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INTRODUCTION: Obesity accounts for a substan-
tial and growing burden of disease globally.
Body adiposity is highly heritable, and human
genetic studies can lead to biological and ther-
apeutic insights.

RATIONALE: Whole-exome sequencing of hun-
dreds of thousands of individuals is comple-

mentary to approaches used to date in obesity
genetics and has the potential to identify rare
protein-coding variants with large phenotypic
impact. We sequenced the exomes of 645,626
individuals from the UK, the US, and Mexico
and estimated associations of rare coding var-
iants with body mass index (BMI), a measure
of overall adiposity used to define obesity in

clinical practice. We complemented exome se-
quencing with fine-mapping of common alleles,
polygenic score analysis, and in vitro and in vivo
modeling work.

RESULTS: We identified 16 genes for which
the burden of rare nonsynonymous variants
was associated with BMI at exome-wide sta-
tistical significance (inverse-variance weighted
meta-analysis P < 3.6 × 10−7), including asso-
ciations at five brain-expressed G protein–
coupled receptors (CALCR,MC4R,GIPR,GPR151,
and GPR75). We observed an overrepresentation
of genes highly expressed in the hypothalamus, a
key center for the neuroendocrine regulation
of energy balance. Protein-truncating variants
in GPR75 were found in ~4/10,000 sequenced
people and were associated with 1.8 kg/m2

lower BMI, 5.3 kg lower bodyweight, and 54%
lower odds of obesity in heterozygous carriers.
Knock out of Gpr75 in mice resulted in re-
sistance to weight gain in a high-fat diet model,
which was allele-dose dependent (25% and 44%
lowerweight gain, respectively, for heterozygous
Gpr75−/+ mice and knockout Gpr75−/− mice
compared with wild type) and accompanied by
improved glycemic control and insulin sensitiv-
ity. Protein-truncating variants in CALCR were
associated with higher BMI and obesity risk,
whereas protein-truncating variants in GIPR
and twomissensealleles [Arg190→Gln (Arg190Gln),
Glu288Gly], which we show result in loss of
function in vitro, were associated with lower
adiposity. Among monogenic obesity genes in
the leptin-melanocortin pathway, heterozygous
predicted loss-of-function variants inLEP,POMC,
PCSK1, and MC4R (but not LEPR) were associ-
ated with higher BMI. Rare protein-truncating
variants in UBR2, ANO4, and PCSK1 were as-
sociated with more than twofold higher odds
of obesity in heterozygous carriers, similar to
predicted-deleterious nonsynonymous variants
inMC4R, which are considered the most com-
mon cause of monogenic obesity. Polygenic
predispositiondue to>2million commongenetic
variants influenced the penetrance of obesity
in rare variant carriers in an additive fashion.

CONCLUSION: These results suggest that inhi-
bition of GPR75 may be a therapeutic strategy
for obesity and illustrate the power ofmassive-
scale exome sequencing for the identification
of large-effect coding variant associations and
drug targets for complex traits.▪
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Large-scale human exome sequencing can identify rare protein-coding variants with a large impact on
complex traits such as body adiposity. We sequenced the exomes of 645,626 individuals from the United
Kingdom, the United States, and Mexico and estimated associations of rare coding variants with body
mass index (BMI). We identified 16 genes with an exome-wide significant association with BMI, including
those encoding five brain-expressed G protein–coupled receptors (CALCR, MC4R, GIPR, GPR151, and
GPR75). Protein-truncating variants in GPR75 were observed in ~4/10,000 sequenced individuals and
were associated with 1.8 kilograms per square meter lower BMI and 54% lower odds of obesity in
the heterozygous state. Knock out of Gpr75 in mice resulted in resistance to weight gain and improved
glycemic control in a high-fat diet model. Inhibition of GPR75 may provide a therapeutic strategy for
obesity.

O
besity and its health complications ac-
count for a substantial and growing bur-
den of global disease. Understanding the
genetic and molecular underpinnings of
body adiposity can be a pathway to the

development of safe and effective therapeutic
strategies. Body fat is a highly heritable trait,
and genetic studies have revealed biological
pathways that regulate energy balance. Studies
in mouse models (1–3) and human forms of
extreme, early-onset obesity (4–10) have un-
covered the influence of the leptin-melanocortin
system on appetite regulation. Additionally,
genome-wide association studies (GWASs)
of body mass index (BMI) have highlighted
the polygenic contribution to the inherited
basis of adiposity, identifying thousands of
common genetic variants, each with small ef-
fect size, and reaffirming the broad influence

of the central nervous system on body mass
regulation (11–15).
Studies of rare protein-coding variants have

helped translate genetic associations into bio-
logical and therapeutic insights (4, 6–10, 16–24).
Analyses of coding variation in human obesity
have focused on (i) candidate gene or exome
sequencing in pedigrees or case collections with
extreme phenotypes or (ii) array-genotyping of
cataloged variant sites in large cohorts. Whole-
exome sequencing of hundreds of thousands of
individuals from population or health system–
based studies is a complementary approach
that may identify large-effect coding variants
influencing the propensity to become obese
or protection against obesity (25–28). Here, we
report a multiethnic exome-sequencing associ-
ation study for BMI in more than 640,000 in-
dividuals across three distinct cohorts and regions

of the world (the United Kingdom, the United
States, and Mexico).

