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Abstract

GWAS has identified thousands of loci associated with disease, yet the causal genes within these loci remain largely 

unknown. Identifying these causal genes would enable deeper understanding of the disease and assist in genetics-based 

drug development. Exome-wide association studies (ExWAS) are more expensive but can pinpoint causal genes offering 

high-yield drug targets, yet suffer from a high false-negative rate. Several algorithms have been developed to prioritize genes 

at GWAS loci, such as the Effector Index (Ei), Locus-2-Gene (L2G), Polygenic Prioritization score (PoPs), and Activity-

by-Contact score (ABC) and it is not known if these algorithms can predict ExWAS findings from GWAS data. However, 

if this were the case, thousands of associated GWAS loci could potentially be resolved to causal genes. Here, we quantified 

the performance of these algorithms by evaluating their ability to identify ExWAS significant genes for nine traits. We found 

that Ei, L2G, and PoPs can identify ExWAS significant genes with high areas under the precision recall curve (Ei: 0.52, L2G: 

0.37, PoPs: 0.18, ABC: 0.14). Furthermore, we found that for every unit increase in the normalized scores, there was an 

associated 1.3–4.6-fold increase in the odds of a gene reaching exome-wide significance (Ei: 4.6, L2G: 2.5, PoPs: 2.1, ABC: 

1.3). Overall, we found that Ei, L2G, and PoPs can anticipate ExWAS findings from widely available GWAS results. These 

techniques are therefore promising when well-powered ExWAS data are not readily available and can be used to anticipate 

ExWAS findings, allowing for prioritization of genes at GWAS loci.

Introduction

Drug development programs most often fail because of lack 

of efficacy (Paul et al. 2010; Seyhan 2019). This often occurs 

when the medicine targets a protein that is not involved in 

the etiology of the disease (Butcher 2003; Lindsay 2003; 

Seyhan 2019). One way to identify causal mechanisms of 

human disease is to use human genetics, since drug develop-

ment programs supported by human genetic evidence have 

a two to four-fold increase in probability of success (Nelson 

et al. 2015; King et al. 2019; Ochoa et al. 2022). Genome-

wide association studies (GWAS) have been fruitful in iden-

tifying the regions of the genome associated with suscep-

tibility to disease. However, due to linkage disequilibrium 

(LD), loci that have significant variants can span multiple 

genes and therefore, GWAS results often do not clearly iden-

tify a specific causal gene at associated loci. Consequently, 

a major challenge in current human genetics studies is map-

ping GWAS loci to their causal genes.

This is a non-trivial task for three primary reasons. First, 

associated variants are often in LD with nearby variants 
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rendering resolution to a few causal variants difficult. Sec-

ond, approximately 80–90% of all phenotype-associated 

variants are non-coding, and most have small effect sizes 

(Edwards et al. 2013; Mirza et al. 2014; Hrdlickova et al. 

2014; Boyle et al. 2017). Thus, attributing their effects 

to specific genes is, even with experimental methods like 

CRISPR, challenging (Xu and Li 2020). Last, given the hun-

dreds of loci associated with many common diseases, func-

tional experimentation on a locus-by-locus basis is laborious 

and has rarely been achieved systematically.

One method to identify causal genes with less ambiguity 

is through exome-wide association studies (ExWAS) as 

this method relies upon coding genetic variants that may 

have high pathogenicity. As this technique focuses on 

coding variants, it provides direct evidence for causal gene 

inference. It can also provide information regarding the 

directionality and magnitude of the effects of genes on the 

phenotype of interest, which can be difficult to infer based 

on GWAS and gene prioritization metrics alone. However, 

a major limitation of ExWAS is that the statistical power 

is low due to the rarity of pathogenic coding mutations in 

general and consequently the false negative rate of ExWAS 

is high (Auer and Lettre 2015). This means that a much 

larger sample size is required to have sufficient variants 

across the exome to detect gene–trait associations. For 

example, an ExWAS for estimated bone mineral density 

(eBMD), a known polygenic trait, with close to 300,000 

samples only identified 19 genes. Yet, many known 

causal genes were not identified amongst these 19 genes 

(unpublished data—accepted in principle). In comparison, 

GWAS with similar sample sizes have identified more than 

500 independent GWAS loci (Kemp et al. 2017; Morris et al. 

