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A B S T R A C T   

The association between parental age at conception and children's traits has often been studied as it may reflect 
germline de novo mutation accumulation and is expected to be monotonic negative. However, for IQ, the rela
tionship has often been found to be inverted U-shaped, possibly because of confounding by parental charac
teristics that correlate with child-bearing age. Here, I leverage polygenic scores (PGS) as an indirect measure of 
parental intelligence and examine how the effect changes as the explanatory power increase to heritability. 
Heritability can be estimated by calculating the phenotype variance explained by the genetic effect when the 
paternal-maternal ratio of the projected age effects after controlling the genetic effect matches the male-female 
ratio of mutation rate. After controlling for PGS and demographic factors, I estimate a − 2.0 (95 % CI, − 0.3 to 
− 3.7) IQ points change in intelligence per decade rise in paternal age. After further adjustment for birth order, it 
declined to − 0.6 (− 2.6 to 1.6). Even if only the latter estimate is attributable to mutation accumulation, the 
result would imply a substantial contribution of de novo mutations in the variance of intelligence. However, the 
association might not equal the effect of de novo mutations and further studies are needed.   

1. Introduction 

The association between parental age, especially paternal age, at 
conception and children's traits has drawn considerable academic in
terest because it may provide valuable insights into the effect of de novo 
mutations. For males, about two germline single-nucleotide mutations 
are introduced every year (Kong et al., 2012). For females, the number 
of de novo germline mutations is smaller than for males but also in
creases with age. The ratio of male to female germline single-nucleotide 
and indel mutations (denoted as α) is constant at about 3–4:1 (Gao et al., 
2019). 

Studies have examined the impact of parental age on monogenic 
diseases and neurodevelopmental disorders, with many finding a 
negative impact of parents' age on children's health (Bergh et al., 2019; 
Nybo Andersen & Urhoj, 2017). Huguet et al. (2021) estimate that 
around half of all genes negatively affect intelligence when deleted. If 
this is so, it is reasonable to expect de novo mutations that damage the 
function of genes would have a negative effect on intelligence, which is 
historically subjected to purifying selection (Woodley of Menie, 2015). 
However, the effect of parental age on children's cognitive ability has 
been less clear despite a substantial amount of research. The accumu
lation of de novo mutations is monotonic and close to linear (Kong et al., 

2012) but the observed parental age effect is nonlinear in some analyses, 
with individuals given birth to by parents around their thirties having 
higher intelligence than those by teenage and old parents. In addition to 
such inverted U-shaped relationship, studies using different sample and 
analysis designs give monotonically positive or negative associations 
(Carslake et al., 2017; Gajos & Beaver, 2017; Malaspina et al., 2005; 
McGrath et al., 2013; Myrskylä et al., 2013; Saha et al., 2009; Whitley 
et al., 2012). 

The parental age effect on intelligence could be associated with many 
factors: (1) Biological factors: increased parental age is associated with 
an increased mutation load, epigenomic alternations and an adverse in- 
utero environment. (2) Psychosocial factors: older parents are more 
experienced and mature and they offer more resources to children. (3) 
Selection effect: more able parents tend to give birth to children at an 
older age. The nonlinear inverted U-shaped relationship observation 
might be the result of the combination of the generally negative effect 
from biological factors and the generally positive effect from the psy
chosocial factors and the selection effect associated with an older 
parental age. To control for the selection effect, a direct way is to control 
for the parental phenotype. For example, Arslan et al. (2014) tested the 
paternal age effect on intelligence after controlling for parents' trait 
levels and found an initially positive association turned non- 
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significantly negative. However, parental traits related to cognitive 
ability are often not collected in longitudinal studies. Even when they 
are recorded, data collection could be subject to selection bias (Arden 
et al., 2016) if cognitive tests were administered, and might be less ac
curate if a proxy phenotype were used. Educational attainment has been 
widely used as a proxy phenotype for the trait (Hill et al., 2019) because 
of its high genetic correlation with cognitive ability and is widely 
collected; but education could reflect traits other than intelligence, such 
as diligence. 

