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SUMMARY

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder

(ASD). However, previous studies have been underpowered and have not been designed to address potential

confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n =

247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain

project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead,

our data support a model whereby ASD-related restricted interests are associated with less-diverse diet,

and in turn reducedmicrobial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis,

our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and

stool consistency. Overall, microbiome differences in ASDmay reflect dietary preferences that relate to diag-

nostic features, and we caution against claims that the microbiome has a driving role in ASD.

INTRODUCTION

There is considerable interest in the relationship between the gut

microbiome and autism spectrum disorder (ASD)—a neurodeve-

lopmental condition characterized by social and communication

difficulties and restricted and repetitive behaviors as well as un-

usual sensory responsiveness. This interest is driven by high

rates of co-occurring gastrointestinal symptoms (Chaidez

et al., 2014; Kohane et al., 2012; McElhanon et al., 2014; Varga-

son et al., 2019) and by animal studies suggesting that the
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microbiome causally contributes to ASD-related behavioral traits

(Buffington et al., 2016; Hsiao et al., 2013; Sharon et al., 2019).

There is also increasing evidence implicating a brain-gut-micro-

biome axis in a range of gastrointestinal (e.g., irritable bowel syn-

drome, inflammatory bowel disease) and neuropsychiatric con-

ditions (e.g., depression) (Valles-Colomer et al., 2019).

Despite this intense interest and the recent progression of

fecal microbiota transplantation studies in ASD to phase I clinical

trials (Kang et al., 2019; Kang et al., 2017), the contribution of the

microbiome to ASD is unconvincing. Existing human ASDmicro-

biome studies have yielded inconsistent results, likely due to un-

derpowered study designs (e.g., n < 50) (De Angelis et al., 2013;

Kang et al., 2018) that are prone to bias (Rothschild et al., 2020),

variable use of appropriate multiple-testing correction (De An-

gelis et al., 2013; Parracho et al., 2005; Williams et al., 2011),

inconsistent use of compositionally aware statistical analysis

(De Angelis et al., 2013; Finegold et al., 2010; Williams et al.,

2011), and large site effects that may represent non-uniform pro-

cessing (Fouquier et al., 2021). Indeed,many of the larger studies

with greater than 100 participants have found no ASD-micro-

biome associations (Gondalia et al., 2012; Son et al., 2015).

Furthermore, with few exceptions (Berding and Donovan,

2018; Son et al., 2015), most ASD microbiome studies have

not comprehensively considered important microbiome con-

founders (Bokulich et al., 2016; Falony et al., 2016; Rothschild

et al., 2018; Vandeputte et al., 2016) (via design or statistical

analysis) including sex (Adams et al., 2011; Wang et al., 2011),

age (Adams et al., 2011), diet (Adams et al., 2011; De Angelis

et al., 2013; Finegold et al., 2010; Strati et al., 2017; Wang

et al., 2011), stool consistency as measured using the Bristol

Stool Chart (rBSC), or co-occurring gastrointestinal complaints

and medications (Wang et al., 2011). Notably, ASD has a male

bias, and children on the autism spectrum often have less-

diverse diets (Panossian et al., 2020; Schreck and Williams,

2006) (due to selective eating and allergy concerns) and co-

occurring gastrointestinal conditions (Chaidez et al., 2014; Ko-

hane et al., 2012; McElhanon et al., 2014) and are more likely

to be prescribed antibiotics (Niehus and Lord, 2006). Thus, it is

unclear whether existing reports of microbiome associations in

ASD may be explained by confounding variables. There are

also technical limitations: most studies have used 16S rRNA

sequencing (Ho et al., 2020) (with the exception of a few [Dan

et al., 2020; Wan et al., 2021; Wang et al., 2019]), which provides

lower taxonomic resolution and limited functional information

about the microbiome.

Within the limitations of these studies, a recent meta-analysis

reported a small number of taxawith consistent evidence of asso-

ciation with ASD diagnostic status; namely, the genus Prevotella,

thephylumFirmicutes, clustersof theorderClostridiales, andspe-

cies of Bifidobacterium (Ho et al., 2020). Nonetheless, to our

knowledge, the overall relationship between the microbiome

and ASD diagnosis has not been quantified. In fact, it appears

that interest in theASDmicrobiomeoutstripswhat theprimary ev-

idencebasewarrants: inApril 2021, aPubMedsearch ([autism [Ti-

tle]] AND [microbiome[Title]] OR [microbiota[Title]]) identified 56

review articles, compared to only 26 primary research studies,

included in the latest meta-analysis (Ho et al., 2020). More

broadly, a meta-analysis of humanmicrobiota-associated animal

studies has raised concerns that the sheer extent of positive find-

ings is implausible, suggesting that causal inference has been

premature, over-stated, and suffers from publication bias (Walter

et al., 2020).

Here, we present a stool metagenomics study of 247 children

from the Australian Autism Biobank (AAB) (Alvares et al., 2018)

and the Queensland Twin Adolescent Brain (QTAB) project, for

which extensive phenotype data were available (Figures 1A

and 1B; Table 1): demographics, dietary data from the Australian

Eating Survey (from which we derived dietary diversity and prin-

cipal components from percentage energy measures, hereafter

referred to as dietary PC1-3) (see STAR Methods; Figure 1B),

stool consistency, detailed psychometric testing, and genome-

wide single nucleotide polymorphism (SNP) genotypes. We

find that the stool microbiome captures negligible variation in

ASD diagnosis, whereas there were large and significant associ-

ations with variance in dietary traits, stool consistency, and age.

Instead, our results suggest an alternative model whereby ge-

netic and phenotypic measures of the autism spectrum

(including restricted and repetitive behaviors, social affect, and

higher sensory sensitivity) promote a less diverse diet, which re-

duces microbiome diversity and is associated with looser stool

consistency.

RESULTS

Study characteristics

A total of 247 children (aged 2–17) participated in this study,

including 99 diagnosed with ASD (‘‘ASD’’), 51 paired siblings

without a diagnosis (‘‘SIB’’), and a total of 97 unrelated (including

to each other) undiagnosed children without a diagnosis (‘‘UNR’’)

(Figure 1A). Participants in the ASD and SIB groups came exclu-

sively from the AAB, whereas the UNR group was comprised of

48 children from the AAB and 49 from QTAB. Two UNR partici-

pants had incomplete dietary data and were included when die-

tary variables were not analyzed. The AAB and QTAB stool sam-

ples were contemporaneously collected using an identical

protocol and were receipted and processed by the same

specialist human sample processing unit. The UNR_AAB partic-

ipants (mean age 6.3, SD = 3.0) were on average younger than

the UNR_QTAB participants (mean age 12.1, SD = 1.0), but after

combining these sub-groups, the three study groups (ASD, SIB,

UNR) were matched by age (ANOVA p = 0.2) (STAR Methods;

Document S1). ASD studies commonly have a male sex bias,

and after attempting to match groups by age and sex, the final

percentage of males per group was ASD 73%, SIB 57%, UNR

54%. The AAB participants who provided stool samples for

this study were generally representative of the wider AAB (Table

1). The ASD group on average had a lower intelligence quotient

(IQ)-developmental quotient (DQ) composite score (IQ-DQ)

(ASD mean = 85, SD = 24; SIB mean = 100, SD = 17; UNR

mean = 100, SD = 15). As a measure of degree of ASD traits,

the mean Autism Diagnostic Observation Schedule-2/G

(ADOS2/G) comparison score in the ASD group was 6.7 (SD =

2.1). Full demographic details and comparisons are provided in

Table 1, further detail on participant recruitment and the QTAB

participants are provided in STAR Methods, and an overview

of the phenotypic data used in this study is provided in Figure 1C.
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Negligible variance in ASD diagnostic status is

associated with themicrobiome compared to age, stool,

and dietary traits

First, we estimated the proportion of phenotypic variance asso-

ciated with the microbiome for ASD diagnosis and a variety of

other traits (Figure 1C), including neurodevelopmental traits

(IQ-DQ, Children’s Sleep Habits Questionnaire [CHSQ] raw

score), phenotypes with intuitive relationships with the micro-

biome (dietary PCs [Figure 1B], dietary diversity, stool consis-

tency; see STAR Methods), and CD4+ T cell proportion, adjust-

ing for covariates (described in Figure 2 legend). This variance

estimate—the microbiome-association-index (or ‘‘b2’’) (Roths-

child et al., 2020)—is analogous to heritability (h2) from genetic

analyses and provides an upper limit for predictive ability under

A B

D

C

Figure 1. Overview of input datasets and analyses

(A) Study design.

(B) Loadings of principal components derived from percent energy (pe) Australian Eating Survey data. The first three principal components (referred to as dietary

PC1-3) as covariates in our analyses.

(C) Input phenotype and metagenomics datasets (further information in Table 1).

(D) Overview of analyses performed. Abbreviations: ASD – autism spectrum disorder, AAB – Australian Autism Biobank, QTAB – Queensland Twin Adolescent

Brain project, AES – Australian Eating Survey, BSC – Bristol Stool Chart, rBSC – regrouped BSC, Dx – diagnosis, ADOS – Autism Diagnostic Observation

Schedule, IQ-DQ – intelligence quotient-developmental quotient composite score, SRS – Social Responsiveness Scale, SSP – Short Sensory Profile.

Related to Table 1.
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the assumption of additivity. Whereas h2 reflects (direct or indi-

rect) causality, b2may reflect cause or consequence of trait vari-

ation. This analysis involves calculating an ‘‘omics relatedness

matrix’’ (ORM) from microbiome features (taxa with a focus on

the species-level and various hierarchies of microbial genes) be-

tween each pair of individuals and regressing against the trait in a

linear mixed model framework (Zhang et al., 2019).

We created ORMs from several measures of microbiome

composition (Table S1) at the level of species and microbial

genes (open-reading frames from the Microba Genes [MGENES]

database, referred to in this section as ‘‘microbial genes’’;

Enzyme Commission classification [focusing on level 4 of this hi-

erarchy] [Bairoch, 2000]; Transporter Classification Database

[TCDB] [Saier et al., 2016]; MetaCyc pathways [Caspi et al.,

2020]) and stratifying into common and rare features (Table S1;

threshold based on median count > 0 for each feature). We

examined the data distribution (Figure S1) and checked

that the centered-log-ratio (clr) transformation was appropriate

(Figure S2).

We first analyzed age and BMI as benchmarking traits. Our re-

sults (in children) were consistent with previous species-level b2

estimates of 28% and 11% in adults, respectively (Rothschild

et al., 2020): common species (n = 96) provided b2 estimates of

33%forage (SE=8%,p�0, falsediscovery rate [FDR]-significant;

covariates: sex) (Figure 2; Table S1), and b2 = 12% for BMI (cova-

riates: age, sex; SE = 7%, p = 3.5e-2, not FDR-significant).