2019). This suggest that there are many known gene–trait 

associations missed in the ExWAS. This is likely due to the 

lack of statistical power and the lack of variants at some of 

the causal genes. Further, due to increased costs, ExWAS 

data is available often for a much smaller sample size than 

that in GWAS.

In comparison to ExWAS, GWAS results are much easier 

to obtain at large scale. For this reason, there is ongoing 

research into developing methods for improving the use 

of this abundant data-type for the purpose of drug target 

discovery. These methods aims to prioritize causal genes by 

incorporating LD information as well as easily obtainable 

genomic annotations with GWAS results (Weeks et al. 2020; 

Mountjoy et al. 2021; Forgetta et al. 2022). To date, the 

performance of these metrics when compared to the more 

direct (though more expensive) ExWAS results have not 

been evaluated systematically.

Here we evaluate the performance of four recently 

published gene prioritization metrics (Effector index [Ei] 

(Forgetta et  al. 2022), Polygenic priority scores [PoPs] 

(Weeks et al. 2020), Locus-2-gene [L2G] (Ghoussaini et al. 

2021), and Activity-by-contact [ABC] (Fulco et al. 2019)) in 

predicting ExWAS results in nine traits (calcium level, direct 

bilirubin level [Bilirubin], estimated bone mineral density 

[eBMD], standing height [Height], hypothyroidism, low 

density lipoprotein cholesterol level [LDL-C], red blood cell 

count [RBC], triglyceride level, and type 2 diabetes [T2D]). 

If ExWAS data can be predicted from GWAS data based on 

these metrics, it can potentially allow for the interrogation 

of causal genes at hundreds of GWAS loci and accelerate the 

delivery of medicines to the clinics.

Materials and methods

Trait selections

We chose nine traits for which there were large sample sizes 

in UK Biobank and also spanned a broad spectrum of disease 

pathology (Table S1). These included seven continuous traits 

(calcium level, direct bilirubin measurements, estimated 

bone mineral density, standing height, LDL-cholesterol 

level, red blood cell count, and triglyceride level) and two 

common disease traits (type 2 diabetes and hypothyroidism).

Sources of ExWAS results

Masks are defined as different variant inclusion criteria for 

burden testing (a list of all burden tests and masks are in 

Table S2). ExWAS results for all traits except eBMD were 

obtained from AZphewas (Wang et al. 2021) or GeneBass 

(Karczewski et al. 2022). For eBMD, ExWAS results were 

obtained from a disease specific ExWAS study (unpublished 

data – accepted in principle) (Table S1).The lowest ExWAS 

burden test p value across all ExWAS sources, burden tests 

and masks (or when specified, across a previously defined 

set of ‘stringent masks’ (Table S3)) were retained for each 

trait. Gene information was merged across datasets by 

matching gene names.

GWAS loci definition

GWAS results were obtained from publicly available 

resources or large-scale trait specific GWAS publications 

(Mahajan et al. 2018; Morris et al. 2019; Forgetta et al. 

2022) (Table S4). GWAS loci were defined as previously 

described (Forgetta et al. 2022). Briefly, a set of independ-

ent SNPs were obtained through clumping using plink 1.9 

(Purcell et al. 2007) using a window size of 250 kb, linkage 

disequilibrium threshold of 0.01 and a p value threshold of 

5 ×  10–8. Neighbouring signals within 50 kb were merged. 

The resulting loci were then padded with 250Kbp on each 
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side resulting in loci with at least 500 kb in size. All genes 

were assigned to one of these loci if it overlaps the locus by 

more than 50% of its length. These genes and GWAS loci 

formed the basis of all locus-based analyses (i.e., AUPRC, 

AUROC, odds ratio, score distribution) throughout the study.

Sources of Ei scores

Ei scores for all traits were obtained from a recent 

publication (Forgetta et al. 2022). The goal of the Ei is to 

generate a score to quantify the probability of causality for 

each gene at each significant GWAS locus (Forgetta et al. 

