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1NTRODUCTION 

Any two human populations may be assumed to  differ genetically, in the relative frequencies 
of alleles present in both populations, and, possibly, in the types of alleles represented a t  a locus. 
For qualitative traits the differences can be demonstrated simply by a comparison of the fre- 
quencies of the alleles a t  one or more loci. However, for heritable quantitative traits, especially 
those whose environmental component of variation is in part the result of cultural factors, there 
appears to be no direct method for interpopulation comparisons. The genes controlling variation 
in such traits cannot be identified, and the effects of differing physical and cultural environ- 
ments, the complications of social heredity, and genotype-environment interactions, all make 
the prospect for such comparisons poor. Thus, as discussed by Thoday (1969), there appears to  
be no direct answer to the question of whether there are genetic differences between races, either 
in genes or in gene frequencies, with respect to behavioural traits such as that measured by 
I.&. tests. 

However, in certain cases, migrants from two populations which we might wish to compare 
have intermixed to form a distinct hybrid population, e.g. the contemporary Chileans formed by 
intermixture among Spaniards and Auracanian Indians (Nagel & Soto, 1964) and the Negroes in 
the United States. If immigration from the ancestral populations occurs over a long time, then 
the contribution from either ancestral population to  the gene pool of an individual in the hybrid 
population can vary between 0 and 100 yo. 

In  this paper we shall present a method for relating such variation in ancestry to individual 
observations on quantitative traits in order to answer a more restricted question: IS the intra- 
population variation in a quantitative trait related to individual differences in ancestral origins? 
Thus, the method provides an indirect approach to  questions about genetic differences between 
populations. 

The technique requires a knowledge of the gene frequencies in the parental populations and the 
phenotypes of a sample of hybrid individuals. There are two distinct computational problems 
involved. First, for each individual we must estimate the proportions of the genome derived from 
either ancestral population. This is accomplished by a Bayesian inversion of conditional gene 
frequencies. We calculate both a probability distribution and a point estimate of each individual’s 
proportion of ancestry. Secondly, by a regression method, we relate each individual’s ancestry 
to his quantitative score. Finally, limitations on the applicability of this approach are considered 
in terms of its potential for studies of quantitative variation in American Negro populations. 
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THE MODEL 

Let Qo and Q1 denote random mating populations a t  equilibrium, and suppose that a distinct 
hybrid population, H ,  has been formed over time by intermixture of randomly drawn migrants 
from each. Each individual in H has some proportion, Bi, of his ancestry from Q1, and the re- 
mainder, 1 - 0,, from Qo. We must distinguish here between two interpretations of ancestry. One 
is the historical and is represented by an individual’s pedigree, Another is probabilistic and is 
represented by an individual’s genome. Since humans have a large number of chromosomes, the 
two interpretators are usually in good agreement; i.e. the proportion of an individual’s genes from 
Q1 isa good indicator of the proportionof hishistorical ancestry. However, the two are not forrnally 
identical. We shall deal entirely with the probabilistic interpretation. Let G represent obscrva- 
tions of the phenotypes a t  some number of polymorphic loci for this individual. We define a con- 
ditional density function, qi(O1 G ) ,  which gives the probability that the individual has proportion 8 
of his genes derived from Q1 given that he has the genetic characterization G ,  i.e. the probability 
that Bi = 8. The function qi(81G) is defined for 0 from 0 to 1. 

We assume that the gene frequencies in the ancestral populations are accurately known, and 
that only intermixture, not selection or mutation, has occurred in H .  We define a breeding 
function h(y, S) which represents the relative frequency of offspring from males of proportion y 
and females of proportion 6. For example, if we assume the same number of men as women a t  
every 0, together with panmixia, we have 

where g(y) is the relative frequency of individuals with proportion y in the hybrid population. 
The estimation of g(y) is described in detail in MacLean & Workman (1972). Although the 
assumption of panmixia in most hybrid populations would be unrealistic, numerical studies 
indicate that h plays a relatively minor role in the distribution of phenotypes and, within limits, 
accuracy in its estimation is not imperative. The most common deviation from panmixia within 
hybrids is assortative mating with respect to  ancestry which yields a positive correlation between 
mates. If t.his assortative mating is extreme, it reduces the dispersion of h. If it is considered 
important, correlation between mates could be incorporated into h( y, S) in several elementary 
ways. 