Notably, gene-level ORMswere associated with greater variance

for both age (b2>99%, SE = 13%–17%, p � 0, based on either

Table 1. Demographic summary of participants in the metagenomics study

Phenotype AAB+QTAB microbiome cohort UNR sub-groups Entire AAB

ASD SIB UNR UNR (AAB) UNR (QTAB) ASD SIB UNR

N 99 51 97a 48 49 1168 262 149

Age 8.7 (3.8) 8.0 (4.3) 9.2 (3.7) 6.3 (3.0) 12.1 (1.0) 7.7 (3.9) 8.2 (4.2) 6.5 (3.4)

Male % 73% 57% 54% 50% 59% 60% 40% 39%

BSC 3.56 (1.31) 3.84 (1.25) 3.37 (0.96) 3.35 (1.08) 3.39 (0.83) 3.51 (1.02) 3.56 (0.97) 3.46 (0.92)

rBSC 3.48 (0.96) 3.71 (0.94) 3.40 (0.84) 3.39 (0.91) 3.41 (0.78) 3.58 (1.42) 3.64 (1.23) 3.44 (1.18)

dietary PC1 �0.15 (1.85) 0.13 (1.33) 0.09 (0.93) 0.07 (1.01) 0.10 (0.87) - - -

dietary PC2 �0.20 (1.60) �0.14 (1.36) 0.28 (1.10) 0.23 (1.06) 0.32 (1.15) - - -

dietary PC3 �0.30 (1.73) 0.28 (0.67) 0.16 (0.66) �0.11 (0.61) 0.43 (0.6) - - -

ARFS 28.6 (11.5) 34.0 (9.8) 33.8 (9.7) 32.9 (9.2) 34.6 (10.2) - - -

Taxonomic Shannon

index

3.63 (0.44) 3.59 (0.45) 3.76 (0.38) 3.59 (0.40) 3.92 (0.28) - - -

Dietary Shannon index 4.61 (0.06) 4.63 (0.05) 4.65 (0.04) 4.65 (0.04) 4.66 (0.03) - - -

Genome-wide

SNP data N

91 43 84 48 49 887 218 116

ASD PGS 0.18 (1.10) 0.22 (0.95) 0.028 (0.72) 0.06 (1.00) �1e-6 (1.9e-7) 0.060 (1.00) �0.085 (0.96) 0.033 (1.07)

ASD-ADHD-TS PGS 0.10 (1.10) 0.17 (0.82) 0.04 (0.61) 0.09 (0.87) �1.1e-6 (1.6e-7) 0.047 (0.98) �0.079 (0.90) 0.012 (0.88)

Neuroticism PGS �0.038 (1.00) �0.086 (0.94) 0.041 (0.68) 0.084 (0.98) �4.1e-5 (4.2e-5) 0.040 (1.00) 0.025 (0.95) 0.145 (0.93)

IQ-DQ composite

score

85 (24) 100 (17) 100 (15) 100 (15) 100 (15) 79 (24) 101 (13) 103 (13)

CSHQ raw score 43 (11) 37 (6.1) 38 (7.1) 38 (7.1) - 44 (10) 39 (9) 37 (8)

ADOS2/G

comparison score

6.7 (2.1) - - - - 6.7 (2.0) - -

ADOS2/G

RRB CSS score

7.0 (2.3) - - - - 6.8 (2.2) - -

ADOS2/G social affect

CSS score

6.8 (2.0) - - - - 6.8 (2.0) - -

SSP Sensory raw score 41 (12) - - - - 33 (8) - -

SRS T-score 74 (9.3) 46 (9.1) 51 (9.3) 51 (9.3) - 78 (10) 50 (12) 50 (9)

First 3 columns show the comparison across ASD/SIB/UNR groups used in this analysis. Columns 4 and 5 show breakdown of UNR group into AAB

and QTAB cohorts. Columns 6–8 show characteristics of the broader AAB cohort. BSC: Bristol Stool Chart (scale 1–7), rBSC: regrouped BSC (BSC

classes grouped as 1+2, 3, 4, 5+6+7), dietary PC: principal component derived from clr-transformed percent energy dietary data, ASD PGS: polygenic

score for ASD, ASD-ADHD-TS PGS: polygenic score from the ASD-ADHD-TS GWAS summary statistics, IQ-DQ composite score aggregated from

MSEL non-verbal score, WISC-IV composite score, NIH Toolbox (age-corrected IQ); CSHQ: Children’s Sleep Habits Questionnaire raw score;

ADOS2/G comparison score: composite of Autism Diagnostic Observation Schedule version 2 (ADOS-2) and -Generic version (ADOS-G) comparison

score; ADOS2/G RRB and social affect CSS scores: ADOS-2 and ADOS-G Calibrated Severity Scores for RRB and social affect domains; SRS T-

score: Social Responsiveness T-score; SSP sensor raw score: score from the ‘‘sensory’’ domain of the Short Sensory Profile. an = 96 UNR children

with dietary PCs.
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n = 251,617 common genes with median count >0 or n =

1,742,727 rare genes with median count = 0) (Figure 2; Table

S1) andBMI (raregenesb2=46%,SE=22%,p=8.4e-3,FDR-sig-

nificant), suggesting that taxonomic and functional microbiome

measures capture different elements of phenotypic variance.

Innotablecontrast to the results for age,species-andgene-level

b2 estimates for ASD diagnosis were weak and non-significant

(maximum: rare genes b2 = 7%, SE = 16%, p = 0.33; covariates:

age, sex, dietary PC1-3), as were those for IQ-DQ (common spe-

cies b2 = 7%, SE = 13%, p = 0.39; covariates: age, sex), sleep

problems measured by CSHQ raw score (common species b2 =

10%, SE = 9%, p = 0.17; covariates: age, sex) (Figure 2; Table

S1), and clr-transformed CD4+ T cell proportion (b2� 0, SE =

0.06, p = 0.50; covariates: age, sex, dietary PC1-3) (Quantification

and statistical analysis).

Unlike these neurodevelopmental and immune traits, we

observed strong FDR-significant b2 estimates for both stool con-

sistency (covariates: age, sex, group, dietary PC1-3; rare spe-

cies b2 = 41%, SE = 11%, p = 8.7e-6; rare genes b2 = 64%,

SE = 20%, p = 2.5e-5) and dietary PC1 (rare genes: b2 = 48%,

SE = 15%, p = 3.8e-4; covariates: age, sex, participant group)

(Figure 2; Table S1; Quantification and statistical analysis).

To explore the relative impact of relatedmicrobiomemeasures

on b2 estimation as a sensitivity analysis, we explored fittingmul-

tiple ORMs. Fitting combinations of ORMs built from (1) taxo-

nomic and functional datasets, (2) common and rare subsets

of features, and (3) fitting multiple hierarchies (e.g., species,

genus, and family data) all increased b2 estimates (Quantification

and statistical analysis; Figure S3; Table S1).

Overall, our results were robust tomultiple sensitivity analyses:

without covariates (Figure 2, open circles), a smaller age range,

using the MetaPhlAn2 (Truong et al., 2015) taxonomic profiling

pipeline, excluding those with current antibiotics usage, and

excluding siblings (Methods S1). We also investigated non-addi-

tivemodels that estimate the predictive ability of themicrobiome,

again finding that the microbiome is predictive of age, but not

ASD diagnosis (Quantification and statistical analysis).

Differentially abundant taxa and genes implicate

Romboutsia timonensis

We next looked for microbial markers of ASD diagnosis, testing

for differential abundance of 607 species, 297 genera, 38 orders,

and 15 phyla. We used Analysis of Composition of Microbiomes

(ANCOM)v2.1 (Mandal et al., 2015), a robust, non-parametric
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D
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a

Figure 2. Percentage of phenotypic vari-

ance (+/�SE) associated with microbiome

composition (b2)

Panels denote phenotypes, including bench-

marking traits (age and BMI; dotted lines show re-

sults from the Rothschild et al. (2020) species-level

analysis), neuropsychiatric traits (ASD, IQ-DQ

composite score, sleep problems measured using

the CSHQ raw score), and microbiome-related

traits (stool consistency measured as regrouped

Bristol Stool Chart [rBSC], dietary PC1-3, dietary

diversity calculated using Shannon index). The x

axis shows the percentage of phenotypic variance

associated with the relevant measure of micro-

biome composition (b2). Filled points denote the

variance estimate for the analysis with covariates,

unfilled points denote the variance estimate for the

analysis without covariates, and error bars denote

the standard error. Text labels correspond to the

analysis with covariates. Rows denote the dataset

used to generate the omics relatedness matrix

(ORM). Bracketed text denotes the source of an-

notations for that given feature (ECL4: Enzyme

Commission level 4; TCDB: Transporter Classifi-

cation Database; MetaCyc: MetaCyc Metabolic

Pathway Database; Microba: Microba MGENES

database; AES: Australian Eating Survey). ‘‘*com-

mon’’ indicates ORMs calculated using microbial

features where the median count is > 0; ‘‘*rare’’ in-

dicates ORMs calculated using variables with me-

dian = 0; all datasets are from the metagenomics

dataset except ‘‘food(AES)’’, which is based on the

Australian Eating Survey food-level data. For each

trait, the covariates included in the analysis are

listed in parentheses in the following list: age (sex),

BMI (age, sex), ASD (age, sex, dietary PC1-3), IQ-DQ composite score (age, sex), sleep problemsmeasured using theCSHQ raw score (age, sex), dietary PCs (age,

sex, group), and dietary diversity (group). Number of features included in each ORM: species_common n = 96, species_rare n = 607, genus_common n = 75,

enzyme(ECL4)_common n = 1,617, enzyme(ECL4)_rare n = 372, transporter(TCDB)_common n = 217, pathway(MetaCyc)_common n = 555, genes(Microba)

_commonn=251,617,genes(Microba)_raren=1,742,727, food(AES)n=123.All analyses include246participants except for the food(AES)analysis,which includes

245 participants. Related to Figures S1, S2, and S3 and Table S1.
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method that accounts for multiple testing and adequately con-

trols the false positive rate (Weiss et al., 2017) (STAR Methods).

Comparing ASD and the combined SIB and UNR groups (covari-

ates: age, sex, and dietary PC1-3), only the species Romboutsia

timonensis was significantly differentially abundant (lower abun-

dance in ASD) at the conventional detection threshold > 0.7 (Fig-

ure 3A; Table S2). The results were consistent across extensive

sensitivity analyses (Figures 3B and S4A–S4I; Methods S1),

also finding that reduced Erysipelatoclostridium sp003024675

was often the next-most differentially abundant taxa (Table S2).

In differential-presence testing (Fisher’s exact test, ASD versus

UNR), the same two taxa (R. timonensis p = 3.9e-4, 56/99 ASD

versus 78/97 UNR; E. sp003024675 p = 1.5e-4, 6/99 ASD versus

25/97 UNR) were also the top-ranked species, though neither

survived FDR correction (Table S2). In permutation testing (n =

1000 randomshufflesof diagnostic labels for eachsample), these

taxa were significantly differentially abundant (p% 0.001) when

compared to the empirical distributions for both ANCOM and

Fisher’s exact tests (TableS2), adding further evidence that these

findings are robust.

Notably, we failed to replicate previously reported ASD-gut mi-

crobiome associations (Ho et al., 2020) with the genus Prevotella,

phylum Firmicutes, Clostridiales clusters, and species of Bifido-

bacterium (Table S2). However, we note thatR. timonensis (family

Peptostreptococcaceae, order Clostridiales, class Clostridia,

phylum Firmicutes A) and E. sp003024675 (family Erysipelato-

clostridiaceae, order Erysipelotrichales, class Bacilli, phylum

Firmicutes) are members of these phylogenetic groups. Poor

Figure 3. Differential abundance testing using ANCOMv2.1

(A–C) (A) Species-level results from the ASD versus SIB+UNR analysis of species (n = 246); (B) Species-level results from the ASD versus UNR species analysis of

species, excluding the SIB group as a sensitivity analysis; (C) Gene-level results for ASD versus SIB+UNR analysis, focusing on n = 4,950 genes (with > 10

non-zero counts) mapping to the R. timonensis genome.

(D) Violin plots comparing the distribution of counts ofR. timonensis between groups and the top 5 of 6 differentially abundant genesmapping to theR. timonensis

genome. Box elements show the median and upper and lower quartiles.

(E) Species-level results from the analysis for IQ-DQ and (F) results from the analysis for IQ-DQ, excluding the SIB group as a sensitivity analysis. All differential

abundance analyses presented here accounted for covariates (age, sex, dietary PC1-3). The W-statistic (y axis) represents, for feature_i of n total features, the

count of Benjamini-Hochberg-significant p values from regressing the additive-log-ratio-transformation ( = log(feature/feature_i) against ASD and covariates age,

sex, and dietary PC1-3. Dotted lines show W-statistic quantile detection thresholds >0.6 (green), >0.7 (orange), >0.8 (purple), and >0.9 (pink), respectively;

features exceeding detection threshold >0.7 are considered significantly differentially abundant. The x axis (‘‘clr mean difference’’) shows the coefficient for

regressing the clr-transformed feature against the variable of interest (in this case, ASD diagnosis). Annotations for gene IDs are provided in Table S2.

