutation effects are not correlated with parental age 
(Supplementary Fig. 8), a confounding factor of analyses based on 
mutation counts.

To gain further insight into the noncoding regulatory land-
scape in ASD, we conducted a comprehensive analysis with full 
multiple-hypothesis correction for all 140 combinations of the 
14 gene sets previously used in Werling et  al.17, examined across 
ten genomic regions (for example, transcription start site (TSS)-
proximal regions and exon-proximal regions). When analysis was 
restricted to genomic regions of higher regulatory potential (that is, 
near TSSs or alternatively spliced exons), we observed an increased 
effect size for dysregulation (Fig. 1b,c; all genes; TRD: P = 5.6 × 10−4, 
FDR = 0.0056; RRD P = 2.2 × 10−4, FDR = 0.0048). Among gene 
sets, we observed an increased proband burden of high-effect 
mutations close to LoF-intolerant genes (probablity of being LoF 
intolerant (pLI) > 0.9 from ExAC; 3,230 genes; TRD: P = 2.6 × 10−3, 
FDR = 0.013; RRD: P = 1.1 × 10−3, FDR = 0.0078) (Fig. 1b,c and 
Supplementary Fig. 9). This finding suggests that, in ASD, LoF-
intolerant genes are highly vulnerable to noncoding disruptive 
mutations. This is consistent with the enrichment of coding LoF 
mutations among LoF-intolerant genes in the SSC cohort24, indi-
cating ASD signal convergence of noncoding and coding de novo 
mutations. Furthermore, we also found convergent signal at both 
the transcriptional and post-transcriptional level, thus providing 
further evidence for a causal role of noncoding effects in ASD (a full 
list of P values and FDRs is available in Supplementary Table 2). We 
observed these signals consistently across the SSC cohort subsets 
that were sequenced in different phases (Supplementary Fig. 10).

Tissue specificity and functional landscape of de  novo ASD-
associated noncoding mutations. Although one of the hallmarks 
of autism is altered brain development, a comprehensive tissue asso-
ciation has not been established for de novo noncoding variants. To 
explore the proband-specific signal in different tissues, we systemat-
ically tested the variant effects for genes with tissue-specific expres-
sion derived for all 53 tissues and cell types in the Genotype–Tissue 
Expression (GTEx) project25. We observed a consistent significant 
proband-specific mutation effect associated with brain tissues, with 
brain regions constituting the top 11 most highly ranked tissues 
(ranked by the difference in the effect of noncoding mutations in 
proband versus sibling) (Fig. 2a; all with FDR < 0.05). This provides 
strong evidence that high-impact variants from the noncoding 
genome of ASD probands likely disrupt brain-specific gene regu-
lation, which is consistent with previous findings for mutations in 
protein-coding regions26.