Under the assumptions of ancestral gene frequencies and breeding structure within H ,  we can 
calculate p ( G J 8 ) ,  the probability that an individual has the phenotype characterized by G given 
that he has proportion of ancestry 0. Having p(Gl8 ) ,  we can calculate the posterior probability 
of proportion ancestry 8, qi(OJG), from an assumed prior. We take the estimatsd hybrid popula- 
tion density function g(8) (see MacLean & Workman, 1973) a8 the prior probability density a t  8. 
Then p(Gl0)  can be used to convert g(8) into the posterior qi(81G) by Bayes’ law: 

We shall consider first the derivation of p(Gl8 )  given observations only on a single locus, and 
extend the procedure to observations on several unlinked loci. 
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THE CONDITIONAL PHENOTYPE FREQUENCY p(G 10) 

Go-dominant loci 
Consider a co-dominant, biallelic locus with alleles A and a. The gene frequency in H conditional 

upon proportion of ancestry from Ql, p(d IH ) ,  is well known (Bernstein, 1931). If  the frequencies 
of d in Q1 and Qo are denoted by V and 1V, and D = V -  W ,  then 

(2)  p(ille) = m + W .  

(4) 

Wc see that if parents have different proportions of ancestry (# + 0), then the phenotypes of 
their offspring are not in Hardy-Weinberg ratio. There is a deviation due to the difference in the 
parental ancestry. 

In  order to apply (4) t o  the entire subset of the hybrid population with proportion 8, we 
integrate over the matings which produce such offspring. For example, 

where the breeding function h(O - $,0 + 4)  gives the relative frequency of offspring from males 
of proportion 0 - $ and females of proportion 0 - (b. The limits of integration are established by 
the domain of h(B - $, B+ $), which is defined over 0 to 1 for both arguments, so that 

R = min (0, 1 - 0). 

H C E  36 2 3  
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is the mean square difference in ancestry between individuals with proportion 8 and their 
parents. It is a measure of the ancestral dispersion of the parents of individuals of ancestry 8, 
roughly equivalent to a variance. For example, in an ancestrally homogeneous population, 
MSD (19) = 0 for all values of 8. 

The effect of large variance is a reduction in homozygotes and an increase in heterozygotes, 
in proportion to  the square of the difference in ancestral gene frequencies, D2. 

Complex phenotypes 
Because we must attack each locus as a unit in any case, complicated loci are really no more 

The case of dominance introduces a slight change in calculations from the co-dominant case, 
difficult to analyse than biallelic co-dominant ones. 

hut is equally easy to see. 

Prob (phen = A - (8 )  = p ( A A l 8 )  +p(AaJB)  

= p ( ~ p ) 2 +  2 p ( ~ p ) p ( a l e )  + D ~ M S D  (01. 
A further problem arises out of confounded genotypes. For example, the MNSs phenotype 

might be either MS/NS or Ms/NS. Since the confounded genotypes are exclusive, their probabilities 
are additive. Therefore, 

Prob (Phen = MNSs(8) = ~ [ P ( M # ( @  ZNNs(8) +p(Ms(B) p(NS(8) - (&ISDNs+ D,,D,s) MSD(O)]. 
The same problem arises in the Rh locus and has the same simple solution, 

Multiple loci 
We have derived the phenotype frequency function p(Gl0) for only one locus at a time. In 

order to  use the information from many loci, we must consider their joint distribution. 
Consider the case of two independently assorting loci and their genes A ,  a and B, h respectively. 

We take p(ABI8,) as the probability of individusl i passing the pair of genes AB to an offspring. 
We shall express this gene frequency in terms of the gene frequencies from his parents, who have 
proportions 8, - $ and 8, -k $ respectively. On the hypothesis that a t  each parental proportion, 
A and B are statistically independent, 

p(AB(Bi )  = [4p(AABBJBi) + 2p(AABb(Bi) + 2p(AaBB(Bi) +p(AaBbJ8,)]/4 

= w44- $ ) P ( B l G  $)P(A14+ $5) P(BI4  +$) + 2P(A)8i - $5)p(A(8, + 9) 
X [P('Ioi-#') P(bI8i + $1 +P(b(Oi- $ ) ~ ( B ( 8 i  +$)I + 2p(B(8i-$)p(B(Bi +#') 

x [ P ( a l ~ i - $ ) ~ ( A l ~ i + $ ) + p ( A I ~ i + $ ) P ( a l ~ , + $ ) I  
+ [P(a(8i-$5)p(A(8i + $) +p(AJOi- $ ) ~ ( a l e i  + $11 
x IMBJ8i- #')p(bJei + $1 +P(bJoi- $ ) P ( B ( ~ , +  $)]}I4 