Related to Figure S4 and Table S2.
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replication may be related to (1) prior microbiome studies being

underpowered and prone to sampling biases (Rothschild et al.,

2020); (2) technical differences between metagenomics and

16S rRNA sequencing—the former providingmore detailed taxo-

nomic resolution, which is relevant as R. timonensis was only

recently isolated in human gut in the setting of anemia following

bariatric surgery (Ricaboni et al., 2016); and (3) different statistical

methods between studies, with variable use of adequate adjust-

ment for multiple-testing and/or confounders.

Unlike 16S sequencing studies (which have dominated the

ASD microbiome literature), metagenomics sequencing permits

functional insights. Thus, we looked for microbial genes associ-

ated with ASD diagnosis. We focused on relative abundances of

metagenome annotations to MetaCyc groups, MetaCyc path-

ways, and Enzyme Commission (EC) gene families in order of

increasing resolution (as opposed to the entire gene set due to

computational and multiple-testing burden), finding no signifi-

cant associations (covariates: age, sex, dietary PC1-3, Figures

S4J–S4L) (Table S2).

Next, we sought to identify specific genes or pathways from

R. timonensis underlying the ASD-associated signal. We

tested for ASD versus SIB+UNR differential abundance for

MetaCyc groups, MetaCyc pathways, EC gene families, and

specific genes (n = 4,950 genes with >10 non-zero values

across samples) directly mapping to R. timonensis in our data-

set (covariates: age, sex, dietary PC1-3) (Figures S4M–S4O).

We identified six differentially abundant genes with a detection

threshold > 0.7 (Figures 3C and 3D; Table S2), one of which

overlapped with the EC gene set, whereas there were no as-

sociations with MetaCyc groups or pathways (Figures S4M–

S4O; Table S2). Consistent with the species-level direction

of effect, all significantly differentially abundant genes had

reduced clr-transformed abundance in the ASD group (Fig-

ure 3D). Their functions included metabolism of amino acids

(L-glutamine, L-lysine, L-methionine, and L-threonine), purines

and pyrimidines, carbohydrates (galactose), as well as bacte-

rial spore germination and dsDNA digestion (Quantification

and statistical analysis; Table S2). We note that these results

represent potential transcription of microbial genes and that

metatranscriptomics data would be needed to evaluate actual

expression.

We performed species-level differential abundance analysis

for IQ-DQ composite score, finding that lower Bifidobacterium

sp002742445passeddetection threshold > 0.7 in theASDversus

SIB+UNR comparison but only passed detection threshold > 0.6

in the ASD versus UNR sensitivity analysis (Figures 3E and 3F;

Table S2; Quantification and statistical analysis). There were no

virome associations in the ASD versus SIB+UNR analysis (n =

200 taxa) (Table S2).

Dietary diversity mediates ASD-microbiome

associations

Whereas ASD-associated signals were scarce in the metage-

nomics data, there were consistent associations with diet: in

the variance component analysis, the dietary ORM was strongly

associated with ASD (R2 = 14%, SE = 7%, p = 2.2e-5, FDR-sig-

nificant) (Figure 2), and we observed significantly lower dietary

PC3 in ASD (suggesting reduced meat intake as shown in Fig-

ure 1B) compared to SIB and UNR groups after adjusting for

age and sex (Figure S5). Given that children on the spectrum

favor less-diverse diets (Panossian et al., 2020; Schreck andWil-

liams, 2006), we explored the effect of dietary diversity on themi-

crobiome and gastrointestinal symptoms (via stool consistency).

The ASD group had significantly less-diverse diet—estimated

using Shannon index to measure dietary alpha-diversity from

123 food-level variables (see STAR Methods)—than both SIB

and UNR groups (one-way ANOVA p = 1.3e-7, FDR-significant),

including when adjusting for age and sex (one-way ANOVA p =

1.5e-6, FDR-significant) and energy intake (ANOVA p = 9.0e-7,

FDR-significant) (Figure 4A; Table S3). They also had lower

dietary quality, as measured using the validated Australian Rec-

ommended Food Score (ARFS) for children and adolescents

(ANOVA p = 7.9e-4, FDR-significant) (Figure S6; Table S3;

Methods S1) (Burrows et al., 2014; Marshall et al., 2012). These

robust dietary results starkly contrasted with negligible direct as-

sociation between ASD diagnosis and taxonomic alpha-diversity

irrespective of measure and covariate use (age, sex, and dietary

PC1-3) or beta-diversity (weighted Unifrac permutational multi-

variate analysis of variance [PERMANOVA] p = 0.20 with same

covariates, PERMDISP2 p = 0.85) (Figure 5; Quantification and

statistical analysis).

Pursuing this link between ASD and dietary diversity, we hy-

pothesized that taxonomic diversity may be a downstream

consequence of diet rather than being directly associated

with ASD diagnosis. Consistent with this hypothesis, there

was a significant positive correlation between dietary and taxo-

nomic diversity (Pearson r = 0.25, p = 6.3e-5, FDR-significant)

(Figure 4C; Table S3), and in reciprocal regression analyses, di-

etary and taxonomic diversity (covariates: age, sex, stool con-

sistency, and group) were significant predictors of each other

(b = 0.02, p = 3.7e-2 and b = 1.1, p = 3.7e-2, respectively) (Fig-

ures 4D, 4E, S7A, and S7B with additional covariates). Further-

more, the largest effects in the dietary diversity regression were

from group (UNR: b = 0.035, p = 3.0e-6; SIB: b = 0.021, p =

1.4e-2), whereas taxonomic diversity was not associated with

group (Figures 4B and 4E). This suggests that ASD-associated

dietary restrictedness (but not diagnosis itself) is associated

with reduced microbiome diversity. These effects were robust

to sensitivity analyses in which energy intake (kJ) was fitted

as an additional covariate (Figure S7) and when substituting di-

etary diversity for dietary quality measured using the ARFS

(Figure S6; Table S3; Methods S1).

Next, we explored relationships between dietary and taxo-

nomic diversity and stool consistency. We replicated a previ-

ously reported (Hadizadeh et al., 2017; Vandeputte et al., 2016;

Zhernakova et al., 2016) inverse relationship between stool con-

sistency and taxonomic diversity (b = �0.41 p = 3.7e-3 without

covariates, FDR-significant) (Table S3) that was robust to cova-

riates (Figure S8C; Table S3). We also identified a nominally sig-

nificant association of stool consistency with dietary diversity

(b =�2.34, p = 3.7e-2 in the model without covariates), although

this did not survive covariate adjustment (Figure S8B; Table S3).

Notably, the taxonomic diversity model (without covariates) ex-

plained greater variance (R2 = 3.2%) in stool consistency than

the dietary diversity analysis (R2 = 1.5%), and in models of stool

consistency with both taxonomic and dietary diversity fitted as
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Figure 4. Relationships between dietary and taxonomic diversity (measured using Shannon Index) and ASD-related phenotypes

(A) Boxplots of dietary diversity residuals (regressing out age and sex) in each participant group (ANOVA p = 2.1e-6). Box elements show the median and upper

and lower quartiles. Dots display the mean.

(B) Boxplots of taxonomic diversity residuals (regressing out age, sex, and dietary PC1-3) in each participant group (ANOVA p = 0.36).

(C) Correlation between dietary and taxonomic diversity (Pearson r = 0.25, p = 6.3e-5).

(legend continued on next page)
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explanatory variables, only taxonomic diversity was significant

(b = �0.36, p = 1.5e-2) (Figure S8A) when covariates were

included (Figure 4F). Overall, this suggests that looser stool con-

sistency (higher rBSC score) is proximally related to reduced

taxonomic diversity, which is downstream of reduced dietary di-

versity. This mechanism may explain the reported relationship

between increased gastrointestinal issues and increased repet-

itive behaviors (Chakraborty et al., 2020).

Behavior and preferences are upstream of reduced

dietary and taxonomic diversity

We investigated whether behavioral factors diagnostic of ASD

are upstream of restricted diet and reduced dietary and taxo-

nomic diversity. To achieve this, we leveraged both psychomet-

ric measures and polygenic scores from human genotyping data

(for ASD and other phenotypes), the latter using genome-wide

SNP data generated from blood samples in the AAB (Yap

et al., 2021) and QTAB participants (see STAR Methods).

Whereas previous sections discussed the contributions of mi-

crobial genes, this section explores the relationship between hu-

man polygenic scores and dietary and taxonomic diversity.

First, we confirmed the ASD-dietary diversity association

through analysis of continuous autism-spectrum measures. We

identified an inverse association between ASD polygenic

score in this cohort (Yap et al., 2021) and dietary diversity

(b =�1.0e2, p = 1.2e-2, FDR-significant), but not taxonomic diver-

sity (b = �4.4e-2, p = 0.17) (Figure 4G). We note that the ASD

polygenic score itself was insufficiently powered to predict ASD

diagnosis in this dataset (one-way ANOVA p = 0.41; for results in

the entire AAB refer to Yap et al., [2021]). Phenotypically, we

observed negative associations between dietary diversity and

two quantitative measures of degree of ASD features: ADOS2/G

comparison score (b = �8.6e-3, p = 3.1e-3, FDR-significant; n =

99 ASD) (Figures 6A and 6B) and Social Responsiveness Scale

t-score (b = �6.4e-4, p = 7.8e-2, marginally significant; n = 97

AAB children: 10 ASD and 87 SIB/UNR) (Figures 6C and 6D).

Second, we hypothesized that repetitive and restrictive be-

haviors and interests (one of two diagnostic domains for

ASD) may underlie a restricted diet, upstream of microbiome

changes. Phenotypically, we observed FDR-significant nega-

tive association between higher combined (Lord et al., 2012)

ADOS-2/G restricted and repetitive behavior (RRB) Calibrated

Severity Scores and dietary diversity (without covariates: b =

�7.8e-3, p = 3.8e-3; with covariates age and sex: b = �6.4e-

3, p = 1.8e-2; both FDR-significant) (Table S3) and nominally-

significant negative association with taxonomic diversity

(without covariates: b = �4.3e-2, p = 2.4e-2; with covariates

age and sex: b = �3.4e-2, p = 7.6e-2) (n = 99 ASD group

only) (Figure 4H; Table S3). We then leveraged genome-wide

association study (GWAS) summary statistics from a cross-trait

analysis (Yang et al., 2021) of ASD, attention-deficit hyperactiv-

ity disorder, and Tourette Syndrome (hereafter called ASD-

ADHD-TS) to generate polygenic scores (PGS) for restrictive-

repetitive behaviors. We confirmed that ASD-ADHD-TS PGS

correlated with ADOS-2/G RRB scores in the full AAB (r =

0.09, p = 0.01, n = 867) and so represents a genetic proxy.

We found marginal association between ASD-ADHD-TS PGS

and reduced dietary diversity (b = �7.2e-3, p = 0.10) but not

with taxonomic diversity (b = �4.7e-2, p = 0.18) (Figures 6E

and 6F). We compared these results to ADOS2/G social affect

Calibrated Severity Scores, the other major domain of ASD

diagnosis, noting that ADOS2/G RRB and social affect scores

were significantly correlated (r = 0.29, p = 3.7e-3, n = 99 partic-

ipants). We again found FDR-significant associations between

ADOS2/G social affect and dietary diversity (without covari-

ates: b = �8.2e-3, p = 1.0e-2; with covariates age and sex: b

= �7.5e-3, p = 1.5e-2 both FDR-significant) (Figure 6G; Table

S3) and not with taxonomic diversity (without covariates: b =

�3.3e-2, p = 0.15; with covariates age and sex: b = �2.9e-2,

p = 0.19) (Figure 6H; Table S3). Importantly, these associations

were weaker than with the ADOS2/G RRB scores. Thus, ASD-

associated restricted and repetitive behaviors appear to have

stronger relationships with dietary diversity than social affect.

Third, on the basis that sensory sensitivity may also underlie

restricted dietary preferences (Cermak et al., 2010), we explored

relationships with Short Sensory Profile raw sensory score in a

small ASD-only subset of the data for which this instrument

was completed. We found marginal associations with both die-

tary (b = �9.5e-4, p = 6.9e-2) and taxonomic diversity (b =

�6.8e-2, p = 8.6e-2) (n = 91; Figure 4I). Notably, the Short Sen-

sory Profile raw sensory score was not correlated with ADOS2/G

RRB Calibrated Severity Scores in this dataset (r = 0.05,

p = 0.64).