We next investigated the underlying processes and pathways 
impacted by de novo noncoding mutations in ASD. Such analysis 
is challenging because, in addition to the variability in the func-
tional impact of mutations, ASD probands appear highly hetero-
geneous in underlying causal genetic perturbations27 and single 
mutations could cause a widespread effect on downstream genes. 
Thus, to detect genes and pathways relevant to the pathogenicity 
of TRD and RRD mutations in ASD, we developed a network-
based statistical approach, which we term network-neighborhood 
differential enrichment analysis (NDEA; Supplementary Fig. 11). 
We used a brain-specific functional network that probabilistically 
integrates a large compendium of public omics data (for example, 
expression, protein–protein interaction (PPI) and motifs) to rep-
resent how likely it is that two genes act together in a biological 
process28. When applied to ASD de  novo mutations, the NDEA 
approach identifies genes whose functional network neighbor-
hood is significantly enriched for genes with stronger predicted 
disease impact in proband mutations as compared to sibling muta-
tions (Supplementary Table 3).
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Fig. 2 | Analysis of the effects of noncoding mutations converges on brain-specific signals and neurodevelopmental processes. a, Brain-tissue-specific 
genes show the strongest elevated proband-specific noncoding-mutation effect burden. All 53 GTEx tissues are ranked by significance of increased 
mutation burden in genes with tissue-specific expression in probands as compared to unaffected siblings (Methods). Uncorrected P values are shown 
on the y axis and the dashed line indicates tissues below the FDR = 0.05 threshold after Benjamini–Hochberg correction. DISs for all mutations within 
100 kb of representative TSSs (DNA) and intronic mutations within 400 bp of exon boundaries (RNA) were used for the analysis (n = 71,554). b, Processes 
related to neuronal function and development show a significant excess of proband mutation DISs as demonstrated by NDEA (full list in Supplementary 
Table 4 also see the Methods). Analysis was conducted on the same mutation set as in a. The top processes (y axis) and the P values of proband excess  
(x axis) are shown. Uncorrected P values are shown on the x axis and all gene sets shown have FDR < 0.05. c, Genes with significant network neighborhood 
excess of high-impact proband mutations form two functionally coherent clusters (see annotations for representative enriched gene sets in each cluster; 
a full list is available in Supplementary Table 5). Analysis was conducted on the same mutation set as in a. The brain functional network was visualized 
by computing two-dimensional embeddings with t-SNE (Methods). Genes, but not network edges, are shown for clarity of visualization. Clustering was 
performed with Louvain community clustering. All genes in the two clusters shown have FDR < 0.1.
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Globally, NDEA enrichment analysis pointed to a proband-
specific role for noncoding-mutation effects in neuronal develop-
ment, including in synaptic transmission and chromatin regulation  
(Fig. 2b and Supplementary Table 4), consistent with processes that 
have been previously associated with ASD, based on protein-coding 
variants2,26. Genes with significant NDEA enrichment were specifi-
cally involved in neurogenesis and grouped into two functionally 
coherent clusters using the Louvain community-detection algorithm 
(Fig. 2c and Supplementary Table 5). The synaptic cluster is enriched in 
ion channels and receptors involved in neurogenesis (P = 5.6 × 10−38), 
synaptic signaling (P = 4.8 × 10−35) and synapse organization 
(P = 1.5 × 10−18), including previously known ASD-associated genes 
such as those involved in synapse organization (SHANK2, NLGN2 
and NRXN2), synaptic signaling (NTRK2 and NTRK3), ion channels 
(CACNA1A, CACNA1C, CACNA1E, CACNA1G and KCNQ2) and 
neurotransmission (SYNGAP1, GABRB3, GRIA1 and GRIN2A)29. 
The synapse cluster is also significantly enriched for plasma mem-
brane proteins (P = 3.9 × 10−24). In contrast, the chromatin cluster, 
representing processes related to chromatin regulation, displayed an 
over-representation of nucleoplasm proteins (P = 2.1 × 10−9), with 
diverse functional roles including covalent chromatin modification 
(P = 2.5 × 10−9), chromatin organization (P = 5.2 × 10−8) and regu-
lation of neurogenesis (P = 6.4 × 10−5). The chromatin cluster also 
includes many known ASD-associated genes such as the chromatin 
remodeler CHD8, the chromatin modifiers KMT2A and KDM6B 
and the Parkinson’s disease gene PINK1 (ref. 30), which is also associ-
ated with ASD29 (Supplementary Table 3). Overall, our results dem-
onstrate pathway-level TRD and RRD mutation burden and identify 
distinct network-level hot spots for high-impact de novo mutations.

Next, we examined the genetic landscape of ASD-associated 
de novo noncoding and coding mutations. Specifically, in addition 
to the network analysis of noncoding mutations at the transcrip-
tional and post-transcriptional level, we also applied network analy-
sis to de novo coding mutations2. We compared the gene-specific 
NDEA statistic of the proband-specific effect burden for noncod-
ing mutations with that of coding mutations, finding a significant 
positive correlation for both TRD and RRD (P = 0.004 and Pearson’s 
r = 0.39 for TRD; P = 0.042 and Pearson’s r = 0.30 for RRD; two-sided 
permutation test). Moreover, network analysis showed that TRD 
and RRD are themselves significantly correlated (P = 0.034, and 
Pearson’s r = 0.36; two-sided permutation test). This demonstrates 
that coding and noncoding mutations affect overlapping processes 
and pathways, which indicates a convergent genetic landscape and 
highlights the potential for the discovery of ASD-associated genes 
by combining coding and noncoding mutations.