2022). Briefly, there were a total of twelve phenotypes used 

to develop the Ei model (T2D, LDL-C, height, calcium 

level, hypothyroidism, triglyceride level, eBMD, glucose 

level, red blood cell count, systolic blood pressure, diastolic 

blood pressure and direct bilirubin level). GWAS for each 

trait were fine-mapped then annotated to identify locus and 

gene-level features for use in the model. The Ei models were 

generated using a gradient boosting algorithm (XGBoost) 

with over 150 locus-, and variant-level annotations. Two 

measures were taken in the development of Ei to avoid 

potential overfitting (Forgetta et  al. 2022). First, the Ei 

model for each trait was generated separately using a leave-

one-out approach (e.g., the Ei model for T2D was generated 

by training the model on all traits, except for T2D). Second, 

to further avoid overfitting, the creators of Ei ensured that 

each gene contributed to the training of the models at most 

once.

Sources of L2G scores

L2G scores were obtained from their public online platform 

(https:// genet ics. opent argets. org/) (Table S5). L2G scores 

have been calculated for a number of GWASs published 

on GWAS catalog (https:// www. ebi. ac. uk/ gwas/). For this 

study, we chose L2G scores calculated based on GWASs that 

utilized UK Biobank data (Table S5). For each study, a list 

of significant variants and L2G scores for each associated 

gene was obtained. In cases where the same genes were 

implicated by multiple lead variants, the largest L2G score 

was retained. L2G is similar to Ei in that it also uses a 

gradient boosting algorithm (XGBoost) and assigns a value 

between zero and one; however, it differs from Ei in the 

features used to train the model (Carvalho-Silva et al. 2019; 

Ghoussaini et al. 2021; Mountjoy et al. 2021).

Sources of PoPs and ABC score

PoPs and ABC scores were obtained from a recent 

publication (Weeks et al. 2020) (Table S5). PoPs works 

under the assumption that causal genes share similar 

functional characteristics. As such, it aims to identify 

potential causal gene by analyzing a number of biological 

annotations ranging from gene expression data to biological 

pathways and protein–protein interaction information to 

identify the most probable causal gene (Weeks et al. 2020). 

ABC was developed to identify gene-enhancer relationship. 

As many GWAS significant variants are non-coding 

variants that influence the trait through interactions with 

gene regulatory elements, ABC aims to prioritize the most 

likely causal gene by identifying genes that are most likely 

to be regulated by enhancer elements linked to the lead fine-

mapped variant (Fulco et al. 2019; Nasser et al. 2021). For 

each trait, the largest PoPs and ABC score for each gene 

was retained.

Evaluation of classification accuracy

Two metrics commonly used to evaluate the performance of 

binary classifiers are area under the receiver-operator curves 

(AUROC) and precision-recall curves (AUPRC). For each 

score, PRC and ROC were based on GWAS loci that contain 

at least one ExWAS significant gene. ExWAS significance 

status was defined in one of the following 2 ways:

1. Whether the lowest p values using variants from one of 

the previously defined set of 'stringent masks’ is below 

the exome-wide significance threshold of 3.6 ×  10–7

2. Whether lowest p values using variants from any masks 

is below the exome-wide significance threshold of 

3.6 ×  10–7

Since it is known that a large number of causal genes 

will be missed in ExWAS due to reduced power, we focused 

on genes that are located among GWAS loci with known 

ExWAS significant genes as to avoid the appearance of an 

elevated false-positive rate. We computed the AUROC and 

AUPRC for each of the nine traits separately and combined. 

This resulted in 34 tests when ExWAS significance was 

defined using variants from the set of stringent masks 

and 35 tests when ExWAS significance was defined using 

variants from all masks. A 99.9% confidence interval were 

reported which will maintain family-wise error rate of 0.05 

(Table S6, S7). AUROC and AUPRC confidence intervals 

were determined using 2000 bootstrap replicates. Baseline 

for AUROC is that of an uninformative classifier (i.e., 0.50). 

Baseline for AUPRC is that of a random classifier, which 

corresponds to the proportion of ExWAS significant genes 

among all genes that have both an ExWAS burden test p 

value and the relevant gene prioritization score. As the 

baseline for AUPRC is based on the proportion of target 

genes among all relevant genes, it is specific for each trait 

and score.

https://genetics.opentargets.org/
https://www.ebi.ac.uk/gwas/
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Causal and drug target gene definitions

Causal and drug target genes (Table S8) were obtained 

from a prior study (Forgetta et al. 2022). Briefly, causal 

genes were identified by manual inspection of the Human 

Disease Ontology database (Schriml et al. 2019) for relevant 

ontological terms by clinician scientists. The relevant OMIM 

linkage information was then used to obtain a list of relevant 

genes associated with the diseases. Drug target genes were 

identified by first identifying a list of guideline-approved 

medications from UpToDate (https:// www. uptod ate. com/ 

conte nts/ search) by clinician scientists. This information is 

then linked to DrugBank (Wishart et al. 2018) to identify a 

list of drug targets.