Exome-wide gene-burden association of rare
coding alleles with body mass index

We performed high-coverage whole-exome se-
quencing in 645,626 individuals (29), includ-
ing 428,719 individuals of European ancestry
from the UK Biobank cohort (UKB; table S1)
(30), 121,061 individuals of European ances-
try from the MyCode Community Health
Initiative cohort from the US-based Geisinger
Health System (GHS; table S1) (31), and 95,846
individuals of admixed American ancestry from
theMexico City Prospective Study (MCPS; table
S1) (32).
In an exome-widemeta-analysis across these

three cohorts, there were 16 genes for which
the burden of rare nonsynonymous genetic
variantswas associatedwith BMI at the exome-
wide level of statistical significance [inverse-
varianceweighted (IVW)meta-analysisP<3.6×
10−7, a Bonferroni correction for 20,000 genes,
and seven variant selection models (29); Table 1
and fig. S1]. These associationswere conditionally-
independent of BMI-associated common variants
identified by fine-mapping genome-wide as-
sociation signals (29) andwere consistent across
the constituent datasets of the meta-analysis
(table S2).
Among the 16 genes, our analysis identified

two for which rare mutations are known to
cause monogenic obesity [MC4R (melanocor-
tin 4 receptor) (8, 9) and PCSK1 (proprotein
convertase subtilisin/kexin type 1) (6)] and
two genes where rare coding variants have
been associatedwith BMI [GPR151 (G protein–
coupled receptor 151) (33) and GIPR (gastric
inhibitory polypeptide receptor) (16)]. For the
other 12 genes, our study provides genetic
evidence linking rare coding variation to BMI
and obesity-related phenotypes. Five of the
16 genes encode G protein–coupled receptors
(GPCRs; the largest class of drug targets in
the human genome) (34) expressed in the
brain and central nervous system [GPR75 (G
protein–coupled receptor 75), CALCR (calcito-
nin receptor), GIPR, GPR151, and MC4R]. A
tissue expression analysis for BMI-associated
genes in our results revealed an overrepresent-
ation of genes that are highly and specifically
expressed in the hypothalamus, a key center
for the neuroendocrine regulation of energy
balance (fig. S2).
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Protein-truncating GPR75 variants associated
with leanness and protection against obesity
in humans
We explored in depth the association for rare
predicted loss-of-function (pLOF) variants in
the GPR75 gene, as this gene encodes a GPCR
highly expressed in the brain across species,
and this association was the largest effect-size
association with lower BMI in our exome-wide
analysis. Predicted loss-of-function variants in
GPR75 were observed in ~4 out of every 10,000
sequencedpeople,with similar frequency across
populations (table S2), and carrier status was
associated with 0.34 standard deviations lower

BMI, corresponding to 1.8 kg/m2 lower BMI or
about 5.3 kg, or 12 lb, lower body weight
(Table 1 and Fig. 1A).
The association with lower BMI was direc-

tionally consistent and statistically significant
in each of the constituent cohorts of our dis-
covery meta-analysis (table S2) as well as within
age and sex subgroups (table S3). We further
corroborated the association of GPR75 pLOF
variants with lower BMI in a combined analysis
including an additional 91,328 individuals not
included in the discovery set [per-allele beta
in standard deviation (SD) units of BMI in
the meta-analysis of discovery and additional

cohorts, −0.34; 95% confidence interval (CI),
−0.45, −0.22; P = 6.9 × 10−9] (Fig. 1B). This
strong association with lower BMI was accom-
panied by a corresponding association with
protection against obesity. Heterozygous car-
riers of GPR75 pLOF variants had 54% lower
odds of obesity compared with noncarriers in
a meta-analysis of the UKB, GHS, and MCPS
cohorts [table S4; per-allele odds ratio (OR),
0.46; 95% CI, 0.31, 0.67; P = 6.9 × 10−5], and
their distribution across BMI categories was
drastically shifted toward lower BMI catego-
ries (Fig. 2). None of 228 heterozygous car-
riers ofGPR75 pLOF variants were underweight
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Table 1. Associations with body mass index in the exome-wide gene-
burden analysis. The table reports genes for which the gene burden of rare
nonsynonymous variants was associated with body mass index at the exome-
wide level of statistical significance (P < 3.6 × 10−7). Analyses were
performed in 645,626 participants from the UKB, GHS, and MCPS studies.
Genomic coordinates reflect chromosome and physical position in base pairs
according to Genome Reference Consortium Human Build 38. Abbreviations:

CI, confidence interval; SD, standard deviation; BMI, body mass index; AAF,
alternative allele frequency; RR, reference-reference genotype; RA, reference-
alternative heterozygous genotype; AA, alternative-alternative homozygous
genotype; pLOF, predicted loss of function; missense (1/5), missense variant
predicted to be deleterious by at least 1 out of 5 in silico prediction
algorithms; missense (5/5), missense variant predicted to be deleterious by
5 out of 5 in silico prediction algorithms.

Gene
Genomic

coordinates

Genetic exposure,
variant type;
frequency
cutoff in %

Beta
(95% CI)
per allele
in SD units
of BMI

P
AAF

(fraction
of 1)

Genotype
counts

(RR|RA|AA
genotypes)

Beta
(95% CI)
per allele
in kg/m2

units of BMI

Beta
(95% CI)
per allele
in kg of

body weight

Beta
(95% CI)
per allele
in lb of

body weight

UHMK1 1: 162497250
pLOF plus missense
(5/5); AAF < 1%

−0.06
(−0.09, −0.04)

4.9 × 10−8 0.0048 639,499|6,117|10
−0.3

(−0.5, −0.2)
−1.0

(−1.4, −0.6)
−2.2

(−3.0, −1.4)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

GPR75 2: 53853133 pLOF; AAF < 1%
−0.34

(−0.46, −0.22)
2.6 × 10−8 0.0002 645,398|228|0

−1.8
(−2.5, −1.2)

−5.3
(−7.1, −3.4)

−11.6
(−15.7, −7.5)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

ROBO1 3: 78598912 pLOF; AAF < 1%
0.24

(0.15, 0.32)
5.6 × 10−8 0.0003 645,182|444|0

1.3
(0.8, 1.7)

3.7
(2.4, 5.0)

8.1
(5.2, 11.1)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

KIAA1109 4: 122170647 pLOF; AAF < 1%
0.13

(0.09 0.18)
5.1 × 10−8 0.0011 644,238|1,388|0

0.7
(0.5, 1.0)

2.1
(1.3, 2.9)

4.6
(3.0, 6.3)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

PCSK1 5: 96393000 pLOF; AAF < 1%
0.33

(0.21, 0.44)
1.0 × 10−8 0.0002 645,368|258|0

1.8
(1.2, 2.4)

5.1
(3.3, 6.8)

11.2
(7.4, 15.0)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

GPR151 5: 146514853
pLOF plus missense
(5/5); AAF < 1%

−0.05
(−0.06, −0.03)

5.7 × 10−9 0.0097 633,209|12,372|45
−0.3

(−0.4, −0.2)
−0.7

(−1.0, −0.5)
−1.7

(−2.2, −1.1)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

SPARC 5: 151663570
pLOF plus missense
(1/5); AAF < 1%

0.05
(0.03, 0.06)