Experimental study of the effects of ASD-associated noncoding 
mutations on gene regulation. Our analysis identified new can-
didate noncoding disease-associated mutations that potentially 
affect ASD through regulation of gene expression. To add further 
evidence to a set of high-confidence causal mutations, we experi-
mentally studied the allele-specific effects of predicted high-impact 
mutations in cell-based assays. For TRD mutations, 59 genomic 
regions exhibited strong transcriptional activity, with 96% of pro-
band variants (57 variants) showing robust differential activity (Fig. 
3 and Methods), demonstrating that our prioritized de novo TRD 
mutations do indeed lie in regions with transcriptional regulatory 
potential and that the predicted effects translate to measurable 
allele-specific effects on expression. Among the genes with muta-
tions that exhibited strong differential activity were NEUROG1, 
which encodes an important regulator of initiation of neuronal dif-
ferentiation, and DLGAP2, which encodes a guanylate kinase that is 
localized to the postsynaptic density in neurons. In the NDEA anal-
ysis, NEUROG1 had significant network-neighborhood excess in 
probands (P = 8.5 × 10−4). Mutations near HES1 and FEZF1 also had 
significant differential effects on activator activities. Neurogenin, 

HES and FEZF family transcription factors act together during 
development, both receiving and sending inputs to Wnt and Notch 
signaling in the developing central nervous system and, interest-
ingly, in the gut to control stem cell fate decisions26,31–34, and Wnt and 
Notch pathways have been previously associated with autism27,35. 
SDC2 encodes a synaptic syndecan protein involved in the forma-
tion of dendritic spines and synaptic maturation, and a structural 
variant near the 3′ end of the gene was reported in an autistic indi-
vidual (reviewed in ref. 36). Thus, our method identified alleles of 
high predicted impact that do indeed result in changes in transcrip-
tional regulatory activity in cells. As many autism genes are under 
strong evolutionary selection, only effects exerted through (more 
subtle) changes in gene expression may be observable because com-
plete LoF mutations may be lethal. This implies that further study 
of the prioritized noncoding regulatory mutations should yield 
insights into the range of dysregulation associated with autism.

In addition, as a case study for prioritized RRD mutations, we 
experimentally validated the effect of an ASD proband de  novo 
noncoding mutation lying outside of a canonical splice site that 
we predicted to disrupt splicing of SMEK1 (ExAC pLI = 1.0; 
Supplementary Fig. 12). Smek1 has previously been shown to regu-
late cortical neurogenesis through the Wnt signaling pathway37. For 
this mutation, we observed a reduction of more than 40% in the 
inclusion of the exon for the ASD proband allele as compared to the 
sibling allele in a minigene assay (Methods), in agreement with the 
high predicted RRD impact. This demonstrates the highly disrup-
tive biochemical impact that a de novo mutation outside a canonical 
splice site can have on RNA splicing.

The individual-level clinical relevance of the noncoding de novo 
mutations. The majority of ASD probands in the SSC do not 
have a de novo LoF coding mutation1,2, and noncoding mutations 
outnumber LoF coding mutations by over 500-fold18. While the 
individual effect of noncoding mutations may vary, as a group, non-
coding mutations could have significant clinical impact. Indeed, 
we observed a significant increase in ASD risk for individuals with 
a higher burden of impactful de  novo mutations (Supplementary 
Fig. 9; mean DIS per individual, Wilcoxon rank-sum test one-sided 
P = 1.4 × 10−3), with 25% of the SSC ASD probands incurring an 
aggregate noncoding ASD risk of 1.2 (odds ratio).

Furthermore, the overall contribution of de  novo noncoding 
mutations (which explain 4.3% of the SSC ASD cases) was compa-
rable to that of LoF coding mutations (5.4%) and to that of missense 
mutations (3.1%) (Supplementary Fig. 13). This analysis leverages 
the power of the quad simplex design of the SSC cohort, enabling 
the estimation of the causal contribution of each mutation category 
by correcting for the background occurrence rate among unaffected 
siblings (Methods). Thus, our results demonstrate that noncoding 
de  novo mutations have clinical relevance, although not all ASD 
probands will have impactful noncoding mutations (even in aggre-
gate), and future work will be required to characterize their clinical 
impact and relationship to phenotypes.

