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INTRODUCTION

The analysis of intermixture in a dihybrid population has generally entailed estimation of the
proportions of the hybrid gene pool derived from each parental population. Given the fre-
quencies of a gene in the hybrid and parental populations, Bernstein’s (1931) formula has been
used to estimate the rclative ancestral contributions to numerous human dihybrid populations:
United States Negroes (Glass & Li, 1953; Pollitzer, 1958; Workman, Blumberg & Cooper, 1963;
Reed, 1969); Brazilian Negroes (Salzano, 1963 ; Salzano & Hirschfeld, 1965); Chileans (Saldanha
& Nacrui, 1963; Nagel & Soto, 1964); Mexican mestizos (Rodriguez et al. 1963), etc. The esti-
mate from each gene may describe the effects of a single generation of intermixture or the
cumulative effect of several generations of intermixture in varying amounts. Genetics observa-
tions on different loci can be combined, with certain restrictions, to provide a single joint esti-
mate of the ancestry of the dihybrid population by the method of maximum-likelihood (Krieger
et al. 1965) or by least-squares analyses (sce discussion in Elston, 1971).

If the hybrid population is in genetic equilibrium then all individuals will have the same
expzeted degree of ancestry — that is, the same proportion of their genes derived from the
parental populations. Of course, even for full sibs there can be some difference due to sampling
effects in the formation of gametes. For a single locus, a single generation of random mating,
without associated intermixture, will result in an equilibrium (Hardy—-Weinberg) distribution,
but, for » loci, the rate of approach to equilibrium will depend both upon » and the pattern of
linkage among the loci. Assortative mating related to ancestral origins will retard the approach
to equilibrium and continuous immigration from one or both parental populations will result
in a continual state of genetic disequilibrium. In general, the contribution from each parental
population to an individual in the hybrid population can vary between 0 and 100 %, and in some
populations the variation in ancestry among individuals may be considerable.

Since complete pedigrees showing ancestral origins are rarely, if ever, available, it is generally
not possible to determine the true proportion of genes which an individual derives from each
ancestral population. However, using estimates of the gene frequencies in the parental popula-
tions and a characterization of the phenotypes of individuals in the hybrid population for an
arbitrary number of polymorphic loci, MacLean & Workman (1972) provide a method for
estimating the probability distribution of proportion of ancestry for each individual. In this
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paper, assuming similar data, we provide a method for estimating the relative frequency of
individuals of every proportion of ancestry. Knowledge of the form of this frequency distribu-
tion provides insight into the history of intermixture in the population. In addition, if a hybrid
population is shown to be heterogeneous with respect to ancestry, then an analysis of quantita-
tive variation in relation to variation in individual ancestry can be performed as described by
MacLean & Workman (1972).

THE MODEL

Let ¢, and @, denote random mating populations at equilibrium, and suppose that a distinct
hybrid population has been formed over time by intermixture of randomly drawn migrants from
each. We confine our analysis to two ancestral populations; the extension to more, although
complicated, is trivial conceptually. Let 6 denote an individual’s proportion of ancestry from
@,. The relative frequency of individuals of proportion 6 in the hybrid population is specified
as a probability density, g(f), over the domain [0, 1].

The method we shall describe employs the relationships among the gene frequencies of
independently assorting loci in order to estimate the moments of g(f), and subsequently employs
the moments to estimate the form of g(6). The analysis rests upon the assumptions that for a
certain number of polymorphisms (blood types, serum proteins, etc.) the gene frequencies in
the ancestral populations are accurately known, and that only intermixture, not selection or
mutation, has occurred in the hybrid population. Because of redundancy in the estimation
process, it will be possible for us to check these assumptions for each locus against the rest.

Since the proportion of phenotypes of a locus depend upon the breeding structure of the
population with respect to ¢ (see MacLean & Workman, 1972), we must deal with gene fre-
quencies rather than phenotype frequencies. In co-dominant loci we can estimate gene fre-
quencies without regard to panmixia, etc. However, in loci at which there is dominance, or in
closely linked loci (e.g. Rh), there are several complications. The problem of estimating such
gene frequencies is treated by Fisher (1940), Cotterman (1947), Ceppellini et al. (1955), Smith
(1957, 1967) and others.