It is useful to distinguish between two kinds of mutations: old mu
tations (polymorphisms) that have become common in the population, 
and recent mutations that arose recently in the population as germline 
de novo mutations. Genome-wide association studies (GWAS) identify 
the former kind and many were performed for educational attainment or 
cognitive ability recently. Despite the use of data from 1.1 million in
dividuals in the largest GWAS of educational attainment, the resulting 
polygenic score (PGS) can explain only a small proportion of the vari
ance in educational attainment (11–13 %) and IQ (7–10 %) (Lee et al., 
2018). It is possible that recent mutations are responsible for much of 
the “missing heritability”, but we still don't know how much. de novo 
mutations are random, and the chance of affecting a tag variant is very 
small. This indicates that because children's PGS is calculated with 
common polymorphisms (unaffected by de novo mutations), the PGS can 
be used as a control for the confounding effects of parents' intelligence 
influence on children. By doing so, the effect of rising parental age itself 
could be isolated from the effect of parental intelligence. However, 
because of missing heritability, the effect could only be partially 
controlled. Adjustment is required for full control of the parental effect. 

To estimate the effect of parents' age on children's cognitive ability 
after controlling for the effect of the child's PGS and thereby indirectly 
also for parental characteristics, the present study use data from the 
Wisconsin Longitudinal Study (Hauser et al., n.d., N = 4692), with data 
from the Health and Retirement Study (Health and Retirement Study, 
2022, N = 9369) as replication with the trait educational attainment. 

2. Materials and methods 

2.1. Statistical analysis 

In the analysis, I first estimated the parental age effects on intelli
gence after controlling for each of the available PGS to remove con
founding effects from genotype. However, even the most powerful PGS 
only explains a portion of the heritability of intelligence, so this removal 
is incomplete. Fig. 1 shows a plot of parental age effects (y-axis) against 
the explanatory power of the PGS (x-axis). To fully remove the con
founding effect, it is necessary to control for the full heritability of in
telligence. To make this estimate, I assumed that the relationship 
between the estimated parental effects and the variance of intelligence 
explained by the PGS would still hold even after using the most powerful 
PGS. I then fitted a line through the available data points. At the point 
where the variance of intelligence explained (x-axis) equals the herita
bility of intelligence, the confounding effect on parental age effects 
should be fully removed (y-axis). To estimate how much variance 
explained (heritability) of intelligence should be used in the estimation, 
I assumed the ratio of paternal and maternal effects should match the 
ratio of male and female de novo mutation rates. When this condition 
was met, the variance of intelligence explained was taken as a new es
timate of heritability, and the age effects were taken as the effects with 
genotype confounding removed. This analysis was repeated for the trait 
of years of education. 

2.2. α estimate 

Gao et al.'s (2019) binomial logistic regression estimation of α 
(averaged over parental age) of 719 Icelandic trios was 3.50 and 3.62 for 
ages 20 and 40, respectively (Gao et al., 2019). The average value of 
3.56 was used in the present study. 

3. Results 

R2 and incremental R2 of each PGS in regressions predicting intelli
gence and the years of education are shown in Table 1. The table shows 

Fig. 1. The explanatory powers of the PGS on intelligence (heritability) and the effects of parental age on intelligence. 
Note: Z-scores of the years of education standardised by age and gender was used as the target variable in the regression. Gender, birth year, their interaction term, 
age of both parents and genetic principal components were adjusted in all models. 
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that the best-performing PGS can explain a tenth of the trait in the 
present sample. 