= {[~(Al ' i -$)  +P( ' I '~+$)I /~}{[P(B(o~-$)  +p(BIoi +4)1/2}.  ( 7 )  

(8) 
Equation (7) clearly holds for the first hybrid generation where the parents were from the 

ancestral populations, Q, and Q1, because in both these populations, which we assumed to be in 
equilibrium, A and B are statistically independent. Therefore from (8), A and B are also 
statistically independent within any individual in generation 1. The argument can be extended 

Replacing the parental frequencies with their values from (2) above, (7) becomes 

P(ABI4) = (4DA + Kl) (OiD, + w,,. 
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to the second generation based upon the first, and thence to all subsequent generations. Therefore, 
within any individual or any subset with identical proportion 0, we find that independently 
assorting genes are also statistically independent. The same applies to phenotypes. For example, 

P(AABB I 0i = P ( A  I 8i - #J P ( B  I 0i - $1 P ( A  I 0i + #J P(B I 0i + #J 
= P(AAIBi)P(”IOi). 

Therefore the phenotypic frequencies from unlinked loci are also statistically independent within 
the subgroup of individuals with proportion 0. In  general then, for n unlinked loci, 

n 

i 
P(Gl0) = p(al1 Gjl@ = rIP(GjI@. (9) 

Calculation of the posterior, qi(OJG) 
Given the prior g ( O )  and the conditional phenotype frequency p(Gi18) for n unlinked loci 

together with their conditional independence under 8, we can perform Bayes’ inversion ( I )  as 
follows : 

ii P ( G j I W 8  
(10) qi(OI all Gj) dO = j=1 lo S(Q) j=1 ii P(Gjl$)d$. 

Clearly, calculation of (10) would be tractable analytically only under very simple assumptions. 
The numerical computations are easily within the power of computing machinery however. For 
each individual, equation (10) is evaluated over a set of small increments of 8 from 0 = 0 to 0 = 1, 
and the function qi is recorded as a table of these values. Notice that by using the restriction that 
/qidO = 1, the denominator of (lo), which is constant with respect to 8, need not be calculated. 
Rather the values of qi are normalized a t  the end by dividing each by their sum. 

The first step in the calculation of the numerator of (10) is the evaluation of g(0) for each 
incremental value of 0. Next an individual’s set of phenotypes [Gj] is recorded. Then for each 
value of O and for each of the individual’s phenotypes, Gj, the valuep(Gj/8) is calculated from the 
appropriate equation, e.g. (5). Finally the product 

s(O) ii P(Gil@ 
j = 1  

is calculated for each value of 0, and recorded in qi(0). 

POINT ESTIMATION ; Xi AND ITS MEAN SQUARE ERROR 

Each individual has some true ancestry, Oi. The conditional probability function, qi(0) (which 
we shall from now on write with the condition G implicit), is only a statement about our knowledge, 
and its variance is a measure of our ignorance. For the argument in the following section it is 
necessary to summarize our estimate of an individual’s ancestry with on0 point, xi.  Two natural 
estimators for Bi are the posterior maximum, i.e. the mode of qi(0), and the posterior average, 
i.e. the mean of qi(0). The major drawback of the posterior average estimator is its bias. Because 
the posterior retains the prior in it (see formula (10)) the mean of the posterior is biased toward 
the mean of the prior. The mode of qi(0), the posterior maximum estimator, is not biased in this 
way. It is, however, much more subject to random variation. Computer simulation of various 
theoretical populations indicates that its mean square error is about 10 % larger than that of the 
posterior average. 

23-2 
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Mean square error of xi 
We present two alternative methods of error calculation. One method is very easy to apply, 

but it relies upon the same assumptions and formulation as the estimate itself and might there- 
fore be subject to the same bias. Another method, requiring additional data, is based upon 
minimum assumptions. Both calculations apply to any kind of point estimator of 0;. 

The simple estimate of mean square error of estimate is derived directly from the posterior 
function ~ ~ ( 0 ) .  Consider the infinite subset of all possible individuals with total phenotype Gi .  
If this subset were drawn at  random from g ( O ) ,  and if the genetic assumptions were to  holcl, tlirn 
the true values, [O,], of this subset would be distributed according to  qi(0) .  Since we rstim;Lto all 
of these true values 6, by the same point value, xi, then the mean square of the resulting errors is 

(0 - X ~ ) ~ ~ * ( B )  d6 = MSE (xi). 