Results

High scoring genes across all metrics are enriched 
in ExWAS significant genes

To quantify the performance of the four metrics, we 

chose nine phenotypes (T2D, Bilirubin, eBMD, height, 

hypothyroidism, LDL-C, RBC,  calcium level, and 

triglyceride level) for which there were large sample sizes 

in UK Biobank, since the largest sets of ExWAS data are 

generally derived from this resource. Further, these diseases 

and traits represent metabolism, ageing, autoimmune 

disease, anthropometric, hematologic and lipid outcomes, 

providing a broad spectrum of pathogenic mechanisms 

for study. GWAS and ExWAS results were obtained from 

publicly available resources or recent publications (see 

Methods).

We first evaluated the difference in the distributions of the 

four prioritization scores (Ei, PoPs, L2G and ABC) between 

ExWAS significant and non-significant genes. ExWAS sig-

nificant genes were defined as those having a p value below 

the exome-wide significance threshold of 3.6 ×  10–7 for any 

of the predefined stringent set of variants using burden test-

ing (Table S3 and S9). A burden test assesses whether a 

specific category of variants in a particular gene is more 

common among the cases than the controls (Curtis 2019). 

Different categories or combinations of categories (e.g., pre-

dicted loss of function (pLOF), pLOF + missense, synony-

mous, etc.), commonly referred to as “masks”, are tested. 

It is also common to calculate different variations of rare 

variant association tests (i.e., SKAT, SKAT-O, standard 

gene-based burden tests) that differ in their assumptions 

of the effect of the variants on gene functions (Lee et al. 

2012). This approach of gene-based collapsing test where 

the effects of multiple variants are aggregated is frequently 

done in ExWAS studies as sample sizes at the current 

biobank scale are often not large enough to reliably describe 

the effect of individual rare coding variants (Curtis 2019). 

For all four metrics, the distribution of the untransformed 

values was higher in the ExWAS significant gene category 

than the non-significant category (Figs. 1, S1). The range 

of possible values, and therefore distributions, is different 

between the metrics. For example, Ei and L2G are bounded 

between 0 and 1, whereas the others are not. Despite the 

difference in value distributions, for each metric, ExWAS 

significant genes tended to have higher scores than ExWAS 

non-significant genes.

We then evaluated the difference in p value distribution 

between different gene prioritization metric percentiles. In 

all cases, the p values are significantly lower in the top per-

centiles compared to the bottom percentiles (Fig. 2). We 

also observed that the ExWAS p values became lower across 

increasing quintiles of the gene prioritization metrics (Fig. 

S2). Taken together, this suggest that the four gene prioriti-

zation metrics tend to assign higher scores to genes that tend 

to have lower ExWAS p values.

Gene prioritization metrics scores are positively 
correlated with ExWAS significance

Next, we estimated the odds that a gene will reach the 

ExWAS significance threshold per unit increase in each 

gene prioritization metric. To do so, we assessed only 

genes that resided at GWAS loci, which also harboured 

at least one ExWAS significant gene. To do this, we nor-

malized each prioritization score (i.e., scaled to have unit 

Fig. 1  Distributions of the untransformed prioritization metric 

between ExWAS significant and non-significant genes for Ei, ABC, 

L2G, and PoPs together with the p values for the differences between 

these groups are shown. The differences in score distribution between 

the two categories were determined using the Mann-Whitney test 

using all data points; however, outliers (defined as values outside the 

1.5 * interquartile range) are removed for clarity of presentation. Only 

genes residing at GWAS loci which harboured ExWAS significant 

genes were considered. Only the lowest p value from burden tests 

based on one of the previously defined ‘stringent masks’ (Table S3) 

were considered for determining ExWAS significance status

https://www.uptodate.com/contents/search
https://www.uptodate.com/contents/search
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variance and zero mean), and fitted a logistic regression 

model using each of the normalized prioritization scores 

as the predictor and ExWAS status as the outcome. Over-

all, we tested the associations of each score in each pheno-

type separately and all phenotypes combined resulting in 

29 associations. Significance status was determined based 

on the 99.8% confidence intervals, which corresponds to 

the Bonferroni corrected type I error of 0.002 (i.e., 0.05/29 

associations (Table S10)). Using this Bonferroni corrected 

confidence interval will maintain the family-wise error 

rate of 0.05 (Dunn 1961). We observed that all scores 

have odds ratio significantly higher than the null (Fig. 3). 