One interesting direction is linking the effects of noncoding 
mutations to specific phenotypes, such as IQ heterogeneity among 
ASD probands. Intellectual disability is estimated to impact 40–60% 
of children with ASD38 and individuals with ASD can over-inherit 
common variants associated with educational attainment39. For 
de novo noncoding mutations analyzed in this study, we observed 
a significant association between noncoding mutations and IQ in 
individuals with ASD. Specifically, individuals with ASD with lower 
IQ had a higher burden of RRD mutations in intronic regions flank-
ing alternatively spliced exons of ExAC LoF-intolerant genes. This 
provides genetic evidence that aberrant splicing can contribute 
to the phenotypic heterogeneity observed among ASD probands 
(Supplementary Fig. 14; P = 1.5 × 10−3) and should be taken into 
account when projecting clinical outcomes.
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Discussion
Even with the great strides made in understanding the causes of 
ASD by sequencing and phenotyping of multiple cohorts in recent 
years, much of the genetic basis underlying autism remains undis-
covered. While a number of coding variants have been associated 
with ASD, no systematic evidence of de  novo noncoding effects 
has been observed. Here we present a new deep-learning-based 
approach for quantitatively assessing the impact of noncoding 
mutations on human disease. Our approach addresses the statisti-
cal challenge of detecting the contribution of noncoding mutations 
by predicting their specific effects on transcriptional and post-tran-
scriptional regulation. This approach is general and can be applied 

to study the contributions of noncoding mutations to any complex 
disease or phenotype.

Here we apply our strategy to ASD using the 1,790 whole-
genome-sequenced families from the SSC and, to our knowledge, 
demonstrate for the first time significant proband-specific signal 
in regulatory de novo noncoding space. Importantly, we not only 
detect this signal at the transcriptional level but also independently 
find significant proband-specific RRD burden. Previously, there 
has been limited evidence for disease contribution of mutations 
disrupting post-transcriptional mechanisms outside of canonical 
splice sites. We demonstrate significant ASD disease association at 
the level of de novo mutations for variants impacting a large collec-
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Fig. 3 | Allele-specific transcriptional activity of ASD noncoding mutations. Differential expression by proband and sibling alleles in a dual-luciferase 
assay demonstrates that 57 predicted high-impact TRD mutations associated with ASD fall in active regulatory elements and the mutations confer 
substantial changes to the regulatory potential of the sequence. Cells were transfected with a transfection control and a pGL4.23-based expression 
plasmid containing 230 nucleotides of the genomic region, and luminescence was assayed 42 h later (Methods). The y axis shows the magnitude of 
transcriptional activation normalized to the activity for the sibling allele. Significance levels were computed on the basis of a t test and Fisher’s combined 
probability test (two sided; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; Methods). Sample sizes for all tests are listed in Supplementary Table 6. 
Central values of the box plot represent the median, the box extends from the twenty-fifth to the seventy-fifth percentile, and whiskers extend to the 
maximum and minimum values no further than 1.5 times the interquartile range from the hinge.
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tion of RBPs regulating post-transcriptional regulation. Overall, our 
results suggest that both transcriptional and post-transcriptional 
mechanisms play a major role in the etiology of ASD and possibly 
other complex diseases.

Notably, our study reveals important biological convergen-
ces among the genetic dysregulations associated with ASD. Our 
analyses of the disease impact of mutations with effects on DNA 
and RNA point to similar sets of impacted genes and pathways, 
indicating that the effects of regulatory mutations are convergent. 
Furthermore, high-impact noncoding regions that we find in ASD 
probands affect the same genes previously found to be impacted 
by LoF coding mutations in ASD. This convergence provides sup-
port for a causal contribution of noncoding regulatory mutations 
to ASD etiology.

Our analyses also demonstrate the potential for predicting disease 
phenotypes from genetic information, including de novo noncoding 
mutations. We provide a resource for further research into under-
standing the mechanism of noncoding effects on ASD, including 
computationally prioritized TRD and RRD mutations with strong 
predicted regulatory effects, as well as ASD proband mutations that 
potentially contribute to disease with experimentally confirmed 
effects (Supplementary Tables 1 and 6; https://hb.flatironinstitute.
org/ASDbrowser/). However, there remains much room for further 
progress in this important area. We expect that continuing develop-
ment of methods for predicting the effects of noncoding mutations 
will further improve the power of WGS studies for discovering the 
biological mechanisms of the contributions of noncoding mutations 
to autism and other complex human diseases.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0420-0.
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Methods
De novo mutation calling and filtering. The SSC WGS data were made available 
via the Simons Foundation Autism Research Initiative (SFARI) and were processed 
to generate variant calls via the standard GATK pipeline. The SSC WGS data can 
be requested through SFARI Base (https://www.sfari.org/resource/sfari-base/), with 
the condition that the use of the data is limited to projects related to advancing the 
field of autism and related neurodevelopmental disorder research (questions on 
SSC consents should be directed to collections@sfari.org). To call de novo single-
nucleotide substitutions, inherited mutations were removed and candidate de novo 
mutations were selected from the GATK variant calls where the alleles were not 
present in parents and the parents were homozygous for the same allele. The 
DNMFilter40 classifier was then used to score each candidate de novo mutation; a 
threshold of probability > 0.75 was applied for SSC phases 1–2 and a threshold of 
probability > 0.5 was applied for phase 3 to obtain a comparable number of high-
confidence de novo mutation calls across phases.