In contrast, we found no evidence for hypothesized links be-

tween dietary and taxonomic diversity measures and ASD-asso-

ciated traits such as neuroticism as a proxy for anxiety (Kim et al.,

2018; Yang et al., 2019) (Figures 6K and 6L; Table S3; Quantifi-

cation and statistical analysis).

Overall, these data suggest that ASD-associated preferences

and behaviors lead to reduced dietary diversity, which mediates

weak ASD-microbiome relationships (Figure 4J). Notably, all

psychometric measures had more significant correlations with

dietary diversity than taxonomic diversity (Figures 4G–4I and

6A–6H). However, we cannot rule out the possibility that these

downstreammicrobiome effects could also feed-back and influ-

ence behavior.

(D–I) Linear model plots (Patil, 2021) to visualize model outputs, showing effect sizes (+/�95%CI), test statistics, degrees of freedom, and p values for each

independent variable (bolded in black) and covariate: (D) linear model coefficients taking dietary diversity as the dependent variable; (E) linear model coefficients

taking taxonomic diversity as the dependent variable; (F) linear model coefficients taking rBSC as the dependent variable; (G) linear model coefficients regressing

dietary (upper) and taxonomic (lower) diversity against ASD polygenic score (PGS); (H) linear model coefficients regressing dietary (upper) and taxonomic (lower)

diversity against ADOS2/G restricted and repetitive behaviors (RRB) Calibrated Severity Score; (I) linear model coefficients regressing dietary (upper) and

taxonomic (lower) diversity against SSP raw sensory score.

(J) Proposed synthesis of relationships between autism spectrummeasures, restricted and repetitive interests, sensory preferences, dietary diversity, taxonomic

diversity, and stool consistency. Colors match those used in Figures 4D–4I.

Related to Figures 6, S6, S7, and S8 and Table S3.

ll

Cell 184, 1–16, November 24, 2021 9

Please cite this article in press as: Yap et al., Autism-related dietary preferences mediate autism-gut microbiome associations, Cell (2021),

https://doi.org/10.1016/j.cell.2021.10.015

Article



DISCUSSION

In this large ASD stool metagenomics study in which con-

founders were carefully considered, we found negligible evi-

dence for direct associations between the stool microbiome

and ASD diagnostic status, which was also the case for other

neurodevelopmental traits (e.g., IQ-DQ, sleep problems). For

ASD, there was limited evidence for associations with taxo-

nomic diversity or microbiome-association index (b2; Figure 2),

and only one differentially abundant species was robustly iden-

tified (Figure 3). These results were striking when compared to

strong associations of microbiome composition with age, diet,

and stool consistency (Figure 2). Importantly, we failed to repli-

cate previously reported ASD-microbiome associations from

human studies. Instead, we found evidence linking behaviors

Figure 5. Microbiome diversity analysis

(A) Ordination analysis of groups: PCA on

centered-log-ratio (clr) transformed data and after

removing variables with < 10 non-zero values.

PERMANOVA and PERMDISP2 results (using

weighted Unifrac index) correspond to tests

without covariates (PERMANOVA with covariates

age, sex, and dietary PC1-3 p = 0.20; PERMDISP2

does not allow for covariates).

(B) Boxplots of taxonomic alpha-diversity residuals

(regressing out age, sex, and dietary PC1-3; upper)

and raw taxonomic alpha-diversity (lower) in each

participant group, using different alpha-diversity

metrics: Shannon index (left), richness (middle),

Simpson index (right). Box elements show the

median and upper and lower quartiles. Dots

display the mean.

associated with the autism spectrum

(e.g., repetitive-restricted behaviors or

interests, sensory preferences, and so-

cial affect) to reduced dietary diversity,

which, in turn, was associated with

reduced microbiome diversity and looser

stool consistency (Figure 4J). This puta-

tive model challenges suggestions from

animal studies that the microbiome may

be causally related to ASD-related traits

(Buffington et al., 2016; Hsiao et al.,

2013; Sharon et al., 2019). Our findings

also stand at odds to the proliferation

of experimental interventions and early

clinical trials that propose to ‘‘treat’’

ASD by targeting the microbiome (Kang

et al., 2019; Kang et al., 2017).

In contrast to measures of microbiome

composition, ASD was robustly and

significantly linked to dietary variables, ir-

respective of covariates (Table S3). We

found (1) that significant variance in ASD

diagnosis was associated with diet but

not themicrobiome in the b2 analysis (Fig-

ure 2), (2) reduced meat intake in the ASD

group (Figure S5), and (3) reduced dietary diversity in the ASD

group despite significantly higher variance in dietary diversity

(Figure 4A), which is consistent with the dietetics literature (Pan-

ossian et al., 2020; Schreck and Williams, 2006) and some

smaller ASD microbiome studies with dietary data (Berding

and Donovan, 2018).

One rationale for the interest in the ASD microbiome is the

frequent co-occurrence of gastrointestinal complaints (Chaidez

et al., 2014; Kohane et al., 2012; McElhanon et al., 2014). In the

absence of complete gastrointestinal complaint reporting, we

analyzed stool consistency scores, with the caveat that it is un-

clear how this single-time point data reflects chronic conditions.

Stool consistency appeared to be more proximal to taxonomic

than dietary diversity, although we acknowledge that it is diffi-

cult to distinguish between a top-down (i.e., dietary and
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taxonomic diversity influencing downstream stool consistency)

versus bottom-up (i.e., stool consistency being an upstream

proxy) relationship. For the former, dietary restrictedness could

plausibly affect gut ecology and taxonomic diversity, which in

turn affects stool consistency. In relation to a bottom-up model,

looser stool may indicate underlying food allergies or intoler-

ances, which may be associated with deliberate (parental) die-

tary restriction to identify causative agents. Additionally, looser

stool consistency reflects reduced gastrointestinal transit time

and reduced colonic water reuptake (Vandeputte et al., 2016),

which affects taxonomic diversity. As the narrow-sense herita-

Figure 6. Relationships between other die-

tary and taxonomic diversity measures and

other phenotypes

Linear model coefficients (+/-95%CI) regressing

(A) dietary diversity and (B) taxonomic diversity

against ADOS2/G comparison score, (C) dietary

diversity and (D) taxonomic diversity against Social

Responsiveness Scale t-score, (E) dietary diversity

and (F) taxonomic diversity against ASD-ADHD-TS

cross-trait polygenic score, (G) dietary diversity

and (H) taxonomic diversity against ADOS2/G so-

cial affect domain Calibrated Severity Score, (I)

dietary diversity and (J) taxonomic diversity

against CD4 T cell count (clr-transformed), (K) di-

etary diversity and (L) taxonomic diversity against

neuroticism PGS. Related to Figure 4 and

Table S3.

bility of gastrointestinal conditions that

affect stool consistency (e.g., irritable

bowel syndrome) are small (Wu et al.,

2021), environmental contributions likely

predominate over genetics (Rothschild

et al., 2018).

Our results have important implica-

tions for understanding the role of the

gut microbiome in ASD and other psy-

chiatric traits. First, in relation to medical

care, food selectivity among children on

the autism spectrum is an important clin-

ical concern. Food selectivity is related

to avoidant/restrictive food intake disor-

der (ARFID; which is likely underdiag-

nosed despite affecting over 20% of

autistic children [Koomar et al., 2021])

and can cause nutritional deficiencies

among autistic children (Zimmer et al.,

2012) to the extent that hospitalization

and invasive measures such as enteral

feeding are required (Tang et al., 2011).

Our results also suggest that dietary

quality is poorer in children on the spec-

trum (Methods S1). Given that elevated

microbial diversity is robustly associated

with improved health outcomes (Valdes

et al., 2018), the association of ASD

with poorer dietary quality and reduced

dietary and taxonomic diversity underlines the importance of

dietary and nutritional interventions in this population. Second,

our results have implications for the interpretation of cause and

effect in relation to diet in microbiome analyses in psychiatric

conditions. There is growing interest in the contribution of

diet and the microbiome to psychiatric traits (e.g., depression

[Dash et al., 2015; Molendijk et al., 2018]), but our results

emphasize the need to consider the (arguably more intuitive)

impact of behavior on the microbiome (Jacka et al., 2015).

These results add to other reports of diet driving microbiome

associations with health (Claesson et al., 2012).
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For future microbiome studies, we emphasize the impor-

tance of collecting detailed dietary data (recent examples [As-

nicar et al., 2021; Wang et al., 2021]), particularly for ASD and

other neuropsychiatric traits with plausible co-variation of diet

with diagnosis or treatment. We advocate for larger sample

sizes to ensure that results are robust to sampling effects

and to identify subtler microbiome associations. We also

recommend higher-resolution metagenomics technology and

expanded databases since more granular taxonomic measures

of microbiome composition were more sensitive (Table S1),

gene-level ORMs explained more variance for some traits (Ta-

ble S1), power to detect associations was weaker with the

MetaPhlAn2/NCBI pipeline (Methods S1), and because taxo-

nomic and functional datasets may capture complementary

aspects of the microbiome (Figures S1 and S3).

In conclusion, we found negligible direct associations be-

tween ASD and the gut microbiome in contrast to strong associ-

ations with other phenotypes such as age, dietary variables, and

stool consistency. Instead, we find evidence that restricted die-

tary diversity and poorer quality—which is associated with spe-

cific ASD features such as restrictive-repetitive behaviors—is a

significant mediator of taxonomic diversity, and in turn, stool

consistency. Our results are consistent with an upstream role

for ASD-related behaviors and dietary preferences on the gut mi-

crobiome and are contrary to claims of the microbiome having a

major (or causal) role in ASD.

Limitations of the study

First, this study did not have a longitudinal design, so we cannot

rule out microbiome contributions prior to ASD diagnosis. Sec-

ond, although this is to our knowledge the largest metagenomics

study of the ASD stool microbiome to date, there may nonethe-

less be sampling biases that require larger studies to overcome

(Rothschild et al., 2020). Third, this study used stool samples as a

gut microbiome proxy, which may not accurately represent the

more difficult-to-access mucosal microbiome (Shanahan et al.,

2016). Fourth, data on antibiotic intake in this cohort were not

systematically collected and so could not be rigorously ac-

counted for other than through exclusion in sensitivity analyses.

Fifth, the gold-standard differential abundance analysis relied on

per-feature tests that do not reflect the interactions and non-in-

dependence that occurs within an ecological or metabolic

context. Finally, we await the emergence of datasets with com-

parable study design, consideration of confounders, and depth

of phenotypic and metagenomics data for replication of these

results.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jacob

Gratten (jacob.gratten@mater.uq.edu.au).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The AAB datasets supporting the conclusions of this article are available by application to the Australian Autism Biobank within the

Cooperative Research Centre for Living with Autism (AutismCRC): https://www.autismcrc.com.au/biobank. The QTAB dataset used

in these analyses is available with mediated access: UQ eSpace: https://espace.library.uq.edu.au/view/UQ:e803a68 . Code is pub-

licly available at https://zenodo.org/record/5558047. Any additional information required to reanalyse the data reported in this paper

is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This was a human study. The 247 participants in this study came from two datasets: the Australian Autism Biobank (AAB) (Alvares

et al., 2018) and the Queensland Twin Adolescent Brain (QTAB) project. The AAB participants include children with an ASD diag-

nosis (recruited from autism clinics and research centers across Australia’s four largest cities: Sydney, Melbourne, Brisbane,

Perth; no exclusion criteria; mean age = 8.7, SD = 3.8, 73% male), and their siblings (‘‘SIB’’) without a diagnosis (mean age =

8.0, SD = 4.3, 57% male) (Alvares et al., 2018). The group of unrelated children (‘‘UNR’’) without a diagnosis were recruited by

the AAB (recruited from the community; exclusion criteria: having an ASD diagnosis) and QTAB (typically developing children re-

cruited from the community) (AAB+QTAB UNR group mean age = 9.2, SD = 3.7, 54% male). Stool samples from AAB and QTAB

participants were collected using the same protocol, in a contemporaneous time frame, and were receipted and processed by the

same University of Queensland Human Studies Unit, prior to being randomized for DNA isolation, library preparation and DNA

sequencing by Microba Life Sciences. Overall, the sample included n = 51 sibling-pairs overlapping with a case-control design

comprising n = 99 cases and n = 97 unrelated controls (Table 1, Figure 1a). A description and comparison of demographic

data from participant groups is provided in Table 1. The AAB subset included in this metagenomics study was representative

of the wider AAB (Table 1).