The largest odds was achieved by the Ei where a one unit 

increase in the scaled Ei score corresponds to a 4.6-fold 

(99.8% confidence interval (99.8% CI) 3.39–6.34) increase 

in the odds of a gene reaching exome-wide significance. 

The lowest odds (though still significantly greater than 

one) was for ABC where we observed an OR of 1.3 (95% 

CI 1.09–1.6).

The same trend was obtained when ExWAS significance 

status was determined using the lowest burden tests p val-

ues across all masks rather than just the tests with the most 

Fig. 2  Distribution of ExWAS burden test p values between the pri-

oritization metric percentiles. The top 1% vs 99% (blue), 5% vs 95% 

(orange), and 10% vs 90% (purple) are shown. Difference in ExWAS 

p value distribution between the percentiles was determined using the 

Mann-Whitney test with all data points and the p values are shown. 

Outliers (defined as values outside the 1.5 * interquartile range) are 

omitted for clarity of presentation. Only p values from burden tests 

based on one of the previously defined ‘stringent masks’ (Table S3) 

are considered
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stringent masks as defined above (Table S3, S11). Ei and 

L2G had the largest odds per unit increase in the scaled 

score followed by PoPs and ABC; however, the odds for 

all scores decreased (Table S11).

Gene prioritization metrics can accurately classify 
ExWAS significant genes

Next, we evaluated the ability of each metric to classify 

ExWAS significance status for each gene based on the same 

definition as above. We focused only on genes that were 

found at GWAS loci which also harboured an ExWAS sig-

nificant gene. The ExWAS significant gene was denoted as 

the positive control and we calculated the area under the 

receiver operator curve (AUROC) and area under the pre-

cision recall curve (AUPRC) for each gene prioritization 

metric. Significance of AUROC and AUPRC was evaluated 

using the 99.9% confidence interval based on 2000 boot-

strap replicates. The AUPRC was the highest for Ei followed 

by L2G, PoPs and ABC (Fig. 4A), with the exception of 

ABC, all were significantly higher than baseline based on 

the 99.9% confidence interval (Table S6). Similar trend is 

seen for AUROC. 99.9% CI of AUROC for all but ABC were 

All Traits

2

4

6

o
d

d
s
 r

a
ti
o

Prioritization metrics

Ei

L2G

PoPs

ABC

Fig. 3  Odds ratio obtained from logistic regression using ExWAS 

significant status as the outcome and each normalized prioritization 

score as a predictor. This was assessed for only genes found among 

GWAS loci which harboured ExWAS significant genes. Data were 

combined across all traits. The dotted line represents no effect (i.e., 

odds ratio of 1). 99.8% confidence interval (corresponding to a Bon-

ferroni corrected type I error of 0.002 = 0.05/29 tests) is shown. Only 

p values from burden tests based on one of the previously defined 

‘stringent masks’ (Table S3) are considered for determining ExWAS 

significance

Fig. 4  Performance curve for all four gene prioritization metrics. Pre-

cision–recall curve (PRC) a and receiver operator curve (ROC) b are 

shown for all four metrics. Area under the curve (AUC) for each met-

ric is shown with the largest AUC in bold. 99.9% confidence inter-

vals were evaluated using 2000 bootstrap replicates. Target genes 

were defined as genes with ExWAS burden test p value less than the 

Exome-wide significance threshold of 3.6 ×  10–7. Only p values from 

burden tests based on one of the previously defined ‘stringent masks’ 

(Table S3) are considered for determining ExWAS significance
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above the baseline of 0.50, which corresponds to an AUC 

of an uninformative classifier (Fig. 4B). The best AUROCs 

were achieved using Ei and L2G (AUROC: 0.88 (99.9% CI 

0.83–0.94), 0.83 (0.76–0.88), respectively). We note the 

AUPRC is more informative than the AUROC because there 

are many fewer positive control genes than other genes at the 

GWAS loci. The performance across all metrics decreased 

when ExWAS significance status was determined based on 

the lowest p value across all masks, much like what was 

observed above; however, relative performance of each met-

ric remained similar (Fig. S3, Table S7).