The DNMFilter40 classifier was trained with an expanded training set 
combining the original training standards with the verified de novo mutations 
from the SSC pilot WGS studies for the initial 40 SSC families. For final analysis, 
de novo mutation calls within the low-complexity repeat regions from the UCSC 
browser table RepeatMasker41 were removed. Also, de novo mutations appearing 
in multiple SSC families (that is, non-singleton de novo mutations) or individuals 
with outlier numbers of mutations (>3 s.d. above the average) were excluded from 
the analysis.

Overall across the genome, we detected 77.7 mutations per individual with 
a transition-to-transversion (Ti/Tv) ratio of 2.01 (95% confidence interval (2.00, 
2.03)) (78.7 for probands with Ti/Tv = 2.02 (1.99, 2.04), 76.7 for siblings with 
Ti/Tv = 2.01 (1.99, 2.03)) and no significant difference in mutation substitution 
patterns between probands and siblings (Supplementary Fig. 15). The WGS 
de novo mutation calls were compared with de novo mutations calls from exome 
sequencing and previously validated SSC de novo mutations15: 87.9% of the 
mutation calls from exome sequencing and 90.3% of the validated mutations were 
rediscovered in our mutation calls.

Training models of DNA transcriptional regulatory effects and RNA post-
transcriptional effects. For training the transcriptional regulatory effects model, 
training labels, such as histone marks, transcription factors and DNase I profiles, 
were processed from uniformly processed ENCODE and Roadmap Epigenomics 
data releases. The training procedure is as described in Zhou and Troyanskaya21 
with the following modifications. The model architecture was extended to double 
the number of convolution layers for increased model depth (Supplementary 
Note). Similarly to our previous model21, all layers except for the last linear layer 
were shared across all biochemical features. Input features were expanded to 
include all of the released Roadmap Epigenomics histone marks and DNase I 
profiles, resulting in 2,002 total features (Supplementary Table 7), as compared 
with the original 919 features.

For training the post-transcriptional regulatory effects model, we utilized 
the DeepSEA network architecture and training procedure with RBP profiles as 
training labels (a full list of parameters used in the model is in the Supplementary 
Note). We uniformly processed RNA features composed of 231 CLIP binding 
profiles for 82 unique RBPs (ENCODE and previously published CLIP datasets) 
and a branchpoint mapping profile as input features (a full list of experimental 
features appears in Supplementary Table 8). CLIP data processing followed our 
previously detailed pipeline42, and all CLIP peaks with P < 0.1 were used for 
training with an additional filter requirement of twofold enrichment over input 
for ENCODE eCLIP data. In contrast to DeepSEA, only transcribed genic regions 
were considered as training labels for the post-transcriptional regulatory effects 
model. Specifically, all gene regions defined by Ensembl (mouse build 80, human 
build 75) were split into 50-nucleotide bins in the transcribed strand sequence. 
For each sequence bin, RBP profiles that overlapped more than half were 
assigned a positive label for the corresponding RBP model. Negative labels for a 
given RBP model were assigned to sequence bins where non-overlapping peaks of 
other RBPs were observed. Our deep learning models, both transcriptional and 
post-transcriptional, do not use any mutation data for training; thus, the models 
can predict impacts for any mutation regardless of whether it has been  
previously observed.