1.2 × 10−10 0.0113 631,094|14,494|38
0.3

(0.2, 0.4)
0.8

(0.5, 1.0)
1.7

(1.2, 2.2)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

UBR2 6: 42564319 pLOF; AAF < 1%
0.34

(0.23, 0.45)
2.4 × 10−9 0.0002 645,363|263|0

1.8
(1.2, 2.4)

5.2
(3.5, 7.0)

11.5
(7.8, 15.3)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

CALCR 7: 93426355
pLOF plus missense
(1/5); AAF < 0.1%

0.09
(0.06, 0.11)

1.4 × 10−13 0.0048 639,416|6,208|2
0.5

(0.3, 0.6)
1.3

(1.0, 1.7)
3.0

(2.2, 3.8)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

PDE3B 11: 14644075 pLOF; AAF < 1%
0.12

(0.08 0.17)
1.7 × 10−7 0.0012 644,074|1,552|0

0.7
(0.4, 0.9)

1.9
(1.2, 2.6)

4.2
(2.6, 5.7)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

ANO4 12: 100901785 pLOF; AAF < 1%
0.29

(0.19, 0.38)
1.1 × 10−9 0.0003 645,248|378|0

1.6
(1.1, 2.1)

4.5
(3.0, 5.9)

9.9
(6.7, 13.0)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

KIAA0586 14: 58427628
pLOF plus missense
(5/5); AAF < 1%

−0.04
(−0.05, −0.02)

3.1 × 10−7 0.0115 630,769|14,844|13
−0.2

(−0.3, −0.1)
−0.6

(−0.8, −0.4)
−1.3

(−1.8, −0.8)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

MC4R 18: 60371350
pLOF plus missense
(5/5); AAF < 1%

0.30
(0.26, 0.34)

4.0 × 10−48 0.0016 643,589|2,036|1
1.6

(1.4, 1.8)
4.6

(4.0, 5.3)
10.2

(8.8, 11.6)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .

DPP9 19: 4676563
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(5/5); AAF < 1%

−0.06
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GIPR 19: 45669520
pLOF plus missense
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−0.09
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Fig. 1. Protein-truncating variants in GPR75 associated with lower body
mass index in humans. (A) Linear model of the GPR75 protein and its domains
(top; intra- and extracellular domains in yellow, transmembrane domains in
orange), the distribution on the GPR75 protein of 46 pLOF variants found by
exome sequencing (middle), and the distribution of BMI in standardized units
among heterozygous carriers of each variant (bottom). In the bottom subpanel,
horizontal blue bars show the mean BMI in noncarriers, while horizontal red bars
show the overall covariates-adjusted mean BMI in carriers of any pLOF genetic
variant in GPR75. (B) Meta-analysis of the association with BMI of pLOF variants

in GPR75 in discovery and additional cohorts. Abbreviations: CI, confidence
interval; RR, reference-reference genotype; RA, reference-alternative heterozy-
gous genotype; AA, alternative-alternative homozygous genotype; DHS, Dallas
Heart Study; SINAI, Mount Sinai BioMe cohort; DUKE, Duke Catheterization
Genetics cohort; TAICHI, Taiwanese Chinese persons from the Taiwan
Metabochip Consortium; PMBB, University of Pennsylvania Medicine BioBank;
MALMO, Malmö Diet and Cancer Study; AFR, African ancestry; AMR, American
ancestry; EAS, East Asian ancestry; EUR, European ancestry; SAS, South Asian
ancestry. MCPS included individuals of admixed American ancestry.
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(Fig. 2). In theUKBcohort,GPR75pLOF carriers
were more likely than noncarriers to self-report
a thinner-than-average comparative body size at
age 10 (table S5).
We examined the genomic context of the

BMI association for pLOF variants in GPR75.
The first and smallest exon of GPR75, contain-
ing untranslated sequence, is included in both
GPR75 and in a putative GPR75-ASB3 read-
through gene with the nearby ankyrin repeat
and SOCS box containing 3 (ASB3) (fig. S3).
The second and final GPR75 exon (containing
the entire translated region of GPR75) is not
shared with any other gene or transcript (fig.
S3). We conducted a number of analyses to
ensure that the association of pLOF variants
could be firmly attributed to the GPR75 gene.
First, 45 of the 46 pLOF variants inGPR75 that
contributed to the association with lower BMI
were located in exon 2 (table S6), which is
exclusive to the GPR75 gene (fig. S3). Accord-
ingly, the burden genotypes for pLOF variants
in GPR75 had no linkage disequilibrium [LD;
squared Pearson correlation coefficient (R2) <
0.0001] with the burden genotype for pLOF
variants affecting theGPR75-ASB3 readthrough
gene or the ASB3 gene. Second, we estimated
the association with BMI of the burden of rare
coding variants in ASB3 or in the GPR75-ASB3
readthrough gene in our large exome sequenc-
ingmeta-analysis. There was no associationwith
BMI for the burden of rare nonsynonymous
variants inASB3orGPR75-ASB3 acrossmultiple
statistical models with different variant an-
notation and allele frequency inclusion crite-
ria (table S7), nor was there an association for
pLOF variants in either ASB3 or GPR75-ASB3
(table S7). Finally, we estimated the association
with BMI for the burden of rare pLOF variants
in GPR75 conditional upon ASB3 and GPR75-
ASB3 genotypes. The association of GPR75
pLOF variants with lower BMI was unaffected
by adjusting for ASB3 and GPR75-ASB3 geno-

types (table S8). Therefore, the associationwith
lower BMI for rare pLOF variants inGPR75 can
be confidently attributed to the GPR75 gene.
We also explored whether there were com-