To see if PGS of cognition confounds the effect of parental age on 
intelligence, I've constructed models predicting intelligence with 
parental ages and each of the PGS and the one without PGS. The 
explanatory powers of the PGS on intelligence and the effects (beta) of 
parental age on intelligence were plotted in Fig. 1. The figure shows how 
parental age effects would change as the variance of intelligence 
explained by PGS changes. As we can see, although when the variance 
explained is 0 (not controlling for parental PGS) the effect was in the 
opposite direction, the fitted line gradually come close and finally 
crossed each other. The plot was replicated using the variable years of 
education from the same dataset and the Health and Retirement Study. 
For the Wisconsin Longitudinal Study, results from regression involving 
birth order as a term were also plotted. The plots were shown in 
Figs. S1–S4. They all show a similar pattern. 

There is a gap between the largest variance explained by PGS (9.7 %) 
and the family-based heritability (at least 50 %), which means con
trolling for any of the available PGS is not enough to take account of 
parental confounding. Because it is the phenotype that directly in
fluences the age at reproduction, the underlying genotype, no matter 
whether captured by PGS or not, should influence the age at reproduc
tion in the same way. Therefore, when the variance explained matches 
the full heritability, we can take the projected value of the effect as the 
true effect of increasing parental age. Similar approaches were 
employed in earlier studies (Beauchamp, 2016; Pingault et al., 2021). 
However, how much exactly should the heritability be taken? We can 
take advantage of the fact that the ratio of de novo mutation rate between 

males and females is known and the relative strengths of paternal age 
and maternal age effects should match the ratio. When they match, the 
proportion of variance explained is a new estimate of heritability. When 
estimating the effects, heritability estimated in this way was used. 

Heritability and parental age effect estimates are shown in Table 2. 
To see if the confounding was removed by controlling for PGS, 

average differences in intelligence for each parental age from the all-age 
average were calculated and shown in Fig. 2. In the unadjusted subplots, 
raw differences in intelligence were shown. In the subplots adjusted for 
PGS, average PGS differences (z-score) for each parental age from the 
all-age average adjusted by heritability (h2) were subtracted from the 
raw intelligence differences (IQ, z-score). 

IQdiff ,adjusted = IQdiff −
PGSdiff

R2
incremental

/
h2 

PGS showing the largest incremental R2 was used. The relationship 
was shown in Fig. 2. Replications using the years of education are shown 
in Figs. S5 and S6. As we can see, the unadjusted relationships are 
inverted U-shaped or monotonic positive, which replicates the results of 
other analyses that did not control for parental characteristics (Carslake 
et al., 2017; Gajos & Beaver, 2017; Malaspina et al., 2005; McGrath 
et al., 2013; Myrskylä et al., 2013; Whitley et al., 2012). After the 
adjustment for PGS, relationships turned monotonically negative for 
both mother and father. 

4. Discussion 

In the present study, I have examined the impact of parental age on 
intelligence. The analysis addressed the issue of the confounding effects 
of parental genotype by controlling for PGS innovatively. The method 
was robust as shown by examining two independent datasets. I have 
proposed a new way of estimating heritability by calculating the 
phenotype variance explained by the genetic effect when the paternal- 

Table 1 
Model R2 and incremental R2 in regressions of each PGS on YOE.  

PGS Model R2 Incremental R2 relative to base 

Dataset: Wisconsin Longitudinal Study, 
phenotype: intelligence, unadjusted for birth order 

PGS_base  0.013  0.000 
pgs_cp_gwas  0.084  0.072 
pgs_cp_mtag  0.109  0.097  

Dataset: Wisconsin Longitudinal Study, 
phenotype: intelligence, adjusted for birth order 

PGS_base  0.012  0.000 
pgs_cp_gwas  0.084  0.073 
pgs_cp_mtag  0.110  0.098  

Dataset: Wisconsin Longitudinal Study, 
phenotype: years of education, unadjusted for birth order 

PGS_base  0.029  0.000 
pgs_ea3_mtag  0.098  0.069 
pgs_ea3_gwas  0.098  0.069  

Dataset: Wisconsin Longitudinal Study, 
phenotype: years of education, adjusted for birth order 

PGS_base  0.030  0.000 
pgs_ea3_gwas  0.097  0.068 
pgs_ea3_mtag  0.098  0.068  

Dataset: Health and Retirement Study, 
phenotype: years of education, unadjusted for birth order 