Sample selection for this study was constrained to AAB and QTAB participants who provided a stool sample and completed a di-

etary questionnaire. Within these constraints, we attempted to match by sex and age. Specifically, we selected UNR_QTAB partic-

ipants to ameliorate a disparity in sex (chi-square statistic = 8.3, p = 1.5e-2) and age (ANOVA p = 2.0e-3) between the UNR_AAB

subset (n = 48 participants), who were younger (mean age 6.3, SD = 3.0) with equal sex balance (50%), and the ASD (AAB) group

(n = 99), who were older (mean age = 8.7, SD = 3.8) with a male bias (73%). In the final sample, there was a persisting (albeit reduced)

male bias (chi-square statistic = 7.7, p = 2.2e-2), consistent with the elevatedmale:female ratio in ASD, but no significant difference in

age between the groups (ANOVA p = 0.2) (Table 1). For this reason, we statistically adjusted for sex in all analyses. Overall, including

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OSCA Zhang et al., 2019 https://cnsgenomics.com/software/osca/

ANCOMv2.1 Mandal et al., 2015 https://github.com/
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Microba Community Profiler v2.0.2 Microba Life Sciences N/A

Microba Gene and Pathway Profiler v0.1.0 Microba Life Sciences N/A

MiCoP LaPierre et al., 2019 https://github.com/smangul1/MiCoP

R v3.6.3 The R Project for

Statistical Computing

https://www.r-project.org/

ggplot2 Wickham, 2016 https://ggplot2.tidyverse.org/

ggstatsplot Patil, 2021 https://indrajeetpatil.github.io/ggstatsplot/

Plink 1.9 Purcell and Chang, 2015 https://www.cog-genomics.org/plink/

SBayesR Lloyd-Jones et al., 2019 https://cnsgenomics.com/software/gctb/

#Overview

Supporting code used for manuscript This paper https://zenodo.org/record/5558047
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the QTAB participants in the study increased power, and ameliorated age (and to a lesser degree, sex) differences that are an impor-

tant modulator of the microbiome, with minimal likelihood of collection bias.

Ethics approval and consent to participate

All families provided informed consented to be included within this study.

d NSW: Sydney Children’s Hospital Network HREC, approval number HREC/14/SCHN/269.

d QLD: Mater Health Services HREC, approval number HREC/14/MHS/212; the University of Queensland, approval number

2014001079; QTAB Project: Children’s Health Queensland HREC, approval number HREC/16/QRCH/270; The University of Queens-

land, approval number 2016001784/ HREC/16/QRCH/270

d VIC: La Trobe University, approval number HEC16/104

d WA: Princess Margaret Hospital for Children approval number 2014029EP; the University of Western Australia approval number

RA/4/1/8184

METHOD DETAILS

Phenotype data

Dietary data

Dietary data were collected in both AAB and QTAB cohorts – predominantly reported by parents – using the Australian Eating Survey

(AES; toddler and children’s versions) (Collins et al., 2013;Watson et al., 2009), which has been validated in the Australian population.

Food-level intake data were available for n = 245 of the 247 participants, and percent energy (pe) data were available for n = 246. The

AES records frequencies of intake for 123 different foods, from which derived variables are generated, including pe from each of 13

core (vegetables, fruit, meat, alternative proteins, grains, dairy) and non-core (sweet drinks, packed snacks, confectionery, baked

products, takeaway, condiments, fatty meats) food groups; macronutrients (various carbohydrates, fats and proteins); micronu-

trients (various vitamins and minerals), and the Australian Recommended Food Score (ARFS).

We primarily used the dietary data in two ways (Figure 1c).

1. We used the food-level input to measure dietary diversity (n = 245) using Shannon index – the same measure of alpha-diversity

used in the microbiome analyses. The AES records the frequency of intake for each food item using ordinal variables, with the exact

variable depending on the food item (e.g., for fruit intake: ‘‘Never,’’ ‘‘Once per week,’’ ‘‘2-4 per week,’’ ‘‘5-6 per week,’’ ‘‘1 per day,’’ ‘‘2

or more per day’’; whereas for hamburgers: ‘‘Never,’’ ‘‘Less than 1 per month,’’ ‘‘1-3 per month,’’ ‘‘1 per week,’’ ‘‘2-4 per week’’). We

encoded these N categories on an integer ordinal scale, where the least-frequently consumed category was encoded as 1, and the

most-frequently consumed category was encoded as N. We then calculated dietary diversity from this integer dataset using the

Shannon index. For the variance component analysis, we input the integer dataset to generate an ORM (correlation matrix between

all pairs of individuals) for the OREML analysis. To further test the validity of our dietary diversity construct, we also tested the Austra-

lian Recommended Food Score for children and adolescents (Burrows et al., 2014; Marshall et al., 2012), which is a validated mea-

sure of dietary quality (Methods S1).

2. We calculated principal components from the percentage energy data (n = 246 participants; referred to as dietary PCs; STAR

Methods, Methods details), to capture salient dietary features that may affect the microbiome, given that a strong relationship has

been identified by others (Bokulich et al., 2016; Rothschild et al., 2018).

On the basis of their loadings onto the dietary items (Figure 1b), the first 3 dietary PCs may be interpreted as follows:

d PC1: a high value is associated with a diet high in plant-based foods (vegetables, fruit, alternative proteins) and low in non-meat

non-core foods (sweet drinks, packed snacks, confectionery, baked products, takeaway, fatty meats)

d PC2: a high value is associated with a diet high in dairy products and low in grains and takeaway

d PC3: a high value is associated with a diet high in meat (including fatty meats) and low in grains and dairy.

An RMarkdown document showing exploratory data analysis of the dietary data is provided at https://zenodo.org/record/5558047.

Bristol Stool Chart

The Bristol Stool Chart (BSC) was completed by each AAB and QTAB participant in the study. The BSC provides a pictorial scale of

stool consistency numbered 1 to 7, whereby lower values indicate dryer stool (e.g., constipation) and higher numbers denote watery

stool (e.g., diarrhea). As we had limited representation at the extremes of this distribution, we regrouped scores of 1+2 and 5+6+7

together (Figure 1c). This resulted in a 4-point scale with > 50 samples per group. We treated this regrouped BSC variable (rBSC) as a

continuous variable.

Neurodevelopmental phenotypes

Our analyses included multiple neurodevelopmental phenotypes. ASD-related psychometric measures included either ADOS-2 or

ADOS-G repetitive and restricted interests sub-scores and social affect sub-scores (combined as per (Lord et al., 2012), and with

domains converted to the Calibrated Severity Score to allow comparison across modules (Hus et al., 2014; Hus and Lord, 2014)),

Social Responsiveness Scale (Constantino, 2002) t-score (undiagnosed AAB children), and the Short Sensory Profile (McIntosh

et al., 1999) raw Sensory score. Among non-ASD-related traits, we generated a composite IQ (from WISC-IV (Wechsler, 2003) for

older children in the AAB, and the NIH Toolbox age-corrected full-scale score (Akshoomoff et al., 2013) for the QTAB study) and

non-verbal developmental quotient score (from MSEL (Mullen, 1995) for younger children in the AAB). These questionnaires were
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aggregated to capture a larger proportion of the dataset, and to provide a proxy for intellectual and developmental delay, which we

refer to hereafter as IQ-DQ. We combined these scores to improve power, and all these measures were similar in that they were

normed to approximately conform to the expected mean = 100 and SD = 15 in the population. We also looked for association

with sleep disturbances in the AAB subset, using the Children’s Sleep Habits Questionnaire (CSHQ) (Owens et al., 2000).

Polygenic scores (PGS) from human genotyping

We calculated PGS for ASD (Grove et al., 2019), ASD-ADHD-TS cross-disorder analysis (Yang et al., 2021), and neuroticism (Nagel

et al., 2018) in the AAB and QTAB datasets, using the pipeline described in (Yap et al., 2021). Briefly, we filtered for genome-wide

association study SNPs that were in the HapMap3 reference, and were common across both datasets, then input all of these filtered

SNP summary statistics into SBayesR (Lloyd-Jones et al., 2019) to re-weight the SNP effect sizes (settings: –pi 0.95, 0.02, 0.02, 0.01;

–gamma 0, 0.01, 0.1, 1; –chain-length 10000; –burn-in 2000; –out-freq 10, and using the –exclude-mhc flag). We then multiplied the

best guess genotypes in the target sample (i.e., AAB individuals and UKB controls) by the re-weighted effect sizes, using the PLINK

(Chang et al., 2015; Purcell and Chang, 2015) –score function.

Cell-type proportions

Wecalculated cell-type proportions for the subset of participants for whomwe had also generatedDNAmethylation data. For this, we

applied the Houseman algorithm implemented in meffil (Min et al., 2018), using the default blood reference (Reinius et al., 2012),

which provides cell-type proportions for neutrophils, monocytes, B cells, CD4+ T cells, CD8+ T cells, NK cells, and eosinophils.

Sample collection and preparation

The same protocol was applied across both AAB and QTAB datasets.

Sample collection

As described in (Alvares et al., 2018), teaspoon-sized stool samples were collected by parents at home, either scraped from diapers

or from a liner suspended in a toilet bowl, and suspended in 4mL RNAlater. Samples were brought to the clinic and shipped to the

Institute for Molecular Bioscience at the University of Queensland the same day. In the vast majority of cases, stool samples were

received within 2-3 days of collection (1-2 days from shipping). Time from shipping to processing was 12-72 h. Processing involved

vigorous homogenization, before aliquoting and long-term storage at �80�C. All samples underwent only one freeze-thaw cycle,

which was at the time of sequencing.

DNA extraction

DNA extraction was performed using a modified protocol, optimizing the initial mechanical lysis step, before following the manufac-

turer’s instructions for the QIAamp 96 PowerFecal QIAcube HT Kit (QIAGEN) on the QIACube HT automated extraction system. Prior

to processing, samples were transferred to a 96-well plate and two washes with ice cold PBS performed as per the manufacturer’s

instructions.

Library preparation

Libraries are prepared according to the manufacturer’s protocol using Nextera XT Library Preparation Kit (Illumina #FC-131-1096)

with reduced reaction volume to allow processing in 384-well format. The libraries were indexed with NexteraXT v2 384 Index

A-D (Illumina FC-131-2001-4). Resulting libraries were quantified and assessed for appropriate QC including fluorometric quantifi-

cation and gel analysis.

Library pooling, QC, loading, and sequencing

Nextera XT libraries were pooled at equimolar amounts to create a sequencing pool. The pool was quantified and pool QC performed

with gel analysis and fluorometric quantification. The library was prepared for sequencing on the Illumina NovaSeq6000 according to

manufacturer’s instructions and sequenced with 23 150bp paired-end chemistry in the Microba laboratory. Pools were sequenced

to a target depth of 3Gb per sample with a minimum of 2GB (approximately 7M – 16M paired-end reads).