mon variant associations in the locus. In the
1-Mb window surrounding GPR75 (500 kb to
either side of the gene), there were 26 common
variants associated with BMI at the genome-
wide level of statistical significance (IVWmeta-
analysis, P < 5 × 10−8) in our GWAS of imputed
common variants in Europeans (table S9 and
fig. S4), whereas there were no genome-wide
significant associations in admixed Americans
(fig. S4). These 26 variants all fine-mapped to a
signal led by rs59428052 (G-allele frequency,
14.7%; posterior probability of causal associa-
tion, 30.4%; per-allele beta in SD units of BMI,
−0.015; 95% CI, −0.020 to −0.010; P = 1.3 ×
10−9), which is an intergenic variant nearest
to ASB3 and ~200 kb downstream of GPR75.
The rs59428052 variant did not colocalize
with any expression quantitative trait locus
(eQTL) signal nor were any of the additional
25 variants at the locus in LD (R2 > 0.8) with
any sentinel eQTLs in Genotype-Tissue Ex-
pression (GTEx) Portal v8 (table S9). Two of
the 26 variants were in LD with a missense
variant in ASB3 and GPR75-ASB3 (rs36020289),
which does not affect the GPR75 transcript
(table S9).
We performed a formal conditional analysis

adjusting for the 26 common variants asso-
ciated with BMI in the region and identified
that the association with lower BMI for pLOF
variants in GPR75 remains unchanged (table
S8). Therefore, the association with lower BMI
for rare pLOF variants in GPR75 is condition-
ally independent of any of the 26 common
variants associated with BMI at the locus in
Europeans.
In summary, our human genetic analysis at

the locus indicates that: (i) rare pLOF variants
inGPR75 are associatedwith lower BMIwith a

large effect association, (ii) the pLOF associa-
tion is attributed to GPR75 and not to other
nearby transcripts, (iii) the signal is indepen-
dent of BMI-associated common variants in
the region, and (iv) the small-effect intergenic
common variant signal found in that region by
GWAS fine-mapping in Europeans has no
apparent link with GPR75.
The association with lower BMI for pLOF

variants in GPR75 was due to multiple inde-
pendent rare pLOF variants predicted to trun-
cate GPR75 at different locations (Fig. 1A and
table S6). Because of their rarity, none of the 46
rare pLOF variants found by exome sequencing
in our analysis were well ascertained by array-
genotyping or imputation (table S6). Leave-one-
out analyses showed that the burden signal was
robust to the exclusion of one pLOF variant at
a time (table S10). Out of 46 rare pLOF var-
iants inGPR75, five (Ala110fs, Ser219fs, Gln234*,
Cys400fs, and Lys404*) were individually asso-
ciated with lower BMI at a nominal level of
statistical significance (IVW meta-analysis P <
0.05; table S11), whereas none were associated
with higher BMI. When excluding all five of
these variant sites fromanalysis, the remaining
set of pLOF variants was still associated with
lower BMI (table S10).
We expressed in vitro the twomost frequent

(minor allele count ≥ 10) among the pLOF
variants individually associated with BMI and
show that they result in cellular retention of a
truncated receptor likely leading to a complete
loss of function (Fig. 3). We predict that the
loss of a functional copy (i.e., haploinsufficiency)
or production of a truncated protein that dis-
rupts receptor multimers (i.e., dominant nega-
tive effects) may explain the association of
GPR75 truncation with lower BMI. We hy-
pothesized that in the case of haploinsuffi-
ciency, the earlier N-terminal truncation of
GPR75 would result in greater phenotypic
impact than a C-terminal truncation within
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Fig. 2. Distribution in body
mass index categories for car-
riers and noncarriers of pre-
dicted loss-of-function variants
in GPR75 or MC4R. Distribution
of heterozygous carriers of
pLOF genetic variants in GPR75
(top), noncarriers (middle), and
heterozygous carriers of pLOF
genetic variants in MC4R (bottom)
in body mass index categories
according to the World Health
Organization’s classification in the
UKB, GHS, and MCPS cohorts.
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( N = 228 )

MC4R pLOF
( N = 324 )

Non-carriers
( N = 645,074 )
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the last intracellular domain. Genetic variants
resulting in truncation of GPR75 before the
final intracellular domainwere associatedwith
a −2.1 kg/m2 lower BMI (IVW meta-analysis,
P = 4.1 × 10−7) as compared with a −1.4 kg/m2

lower BMI (IVWmeta-analysis, P = 0.012) for
variants resulting in truncation within the
final domain (table S12). This difference was
even more pronounced for truncations within
the last 100 amino acids of the final C-terminal
domain (table S12).
Body composition analysiswith bioimpedance

in the UKB cohort showed that the association
with lower BMI was driven by an association
with lower overall body fat mass and lower
body fat percentage (fig. S5). In an agnostic
phenome-wide analysis of GPR75 pLOF var-

iants (29), we did not observe statistically sig-
nificant associations with common diagnoses
or measured continuous traits after correction
for the number of statistical tests performed
(2173 phenotypes tested; Bonferroni-corrected
P value threshold,P < 2.3 × 10−5), reflecting the
rarity of these variants and the stringent mul-
tiple test correction.
A detailed analysis of metabolic traits re-

vealed a nominally-significant association (IVW
meta-analysis P < 0.05) with higher high-
density lipoprotein cholesterol, which is con-
sistent with a favorable metabolic profile (table
S13). Carriers of pLOF inGPR75had lower odds
of type 2 diabetes than did noncarriers (63,492
cases and 549,961 controls; per-allele OR, 0.92;
95% CI, 0.59, 1.45; P = 0.73; table S13), but the

differencewas not statistically significant.We
interrogated exome sequencing association sta-
tistics from up to 20,791 type 2 diabetes cases
and 24,440 controls included in the Type 2
Diabetes (T2D) Knowledge Portal (https://
t2d.hugeamp.org/; accessed 8 January 2021)
and similarly observed numerically lower
odds of type 2 diabetes in carriers of GPR75
pLOF variants (OR for type 2 diabetes, 0.52;
95% CI, 0.14 to 1.97; P = 0.30; alternative allele
frequency, 0.03%). Owing to the rarity of pLOF
variants in GPR75 and given the genetic re-
lationship between BMI and type 2 diabetes,
we estimate that millions of people would
need to be sequenced to detect an association
at P < 0.05 (table S13). An analysis for HbA1c, a
continuous biomarker of glycemic levels, led
to similar results (table S13).