PGS set 1 base  0.006  0.000 
E4_EDU2_SSGAC16  0.067  0.061 
E4_EDU3_SSGAC18  0.087  0.082 
E4_EA3_W23_SSGAC18  0.093  0.087 
PGS set 2 base  0.005  0.000 
PGS_EA3_GWAS  0.124  0.120 
PGS_EA3_MTAG  0.131  0.126 

Note: Z-scores of intelligence and YOE standardised by age and gender was used 
as the target variable in the regression. Gender, birth year, their interaction term 
and PCs were adjusted in all models. To control for birth order in some analysis, 
birth order was also involved in the standardisation and regression model. Table 2 

Sample size, parental age effects after controlling for PGS and heritability 
estimates.  

Phenotype PGS 
set 

Sample 
size 

Paternal 
effecta 

(95 % CI) 

Maternal 
effecta 

(95 % CI) 

Heritabilityb 

(95 % CI) 

Dataset: Wisconsin Longitudinal Study, unadjusted for birth order 
Intelligence –  4692 − 0.013 

(− 0.025 to 
− 0.002) 

− 0.004 
(− 0.017 to 
0.009) 

0.560 (0.297 
to 1.473) 

Years of 
edu 

–  7248 − 0.015 
(− 0.025 to 
− 0.006) 

− 0.004 
(− 0.015 to 
0.006) 

0.494 (0.324 
to 0.905)  

Dataset: Wisconsin Longitudinal Study, adjusted for birth order 
Intelligence –  4673 − 0.004 

(− 0.018 to 
0.011) 

− 0.001 
(− 0.018 to 
0.014) 

0.726 (0.421 
to 2.076) 

Years of 
edu 

–  4602 − 0.010 
(− 0.022 to 
0.005) 

− 0.003 
(− 0.018 to 
0.011) 

0.586 (0.332 
to 1.426)  

Dataset: Health and Retirement Study, unadjusted for birth order 
Years of 

edu 
PGS1 9369 − 0.007 

(− 0.011 to 
− 0.002) 

− 0.002 
(− 0.008 to 
0.004) 

0.367 (0.262 
to 0.509) 

Years of 
edu 

PGS2 6374 − 0.006 
(− 0.010 to 
− 0.001) 

− 0.002 
(− 0.007 to 
0.005) 

0.338 (0.237 
to 0.480) 

Years of 
edu 

PGS1 
+

PGS2 

6374 − 0.006 
(− 0.010 to 
− 0.001) 

− 0.002 
(− 0.008 to 
0.005) 

0.341 (0.242 
to 0.492)  

a Assuming a heritability of estimated in the rightmost column. 
b Assuming an α of 3.56 (Gao et al., 2019). 
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maternal ratio of the projected age effects after controlling the genetic 
effect matches the male-female ratio of mutation rate. 

Using PGS that explains only a portion of heritability, I projected the 
influence of the PGS when it reaches full heritability. As can be seen in 
Fig. 2, after controlling for PGS, the inverted U-shaped relationships 
between parental ages and IQ turned monotonically negative, consistent 
with the expected additive effects of accumulating de novo mutations. It 
supports the idea that the inverted U-shaped relationships were caused 
by the confounding effect of parental characteristics. The results were 
replicated using educational attainment from the same dataset and 
Health and Retirement Study (Figs. S5 and S6). The initially inverted U- 
shaped or monotonic positive relationship all turned monotonic nega
tive, suggesting the method is robust. After adjustment for gender, birth 
year, their interaction term, maternal age, and genetic principal com
ponents, it gives an estimate of − 0.013 (95 % CI, − 0.025 to − 0.002, N =
4692) SD change per year (or − 2.0 IQ points per decade,) rise in paternal 
age. After further adjustment for birth order, the effect decreased to 
− 0.004 (95 % CI, − 0.018 to 0.011, N = 4673) SD change per year (or 
− 0.6 IQ points per decade). It is still in the expected direction, but not 
showing statistical significance. To estimate the effect of de novo mu
tation accumulation, should birth order be controlled? On one hand, a 
possible association between birth order and changing in-utero envi
ronment (e.g., Karmaus, 2001) suggests birth order should be controlled. 
On the other hand, the negative correlation between fertility and IQ/ 
educational attainment (e.g., Beauchamp, 2016) suggests those with 
more siblings tend to have lower genetic IQ and, therefore, a lower 
genetic IQ for people with higher birth order and the adjustment for 
birth order may attenuate the effect. The real effect may lie somewhere 
between them. 