Prediction of disease impact scores. We used curated disease-associated 
mutations in regulatory regions and rare variants from healthy individuals to 
train a model that prioritizes likely disease-associated mutations on the basis 
of the predicted transcriptional or post-transcriptional regulatory effects of 
these mutations. As positive examples, we used 4,401 regulatory noncoding 
mutations curated in the HGMD with mutation type ‘regulatory’, including 
the sub-categories disease-causing mutation (DM), disease-causing mutation? 
(DM?), disease-associated polymorphism with supporting functional evidence 
(DFP), disease-associated polymorphism (DP) and in vitro/laboratory or in vivo 
functional polymorphism (FP). For negative examples of background mutations, 
we used 999,668 rare variants that were only observed once within the healthy 
individuals from the 1000 Genomes project23. We also showed that using an 
alternative set of negative variants gives similar conclusions: common variants 

with allele frequency > 0.01 and located within 100 kb to positives (HGMD 
regulatory variants). (Supplementary Fig. 5). Absolute differences in  
predicted probability computed by the convolutional network model of 
transcriptional regulatory effects (described above) were used as input features 
for each of the 2,002 transcriptional regulatory features and for the 232 post-
transcriptional regulatory features in the model of disease impact. Input  
features were standardized to unit variance and zero mean before being 
used for training. We separately trained an L2 regularized logistic regression 
model for the model of transcriptional effects (λ = 10) and the model of post-
transcriptional effects (λ = 10, using only examples of genic region variants) 
with the xgboost package (https://github.com/dmlc/xgboost/). The positive 
and negative training samples were separately weighted according to the 
inverse of the number of samples to address the label imbalance. The predicted 
probabilities were z transformed to have mean = 0 and s.d. = 1 across all  
proband and sibling mutations.

Gene sets and resources. All gene sets used are from Werling et al.17. The 
14 gene sets include GENCODE protein-coding genes, antisense genes, long 
intergenic noncoding RNA genes, pseudogenes, genes with pLI > 0.9 from 
ExAC19, predicted ASD risk genes (FDR < 0.3) from Sanders et al.8, target 
genes of the fragile X mental retardation protein43, genes associated with 
developmental delay44,45 and CHD8 target genes46,47. For genes with expression 
specific to each of the 53 GTEx tissues, we used the expression table from GTEx 
v.7 (gene median transcripts per million (TPM) per tissue)25 and we selected 
genes for which expression in a given tissue was five times higher than the 
median expression across all tissues.

We determined the representative TSS for each gene on the basis of FANTOM 
CAGE transcription initiation counts relative to GENCODE gene models. 
Specifically, a CAGE peak is associated with a GENCODE gene if it is within 
1,000 bp of a GENCODE v.24 annotated TSS48,49. Peaks within 1,000 bp of rRNA, 
small nuclear RNA, small nucleolar RNA or tRNA genes were removed to avoid 
confusion. Next, we selected the most abundant CAGE peak for each gene and 
took the TSS position reported for the CAGE peak as the selected representative 
TSS for the gene. For genes with no CAGE peaks assigned, we kept the GENCODE 
annotated gene start position as the representative TSS. FANTOM CAGE peak 
abundance data were downloaded at http://fantom.gsc.riken.jp/5/datafiles/latest/
extra/CAGE_peaks/ and the CAGE read counts were aggregated over all FANTOM 
5 tissue and cell types. GENCODE v.24 annotations lifted to GRCh37 coordinates 
were downloaded from https://www.gencodegenes.org/human/release_24lift37.html.  
All chromatin profiles used from the ENCODE and Roadmap Epigenomics 
projects are listed in Supplementary Table 7. The HGMD mutations are from 
HGMD professional v.2018.1.

Human exons that are alternatively spliced were obtained from a recent study 
that examined publicly available human RNA-seq data to annotate an extensive 
catalog of alternative splicing events50. Internal exon regions (both 5′ splice site 
(SS) and 3′ SS flanking introns), the upstream exon (5′ SS flanking intron) and 
the downstream terminal exon (3′ SS flanking intron) were used for definition 
of alternative exon types: cassette, mutually exclusive and tandem cassette exons. 
The terminal exon region was used for intron retention and alternatively spliced 
3′ or 5′ exon types. All selected exon-flanking intronic regions were collapsed into 
a final set of genomic intervals used to subset SNVs that were located within the 
alternative splicing exon regions (200 or 400 nucleotides from the exon boundary; 
Supplementary Fig. 16).

Network differential enrichment analysis. Networks of brain-specific 
functional relationships integrate a wide range of functional genomic data in 
a tissue-specific manner and predict the probability of functional association 
between any pair of genes28. This network was filtered to only include edges with 
probability >0.01 (above the Bayesian prior) to reduce the impact of noisy low-
confidence edges.