Gpr75 deletion confers resistance to high-fat
diet–induced obesity in mice

In a mouse model of high-fat diet (HFD)–
induced obesity, experimental deletion of
Gpr75 protected against weight gain and its
associated abnormalities in glucose and insu-
lin metabolism (Fig. 4). When placed on HFD
for 14 weeks, Gpr75+/+ mice approximately
doubled their weight. Body weight changed
from an average (standard deviation) of 20.9
(2.1) to 43.3 (6.5) grams (body weight change,
+22.4 g). In contrast, mice with a genetic de-
letion ofGpr75 gained less weight in an allele-
dose–dependent fashion (body weight change
+16.9 g, difference in weight change compared
with wild type −5.5 g or −25% for Gpr75+/−

mice; bodyweight change +12.6 g, difference in
weight change compared with wild type −9.8 g
or −44% for the Gpr75−/− mice; Fig. 4A). In-
creases in fasting blood glucose seen with HFD
in Gpr75+/+ mice were reduced in an allele-
dose–dependent manner in Gpr75−/+ and
Gpr75−/− mice (Fig. 4B). Mice with a genetic
deletion in Gpr75were also resistant to HFD-
induced impairments in glucose tolerance
and insulin sensitivity (Fig. 4, C andD). At the
end of 14 weeks of HFD, plasma leptin levels
were lower inGpr75−/− andGpr75+/−mice com-
pared with wild-type mice (fig. S6), whereas
adiponectin levels were higher, resulting in a
2- and 10-fold lower leptin-to-adiponectin ratio
in Gpr75+/− and Gpr75−/− mice compared with
wild type (fig. S6).

Genomic insights at other BMI-associated
GPCRs and known monogenic obesity genes
from exome sequencing

Gene-burden associations at other GPCRs
illustrate the complementarity of large-scale
exome sequencing analyses to commonvariants
GWAS in identifying effector genes, establishing
directionality of association (i.e., whether LOF
in a gene is associatedwith higher or lower BMI
levels), and identifying variants whose func-
tional follow-up can provide biological insights.
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Fig. 3. In vitro expres-
sion studies of two pre-
dicted loss-of-function
genetic variants in
GPR75. (A) Results of
quantitative reverse
transcription polymerase
chain reaction
experiments which
measured GPR75 mRNA
levels. Expression of
GPR75 was calculated
relative to the beta-actin
gene. Values represent
the mean and standard
deviation of three
technical replicates rep-
resentative of one of
three biological replicate
experiments performed
for each condition.
(B) Western blotting
analysis of GPR75 protein
levels. GPR75 Ala110fs
and Gln234* protein
products correspond to
the predicted molecular
weight of 14 and 25 kDa,
respectively. The results
are representative of
three biological repli-
cates. (C) Immuno-
fluorescence staining
experiments describing
the cellular localization of
GPR75. The top images
show intracellular stain-
ing achieved by mem-
brane permeabilization, while the bottom images show plasma membrane localization (nonpermeabilized
cellular membrane). (D) Flow cytometry analysis of the cell surface expression of GPR75. Identified cell
populations are presented in percent (%) of live HA-TAG GPR75 positive cells. Values represent the mean of
four biological replicates per condition and their standard deviation. All experiments were performed in
HEK293 cells that were transfected with green fluorescent protein control plasmids (Control), GPR75 wild
type (GPR75), GPR75-Ala110fs, or GPR75-Gln234* plasmids. Abbreviations: GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; SSC, side scatter; HA, hemagglutinin tag.
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In our GWAS fine-mapping analysis, we
identified four distinct signals in the 1-Mb
region around the CALCR gene (table S14).
Although these common variant associations
point to CALCR as a possible effector gene,
they do not on their own inform whether
reduced CALCR functionwould be associated
with higher or lower BMI. In the exome
analysis, we identified a significant associa-
tion for the burden of rare [alternative allele
frequency (AAF) of <0.1%] pLOF and predicted-
deleterious missense variants in CALCR with
0.09 SDs (~0.5 kg/m2) higher BMI and 20%
higher odds of obesity (OR, 1.20; 95% CI, 1.12,
1.29; P = 8.9 × 10−7; Table 1 and table S4). In
addition, the burden of CALCR pLOF genetic
variants alone (i.e., excluding missense var-
iants) was associated with higher BMI (table
S15), indicating that loss of function in CALCR
is associated with higher adiposity and obesity
risk in humans.
At GIPR, a known BMI locus (16), we iden-

tified an exome-wide significant association
with lower BMI for the burden of pLOF and
predicted deleteriousmissense variants (Table 1).
This association remained statistically signif-
icant, albeit attenuated, after accounting for
Arg190→Gln (Arg190Gln) or Glu288Gly (table

S15), two raremissense variants with uncertain
functional consequences previously associated
with lower BMI (16).
In our exome sequencingmeta-analysis, rare

protein-truncating variants in GIPR were asso-
ciatedwith lower BMI, with a similar effect size
to that of Arg190Gln or Glu288Gly (Fig. 5A and
table S15), suggesting that these missense var-
iants may result in a loss of function. We tested
this hypothesis in cell-based expression experi-
ments, showing that both Arg190Gln-GIPR
and Glu288Gly-GIPR result in a near-complete
loss of function with respect to Gs and Gq
signaling when agonized with recombinant
glucose-dependent insulinotropic polypeptide
(Fig. 5, B and C, and fig. S7) as compared with
wild type. These results indicate that heterozy-
gous loss of function in GIPR results in lower
BMI and obesity risk in humans.
Using exome sequencing, we confirmed the

association of pLOF and deleterious missense
variants in MC4R with higher BMI (Table 1)
and that of gain-of-function variants inMC4R
(Val103Ile and Ile251Leu) with lower BMI
(table S15). In cell-based experiments, we also
show that the Val103Ile variant is resistant to
the agouti-related peptide–mediated inhibition
of MC4R signaling and confirm the signaling

preference toward b-arrestin pathway of this
gain-of-function variant (17) (fig. S8).
In the MCPS cohort, we identified anMC4R