The most commonly seen explanation of the paternal age effect in 
literature is de novo mutation accumulation. If it is the sole factor behind 
the estimates, the results would suggest a large accumulative effect since 
mutations are accumulating throughout the lifetime of both sexes (Gao 
et al., 2019; Kong et al., 2012). Because mutations are random, the 
combined effect should follow a normal distribution and would have a 
substantial contribution to the variance of intelligence of the population. 
de novo mutations in recent generations are rare in the present genera
tion and hence could not be detected in GWAS, and thus creating missing 

heritability. Assuming an average paternal and maternal age of 30 and 
28 and an α of 3.56 (Gao et al., 2019) for calculating the combined 
paternal and maternal age effect, it would suggest a 7.5-point genera
tional decline in genetic variants underlying intelligence. Even if only an 
amount equal to the lower estimate can be attributed to mutation 
accumulation, it would still suggest a 2.4-point generational decline. 
Intelligence levels had been rising rapidly in the population (i.e., the 
Flynn effect). In the United States, it has been rising at about 3 IQ points 
per decade. However, we have witnessed a turning point recently. The 
average IQ score began to fall in many countries (Dutton et al., 2016). 
This phenomenon, which refers to a decrease in population IQ score, has 
been termed the “Lynn effect” by Furnham (2009). In the United States, 
Platt et al. (2019) have shown a recent decrease for older adolescents 
though still rising for children. Even before that, some indicators have 
already indicated a genetic decline of general intelligence for over a 
century [i.e., the Woodley effect, see Egeland, 2022 for a review]. 
Bratsberg and Rogeberg (2018) have shown the Lynn effect can be 
explained by within-family variation in intelligence scores, and 
conclude that the effect could only reflect environmental factors. If any 
portion of the estimates here can be attributed to mutation accumula
tion, it suggests that genetic deterioration is compatible with the within- 
family variation. 

Nonetheless, we should be cautious in the interpretation of the re
sults. The association might not equal the effect of de novo mutations 
because of other mechanisms that can explain the association (Malas
pina et al., 2005) and not all kinds of de novo mutations are associated 
with parental age. Consider the following points. (1) Biological. (1.1) 
Epigenetic effect. It is thought that some age-related epigenetic alter
ations that escaped reprogramming may be associated with the paternal 
age effect. This suggests that the association may be epigenetic in origin, 
and adverse changes may be reset in future generations. However, a 
recent study compared grandchildren of young and old grandparents 
and found no age-associated methylation (the most-studied kind of 
epigenetic mechanism) alterations could transmit trans-generationally 
(Jenkins et al., 2019). On the other hand, the deleterious effect of 
microRNA alternations in aged sperm was recently discovered for model 
animals (e.g., Liang et al., 2022), which is a direction worth looking into. 
(1.2) Effect of in-utero environment. Advanced maternal age is 