QUANTIFICATION AND STATISTICAL ANALYSIS

Metagenomics datasets and QC

Quality control

Metagenomic sequencing data QC and processing was performed by Microba Life Sciences Limited. Paired-end DNA sequencing

data were demultiplexed and adaptor trimmed using Illumina BaseSpace Bcl2fastq2 (v2.20), accepting one mismatch in index se-

quences. Reads were then quality trimmed and residual adaptors removed using the software Trimmomatic (v0.39) with the

following parameters: -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 CROP:100000 HEADCROP:0 MINLEN:100. Hu-

man DNA was identified and removed by aligning reads to the human genome reference assembly 38 (GRCh38.p12,

GCF_000001405) using Burrows-Wheeler Aligner (BWA) v0.7.17 (Li and Durbin, 2009) with default parameters except minimum

seed set to -k 31. Alignments were further filtered using SAMtools v1.7 (Li and Durbin, 2009), with flags -ubh -f1 -F2304. Any re-

maining pairs where at least one read mapped to the human genome with > 95% identity over > 90% of the read length were

flagged as human DNA and removed. Table S4.1 and Table S4.2 provide summary statistics of the QC process. There were be-

tween 4.8-24.8 million reads passing QC per sample (Table S4.2). All samples were then down-sampled to a standard depth of
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seven million read pairs to mitigate the effect of increased sensitivity in our association analyses. For n = 19 samples with fewer

than 7 million reads, we retained all QC-ed reads, rather than excluding these samples, noting the ongoing debate on the need for

rarefaction (McMurdie and Holmes, 2014).

Quantification of microbial abundances

Species profiles were obtained with theMicroba Community Profiler v2.0.2 using theMicroba Genome Database (MGDB) v2.0.0 as a

reference database (Parks et al., 2021). Briefly, reads are mapped to MGDB, and the relative cellular abundance of species clusters

with sufficient evidence to be considered reliable was estimated and reported. In this dataset, a total of 1,757 species were identified

(964 specific toMGDB), including seven that were newlymined from this dataset. Of these, therewere 1,735 bacteria, 12 archaea and

10 eukaryota.

Quantification of gene and pathway abundance in themetagenomic samples was performed using theMicroba Gene and Pathway

Profiler (MGPP) v0.1.0 against the Microba Genes (MGENES) database v2.0.0. MGPP is a two-step process. In step one, all ORFs

from all genomes in MGDB were clustered against UniRef90 release 2019/09 using 90% identity over 80% of read length using the

tool MMSeqs2 Release 10-6d92c (Steinegger and Söding, 2017). Gene clusters were then annotated with the UniRef90 identifiers

and linked to the Enzyme Commission (EC) and Transporter Classification Database (TCDB) annotations via the UniProt ID Mapping

service. EC annotations were used to determine the encoding of MetaCyc (Caspi et al., 2020) pathways in each genome using

enrichM [https://github.com/geronimp/enrichM] and pathways that were complete or near complete (completeness > 80%), were

classified as encoded and stored for further analysis. In step two, all DNA sequencing read pairs that align by one or more base

(in nucleotide space) to a gene sequence from any gene within a MGENES protein cluster were summed and tabulated. Pathway

abundances were calculated by averaging the gene counts of each pathway present within all genomes of all species reported by

MCP. In this dataset, a total of 5,165,783 genes were identified.

Viral species

We additionally profiled the virome (rarefaction to a constant 4.8 million reads) using MiCoP (LaPierre et al., 2019), as this method is

optimized to call viruses and eukaryotes. As a reference dataset, MiCoP draws upon the NCBI’s RefSeq Viral database (Brister et al.,

2015). We identified a total of 200 viral species in the dataset.

Transformations and filters

Metagenomics data (taxonomic and functional) are a form of compositional data, which violate assumptions of independence as pro-

portionality imposes negative correlations within the dataset. Hence, we applied centered-log-ratio (clr) transformation (Aitchison,

1982) in the variance component analyses (offset = 0.001), whereas for differential-abundance analysis, additive-log-ratio transfor-

mationwas performed upon the count datawithin the ANCOMv2.1 package (Mandal et al., 2015) (offset = 1). For the variance compo-

nent and differential abundance analyses, we removed ultra-low prevalence features with < 10 non-zero values. This left 607 bacterial

species (221 specific to the Microba database), 40 viral species, and 1,742,729 genes. However, we retained all features for Fisher’s

exact test and diversity analyses.

Covariate choice

We performed preliminary analyses to identify covariates for inclusion in our various analyses. This process, which is described in

greater depth below, led us to include age, sex and the top 3 principal components calculated using the derived variables of (clr-

transformed) percentage energy from various food groups ("dietary PCs"). Together, these covariates explained 13.5% of variance

in microbial taxonomic alpha-diversity (Shannon index) within the sample.

Demographic variables

Age and sex were included as baseline covariates. Month was initially included (as a factor variable) to account for seasonal variation

in diet, but was subsequently dropped as it made minimal contribution to both measures of dietary intake and taxonomic alpha-di-

versity (Shannon index) (an additional 3.8% of variance comparing the age + sex model which explained 12.2% of variance and the

age + sex + month model which explained 16.0% of variance). A seasonality variable that transformed month of dietary survey to a

cosine curve made no contribution to the variance in taxonomic alpha-diversity (Shannon index).

Dietary principal components

We included dietary data from the Australian Eating Survey as covariates in the metagenomics analyses, specifically focusing on the

percentage energy measures. This was because this metric best accounted for the confounding effect of energy intake (which is

strongly correlated with age), and also had the highest completeness rates.

To extract salient features of the dietary data, we generated principal components (dietary PCs) on the 13 percentage energy

variables. As this measure is a form of proportional data – and therefore requires specific compositionally-aware methods – we

performed a centered-log-ratio (clr) transformation before calculating the PCs. The importance of using the clr-transformation

was suggested based on three lines of evidence. First, we found that age, sex and month covariates explained sizeable differences

in variance for dietary PC1-3, depending on whether a clr-transformation was applied. Second, the correlation between the non-

transformed and clr-transformed dietary PCs was low (r = 0.32), suggesting that compositionally-aware analysis may provide

different results from a compositionally-unaware analysis. Third, the clr-transformed data explained a greater proportion of variance

in microbial taxonomic alpha-diversity than the non-transformed data (percentage energy items explained 3.7% of variance with clr-

transform, versus 2.5% of variance without clr-transform).
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The first 3 dietary PCs accounted for 43% of dietary variance. Including the first 3 clr-transformed PCs as covariates explained

greater variance in microbial taxonomic alpha-diversity than all 13 percentage energy items (2.8% versus 2.5%), justifying the for-

mer’s inclusion as covariates in the metagenomics analysis. We note that the ASD group had lower dietary PC3 (suggesting reduced

meat intake) after adjusting for age and sex (Figure S5).

Variance component analysis

Omics-relationship matrices (ORM) and OREML

Weperformed variance component analysis using the software packageOSCA (Zhang et al., 2019). Briefly, this method estimates an

n x n omics-relationship matrix (ORM) between each pair of n individuals based on p probes or variables (in this analysis, clr-trans-

formed counts of taxonomic or functional variables from the metagenomics dataset, after removing variables with < 10 non-zero

values); we used the –orm-alg 2 setting. Then, OREML was used to estimate the proportion of variance of a given phenotype (the

dependent variable in the model) associated with the ORM, fitted as a random effect in a restricted maximum likelihood (REML)

framework. Covariate choice depended on the focal phenotype, but universally included sex and age (except when age was the

dependent phenotype), and in some cases, participant group or dietary PCs.

We generated separate ORMs for common features (those with median count > 0) versus rare features (with median count = 0, but

withR 10 non-zero counts in the full sample) (Table S1.1). This was intended to approximate a mixture model when fitting these two

ORMs in a multiple ORM framework (–multi-orm), motivated by the observation that there are some ‘‘core’’ taxa (approximately nor-

mally distributed) as well as ‘‘accessory’’ taxa (that are less prevalent and which have a zero-inflated distribution). Covariates per

analysis are listed in the Figure 2 legend.

We performed extensive sensitivity analyses for the variance component analyses: without covariates, restricting to AAB partic-

ipants younger than 10 years of age, using a different taxonomic and functional profiling pipeline (MetaPhlAn2 (Truong et al.,

2015) and HUMAnN2 (Franzosa et al., 2018)), and excluding participants with current antibiotic use. These analyses are detailed

in Methods S1.

clr-transformation versus 0/1 coding for ORMs

Given that there was large spread in the distribution of rare species, we compared the effect of applying a clr-transformation to taxa

counts versus encoding presence/absence (0/1) for ASD diagnosis, stool consistency (rBSC) and dietary PCs. We found that results

were highly similar, supporting our choice to use the clr-transformed data (Figure S2).

CD4+ T cell proportion and variance analyses

CD4+ T cell proportions in blood were predicted for n = 151 participants from blood-derived DNA methylation data, using the meffil

package. This was of interest because others have reported interplay between the microbiota and CD4+ regulatory T cells (Zheng

et al., 2020) and because immune conditions commonly co-occur with ASD (Atladóttir et al., 2010; Sabourin et al., 2019; Vargason

et al., 2019). To reducemultiple-testing burden, we initially only tested the effect of common genes (as this dataset typically had large

effects), finding that there were no relationships (b2
�0, SE = 0.06, p = 0.50).

Dietary traits and variance analyses

Microbiome composition was associated with variance in dietary PC1, with b2 = 13% (SE = 7%, p = 0.03) when microbiome compo-

sition is based on common species, b2 = 8% (SE = 5%, p = 0.4) based on rare species, b2 = 48% (SE = 15%, p = 8.1e-5, FDR-sig-

nificant) based on common genes and b2 = 22% (SE = 18%, p = 7.4e-2) based on rare genes (Figure 2, Table S1.2). Estimates from

the microbiome ORMs were lower for dietary PC2-3 compared to PC1 (Figure 2, Table S1.2). However, the food ORM was consis-

tently associated with the highest proportions of variance for dietary PC1-3 (b2
�60%), and dietary diversity (b2 = 52%; Figure 2, Table

S1.2). Further results for the association between dietary PC1 and combinations of multiple ORMs are provided in the ‘‘Variance in

traits explained by combinations of ORMs’’ section below.

Effect of age on age-associated dietary PCs

We noted that dietary PC1 (representing high percentage energy from a plant-based diet) was strongly associated with age. Hence,

we tested the effect of removing age as a covariate in the OREML analysis on b2 estimates, finding that the b2 estimates were

increased across multiple ORM datasets as including these covariates reduced the phenotypic variance (the denominator in the

b2 estimate). Specifically, removing age as a covariate increased variance estimates from 49% to 55% for the common genes data-

set, 21% to 38% for the rare genes dataset and from 13% to 18% for the common species dataset.

Effect of multiple ORMs on variance estimates

Benchmarking traits. We used dietary PC1 as an internal benchmarking trait because (1) dietary PC1 reflects a plant-based diet,

which is known to be related to the gut microbiome (David et al., 2014) (Figure 1b), (2) it explained the most variance in the dietary

PC analysis, and (3) variance in dietary PC1 was strongly associated with species-level microbiome composition (Figure 2, Table

S1.2-S1.3).

Combining ORMs within hierarchies. We evaluated the effect on variance explained in dietary PC1 after collapsing taxa into higher

taxonomic levels (species versus genera versus family) and functional levels (for the Enzyme Commission dataset, comparing level 4

and level 3), taking the ‘‘common’’ variables (defined as median count > 0 in this dataset). In both of these taxonomic (species: b2 =

13%, SE = 8%, p = 0.03; genus: b2 = 14%, SE = 7%, p = 0.01; family: b2 = 4%SE = 4%, p = 0.15) and functional (EnzymeCommission

level 4: b2 = 48% SE = 13%, p = 3.8e-3; Enzyme Commission level 3: b2 = 7% SE = 7%, p = 0.50) datasets, the most-granular data

hierarchies tended to explain the greatest proportion of variance (Figure S3, Table S1.3), so we hereafter focus on these. We found
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b2 = 24% (SE = 9%) for dietary PC1 when combining each of the species, genus and family ORMs into the model (Figure S3, Table

S1.3). These results also suggest that ORMs within taxonomic and functional hierarchies are not orthogonal.