MSE ( x i )  is easily calculated from the numerical form of qi(6) .  It is the error varianco only in the 
case of an unbiased estimator xi. For any biased estimator the error variance is less than ( 1 1 )  
by the square of the bias. The minimum of ( 1  1) occurs for xi equal to  the posterior average. 

MSE = C (6-Xi)2qi(6)dOp(Gi)  s For the population value, 

i 

= E(62) - 2E(y,  2) + E(x2), 

where y i  is the average of the posterior q i ( B ) .  In  the case where x i  is also the posterior average 

var (2) = var (0) - MSE. (12) 

Var ( 6 )  can be estimated dircctly by another method (see MacLean & Workman, 1973). 
Since the error variance plays an important role in relating individual scores to the ancestry, 

it is well to have an independent estimate of the error. Suppose we have a subsample of sibling 
pairs. The members of each sib pair naturally have the same true proportion of ancestry. The 
estimates from a pair of sibs of true ancestry 0 are 

x1 = O + E 1  

x2 = 6 + E 2 .  

Assuming only that the error is distribut,ed the same for both sibs, we have 

varo(e) = 
intrapair var (sibs) 

1 - corr (sibs) * 

The expected value over 0 of this conditional variance is the desired var ( E ) .  Since x is derived 
entirely from genetic factors, t'he sibling correlation is 0.5 except for dominance deviation 
due to the specific loci used. 

If parents and children are available their values are used as follows: 

x = 6+E1, 

Y = $ ( x M + x F )  = e+ g ( E 2 + E 3 ) .  (15) 

In  order that E ( x  - 9 )  = 0 we must assume that the bias in error a t  0 equals the average of the 
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biases a t  the parental values, equidistant from 0. Although this is not precisely true in all cases, 
it  is usually very close. If in addition the parents are uncorrelated 

var (x - y) = varg(E) + [var +(E) + var 0+&)]/4 - cov (x, xA,I + xF) 
and taking expected values first over 9 and then over 8, 

2 var (x-y) 
3-4 corr (parent, child) 

var (8) = 

THE RELATION BETWEEN OBSERVATlONS ON INDIVIDUALS AND 
THEIR ESTIMATED PROPORTION OF ANCESTRY 

The approach taken in the foregoing sections concentrates entirely upon the individual rather 
than the population. Ancestral characterization of a population as a whole is better accomplished 
by another method (see MacLean & Workman, 1973). This emphasis upon the individual is 
motivated by interest in the relation between ancestry and heritable quantitative traits. I n  this 
section we consider how to  relate the individual variation in the proportion of ancestry, B,, to 
the individual quantitative score, s,. The relationship is a function of 0 from 0 to 1 ,  such as the 
expected value E(s,  for all Bi = 8).  The general shape of the function can be estimated by the 
weighted scores 

This function weights each score in proportion to the probability that it is appropriate. Examina- 
tion of f (8)  would indicate whether there were heterotic effects of intermixture, or whether only 
additive effects of ancestral differences were present. 

f ( 0 )  = % M w % ( 8 ) .  

We shall confine our analysis to the latter case, in which f is a straight line 

f (8 )  = a + be. 

More precisely, we hypothesize a linear relationship between each individual’s score and his 
ancestry, 

si = a + b0, + Si, 

where the error of regression, 6, is distributed independently of s. It is a and b from the unknown 
( 1 7 )  that we wish to estimate. The regression equations, when 0 is known, are quite familiar 
(Kendall & Stuart, 1961). 

cov (8, e) b =  
var (8)  

and a = E(s)  - E(8)  b,  (19) 

where all expected values are from the distribution of ancestry within H ,  g(8). 
In  ow case we do not know O,, but rather have an estimate 

x i  = 8, +€,, (20) 

(21) so that 

The usual procedure is to replace the parameter with its estimator so that 

S L  = a + b(xi - ~ i )  + Si.  

COV (8 ,  x) b’ = 
var (2) 

But this procedure in our case incorporates bias into the regression, since we are faced not only 
with error in both variables, but in addition with the fact that for the independent variable, x, 
the error of estimate, E, is correlated with the true parameter, 0 .  
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Regardless of the estimator we use, its error distribution will be a function of the true propor- 
tion 8. This is inherent in the finite range of 0 and also in the Bayesian formulation. It affects the 
regression equation in both numerator and denominator. COV (s, x) is a function of the informa- 
tion content of the estimator; in general, the worse the estimate the lower the covariance. Var (x) 
depends upon the estimation method. The posterior maximum estimator, for example, yields 
var (5)  about equal to or slightly larger than var (8) except for very low information. Therefore b' 
calculated from the posterior maximum estimate is too small. The posterior average on the other 
hand always yields var ( x )  smaller than var (8). Therefore 6' calculated from the posterior average 
is too large. 