We used NDEA to test the differential (proband versus sibling) impact of 
mutations on each gene or gene set. Intuitively, this test generates a P value 
that reflects the proband-specific impact of mutations on that gene or gene 
set, including through its network neighborhood. This also enables statistical 
assessment of which gene sets (pathways) are significantly more affected by 
proband mutations than sibling mutations. Technically, NDEA performs 
a weighted two-sample (proband versus sibling mutations) test, where the 
weight for each observation is defined on the basis of the network connectivity 
scores (to the gene or gene sets) and the weighted averages of two samples 
are compared. Each weight is a non-negative constant number that is used to 
specify the relative contribution of an observation to the test statistic.  
When all weights are the same, it reduces to regular two-sample t tests; when 
the weights are different, the standard t statistic is adjusted to use appropriate 
variance according to weighting. Unlike some other forms of weighted t  
test, the weights are not random variables and do not represent sample sizes. 
The assumptions of the NDEA test are analogous to those of the standard 
two-sample t test, including that samples in each set are independent and 
identically distributed random variables and that the weighted sample means 
are normally distributed.
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For each gene i, the NDEA t statistic is computed by
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in which μPi
 and μSi

 are weighted averages of DIS dm of all proband mutations P or 
all sibling mutations S. VPi

 and VSi
 are the unbiased estimates of population variance 

of μPi
 and μSi

. NPi
 and NSi

 are the effective sample sizes of proband and sibling 
mutations after network-based weighting for gene i. Wij m( ) is the network edge score 
(interpreted as the functional relationship probability) between gene i and gene 
j(m) divided by the number of proband (if m is a proband mutation) or sibling (if 
m is a sibling mutation) mutations that gene j(m) is associated with, where j(m) 
indicates the implicated gene of the mutation m. P and S are the set of all proband 
mutations and the set of all sibling mutations included in the analysis.

Under the null hypothesis of the two groups having no difference, the above t 
statistic approximately follows a t distribution with the following degree of freedom.
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For testing the significance of differences between proband and sibling 
mutations, mutations within 100 kb of the representative TSS of all genes and 
all intronic mutations within 400 bp of an exon boundary were included in this 
analysis. RNA DISs were used as the mutation score for intronic mutations within 
400 bp of an exon boundary and DNA DISs were used for other mutations.

For NDEA, at the gene set level, we consider the gene set as a meta-node that 
contains all genes that are annotated to the gene set (for example, a Gene Ontology 
(GO) term). Then, for any given gene, the average of network edge scores for all 
genes in the meta-node is used as the weights. GO term annotations were pooled 
from human (EBI, 9 May 2017), mouse (MGI, 26 May 2017) and rat (RGD, 8 
April 2017). Query GO terms were obtained from the merged set of curated GO 
Consortium51 slims from Generic, Synapse and ChEMBL and supplemented by 
PANTHER52 GO-slim and terms from NIGO53.

For network-based analysis of correlation between mutations in protein-coding 
regions and noncoding TRD and RRD mutations, we first compute the NDEA  
t statistic for every gene for all mutations in protein-coding regions from the SSC 
exome sequencing study2,8, all SSC WGS noncoding mutations within 100 kb of 
a gene and all SSC WGS genic noncoding mutations within 400 bp of an exon, 
respectively. We then compute Pearson correlation across all resulting gene-specific 
t statistics for all three pairs of mutation types. For testing statistical significance 
of the correlation, we permuted proband and sibling labels for all mutations to 
compute the null distributions of correlations for each pair of mutation types. One 
thousand permutations were performed.

Network visualization and clustering. For network visualization, we computed 
a two-dimensional embedding with t-distributed stochastic neighbor embedding 
(t-SNE)54 by directly taking a distance matrix of all pairs of genes as the input. 
The distance matrix was computed as −log(probability) from the edge probability 
score matrix in the brain-specific functional relationship network. The Barnes–Hut 
t-SNE algorithm implemented in the Rtsne package was used for the computation. 
Louvain community clustering was performed on the subnetwork containing all 
protein-coding genes with the top 10% of NDEA FDR values.