Calculating ORMs based on all features. We tested the effect of providing as input an ORM based on all species’ clr-trans-

formed data (i.e., not stratifying ORM calculation into common versus rare features). We found that these estimates were highly

similar to the multiple ORM analysis that included both common and rare species ORMs (e.g., for age, the ‘‘species_all’’ ORM

explained b2 = 59% SE = 9%, whereas the common+rare species ORM (2-ORM model) explained b2 = 60% SE = 9%; whereas

the individual common species ORM explained b2 = 33% SE = 8%, and the individual rare species ORM explained b2 = 53%

SE = 9% further detail in Figure S3, Table S1.3). For ASD diagnosis, the ‘‘species_all’’ ORM explained b2 = 0% (SE = 8%),

whereas the common+rare species ORM explained b2 = 1% (SE = 9%). This suggests that the ORM stratification is a valid

approach.

Common and rare features.We initially stratified common and rare taxa to capture core versus accessory variables, and to provide

more granular insights into their relative contributions. We tested whether the combination of these ORMs (approximating a mixture

model) could improve the variance explained for a given trait (in this case, dietary PC1), finding that the estimates were essentially

equivalent (including common+rare species gave b2 = 23%, SE = 12%; versus common species alone b2 = 13%, SE = 8% and rare

species alone b2 = 8%, SE = 9%). Interestingly, combining common and rare species ORMs provided a similar variance estimate for

dietary PC1 compared to the combination of ORMs calculated using common features from emergent taxonomic hierarchies (com-

mon + rare species b2 = 23%, SE = 12% versus species + genus + family b2 = 24%, SE = 9%) (Figure S3, Table S1.3). These results

imply that these datasets are essentially orthogonal, as the b2 from themultiple ORM analysis approximated the sum of the individual

ORM analyses (Figure S3).

Taxonomic and functional datasets. We additionally explored whether combinations of various taxonomic and functional ORMs

could improve the variance explained in traits. Combining taxonomic ORMs increased b2 (e.g., dietary PC1 – common species

b2 = 13%, SE = 8%; common genera b2 = 14%, SE = 8%; common families b2 = 4%, SE = 4%, all of these combined multiple

ORM b2 = 24%, SE = 9%), as did combinations of functional ORMs (e.g., for rBSC – common EClevel4 b2 = 34%, SE = 12%; common

TCDB b2 = 3%, SE = 5%; commonMetaCyc pathways b2 = 16%, SE = 9%, all of these combinedmultiple ORM b2 = 35%, SE = 13%),

as well as combinations of taxonomic and functional ORMs (e.g., for age – common species b2 = 33%, SE = 7%; rare species b2 =

53%, SE = 9%; EClevel4 b2 = 56%, SE = 10%; TCDB b2 = 42%, SE = 10%; MetaCyc pathway b2 = 40%, SE = 9%; all of these com-

bined multiple ORM b2 = 79%, SE = 10%) (Figure S3, Table S1.3).

Informativeness of functional datasets. We found that some functional datasets captured similar b2 with fewer features: e.g, for

dietary PC1 b2 = 48% (SE = 13%) based on 1,834 common features (combining Enzyme Commission Level 4 and TCDB variables)

versus b2 = 48% (SE = 15%, p = 8.1e-5) based on n = 251,617 common genes.

Prediction using non-additive models

We note that estimation of b2 as the upper limit of predictability assumes an additive model. Hence, we also estimated variance ex-

plained by an adaboost (Freund and Schapire, 1997) model, which does not assume additivity.

Using adaboost, we performed 5-fold cross-validation with 1000 iterations to determine the accuracy of predicting ASD diagnosis

based on n = 607 bacteria (clr-transformed counts). We restricted this dataset to n = 99 ASD and n = 96 UNR participants to avoid

confounding of relatedness through random sampling of sibling pairs. To generate our training dataset, we sampled the same num-

ber of ASD andUNR children (n = 76) across each iteration. For adaboost, we used the JOUSBoost implementation in R, and used the

settings maxdepth = 10, and n_rounds = 100. We found that diagnosis was, on average, correctly classified 53% (SD = 7%) of the

time (Data S2). This suggests that the microbiome data has negligible ability to predict ASD diagnosis, when assuming a non-addi-

tive model.

To benchmark this analysis, we also repeated this same 1000-iteration 5-fold cross-validation model using age as the dependent

variable, given the b2 results indicate this phenotype should be predicted by the microbiome. In this analysis, we again restricted to

n = 99 ASD and n = 96 UNR participants, and input n = 607 bacteria as predictive features. To generate this training dataset, we

randomly sampled 4/5 of the dataset for each iteration. We used the same JOUSBoost::adaboost settings. For simplicity of evalu-

ating predictive ability, we calculated accuracy as the model’s ability to discriminate age as younger or older than 10 (ie. a binary

variable). We found that age (younger or older than 10) was on average correctly classified 62% (SD = 7%) of the time, indicating

age was more predictable than ASD diagnosis, as expected based on the OREML analyses (Data S2).

Differential abundance analysis

Species-level taxonomic data

We used ANCOMv2.1 (Mandal et al., 2015) (implemented in R: https://github.com/FrederickHuangLin/ANCOM) for differential

abundance analysis as it is robust to statistical assumptions (Weiss et al., 2017). Briefly, for each focal feature (i.e., species or

gene), ANCOMv2.1 performs additive-log-ratio transformation (offset = 1), runs statistical tests for each transformed taxa against

selected predictors, then counts how many pairwise tests pass the Benjamini-Hochberg false discovery rate threshold (0.05), to

generate a W-statistic for that initial feature (representing the number of null hypotheses rejected). Then, taxa are declared differen-

tially abundant based on the W-statistic quantile, where a detection threshold >0.7 is commonly used to declare significant differen-

tial abundance. In this analysis, we used zero outlier cut-off, as we had already excluded variables with > 10 non-zero values (zer-

o_cut argument), and did not apply a library cut-off (lib_cut) as all samples had over 4.8 million reads. Overall, we tested 607 species.
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We performed extensive sensitivity analyses for species-level differential abundance: without covariates, restricting to AAB par-

ticipants with age%10, using a different taxonomic and functional profiling pipeline (MetaPhlAn2 (Truong et al., 2015), excluding par-

ticipants with current antibiotic use, removing the SIB group, considering only sibling pairs, and excluding participants with fewer

then 7M reads after rarefaction (Methods S1).

Gene-level functional data

We leveraged the species-level results to narrow our ANCOM analysis of differentially abundant genes to the set that are encoded by

differentially abundant species. This was possible as we had access to per-individual tables detailing the abundance of each gene

within each species. We used the same filters as for the species-level taxonomic data, ultimately testing 4,950 genes.

Romboutsia timonensis gene annotations

Here, we provide more detail on the annotations for the differentially-abundant Romboutsia timonensis-encoded genes, all of which

had significantly lower abundance in the ASD group. All 6 significant (detection threshold > 0.7) genes had UniRef90 identifiers, all of

whichmapped toRomboutisa genera in the UniProtKB database, consistent with our focus onRomboutsia timonensis (Table S2.12).

The associated proteins were: Aspartate-semialdehyde dehydrogenase (ASA dehydrogenase) (ASADH) (EC 1.2.1.11) (Aspartate-

beta-semialdehyde dehydrogenase) – amino acid biosynthesis (L-lysine, L-methionine, L-threonine), which is involved in amino

acid biosynthesis; Amidophosphoribosyltransferase (ATase) (EC 2.4.2.14) (Glutamine phosphoribosylpyrophosphate amidotransfer-

ase) (GPATase)– involved in purine metabolism and metabolism of L-glutamate to L-glutamine; Thymidylate kinase – involved in the

DNA synthesis (and particularly pyrimidine) pathway; Galactokinase (EC 2.7.1.6) (Galactose kinase) – involved in galactose meta-

bolism; Germination protease (EC 3.4.24.78) (GPR endopeptidase) (Germination proteinase) (Spore protease) – involved in bacterial

spore germination; and Ribonuclease 3 (EC 3.1.26.3) (Ribonuclease III) (RNase III) – involved in dsDNA digestion.

Differential-abundance analyses for IQ-DQ

We tested for association of species abundance with IQ-DQ composite score, finding poor concordance between analyses when the

SIB group was included versus excluded (with covariates: age, sex, dietary PC1-3). Only Bifidobacterium sp002742445 exceeded

detection threshold > 0.7 in the ASD versus SIB+UNR analysis, and was fifth-most differentially abundant in the ASD versus UNR

analysis (Figure 3E-3F, Table S2.13-S2.14). We note the limitations of this analysis: ASD diagnostic status being associated with

lower IQ, and the inherent limitations in applying IQ measures (which rely on verbal ability) to people diagnosed with ASD.

Ordination

Weperformed ordination of the taxonomic data using themixOmics package (Rohart et al., 2017). This involved principal component

analysis after removing variables with < 10 non-zero values and performing clr-transformation.

Diversity analysis

We calculated alpha-diversity using the Shannon Index, to account for both richness and evenness in the dataset. As a sensitivity

analysis, we also tested the effect of using richness and Simpson Index tomeasure alpha-diversity (Methods S1, Table S3). To calcu-

late beta-diversity, we generated a weighted Unifrac index matrix, calculated using a phylogenetic tree for 1,731 bacterial species

(i.e., not including archaea). We used this beta-diversity matrix to quantify differences in microbiome profiles between ASD, SIB

and UNR groups using PERMANOVA (Anderson, 2008) (adjusted for age and sex) and PERMDISP2 (Anderson et al., 2006) (noting

that PERMDISP2 does not enable adjustment for covariates).

Taxonomic diversity and ASD diagnosis

There were negligible group differences in alpha-diversity at the species-level using multiple alpha-diversity metrics (statistics for

ANOVA tests: Shannon index p = 0.13, richness p = 0.13, Simpson index p = 0.08), including after adjusting for age, sex and dietary

PC1-3 (statistics for ANOVA tests: Shannon index p = 0.31, richness p = 0.34, Simpson index p = 0.37) (Figure S5B), and in extensive

sensitivity analyses (Methods S1, Table S3). Regressing species diversity against age, sex and dietary PC1-3, higher alpha-diversity

was associatedwith older age (b = 0.037, p = 1.3e-7) and dietary PC2, representing a high-dairy diet (b = 0.042, p = 0.022). Therewere

no group differences in beta-diversity (weighted Unifrac) (PERMANOVA p = 0.20; Figure S5A), nor difference in dispersion in ASD

compared to SIB and UNR groups (PERMDISP2 p = 0.85; Figure S5A).

Diversity analysis with added covariates

We tested whether the relationship between dietary and taxonomic diversity changed when including dietary PCs and rBSC as co-

variates (n = 233 due to data missingness). Although dietary PC2-3 were significantly associated with dietary diversity and improved

the model R2, the dietary-taxonomic diversity relationship was still marginally significant (Figure S7A-S7B).

We also tested the effect of including energy intake as a covariate, and found it had no significant effect on the relationship between

dietary and taxonomic diversity (Figure S7C).

Clinical and PGS relationships with diversity

We used linear models to test for associations between diversity measures (dietary and taxonomic) and potentially-related pheno-

typic measures (rBSC, ADOS2/G comparison score, ADOS-2/G repetitive and restricted behavior (RRB) Calibrated Severity Score,

ADOS-2/G social affect Calibrated Severity Score, Social Responsiveness Scale t-score (SRS), Short Sensory Profile raw sensor

score (SSP)), and biological measures (polygenic scores (PGS) for ASD (Grove et al., 2019), ADHD-ASD-TS cross-trait (Yang

et al., 2021) and neuroticism (Nagel et al., 2018), and CD4+ T cell proportions). To account for multiple-testing, we performed Ben-

jamini-Hochberg FDR correction (Table S3). We performed extensive sensitivity analyses to test these models (Methods S1). Our
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multiple-testing adjustment strategy was based on the number of hypotheses we aimed to test; these hypotheses are explicitly

enumerated in Table S3, and sensitivity analyses for these hypotheses are also explained therein.