To avoid the bias in (22) we must retain formula (18). I n  order t o  use (18) we need va,r ( O ) ,  
which is calculated from another method (see MacLean & Workman, 1973), and we must derive 
cov (s ,  8) in terms of quantities we can measure. By using (20) we see that 
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And by (17) 

cov (s, 8)  = cov (8, 2- e) 

= cov ( s ,  x) - cov ( s ,  E ) .  

cov ( 8 , ~ )  = cov [a + b0 + 6, E] 

= b cov ( 0 , ~ ) .  
Substituting (24) into (23), then (23) into (18), 

cov (8, z) 
var (0) + cov (8, E )  ' 

b =  

We see by calculating the variance of both sides of (20) that 

cov (8, E )  = [var (x) - var (8) - var (e)]/2. 

Therefore, finally, substituting (26) into (25) we have 

2 cov (s ,  x )  
var (8) + var (x) - var (e) * 

b =  

Formula (19) remains unaltered, 
a = E(s)  - E(8)  b. 

We measure var (x), cov (s, x) and E ( s )  as usual from our sample. We have an independent method 
of estimating var (8) and E(8)  (MacLean & Workman, 1973), and estimation of var ( E )  is discussed 
in the previous section. 

The errors of estimation are quite analogous to  the standard case. The residuals have variance 

var (res) = var (8) - b cov ( s ,0 )  
= var ( s )  - b cov (s ,  x) + hb2[var (x) - var (0)  - var ( E ) ] .  

The coefficients have error variances 

and 

var ( b )  = var (res)/[n var (671, 
var (a )  = E(02) var ( b )  

cov (a,  b )  = - E(8)  var ( b ) .  

We therefore have a method of regression when the independent variable is not known, but 
rather is estimated with bias. 
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DISCUSSION 

If  complete genealogies were available we could ascertain the true historical proportion of 
ancestry of an individual in a dihybrid population, but the chance of ever obtaining such data is 
small. However, given a genetic characterization of hybrid individuals and the gene frequencies 
in the ancestral population, the present method provides an estimate of the probability dis- 
tribution, qi(0), of each individual’s genetical proportion of ancestry. From qi(0) we can obtain 
a point estimate of an individual’s ancestry and then relate that value to individual quantitative 
scores. Whether or not the method can be meaningfully applied to  any real dihybrid population 
depends on the extent of the genetic differences between the parental populations, the reliability 
of the data to be used, and certain assumptions about the hybrid population structure. The 
problems inherent in the use of this approach will be discussed briefly in terms of a possible 
application in the study of intrapopulation variation in United States Negro populations. 

The African origins of the American Negroes are known only in terms of the general areas from 
which the slaves were obtained and the Caucasian contributors to  the Negro gene pool can only 
be described as being primarily western European. Thus despite the advantage of considerable 
genetic distance between the parental populations, they are far from the idealized panmictic 
populations of the model. I n  addition, the African gene frequencies are not generally based on 
extensive sampling of the appropriate geographical areas (see Reed, 1969). In  order to diminish 
the effect of such systematic errors in obtaining the African data there must be careful selection 
of the genes used to  calculate qi(0). Genes whose African frequencies show considerable hetero- 
geneity or which are derived from a very small number of observations should not be used. 

We must also assume that contemporary gene frequencies reflect those in the ancestral popula- 
tions, i.e. that they have not been affected by selection or drift. For Caucasian estimates, since 
U.S. White and European frequencies showgreat similarity, such an assumption seemswarranted 
(Workman, Blumberg & Cooper, 1963). However, previous studies have demonstrated that some 
genes, such as Hbsand Hpl, yield highly discordant estimates of the mean amount ofthe Caucasian 
contribution to U.S. Negro gene pools (Workman et al. 1963; Workman, 1968). Genes which yield 
discordant estimates of the mean amount of intermixture, whether because of selection or 
sampling error, can be located directly by the use of Bernstein’s (1931) formula and omitted 
from the computation of qi(0). 

Finally, genes with very similar frequencies in Africans and Caucasians provide no information 
about the ancestral origins and these too should not be used to determine qi(0). 