Selection and cloning of variant-allele genomic regions. All genomic sequences 
were retrieved from the hg19 human genome assembly. For experimental testing, 
we selected variants with predicted DISs larger than 0 and included mutations 
near genes with evidence for ASD association, including those with coding 
LoF mutations (for example, CACNA2D3) and a proximal structural variant 
(for example, SDC2). We did not explicitly select mutations on the basis of 

proximity to TSSs and the chosen mutations lie from 7 bp to 324 kb away from 
the nearest TSS, with most variants lying farther than 5 kb from the nearest TSS 
(Supplementary Table 6). For each allele (sibling or proband), we either cloned 
230 bp of genomic sequence amplified from proband lymphoblastoid cell lines or 
used FragmentGenes synthesized by Genewiz (Supplementary Table 6). In both 
cases, 15-nucleotide flanks on the 5′ and 3′ ends matched each flank of the plasmid 
cloning sites (Supplementary Table 6). Synthesized fragments were cut with KpnI 
and BglII and cloned into pGL4.23 (Promega) cut with the same enzymes. PCR-
amplified genomic DNA was cloned into pGL4.23 blunt-end cut with EcoRV and 
Eco53kI using the GeneArtCloning method from Thermo Fisher Scientific. All 
constructs were verified by Sanger sequencing.

Luciferase reporter assays. Human neuroblastoma BE(2)-C cells were plated 
at 2 × 104 cells per well in 96-well plates and, 24 h later, were transfected with 
Lipofectamine 3000 (L3000-015, Thermo Fisher Scientific) together with 75 ng of 
Promega pGL4.23 firefly luciferase vector containing 230 bp of human genomic 
DNA from the loci of interest (Supplementary Table 6) and 4 ng of pNL3.1 
NanoLuc (shrimp luciferase) plasmid, for normalization of transfection conditions. 
Forty-two hours after transfection, luminescence was detected with the Promega 
NanoGlo Dual-Luciferase assay system (N1630) and a BioTek Synergy plate reader. 
Four to six wells per variant were tested in each experiment. Variants were tested 
in at least two separate experiments. For each sequence tested, the ratio of firefly 
luminescence (ASD allele) to NanoLuc luminescence (transfection control) was 
calculated and then normalized to empty vector (pGL4.23 with no insert) on the 
same plate. Statistics were calculated from fold change over empty vector values 
from each experiment and results from multiple replication experiments were 
combined with Fisher’s combined probability test. For presentation of the data, we 
normalized the fold change over empty vector value of the proband allele to that of 
the sibling allele.

SMEK1 minigene assays. To construct the SMEK1 minigene, the genomic region 
was amplified as two separate regions and then cloned into the pSG5 vector; the 
first region contained the upstream exon plus approximately 1,400 bp of intron, 
and the second region contained the alternative exon and the downstream exon 
plus approximately 1,400 bp of intron (primers in Supplementary Table 6). The 
mutant minigene was constructed by assembling the PCR-amplified vector 
backbone with synthetic gBlocks (IDT DNA) carrying the desired single-base 
mutation (GRCh37 chromosome 14, g.91932755G>A in RNA). Minigenes 
(2 μg) were transfected into SH-SY5Y cells and cells were harvested 48 h after 
transfection for immunoblotting or reverse transcription with quantitative PCR 
following standard protocols. Three independent experiments were performed for 
statistical comparison.

Contribution of de novo mutations to ASD in the SSC. For LoF and missense 
coding mutations, we used annotations from Supplementary Table 1 of the SSC 
exome study2. Out of a total of 2,508 probands, 331 ASD probands had at least 
one LoF oding mutation and 1,182 probands had at least one missense mutation. 
We estimated the expected number of background occurrences in probands using 
occurrences in unaffected siblings adjusted by the overall proband/sibling ratio, 
resulting in 221.8 for LoF and 1,105.0 for missense mutations. The final estimated 
contribution was determined by the differential between observed and background 
occurrences (for example, for LoF mutations, 331 minus 221.8 divided by 2,508 
probands gives an estimated contribution of 5.4%). For noncoding mutations, we 
observed 1,086 probands with mean DIS > 0 (mean of the average DNA DIS and 
average RNA DIS) in comparison to a background occurrence of 1,009 mutations 
per 1,781 individuals (unaffected siblings). The differential of 1,086 minus a 
background of 1,009 gives an estimated contribution of 4.3%.

Statistical analysis. All details of the statistical tests are specified in the associated 
text or figure legends. The NDEA test is described in detail in the Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
ASD WGS data can be obtained from the Simons Foundation Autism Research 
Initiative (SFARI). All variant predicted scores have been made available as 
supplementary material and an interactive web interface is available at https://
hb.flatironinstitute.org/asdbrowser/.

Code availability
The code used in this study is available from https://hb.flatironinstitute.org/
asdbrowser/help.
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