Fig. 2. Parental age and z-score difference in intelli
gence. 
(a, b) Paternal age and intelligence unadjusted for and 
adjusted for PGS difference. (c, d) Maternal age and 
intelligence unadjusted for and adjusted for PGS dif
ference. 
Lowess fit with default options was applied to the data 
and was shown as red lines.   
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associated with an increased risk of pregnancy complications (Salem 
Yaniv et al., 2011); they might be environmental in origin and may play 
a role in the negative association between maternal age and intelligence. 
Hence the effect is environmental and would not accumulate through 
generations and future generations would reverse such negative effects 
by reproducing earlier. However, in the regression analysis, the age of 
the other parent has been controlled and the paternal age effect (which 
constitutes a major proportion of the expected pre-generation decline 
estimate) is independent of maternal age. (1.3) Effect of structural 
variants. The rate of de novo structural variants is not correlated with 
parental age (Belyeu et al., 2021) and hence their effect is not considered 
in the analysis. Despite a much lower frequency of de novo structural 
variants, existing structural variants were shown to be deleterious to 
cognition (Fitzgerald et al., 2020) and their effects should be assessed in 
a future analysis. (2) Psychosociological. The rearing environment 
provided by parents of different ages is another potential source of 
confounding. Older parents offer more economic, social and cultural 
resources to children after taken controlling for socioeconomic back
ground and family structure (Powell et al., 2006). Therefore, environ
mental effects may lower the estimate. (3) Others. (3.1) Noise from 
adoptees. Participants adopted as a child may have reported the age of 
their non-biological parents, which could introduce noise to the anal
ysis. According to Census 2000, the proportion of adopted children is 
small in the United States (Kreider, 2003) and no significant impact on 
the estimates is expected. (3.2) There might be yet unknown factors 
confounding the association. Despite such limitations, the present re
sults are still useful because the large influence of parental intelligence 
was removed. 

It is important to distinguish between the effects of environmental 
factors and mutation accumulation. Environmental effects are reversible 
after a generation but mutation accumulation would accumulate across 
generations. Therefore, although the estimated effects are small (espe
cially after controlling for birth order), if they are indeed caused by de 
novo mutations, they can add up to become big effects. This issue is 
important and deserves further investigation. In the United States, the 
national prevalence of developmental disabilities has been increasing 
(Zablotsky et al., 2019). Some of these disorders have a polygenic ge
netic architecture similar to intelligence. It is an open question whether 
mutation accumulation plays a role. 

The study presents a new way of estimating heritability by calcu
lating how much variance should be controlled when genotype con
founding was removed from an effect (i.e., when the paternal-maternal 
ratio of the projected age effects after controlling the genetic effect 
matches the male-female ratio of mutation rate). This is fundamentally 
different from family-based and current SNP-based heritability, which 
are both based on estimating the phenotypic variance explained by 
genomic similarities. The heritability of IQ whether unadjusted or 
adjusted for birth order, was 0.56 (95 % CI, 0.30 to 1.47, N = 4692) and 
0.73 (95 % CI, 0.42 to 2.08, N = 4673), respectively. This is close to the 
0.60 to 0.80 estimates for adults in traditional family studies (Bouchard, 
1998). The heritability estimates of educational attainment (EA) unad
justed for birth order in the Health and Retirement Study were 0.37 (95 
% CI, 0.27 to 0.51, N = 9369) and 0.34 (95 % CI, 0.24 to 0.48, N = 6374) 
using two alternative sets of PGS. This is close to the 0.38 estimate of 
heritability from twin studies (US studies weighted by the number of 
participants in Branigan et al. (2013)). In the Wisconsin Longitudinal 
Study, the heritability of educational attainment unadjusted and 
adjusted for birth order was higher at 0.49 (95 % CI, 0.32 to 0.90, N =
7248) and 0.59 (95 % CI, 0.33 to 1.43, N = 4602), respectively. For the 
background and more discussion on the method of heritability estima
tion, please refer to Appendix. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.paid.2023.112137. 
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Appendix A. Heritability estimation based on parental age 
effects 

The study presents a new way of estimating heritability based on 
parental age effects. This is an essential part of the analysis since they 
were used in the parental age effect estimates. Meanwhile, heritability 
estimation is independent of the main research topic and the back
ground and discussion are presented as follows. 