Other potential upstream mediators of diversity

Neuroticism. Others have proposed links between anxiety, neuroticism, and the microbiota (Kim et al., 2018; Yang et al., 2019), and

there is evidence for genetic correlation between functional gastrointestinal disorders (such as irritable bowel syndrome) and both

anxiety and ASD (nominally-significant) (Wu et al., 2021). Furthermore, both anxiety (Simonoff et al., 2008; Sukhodolsky et al.,

2008) and gastrointestinal issues (Chaidez et al., 2014; McElhanon et al., 2014) often co-occur with ASD. In the absence of compre-

hensive anxiety trait measures in the AAB andQTAB, because the anxiety GWAS is underpowered, and as there is genetic correlation

between ASD and neuroticism (Grove et al., 2019) we tested for association between neuroticism PGS and both dietary and taxo-

nomic diversity. We found no association with either dietary (p = 0.94) or taxonomic (p = 0.43) diversity (Figure 6K–6L). Nonetheless,

further investigation into the role of anxiety is warranted.

CD4+Tcell proportions.Weadditionally assessedassociationsbetween immunecell proportions anddietaryor taxonomicdiversity,

focusing onCD4+T cell proportions as this cell type hasbeenassociatedwith atopy, andappears to have important roles in the gastro-

intestinal immune system through interactionswith themicrobiota. The rationale for this analysis is that increased rates of foodallergies

and intolerances have been reported in autism (Bresnahan et al., 2015), whichmay affect dietary diversity via both biological and social

(e.g., parental intervention) mechanisms. Biologically, food allergies and intolerances may cause gastrointestinal symptoms such as

abdominal pain, diarrhea, vomiting, and feeding issues. Socially, parentswhoare aware of this possibilitymay intentionally restrict their

children’s diet to identify whether this improves behavior. Using data on clr-transformedCD4+T cell proportions in n = 150 individuals,

we found no evidence for associationswith either dietary (b = 1.3e-2, p = 0.44) or taxonomic (t =�0.20, p = 0.10) diversity (Figure 6I and

6J), acknowledging that power is likely low.

Estimation of metabolite production potential

We estimated short-chain fatty acid metabolite production potential using the functional MetaCyc pathway dataset. For a given

metabolite, we identified contributing pathways (Table S5) and summed their read counts.

Plots

We used the R packages ggplot2 (Wickham, 2016) and ggstatsplot (Patil, 2021) for plotting.

ll

Cell 184, 1–16.e1–e9, November 24, 2021 e9

Please cite this article in press as: Yap et al., Autism-related dietary preferences mediate autism-gut microbiome associations, Cell (2021),

https://doi.org/10.1016/j.cell.2021.10.015

Article



Supplemental figures

Figure S1. Relationships between ORM diagonal and off-diagonal elements from the various microbiome datasets

Correlation matrix (upper triangle), scatterplots (lower triangle) and density plots (diagonal) demonstrating relationships between ORM (A) diagonal and (B) off-

diagonal elements calculated fromdifferentmetagenomics datasets. The left-right horizontal and top-bottom vertical axes are in the sameorder, and represent the

ORMs in the following order: ‘‘species_common_clr,’’ ‘‘genus_common_clr,’’ ‘‘family_common_clr,’’ ‘‘species_all_clr,’’ ‘‘species_rare_clr,’’ ‘‘species_ rare_01,’’

‘‘EClevel4_common_clr,’’ ‘‘EClevel4_rare_clr,’’ ‘‘EClevel4_rare_01,’’ ‘‘TCDB_common_clr,’’ ‘‘MetaCycpathway_common_clr,’’ ‘‘Microba_common_clr,’’ ‘‘Micro-

ba_rare_clr,’’ ‘‘Microba_rare_01,’’ ‘‘AES_food.’’ For the ORM diagonals (A), the right-skewed distributions indicate that some pairs of individuals are more similar

than others, which reflects the relatedness structure within our dataset. For the ORM off-diagonals (B), this plot demonstrates the collinearity between some da-

tasets, providing further evidence that these are not always orthogonal. Related to Figure 2.
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Figure S2. Effect of centered-log-ratio transformation versus binarized 0/1 coding on OREML estimates

Centred-log-ratio transformation versus 0/1 coding generally has little effect on the percentage of variance (b2) associated with a given trait, using an ORM

calculated from ‘‘rare’’ variables. Traits shown here are ASD diagnosis, regrouped Bristol Stool Chart, dietary PC1-3. Error bars denote standard error. Related to

Figure 2.
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Figure S3. Additional variance component analysis results

Comparison of the effect of collapsed hierarchies (e.g., species, genera, family) and ‘‘mgrm’’ (multiple ORM) analyses on variance explained in a given trait (b2).

Error bars denote standard error. Traits shown: age, Bristol Stool Chart, dietary PC1-3. x axis labels: ‘‘*common’’ – ORMs calculated using the common subset of

variables (median count > 0), ‘‘*rare’’ – ORMs calculated using the rare subset of variables (median count = 0, excluding variables with < 10 non-zero values),

‘‘species_all’’ – ORM calculated without stratifying ‘‘species_common’’ and ‘‘species_rare,’’ and is used to compare to stratified metagenomics datasets.

‘‘mgrm*’’ – the multiple ORM analysis, with the included ORMs listed in the label. This analysis demonstrates how the ORMs here are not always orthogonal, and

sometimes include complementary information. Within the ‘‘mgrm*’’ labels, ‘‘*alltaxalevels*’’ refers to the combination of species, genera and family ORMs,

whereas ‘‘allfunc’’ refers to the combination of EClevel4, TCDB and MetaCycpathway ORMs (ie. not including the gene-level ORM). Note that there are some

missing data points for the following reasons: 1) ‘‘morm_allfunc_common,’’ ‘‘morm_EClevel4_TCDB_common,’’ ‘‘morm_EClevel4_MetaCycpathway_common’’

belong to the same analysis that groups multiple functional datasets together, although some ORMs had to be dropped from the multiple ORM analysis to avoid

convergence or matrix invertibility errors; 2) ‘‘morm_species_common_rare_allfunc_common’’ and ‘‘morm_species_common_rare_EClevel4_TCDB_common’’

belong to the same analysis that groups taxonomic and functional datasets, again having to drop some ORMs from the multiple ORM analysis to avoid errors; 3)

the multiple ORM analysis for diet_PC2 did not converge when including multiple taxonomic ORMs. Related to Figure 2 and Table S1.
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Figure S4. Differential abundance sensitivity analyses

Shown here are results for species as discussed in Methods S1 (A-I) and functional features (J-O). For species-level testing: (A) without covariates; (B) excluding

children older than age 10, and excluding QTAB participants, with covariates age, sex and dietary PC1-3; (C) usingMetaPhlAn2 profiling pipeline, with covariates

age, sex and dietary PC1-3; (D) excluding participants with current antibiotic use, with covariates age, sex and dietary PC1-3; (E) excluding the SIB group, with

covariates age, sex and dietary PC1-3; (F) taking ASD-SIB pairs, and comparing the ASD and SIB groups, with covariates age, sex and dietary PC1-3; (G) taking

ASD-SIB pairs and comparing the pairs by using family ID as a random effect, this time without fixed effect covariates; (H) excluding samples with fewer than 7

million reads; (I) corresponds to Figure 3A, and is included for comparative purposes. Differential abundance testing of functional features: (J, M) MetaCyc group,

(K, N) MetaCyc pathway, (L, O) Enzyme Commission level 4 functional datasets with covariates age, sex and dietary PC1-3. (J-L) Results from differential

abundance analysis from total abundances across all species. (M-I) Results from differential abundance analysis across gene families directly encoded by

Romboutsia timonensis. The y-axis shows theW-statistic, which for feature_i of n total features, represents the count of Bonferroni-Hochberg-significant p values

from regressing the additive-log-ratio-transformation ( = log(feature/feature_i) against predictor variables (ASDdiagnosis + age+sex+dietary PC1-3). Dotted lines

showdetection thresholds 0.6 (green), 0.7 (orange), 0.8 (purple), and 0.9 (pink) W-statistic quantiles respectively; features exceeding detection threshold > 0.7 are

considered significantly differentially abundant. The x-axis (‘‘clr mean difference’’) shows the coefficient for regressing the clr-transformed feature against the

variable of interest (in this case, ASD diagnosis). Related to Figure 3, Table S2, and Methods S1.
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Figure S5. Relationships between participant groups and dietary and stool variables

Linear model coefficient (+/-95%CI) plots for associations between participant groups and A-C) dietary PC1-3, and D) regrouped Bristol Stool Chart (rBSC), with

covariates age and sex.
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Figure S6. Relationships between dietary quality and taxonomic diversity and ASD-related phenotypes

Dietary quality is measured using the Australian Recommended Food Score – ARFS, and taxonomic diversity is measured using Shannon index. A) Boxplot of

dietary diversity residuals (regressing out age and sex) in each participant group (ANOVA p = 4.0e-3). Box elements show the median and upper and lower

quartiles. Dots display the mean. B) Boxplot of taxonomic diversity residuals (regressing out age and sex) in each participant group (ANOVA p = 0.31). C)

Correlation between dietary and taxonomic diversity (Pearson r = 0.17, p = 8.3e-3). D-I) Linear model plots to visualize model outputs, showing effect sizes

(+/�95%CI), test statistics, degrees of freedom and p-values for each independent variable (bolded in black) and covariate: D) Linear model coefficients taking

dietary quality (ARFS) as the dependent variable. E) Linear model coefficients taking taxonomic diversity as the dependent variable. F) Linear model coefficients

taking rBSC as the dependent variable. Related to Figure 4, Table S3, and Methods S1.
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Figure S7. Relationships between dietary diversity and taxonomic diversity, with additional covariates

Linear model coefficients (+/-95%CI) of models including additional covariates from Figure 3D-E, for A) dietary diversity (adding dietary PC1-3) and B) taxonomic

diversity (adding dietary PC1-3), and C) dietary diversity (adding energy intake). ‘‘shannon’’ refers to taxonomic diversity; ‘‘shannon_food’’ refers to dietary di-

versity, ‘‘diet_PC*’’ indicates the relevant dietary PC. Related to Figure 4.

ll
Article



Figure S8. Relationships between stool consistency and dietary and taxonomic diversity, with additional covariates

Linear model coefficients (+/-95%CI) of full models for regrouped Bristol Stool Chart, including both dietary and taxonomic diversity together without covariates

(A), separately including dietary diversity (B) and separately including taxonomic diversity (C) in themodel. Thesemodels also include dietary PC1-3 as covariates.

‘‘shannon’’ refers to taxonomic diversity; ‘‘shannon_food’’ refers to dietary diversity, ‘‘diet_PC*’’ indicates the relevant dietary PC. Related to Figure 4.

ll
Article


	CELL12233_proof.pdf
	Autism-related dietary preferences mediate autism-gut microbiome associations
	Introduction
	Results
	Study characteristics
	Negligible variance in ASD diagnostic status is associated with the microbiome compared to age, stool, and dietary traits
	Differentially abundant taxa and genes implicate Romboutsia timonensis
	Dietary diversity mediates ASD-microbiome associations
	Behavior and preferences are upstream of reduced dietary and taxonomic diversity

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Ethics approval and consent to participate

	Method details
	Phenotype data
	Dietary data
	Bristol Stool Chart
	Neurodevelopmental phenotypes
	Polygenic scores (PGS) from human genotyping
	Cell-type proportions

	Sample collection and preparation
	Sample collection
	DNA extraction
	Library preparation
	Library pooling, QC, loading, and sequencing


	Quantification and statistical analysis
	Metagenomics datasets and QC
	Quality control
	Quantification of microbial abundances
	Viral species
	Transformations and filters

	Covariate choice
	Demographic variables
	Dietary principal components

	Variance component analysis
	Omics-relationship matrices (ORM) and OREML
	clr-transformation versus 0/1 coding for ORMs
	CD4+ T cell proportion and variance analyses
	Dietary traits and variance analyses
	Effect of age on age-associated dietary PCs
	Effect of multiple ORMs on variance estimates
	Prediction using non-additive models

	Differential abundance analysis
	Species-level taxonomic data
	Gene-level functional data
	Romboutsia timonensis gene annotations
	Differential-abundance analyses for IQ-DQ

	Ordination
	Diversity analysis
	Taxonomic diversity and ASD diagnosis
	Diversity analysis with added covariates
	Clinical and PGS relationships with diversity
	Other potential upstream mediators of diversity

	Estimation of metabolite production potential
	Plots