We also noted that the ExWAS significant genes that 

are also known drug targets or are causal for the disease 

were almost always among the 10 highest scoring Ei and 

L2G genes within their corresponding GWAS locus (24/26 

and 24/26, respectively) (Table S12). This suggest that it is 

possible to further rank ExWAS significant genes using Ei 

and L2G to obtain the most probable causal genes.

Discussion

Identifying drug targets with human genetic evidence will 

likely accelerate drug development programs. While ExWAS 

is able to precisely identify genes and sometimes provide 

direction of effect, it suffers a high false negative rate due to 

low statistical power. GWAS, on the other hand, has a high 

sensitivity to associate loci harbouring causal genes, but 

resolving associated loci to such genes is non-trivial. Here 

we have tested whether algorithms designed to prioritize 

genes at GWAS loci can predict ExWAS findings. Overall, 

these metrics perform reasonably well, but with a high 

degree of variability, and thus can be used to prioritize genes 

at GWAS loci that do not harbour an ExWAS significant 

gene, thus increasing the number of targets to accelerate 

genetics-based drug development.

All metrics have good performance with area under 

the receiver operator curve (AUROC) and area under the 

precision recall curve (AUPRC) reaching upwards of 0.88 

and 0.52, respectively, for Ei. Across all traits, we have found 

that Ei, PoPs, and L2G have better performance than ABC 

in their ability to identify likely ExWAS hits. We found that 

all gene prioritization metrics can significantly enrich for 

ExWAS significant genes and are positively correlated with 

ExWAS p values where a 1 unit increase in the normalized 

scores were associated with a 1.3–4.6-fold increase in odds 

of the gene reaching exome-wide significance.

ABC was originally developed for identifying enhancer-

gene relationships (Fulco et al. 2019) and thus may not 

be considered to be optimized to identify causal genes at 

GWAS loci. However, as it is well established that many 

non-coding variants can influence phenotypes through 

interactions with regulatory elements (Stranger et al. 2007; 

Nicolae et al. 2010; Zhang and Lupski 2015), it is expected 

that ABC is capable of identifying causal genes for which 

a gene-enhancer relationship exists, consistent with prior 

studies (Weeks et al. 2020; Nasser et al. 2021). PoPs, Ei 

and L2G were all developed with the goal of identifying 

likely causal genes and they do so by aggregating informa-

tion from different sources. As a result, the difference in 

performance between these metrics are influenced, at least 

in part, by the features used in their model. For example, 

Ei used 154 features whereas L2G used 57. Ei focused 

more on locus and variant annotations such as GWAS p 

values, and variant functional annotations whereas L2G 

has a stronger focus on functional data such as pQTL, and 

eQTL colocalization results. Both metrics also shared sev-

eral features such as distance to transcriptome start sites, 

number of genes within loci, and DNAse hypersensitivity 

sites. The difference between Ei and L2G scores is then 

likely due to the inclusion of data such as colocalization 

results involving pQTL and eQTL information. PoPs dif-

fers from both Ei and L2G in that it uses other omic meas-

urements, such as protein and transcript levels to predict 

gene–trait associations defined by MAGMA (de Leeuw 

et al. 2015) results.

It is also worth noting that across all metrics evaluated, 

when the most relaxed ExWAS masks were used, perfor-

mance decreased across all gene prioritization metrics. This 

may be because when such relaxed masks were used more 

variants are considered, this can result in noisier signals. 

Genes that do reach the significance threshold using these 

relaxed masks may potentially be less likely to be causal. 

This trade-off between signal and noise has previously been 

shown for ExWAS results where the burden tests that were 

based on masks that included additional filtering of missense 

variants through the use of missense intolerance score led to 

increased power (Wang et al. 2021).