After the elimination of inappropriate polymorphic markers therc remain only a small number 
of loci which can be considered acceptable for estimating the distribution of the proportion of 
ancestry in an American Negro population. These include the Rhesus (Rh) and Duffy (Fy) loci, 
both of which possess alleles or antigenic factors which are in very high frequency in one parental 
population and very low frequency or absent in the other. Such factors provide the greatest 
discriminatory power in the determination of ancestry and are likely to involve the least error 
(see Reed, 1969). Loci such as ABO, Kidd (Jk), Lewis, S, Gm, Inv, and Gc can also be used. By 
themselves these loci may not provide distributions of qi(0)  or point estimates with a satisfactorily 
low variance. However, in Charleston Negroes, estimates of the biological distances among 
parental and hybrid populations based on gene frequencies were quite similar to those based on 
anthropometric characters (Pollitzer, 1958). Thus, despite the difficulties in obtaining reliable 
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gerle frequencies in the African populations, the incorporation of anthroponletric data into the 
calculation might provide estimates of qi(8) which have sufficiently small error variance. Of 
course, as knowledge of the African gene frequencies increases we should obtain increasingly 
reliable estimates of the ancestry. 

derivation of the proportioll of ancestry also requires a function describing the breedin:: 
structure of the population. Although the model incorporates a general breeding function, h ,  
in the absence of other information, we assume that both mating and distribution of family 
sizes be independent of 8. Although this is probably not the case in real populations, computer 
simulations, to be presented elsewhere, show that moderate deviations from these conditions hiLvc 
little effect on the results. Regular deviations from panmixia could be incorporated into the 
rnodel but there is no evidence suggesting any particular alternative form of k. 
In order to relate variation in ancestry to variation in quantitative scores, the hybrid 1)oplllit- 

tioil should be one in which there is considerable variation in the proportion of ancestry. Negro 
populations in the southern United States with relatively low proportions of Caucasian genes 
and a recent history of social isolation are probably not suitablr:. On the other hand, northcrii 
urban Negro populations which have higher proportions of Caucasian genes, approxitnately 
20-30% (Glass & Li, 1953; Workman, 1968; Reed, 1969), may well have individuals with propor- 
tions of Negro ancestry varying between 5 and 60 yo. I n  order to maximize the within-pol)ulatioii 
heritability of the traits whose variation is under study one should also choose a hybrid popullttion 
with minimal variation in both physical and cultural environmental factors, e.g. unrelated 
children from the same school or neighbourhood. In addition, in the regression of scores oil 
ancestry one should hold constant socio-economic factors and any anthroponietric character 
such as skin colour which might, for cultural reasons, interact with performance on the trait. 
That is, traits giving a visual indication of ancestral origins cannot be used to estimate qi(0) 
under such circumstances. Hence, if adequate parental gene frequencies are not available, thtl 
method is probably least suitable for studying behavioural variables such as I.Q. scores. 

Finally, suppose that reliable estimates of the ancestry have been obtained in a stutiy 011 a 
random sample from a Negro population and that some quantitative scores, such :LS physiologictll 
variables related to hypertension, were regressed on point estimates of ancestry. The liiieitr 
regression model assumes that if there are genetic differences between the parental populations, 
they are additive. We must also assume the absence of specific genotype-environment interactions 
and that the environmental factors have been randomized with respect to the true value of the  
proportion of ancestry. Under these assumptions, the slope of the regression line should indicitte 
the extent to which, in the environment of the Negro population, differences in scores are relatecl 
to additive mean differences in the genetic contributions from the parental populations. Further, 
the extrapolation of the regression line to 0 = 0, i.e. pure Caucasian, would indicate the expected 
performance of Caucasians in that environment. 

In  no way can this approach prove anything about genetic differences between the parental 
populations. However, direct comparisons of Caucasian and Negro traits, whether behaviournl, 
physiological or anatomical, do so without correcting for any differences in the physical or cultural 
environmentsof thegroupsbeingcompared (e.g. Jensen, 1969). The present approacliisan attem1)t 
to correct, in so far as is possible, for such environmental differences and, notwithstarldillg the 
complications in obtaining the genetic data and the assumptions about the model and the 
regression analysis, it should provide a much more useful basis for interpopulation comparisons. 
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S U M U Y  

An individual i in a hybrid population H descended from two ancestral populations Qo, Q1 
will have a certain proportion 0, of his genes descended from Q1. Methods are presented for 
estimating the value of ei for a given individual on the basis of his (or her) phenotype. Both the 
posterior distribution of e6 and point estimates are obtained. Sources of error or inaccuracy are 
considered. 
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