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INTRODUCTION 

The analysis of intermixture in a dihybrid population lias generally entailed estimation of tlie 
proportions of the hybrid gem pool clcrived from each parental population. Given the fre- 
queiicies of a gene in the hybrid and parental populations, Beriistein's (1931) formula has been 
used to estimate the relative ancestral contributions to  iiunierous human dihybrid populatioiis : 
United States Negroes (Glass & Li, 1953; Pollitzer, 1958; Workman, Blumberg & Cooper, 1963; 
Reed, 1969) ; Brazilian Negroes (Salzano, 1963 ; Salzano & Hirschfelcl, 1965) ; Chileans (Saldanha 
& Nacrui, 1963; Nagel & Soto, 1964); Mexican mestizos (Rodriguez et al. 1963), etc. The esti- 
mate from each gene may describe the effects of a single geiieratioii of intermixture or the 
cumulative effect of scveral generations of iiitermixturc in varying amounts. Genetics observa- 
tions on different loci can be combinecl, with certain restrictions, to provide a single joint esti- 
mate of the ancestry of the tliliybritl populatioii by the method of maximum-likelihood (Krieger 
et (11. 1965) or by least-squares analyses (see tliscussion in Elston, 1971). 

If tlie hybrid population is in genetic equilibrium tlieii all indivitluals will have the same 
expxted degree of ancestry - that is, the same proportion of their genes derived from the 
parental popiilstjoiis. Of course, even for full sibs there can be some difference due to  sampling 
effects in the formation of gametes. For a single locus, a single generation of random mating, 
a7ithout associated intermixture, will result in an cquilibrium (Hardy-Weinberg) distribution, 
but, for loci, the rate of approach to cquilibrium will depeiitl both upon n and the patterii of 
linkage among the loci. Assortative mating related to aiicestral origins will retard the approach 
to cquilibriuni ant1 coiitinuous immigration from one or both parental populations will result 
in a continual state of gciietic clisequilibrium. In  general, the contribution from each parental 
population to an iiitlivitlual in the hybrid populatioii can vary between 0 and 100 yo, aiicl in some 
populations tlie variation in ancestry among iiidivitluals may be considcrablc. 

Since complete pedigrees showi~ig aiicestral origins are rarely, if evcr, available, i t  is generallx 
not possible to dctcrmine tlie true proportion of genes which an intliviclual chives from each 
ancestral population. Howcvcr, using estimates of tlie gene frequencies in the parental popula- 
tions and a characterization of the phenotypes of intlivicluals in the hybrid population for a11 
arbitrary number of polymorphic loci, NacLeaii & \\'orlman (1972) provide a method for 
estimating the probabilit,v clistributioii of proportion of ancestry for each indiviclual. In this 
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paper, assuming similar data, we provide a method for estimating the relative frequency of 
individuals of every proportion of ancestry. Knowledge of the form of this frequency distribu- 
tion provides insight into the history of intermixture in the population. In addition, if a hybrid 
population is shown to be heterogeneous with respect to ancestry, then an analysis of quantita- 
tive variation in relation to variation in individual ancestry can be performed as described by 
MacLean & Workman (1972). 

THE MODEL 

Let Q0 and Q1 denote random mating populations a t  equilibrium, and suppose that a distinct 
hybrid population has been formed over time by intermixture of randomly drawn migrants from 
each. We conhie our analysis to two ancestral populations; the extension to more, although 
complicated, is trivial conceptually. Let 8 denote an individual's proportion of ancestry from 
Q1. The relative frequency of individuals of proportion 0 in the hybrid population is specified 
as a probability density, g(O), over the domain [0, 11. 

The method we shall describe employs the relationships among the gene frequencies of 
independently assorting loci in order to estimate the moments of g ( 0 ) ,  and subsequently employs 
the moments to estimate the form of g(B). The analysis rests upon the assumptions that for a 
certain number of polymorphisms (blood types, serum proteins, etc.) the gene frequencies in 
the ancestral populations are accurately known, and that only intermixture, not selection or 
mutation, has occurred in the hybrid population. Because of redundancy in the estimation 
process, it will be possible for us to check these assumptions for each locus against the rest. 

Since the proportion of phenotypes of a locus depend upon the breeding structure of the 
population with respect to 0 (see MacLean & Workman, 1972), we must deal with gene frc- 
quencies rather than phenotype frequencies. In co-dominant loci we can estimate gene fre- 
quencies without regard to panmixia, etc. However, in loci a t  which there is dominance, or in 
closely linked loci (e.g. Rh), there are several complications. The problem of estimating such 
gene frequencies is treated by Fisher (1940), Cotterman ( 1  947), Ceppellini et al. (1955), Smith 
(1957, 1967) and others. 