Heritability refers to the proportion of phenotypic variance that can 
be attributed to genetic factors. It is typically estimated using pedigree- 
based methods. Let's take height as an example. Suppose the variance in 
height is genetically determined, then the height should be more similar 
among relatives than non-relatives, more similar among closer relatives 
than more distant relatives, and more similar among identical twins than 
non-identical twins. Suppose the variance in height is environmentally 
determined, the phenotypic variance would not be more similar among 
people with higher relatedness. By comparing whether people with 
higher relatedness are more likely to be taller or shorter, the heritability 
of height can be estimated. (Note, common environmental influence 
should be additionally controlled.) This is the idea behind the classical 
family-based analysis and various methods have been developed 
(Kaufman, 2009). With the advances in molecular biology, single 
nucleotide polymorphisms (SNP) have been genotyped and related 
heritability estimation methods have been developed. Since we share a 
common ancestor, unrelated individuals are actually distantly related. 
Genomic relatedness matrix restricted maximum likelihood (GREML) 
calculates heritability using a similar way to classical family-based 
analysis and relatedness is calculated from SNP-derived genetic rela
tionship (Yang et al., 2017). For example, if height is heritable, then 
taller strangers would be more similar genetically as measured by gen
otyping arrays. Another method called LD score regression (LDSC) has 
been developed. In GWAS, each SNP was tested for correlation with a 
trait. LDSC calculates heritability based on whether the distribution chi- 
square statisticsof SNP-phenotype associations differs from that under 
the expectation of the null hypothesis (Bulik-Sullivan et al., 2015). Both 
family-based analysis and GREML are based on estimating the pheno
typic variance explained by genomic similarities. LDSC is based on how 
the distribution of chi-square statistics of the SNP-phenotype associa
tions differs from the null hypothesis, and essentially also on the 
phenotypic variance explained by genomic similarities. 

Here, I propose a new way of estimating heritability. Suppose there is 
a genotypic confounding to an effect. If we know the de-confounded 
effect and the genotype value of each individual, in theory, we will be 
able to confirm the de-confounded effect by controlling for the genotype 
value of each individual when calculating the effect. However, as dis
cussed in the Introduction section, PGS calculated from GWAS results 
can only partly explain the heritable influence. Thus, PGS can only 
partly de-confound the effect. Since the effect would change linearly as 
the proportion of phenotype explained by PGS increases (as well as the 
effect when not controlling for PGS), we can project how will the effect 
change when an even higher proportion were explained. When the 
projected effect reaches the known de-confounded effect, the proportion 
of phenotype explained should be the heritability of the trait. 

In the present analysis, we don't even know the de-confounded effect. 

M. Wang                                                                                                                                                                                                                                          
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Nevertheless, since there are two projections (paternal and maternal age 
effect) and we already know the ratio of paternal and maternal age effect 
(by assuming it is equal to the ratio of male and female mutation rate), 
we can solve an equation to get heritability and parental age effects at 
once. 

The heritability estimated in the new way is close to those estimated 
by the family-based method. The heritability of educational attainment 
(unadjusted for birth order) estimated from Wisconsin Longitudinal 
Study is higher than that estimated from the Health and Retirement 
Study. The difference may have reflected the difference between state- 
wide and nation-wide samples and show the method being sensitive to 
known equality × heritability interaction (Heath et al., 1985). However, 
it could also be the result of random fluctuation. Additional replications 
should be done. 

The new way is based on calculating how much variance should be 
controlled when genotype confounding was removed from an effect. The 
method contrasts with existing methods, which are based on how much 
phenotypic variance can be explained by pedigree. Current SNP-based 
methods ignore the contribution from rare variants and provide an es
timate for the lower bound of heritability. Whereas in the present 
method, the estimated value should be the full heritability. If validated, 
the present method would represent a methodological contribution to 
behaviour genetics. A source of inaccuracy may come from the possi
bility that other confounding factors exist and, after genotype differ
ences were controlled, the ratio of paternal-maternal effect does not 
equal the ratio of male-female germline mutation rate. This possibility 
was discussed in the Discussion section. We can next look for a more 
certain de-confounded effect to refine the method. 
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