signal that was fine-mapped to a single likely-
causal missense variant (Ile269Asn, 18:60371544:
A:T in table S14). This variant was previously
associated with childhood and adult obesity
in Mexico (35) and experimentally shown to
result in a complete LOF of both cyclic aden-
osine monophosphate signaling and b-arrestin
recruitment (17). The variant is extremely rare
in non-Latino ancestries, but the allele frequency
was 1% in admixed American individuals from
the MCPS cohort. Heterozygous MC4R defi-
ciency is considered the most common mono-
genic form of human obesity (prevalence in
cases of severe early-onset obesity, ~6%) (36).
In obese individuals of European ancestry
from the UKB cohort, the prevalence of pLOF
or rare (AAF < 1%) deleterious missense var-
iants in MC4R was 0.4%, indicating that
MC4R deficiency is a rare genetic contributor
to general obesity in that population. In obese
admixed American participants from the MCPS
cohort, the prevalence of MC4R deficiency due
to the Ile269Asn variantwas~3%.Therefore, the
prevalence of heterozygous MC4R deficiency
in general obesity is more than sevenfold
greater in admixed Americans from Mexico
than in Europeans from the UK.
HomozygousMC4R deficiency has been de-

scribed in only a handful of cases of severe
early-onset obesity (36), but the penetrance of
obesity in this condition is unknown. In the
MCPS cohort, there were 17 homozygous car-
riers of Ile269Asn, 12 of whomwere obese and
5 overweight. These data suggest that homo-
zygousMC4Rdeficiencymight be incompatible
with the maintenance of a healthy weight in
adulthood.
Our exome-wide study also identified addi-

tional large effect-size associationswith higher
BMI and obesity risk for rare coding variants
in other genes, including associations with
more than twofold higher odds of obesity for
protein-truncating variants in PCSK1 (in a
heterozygous state), UBR2 (ubiquitin protein
ligase E3 component n-recognin 2), and ANO4
(anoctamin 4) (Table 1 and table S4). These
associations were similar in effect size to those
for rare (AAF<1%)pLOFordeleteriousmissense
variants in MC4R, but the frequency of these
genotypes was lower than that ofMC4R pLOF
or deleteriousmissense alleles (Table 1).Hence,
these rare mutations occur in only a small
number of people in the general population.
However, they may have a large impact on
obesity risk in those small groups of carriers.
We used our large exome-sequencing data-

set to investigate the association with BMI of
heterozygous pLOF variants in five leptin-
melanocortin pathway genes where pLOF
variants have been previously linked to mono-
genic obesity {LEP [leptin deficiency, Mendelian
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Fig. 4. Weight gain during high-fat diet and metabolic phenotype in mice with a genetic deletion of
Gpr75. (A) Weekly body weight gain during a 14-week high-fat diet (HFD) challenge. (B) Changes in fasting
blood glucose before and after the high-fat diet challenge. (C) Results of a glucose tolerance test at the
end of the 14-week high-fat diet challenge. (D) Plasma insulin at the end of the 14-week high-fat diet
challenge. Each panel shows results in Gpr75+/+ (WT), Gpr75+/− (HET), and Gpr75−/− (KO) mice. Number
of mice included in each group and analysis is shown in parentheses. Results are presented as mean ±
standard error. Abbreviations: ns, not statistically significant; **P < 0.01, ***P < 0.001, ****P < 0.0001 by
two-way analysis of variance with Tukey’s multiple comparisons test.
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Inheritance in Man (MIM): 614962], LEPR
[leptin receptor deficiency, MIM: 614963],
POMC [proopiomelanocortin deficiency, MIM:
609734], PCSK1 [proprotein convertase 1/3
deficiency, MIM: 600955], and MC4R [mel-
anocortin 4 receptor deficiency, MIM: 618406]}.
Of these, only MC4R deficiency is considered
to have autosomal dominant inheritance, while
all other deficiencies are considered to be auto-
somal recessive. Heterozygous carrier status for
pLOF variants in LEP, POMC, PCSK1, orMC4R
was associated with higher BMI (IVW meta-
analysis P < 0.05; table S16), whereas hetero-
zygous carrier status for pLOF variants in
LEPR was not associated with BMI, suggest-
ing a pure autosomal recessive inheritance
for leptin receptor deficiency.

Rare single-variant exome-wide analysis
reveals additional signals at the SOS2 and
SRRM2 genes

In addition to the gene-burden association
analyses, we also conducted single-variant
association analyses, looking for rare non-
synonymous alleles individually associated
with BMI (IVW meta-analysis P < 5 × 10−8)
conditional on GWAS fine-mapped common
variants (29). We identified seven such var-
iants, including five occurring in genes iden-
tified in the primary gene-burden analysis

[GPR151, SPARC (secreted protein acidic and
cysteine rich), MC4R, GIPR, and ANKRD27
(ankyrin repeat domain 27); table S17) and
two variants in genes not identified in other
analyses [Arg2033Pro in SRRM2 (serine/
arginine repetitive matrix 2) and Pro191Arg
in SOS2 (SOS Ras/Rho guanine nucleotide
exchange factor 2); table S17]. The missense
variant in SOS2was associated with 0.05 SDs
(0.27 kg/m2) lower BMI per allele. Notably,
mutations in SOS2 are associated with auto-
somal dominant forms of Noonan syndrome
(MIM: 616559), a condition that has been
associated with a lower prevalence of being
overweight (37).

Combined use of common variant GWAS fine-
mapping and exome-sequencing gene-burden
associations to prioritize likely effector genes
for BMI

Fine-mapping of GWAS associations in the
discovery cohorts of our analysis identified 1905
independent signals led by sentinel common
variants (29) (AAF > 1%; table S18), which had a
median 95% credible set size of 36 likely-causal
variants (interquartile range, 12 to 119).We used
MANTRA (Meta-Analysis of Transethnic Asso-
ciation) studies (38), a Bayesian transethnic
meta-analysis approach, to estimate associa-
tions of fine-mapped signals across ancestries

and observed strong evidence of association
across datasets (median log10 Bayes factor,
7.0; interquartile range, 4.9 to 10.4; table S18).
Of the 1905 signals, 13 (0.7%) fine-mapped