In a locus with k alleles, the gene frequencies of only &k —1 of these contain information; it is

irrelevant which ones are used. Suppose that we measure m’ loci with a total of m” genes. Then

we can use m=m" —m
genes in the analysis.

ESTIMATION OF MOMENTS OF ¢(0)

The basis of estimation of g(0) is the conditional gene frequency, p(4/6), the frequency of
gene A in hybrid individuals with proportion of ancestry 0, the form of which is well known
(Bernstein, 1931). If the frequencies of 4 in ¢, and @, are denoted by Vand W,and D = V- W,
then

p(4/0) = 6D+ W. (1)

Estimation of the mean proportion of ancestry is usually derived from a consideration of the
total hybrid gene pool, but can as easily be derived from g(f)). We relate p(4), the observed
proportion of gene A in the hybrid sample, to (1) by integration over g(). That is,

p(4) = [ p(4]6) 9(0) d(0)
= D[ 0g(6)d0+ W [ g(0) dO (2)
= DEO)+W.
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Each gene yields an estimate of E(f) in this way. We shall discuss reconciling these estimates in
the next section.

Estimation of higher moments of g(0) rests upon the frequency of combinations of genes from
unlinked loci. This requires that we derive the frequency of sets of genes in a gamete, when
what we directly observe are individuals. For example, in the case of two unlinked loci and
their genes 4, @ and B, b respectively, each A A4Bb individual yields one AB gamete and one
Ab gamete. Dominance causes complications, and linked genes cannot be used at all.

We have shown in another paper (MacLean & Workman, 1972) that within a subset of
individuals of proportion 6, independently assorting genes are also statistically independent,
but that they are not independent over the population. That is, at every value 6 we have

p(AB[0) = p(A]0) p(B/6).

The population frequency of AB, observed in our sample, again arises from that of the
members through integration over g(f), so that by replacing p(A4/0) and p(B[6) with appropriate
values from (1), we have

p(AB) = [ (6D, + W,)(0Dg+ Wy) g(0) dO
= DDy E(0%) + (W, Dy + D,Wy) E(0) + W Wy, (3)

The relationship between p(4B) derived from (3) and the product p(4) p(B) from (2) yields
information about the shape of g(0), specifically about its variance. Since

p(4) p(B) = (D,E(0)+ W) (DgE(6) +W,)
we see from (3) together with (2) that
p(4AB)~p(4) p(B) = DDy var (0).

The technique is easily extended to the nth case.

p(all 4) = f (6D, + W) g(0) dO

n

Cy E(0F), (4)
—0

n
i=1

k
where (), is the sum of products of all combinations of £D’s and (n—k) W’s.

Equation (4) is a representative of a system of equations between observed gene frequencies
and moments of g(f). We count the joint frequency of every possible combination of n genes
from the total of m genes under consideration. Each such combination yields one observation
upon the moments of g(0) up to E(6"). Each gene of course appears in several different com-

binations. The total number of observations is (m)’ the number of combinations of m things

2) = 210), the gene

counting is so systematic that it can easily be accomplished by computing machine.

Naturally the observations upon the moments derived from (4) will to some extent contradict
one another, partly from failure of our assumptions and partly from random variation. We treat
these two sources separately.

taken » at a time. Although this may be a large number (for example, (
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RECONCILING ESTIMATES OF THE MOMENTS

In order to disclose failure in our assumptions about the data, we compare the m estimates
of K(6) which we obtain from (2). In those loci which yield estimates of E(0) far outside the range
of the others, either the ancestral gene frequencies are very different from those we have
assumed, or else selection or mutation has occurred. The problem of determining which loci
are deviant is treated by several authors (see Workman, 1968; Reed, 1969).

After elimination of the anomalous loci, we wish to average the estimates of the moments
from those remaining. We assume that all the equations of system (4) contain random errors
of observation.

=z . m
pj = 2 cjkE(gk)+€j )= 152’ a( ) (4(]’)

k=0 n
We use a standard least squares method for estimating all E(0%) from these equations. The
procedure is fully described in Kendall & Stuart (1961, p. 87). Inour case, let p be the (7:;) dimen-

sional vector of observed gene frequencies. Let e be the (n+ 1) dimensional vector of unknown
moments.