In a locus with k alleles, the gene frequencies of only k - 1 of these contain information ; it is 
irrelevant which ones are used. Suppose that we measure m' loci with a total of m" genes. Then 

genes in the analysis. 

we can use m = m"-m' 

ESTIMATION OF MOMENTS OF g ( 0 )  

The basis of estimation of g(B)  is the conditional gene frequency, p(A/B),  the frequency of 
gene A in hybrid individuals with proportion of ancestry 0, the form of which is well known 
(Bernstein, 1931). If the frequencies of A in Q1 and Qo are denoted by V and W ,  and D = V -  IY, 
then 

p(A/O) = BD+ w. ( '1  
Estimation of the mean proportion of ancestry is usually derived from a consideration of the 

total hybrid gene pool, but can as easily be derived from g ( 0 ) .  We relate p ( A ) ,  the observed 
proportion of gene A in the hybrid sample, to ( 1 )  by integration over g(0) .  That is, 

P ( A )  = J P ( A / B )  g(O)  4 0 )  

= DJOg(O)dO+ wJg(0) do (2) 
= DE(B)+ w. 
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Each gene yields an estimate of E(0)  in this way. We shall discuss reconciling these estimates in 
the next section. 

Estimation of higher moments of g(0) rests upon the frequency of combinations of genes from 
unlinked loci. This requires that we derive the frequency of sets of genes in a gamete, when 
what we directly observe are individuals. For example, in the case of two unlinked loci and 
their genes A ,  a and B, b respectively, each AABb individual yields one AB gamete and one 
Ab gamete. Dominance causes complications, and linked genes cannot be used at all. 

We have shown in another paper (MacLean & Workman, 1972) that within a subset of 
individuals of proportion 0, independently assorting genes are also statistically independent, 
but that they are not independent over the population. That is, a t  every value 0 we have 

P(AB/@ = P(4@ P(B/@. 

The population frequency of AB, observed in our sample, again arises from that of the 
members through integration over g(0), so that by replacing p(A/B)  and p(BI0) with appropriate 
values from (l) ,  we have 

= DADB E(B2) + (W,DB+D,WB) E ( @ +  W,W,. (3) 

The relationship between p ( A B )  derived from (3) and the product p ( A )  p ( B )  from (2) yields 
information about the shape of g(0), specifically about its variance. Since 

we see from (3) together with (2) that 

The technique is easily extended to the nth case. 

p (all Ai) = (OD,+ @) g(0) d0 S "  i = l  

n 

k = O  
= c C,E(Ok), (4) 

where C, is the sum of products of all combinations of kD's and (n - Ic) W's.  
Equation (4) is a representative of a system of equations between observed gene frequencies 

and moments of g(0). We count the joint frequency of every possible combination of n genes 
from the total of m genes under consideration. Each such combination yields one observation 
upon the moments of g(0) up to E(07l). Each gene of course appears in several different com- 

binations. The total number of observations is ; the number of combinations of m things ('3 = 210), the gene taken n at a time. Although this may be a large number (for example, 

counting is so systematic that i t  can easily be accomplished by computing machine. 
Naturally the observations upon the moments derived from (4) will to some extent contradict 

one another, partly from faiIure of our assumptions and partly from random variation. We treat 
these two sources separately. 

(3 
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RECONCILING ESTIMATES O F  THE MOMENTS 

In order to disclose failure in our assumptions about the data, we compare the m estimates 
of E(8)  which we obtain from (2).  In those loci which yield estimates of E(U) far outside the range 
of the others, cither the ancestral gene frequencies are very different from those we have 
assumed, or else selection or mutation has occurred. The problem of determining which loci 
are deviant is treated by several authors (sec Workman, 1968; Reed, 1969). 

After elimination of the anomalous loci, we wish to average tlie estimates of the moments 
from those remaining. We assume that a11 the equations of system (4) contaiii random errors 
of observation. 

We use a standard least squares method for estimathig all E(Uk) from these equations. ‘l’lic 

tlimtw- proccdurc is fully described in Kendall & Stuart (1961, p. 87) .  In our case, let p be tlie 

sional vector of observed gene frequcncics. Let e be the (n  + 1 ) dimensional vector of unl- 
moments. 