We found that Ei and L2G consistently classify known 

causal genes and/or drug targets as one of the top 10 highest 

ranking genes within their respective loci. This suggest 

that it is possible to apply these GWAS-based metrics to 

ExWAS results and further rank ExWAS significant genes 

to prioritize the most likely causal gene. This is consistent 

with a recent study where it has shown that around 75% 

of rare coding variants identified via ExWAS are located 

within 1 megabase of GWAS lead variants and these two 

types of variants act independently on the trait (Backman 

et al. 2021). This underscores the benefit of a multifaceted 

approach to drug target identifications where multiple lines 

of evidence can be used to further reduce the search space 

for causal genes and identify the most probable candidate 

gene for downstream analysis.

This study has limitations. The performance of the met-

rics evaluated here are limited to the nine traits that were 

evaluated. PoPs had one trait missing (Bilirubin) while ABC 
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missed two (Bilirubin and T2D). As such, the evaluation for 

these two scores were limited to the remaining traits. How-

ever, the trend observed in performance remains the same 

when looking at individual trait analyses (Figs. S4–S6). In 

addition, the metrics evaluated in this study were not origi-

nally trained using ExWAS results as target genes, rather 

they were trained based on either heritability-based metrics, 

known drug targets, or known gene prioritization metrics 

such as distance-to-closest gene. As such, performance of 

all metrics will likely improve by re-training the model 

using ExWAS significance genes as target genes. Unlike 

L2G, PoPs, and ABC, the traits evaluated here were also 

used in the development of the Ei; however, the Ei models 

were trained using a leave-one-out approach to avoid over-

fitting. Although this approach would limit the scalability of 

Ei as individual models were required for each trait, it is an 

effective method for removing data overlap between training 

and testing data and should allow for an accurate assess-

ment of performance. Due to the limited number of traits 

used in training the Ei models, another potential source of 

overfitting is genetic correlations between traits. However, 

LD score regression (Bulik-Sullivan et al. 2015) showed 

that most genetic correlations between traits are insig-

nificant if not low (genetic correlation < 0.3) (Table S13). 

Furthermore, the performance of Ei for eBMD, which has 

low genetic correlations with all traits, is among one of the 

highest (Table S6, S7). Taken together, this suggests that 

the bias in the Ei models due to genetic correlations is low 

if any. Recently, another novel disease gene prioritization 

metric named combined SNP-to-gene (cS2G) was proposed 

(Gazal et al. 2022). cS2G prioritizes causal genes through 

the linear combination of individual SNP-to-gene strategies 

(e.g., eQTL p values, promoter information, etc.). However, 

as this method was evaluated using a different definition 

of precision and recall and the data are restricted to a spe-

cific subset of genes that satisfied a specific cS2G thresh-

old (cS2G > 0.5) (Gazal et al. 2022), it cannot be easily 

compared to the other methods in this study (i.e., Ei, L2G, 

PoPs, and ABC) using the same evaluation metrics and is, 

therefore, not included.

It has been shown that the combination of different 

gene prioritization metrics that utilizes different features in 

their model in a consensus or linear combination approach 

allows for improved performance (Weeks et al. 2020; Gazal 

et al. 2022). Whether more sophisticated machine learning 

approaches can more effectively aggregate the information 

in all four metrics remains to be investigated once a larger 

set of traits with ExWAS, GWAS, Ei, PoPs, L2G and ABC 

results are available.

In conclusion, this study demonstrates that gene 

prioritization metrics based on GWAS results can identify 

ExWAS significant genes with reasonable accuracy 

highlighting another potential use of the abundance of 

GWAS data currently available. This suggests that for 

traits where well-powered ExWAS is not currently feasible, 

these gene prioritization metrics can serve as promising 

alternatives to identify genes that would have been found 

through a well-powered ExWAS. It is also possible to further 

rank ExWAS significant genes using these prioritization 

metrics to identify the most likely causal genes among 

all ExWAS significant genes. Furthermore, such methods 

could also be applied to diseases with existing ExWAS to 

help identify causal genes at GWAS loci where power was 

insufficient in the ExWAS. Because these methods and 

ExWAS aim to address the same issue (i.e., identify causal 

genes) using orthogonal data types, they can serve as an 

independent source of evidence allowing for more confident 

identification of causal genes to accelerate the delivery of 

medicines to the clinic.
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