to a single nonsynonymous sentinel variant
with >95% posterior probability of causal as-
sociation (12 missense variants and 1 splice
site variant in 12 genes; table S19). These in-
cluded a gene identified in our gene-burden
analysis (MC4R) and an additional 11 genes.
We investigated whether there were associa-
tions for the burden of rare (AAF < 1%) pLOF
or pLOF plus predicted deleterious (5/5 in silico
prediction algorithms) missense variants in
these genes prioritized by GWAS fine-mapping.
We found evidence of association (IVW meta-
analysis P < 0.05) for 4 of these 11 genes (36%;
table S19). These common and rare variants
association pairs included the His48Arg mis-
sense variant and the burden of rare pLOF
or predicted deleteriousmissense variants in
ADH1B, encoding the key ethanol metabolism
enzyme alcohol dehydrogenase 1B. His48Arg
is known to associate with higher BMI via
increased alcohol consumption (39), and our
rare variant analysis corroborates the causal
nature of that association and the importance
of alcohol consumption in weight regulation.
We used exome sequencing results to inves-

tigate whether there were associations for rare
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Fig. 5. Association of protein-truncating genetic variants in GIPR with
lower body mass index. (A) Association with BMI for pLOF genetic variants in
GIPR across both discovery and additional cohorts. Abbreviations: CI, confidence
interval; RR, reference-reference genotype; RA, reference-alternative heterozy-
gous genotype; AA, alternative-alternative homozygous genotype; DHS, Dallas
Heart Study; SINAI, Mount Sinai BioMe cohort; DUKE, Duke Catheterization
Genetics cohort; TAICHI, Taiwanese Chinese persons from the Taiwan
Metabochip Consortium; PMBB, University of Pennsylvania Medicine BioBank;

MALMO, Malmö Diet and Cancer Study; AFR, African ancestry; AMR, American
ancestry; EAS, East Asian ancestry; EUR, European ancestry; SAS, South Asian
ancestry. (B) In vitro expression results using the CRE-reporter assay for the
Arg190Gln and Glu288Gly missense variants in GIPR, which were associated
with lower BMI. (C) In vitro expression results using the nuclear factor
of activated T cells (NFAT)–dependent assay for the variants. Both missense
variants showed lower glucose-dependent insulinotropic polypeptide (GIP)–
induced Gs signaling and lower GIP-induced Gq signaling than wild type.
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nonsynonymous variants in genes at the FTO
locus, where common variants have been asso-
ciated with BMI in early GWASs (11, 12) and
where experimental studies have suggested
the distant IRX3 and IRX5 as likely effector
genes (40). We did not observe an association
with BMI for rare coding variants in FTO, IRX3,
or IRX5 (table S20). Because pLOF variants in
these genes were rare (AAF ≤ 0.02%; table S20),
this analysis can only exclude large-effect asso-
ciations with BMI for heterozygous pLOF var-
iants in those genes. The strongest associations
for the burden of rare coding variants in the
region was for rare (AAF < 1%) pLOF or pre-
dicted deleterious (5/5 in silico prediction al-
gorithms) missense variants in the CHD9 gene
(table S20).
At 10 of the 16 1-Mb regions around the

genes identified in our exome-wide gene-
burden analysis, there were common variant
(sentinel AAF > 1%) signals identified by
GWAS fine-mapping, while at the remaining
six regions there were no nearby fine-mapped
common sentinel variants (table S14). At the
10 loci with common variant signals, we used
physical proximity, common nonsynonymous
variants, and eQTL colocalization in either
European or all-ancestry GTEx v8 datasets to
identify likely effector genes for the common
variant associations (29) (tables S14 and S21).
At 6 of the 10 regions, the gene identified in

the exome-wide analysis was also one of the
genes that were prioritized by common var-
iants associations (table S14). However, at four
of those six loci, other genes were also prio-
ritized, resulting in an uncertain effector gene
attribution on the basis of common variants
alone. In these four loci, gene-burden associa-
tions for the gene identified in the exome
analysis had an average of 19 orders of mag-
nitude stronger statistical association than any
of the other possible effector genes prioritized
by common variants [average difference in
−log10(p), 19.3; range, 6.3 to 46.6; table S14],
suggesting that gene-burden analyses may
considerably help to prioritize effector genes
at someGWAS-associated loci. At the remain-
ing loci, common variant associations priori-
tized different genes than the ones identified
in the exome-wide analysis (table S14). These
results suggest that, at those loci, common var-
iant associations act via different genes than
the ones found by exome sequencing or that
the gene prioritization from common variant
associations did not identify the correct effec-
tor gene for those common variant signals.

Polygenic burden influences the penetrance
of obesity in carriers of high-impact rare
coding alleles

Both common and rare alleles contribute to
the risk of general obesity, but their interplay

in shaping obesity risk has been understudied
because of the lack of datasets with both
common and rare variant ascertainment. Here,
we generated a genome-wide polygenic score
capturing genetic predisposition to higher BMI
due to more than 2.5 million common alleles
(29) and studied its interplay with rare, large
effect-size coding variants in shaping risk for
obesity in the population-based UKB cohort.
This analysis suggests that polygenic burden
influences the penetrance of obesity and the
level of BMI in carriers of GPR75 (large-effect
protective association) or MC4R (large-effect
risk-increasing association) pLOF variants in a
linearly additive manner (Fig. 6 and fig. S9).
The penetrance of obesity in individuals carry-
ing protein-truncating variants in MC4R varied
from less than 30% to more than 60% in people
at the bottom versus top quintile for the dis-
tribution of the polygenic score (Fig. 6). There
was a nearly 60% absolute difference in the
prevalence of obesity between extremes of
genetic predisposition, that is, GPR75 pLOF
carriers in the bottom quintile of polygenic
burden and MC4R pLOF carriers in the top
quintile (Fig. 6).