11io\vn 
(3 

Lct C = [cik,l be the 

diniensional vector of observation errors in the correspontling elements of p, ant1  filially lct 

V = [cov (e l ,  ej)] be the 

x ( n  + 1) matrix of sums of products of 1)’s ant1 W’s. Let E be tlie (3 
square error covariance matrix. (3 

We shall assume that the correlation of tlic errors associated with two conibinatioiis of gcwcs 

is proportional to the number of genes the two have in common. Although the relationships in 
some cases arc much more complex, this simplified error model has yiclclccl approuirnatc.ly 
optimal weightings in many numcrical experiments. Our assumption is written 

v Lkljl, 

where k I j  is tlie number of genes which pi and p j  have in coiiimon. The coilstant of proportion- 
ality of V is not needed. 

In this notation, equation (4a) can be written 

p = Ce+e, 

whose least squares solution is given by 

a = (C’ v-1 C)-1 C’ v-1 p. 

J utlging from numerical expmimcnts, accuracy of estimation drops off rapidly for higher 
moments. Estimating from 10 genes, with sample sizes on the order of 500, about 4 or 5 is thc 
niaxiniuni to give reasonable results. None tlie less, quite a lot concerning the shape of ~ ( 0 )  can 
be iriferrctl from these moments. 



Genetic studies on hybrid populutions. 11 463 

ESTIMATION OF g(8) 

There are several elegant methods for approximating a density function from its moments. 
See, for example, von Mises (1964), Kendall & Stuart (1  958) or Cram& (1946). However, the task 
of estimating g(8) can be greatly simplified by the finite range of 8. To take advantage of this 
property, we follow the approach of Jackson (1930) in fitting g(8) with the best polynomial 
curve over the range, in the mean square sense. That is, we find the minimum of 

M = s' (g(8) - ; q, 8l)e d8 
0 ,=0 

for values q,, j = 0, 1, . . . n, where we have calculated n moments of g(8). The n + 1 minimization 
criteria, aM/aq, = 0, yield equations 

E(89  = 5 q , / ( j + k + 1 )  
j = O  

for ii = 0, . . ., n. 

moments, and B the (n + 1) square matrix 
If we call q the n+ 1 dimensional vector of unknown coefficients, e the vector of observed 

then q = B-le. 
n 

The function x q, 8i with the values q, estimated in this way is the least squares estimator of 
j = O  

the function g(8). 
For many cases of g(0 )  the polynomial method is not optimal. It is most appropriate to func- 

tions that are near to uniform over the range of 8. If the distribution is concentrated, a trans- 
formation of this method using an exponential polynomial model for g(8) (see MacLean, 1972) 
yields better results. 4 

ERROR OF ESTIMATION OF g(8) 

The error in estimation of g(8) is rather difficult to calculate. We must go round-about and 
calculate the error in estimation of 8, which we are not trying to estimate, and thence by an 
approximate method translate to the error in frequency. Moreover, we must settle for the 
minimum variance bound derived from the information statistic. 

For estimating 8 from observations of a locus, L, with alleles [A,], the information is 

This is the information in locus L for the subset of individuals whose true proportion is 8. 
30 H C E  36 
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Bccsusc iritlcpcritlciitly iissortirig loci are statistically iritlcpendeiit w i t h  proportion 0, t l i c  
itiforniation from such loci is additive. 

I,(all Lj) = Io(L) .  

'I'lic. minininm possible variancc of any estimator of 0 basctl upon these loci is the rcciprocwl of I,J. 
By treating q ( 0 )  as an ordinary function of 0 we can ust: the standard transfornmtion of twor 

appi.oxiinntion to estimate the variance of q(0) in ternis of crror in 6 (Kendall LP; Stuiirt, l!f%, 
p. 2 3 2 ) .  For cvery valuc of 0, 

i 

so that thc mininium variance bound for q(0) is approximately 

We can IISC (6) to plaec confidence limits arouiitl q ( O ) ,  along 0 from 1 to 1 ,  or we can i~itcbgri~t(. 
(ti) to get, a summary minimum nicm scpiwc~ crror corrcsponding to ( 5 ) .  

S U M M A R Y  

In a tliliybritl population, the contributions from an aiiccstral population t o  the gene pool of 
an intlivitlual may vary between 0 and 100 yo. A mcthotl is given for estimating thc i  rchtive 
frcqucncy of inclivicluals of differciit aiicestry, givcii tlata on gene frequciiciw in tlic parmtd  
popiilatioiis autl the plimotypes of a sample of liybritl iiitlivitluals for an arbitmry 1111 n i h r  of 
polymorphic loci. 
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