E(:O'L)
Let G = [cy;] be the (7;:) x (n -+ 1) matrix of sums of products of D’s and 1V’s. Let € be the ():)
dimensional vector of observation errors in the corresponding elements of p, and finally let
V = [cov (¢, €;)] be the (T::) square error covariance matrix.

We shall assume that the correlation of the errors associated with two combinations of genes
is proportional to the number of genes the two have in common. Although the relationships in
some cases are much more complex, this simplified error model has yiclded approximately
optimal weightings in many numerical experiments. Qur assumption is written

V o« [kl]]’

where k;; is the number of genes which p; and p; have in common. The constant of proportion-
ality of V is not needed.
In this notation, equation (4a) can be written

p = Ce+e,
whose least squares solution is given by
e=(C'VIC)1C' Vip.
Judging from numerical experiments, accuracy of estimation drops off rapidly for higher
moments. Estimating from 10 genes, with sample sizes on the order of 500, about 4 or 5 is the

maximum to give reasonable results. None the less, quite a lot concerning the shape of g(¢/) can
be inferred from these moments.
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ESTIMATION OF ¢(6)

There are several elegant methods for approximating a density function from its moments.
See, for example, von Mises (1964), Kendall & Stuart (1958) or Cramér (1946). However, the task
of estimating g(6) can be greatly simplified by the finite range of 6. To take advantage of this
property, we follow the approach of Jackson (1930) in fitting g(f) with the best polynomial
curve over the range, in the mean square sense. That is, we find the minimum of

for valuesg;,j = 0, 1, .. .n, where we have calculated » moments of g(6). The n + 1 minimization
criteria, M [dq, = 0, yield equations
n
EE) = 3 af(j+k+1)
]=
fork=0,...,n
If we call q the n+ 1 dimensional vector of unknown coefficients, e the vector of observed
moments, and B the (n+ 1) square matrix

1 3 coo 1f(n+1)
B-| * % ,
Ym+1) ... 1/(2n+1)
then q=B1le

n
The function Y, g, 6 with the values ¢; estimated in this way is the least squares estimator of
i=0
the function ¢(@).
For many cases of g(f) the polynomial method is not optimal. It is most appropriate to func-
tions that are near to uniform over the range of 0. If the distribution is concentrated, a trans-
formation of this method using an exponential polynomial model for g(f) (see MacLean, 1972)

yields better results.

ERROR OF ESTIMATION OF g(&)

The error in estimation of ¢(6) is rather difficult to calculate. We must go round-about and
calculate the error in estimation of 8, which we are not trying to estimate, and thence by an
approximate method translate to the error in frequency. Moreover, we must settle for the
minimum variance bound derived from the information statistic.

For estimating 6 from observations of a locus, L, with alleles [4;], the information is
9* log p(4,/6)

o6*

8 log (6D, + W,
= —Z‘—g(wz—)@pﬁm

I(L) = —-E

D;
- zi: 6D+ W,

This is the information in locus L for the subset of individuals whose true proportion is 6.

30 HGE 36
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Beeause independently assorting loci are statistically independent within proportion 0, the
information from such loci is additive.

Lfall L) = 3 I,(L).
F)

The minimum possible variance of any estimator of # based upon these loci is the reciprocal ot /,,.
By treating ¢(f) as an ordinary function of 6 we can use the standard transformation of error
approximation to estimate the variance of ¢(f) in terms of crror in 6 (Kendall & Stuart, 1958,
p. 232). For every value of 0,
2q(0)
o

so that the minimum variance bound for ¢()) is approximately

var (q(0)) ~ ( )2 var (0),

0)\2
MVB(0) = (%) I, (6)

We can use (6) to place confidence limits around ¢(), along 0/ from 1 to 1, or we can integrate
(6) to get a summary minimum mean square error corresponding to (5).

SUMMARY

In a dihybrid population, the contributions from an ancestral population to the gene pool of
an individual may vary between 0 and 100 %,. A method is given for estimating the relative
frequencey of individuals of different ancestry, given data on gene frequencies in the parental
populations and the phenotypes of a sample of hybrid individuals for an arbitrary number of
polymorphic loci.
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