Discussion

By conducting a large exome-sequencing study
on the influences of rare coding variation on
body adiposity, we made a number of observa-
tions that advance our understanding of the
genes and pathways involved in propensity for
and resistance to obesity in humans. We dis-
coveredanassociation for rareprotein-truncating
genetic variants in GPR75 with lower adiposity
and substantial protection against obesity. We
validated this human genetic association in a
high-fat diet model of obesity in mice, where
genetic ablation of Gpr75 was associated with
resistance to weight gain, greater insulin sen-
sitivity, and improved glycemic control. In our
analysis, the association for pLOF variants in
GPR75 showed the largest effect-size genetic
association with lower adiposity and protec-
tion against obesity at the genome-wide level.
The estimated effect size for this association
appears to be three to four times larger than
the largest effect-size associations for common
genetic variants at the FTO locus (11, 13) or
for low-frequency gain-of-function variants
inMC4R (17). The observation of a consistent
association across cohorts from different re-
gions of the world and with different study
design as well as multiple ancestries high-
lights the generalizability of this association
in people with various genetic backgrounds
and environmental exposures.
Human genetics validation is a predictor of

the likely success of drug development programs
(41, 42) where the identification of naturally
occurring protective alleles has catalyzed the
translation from genetic association to thera-
peutic drug development in a growing number
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of examples (17–22, 43–45). Therefore, our find-
ings suggest that GPR75 inhibition could be a
therapeutic approach for obesity.
The expression of GPR75 in the hypothalamic

nuclei and other brain regions, protection
against weight gain for Gpr75 knockout mice
under high-fat diet challenge, and previous
evidence of the role of brain GPCRs in energy
balance regulation suggest that this receptor
may be implicated in the brain-mediated reg-
ulation of energy balance, providing an im-
portant direction for futuremechanistic research.
It will also be important to clarify whether
20-hydroxyeicosatetraenoic acid (20-HETE),
an eicosanoid metabolite of arachidonic acid,
or C-C motif chemokine ligand 5 (CCL5), a
chemokine, which have been previously pro-
posed as putative ligands for GPR75 (46, 47) or
other yet-undiscovered ligands are responsible
for the link betweenGPR75 loss of function and
body weight regulation.
In addition to GPR75, our agnostic exome-

wide analysis identified four other GPCRs ex-
pressed in the brain and previously implicated
in energy balance regulation. This highlights
once again the importance of neurological
pathways in obesity risk in humans first shown
in family studies of extreme obesity and more
recently in genome-wide association analyses
of common variants. GIPR is expressed in
adipose, brain, bone, and othermetabolically-
active tissues where it acts as the receptor for
glucose-dependent insulinotropic polypeptide,
an incretin hormone involved in the regulation
of insulin secretion, gastric emptying, and
other metabolic processes (48). CALCR is the
receptor of calcitonin and amylin, a peptide
hormone secreted by pancreatic beta cells,
which has been shown to promote satiety,
delayed gastric emptying, and weight control
inpatientswith type 2diabetes (49–51). Ablation
of Calcr-expressing neurons in the nucleus
tractus solitarius has been recently implicated
in the disruption of a leptin-independent path-
way of appetite regulation in murine models
(52). GPR151 encodes a habenular receptor
involved in addictive behavior and differen-
tial food-intake response to nicotine (53). The
association effect size for pLOF and predicted
deleterious missense variants in our analysis
as well as the previously reported association
for the Arg95* allele (33) is tiny (−0.3 kg/m2

per allele), suggesting that it may be second-
ary to other behavioral or neurological pheno-
types possibly related to addiction. In addition
to these GPCRs, our exome-wide analysis re-
vealed associations with body adiposity for
rare coding variants in several other genes.
Although in this study we primarily focused
on the associations inGPR75 and other GPCRs
owing to their more immediate translational
potential, the identification of these additional
associations in our large study provides an in-
itial foundation for understanding the role of

these genes in the regulation of body fat and
obesity risk.
Our study illustrates the power and versa-

tility of massive-scale exome sequencing in
population- or health system–based cohort
studies as a genetic discovery approach com-
plementary to common variant GWASs and
pedigree-based studies.We show the utility of
this approach in (i) discovering large-effect
protective or risk-increasing associations for
genes and individual rare coding variants, (ii)
identifying functional variants that can be
studied in vitro for biological insight, (iii) pri-
oritizing effector genes for common variant
signals identified by fine-mapping, and (iv)
understanding the impact of rare variants on
complex traits such as obesity across popula-
tions and their interplay with common var-
iation in shaping disease risk or resistance.
The results from this exome-sequencing anal-
ysis in more than 640,000 people suggest that
inhibition of GPR75 may be a therapeutic
strategy for obesity and illustrate the power
of massive-scale exome sequencing for the
identification of large-effect coding variant
associations and drug targets for complex
traits.

Methods summary

Detailed materials and methods are provided
in the supplementary materials (29). Briefly,
we performed high-coverage whole-exome se-
quencing in 645,626 individuals, including
428,719 individuals of European ancestry from
the UK Biobank cohort, 121,061 individuals of
European ancestry from the MyCode Com-
munity Health Initiative cohort from the US-
based Geisinger Health System, and 95,846
individuals of admixed American ancestry
from the Mexico City Prospective Study. The
outcome measure was BMI, calculated as
weight in kilograms divided by the square of
standing height in meters. We estimated
associations with BMI for the burden of rare
nonsynonymous variants in each sequenced
gene by fittingmixed-effects regressionmodels
accounting for population stratification and
relatedness using BOLT-LMM v2.3.4 (54) or
REGENIE v1.0 (55). Results across studies were
pooled by inverse-variance weighted meta-
analysis. Consistent with previous literature
(27, 28), for our primary gene-burden asso-
ciation analysis, we considered a threshold
of exome-wide statistical significance of P <
3.6 × 10−7, a Bonferroni correction for 20,000
genes, and seven variant selection models.
In parallel, to leverage evidence from common
variants, we performed genome-wide associa-
tion studies of imputed common alleles in the
same discovery dataset used for our exome
sequencing analysis. We leveraged fine-map-
ping of common alleles, formal conditional
analyses, physical proximity mapping, linkage
disequilibrium with common nonsynonymous

alleles, eQTL colocalization, and polygenic score
analysis to highlight the complementarity of
evidence fromexome sequencing andGWASs of
common variants. To illustrate the translational
valueof exomesequencing–identified rare coding
associations, we performed targeted in vitro and
in vivo experiments. We performed in vitro ex-
pression studies for the functional characteriza-
tion of naturally-occurring variants in GPR75,
MC4R, and GIPR. We also developed genetically
engineered knockout Gpr75−/− mouse strains
using the VelociGene technology (56, 57) and
studied the weight gain, glycemic, and insuli-
nemic phenotypes of knockoutGpr75−/−, heter-
ozygous Gpr75−/+, and wild-type Gpr75+/+mice
in a high-fat diet model.
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