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De novo mutations (DNMs) originating in gametogenesis 
are an important source of genetic variation. We use a data 
set of 7,216 autosomal DNMs with resolved parent of origin 
from whole-genome sequencing of 816 parent–offspring 
trios to investigate differences between maternally and 
paternally derived DNMs and study the underlying mutational 
mechanisms. Our results show that the number of DNMs in 
offspring increases not only with paternal age, but also with 
maternal age, and that some genome regions show enrichment 
for maternally derived DNMs. We identify parent-of-origin-
specific mutation signatures that become more pronounced 
with increased parental age, pointing to different mutational 
mechanisms in spermatogenesis and oogenesis. Moreover, 
we find DNMs that are spatially clustered to have a unique 
mutational signature with no significant differences between 
parental alleles, suggesting a different mutational mechanism. 
Our findings provide insights into the molecular mechanisms 
that underlie mutagenesis and are relevant to disease and 
evolution in humans1.

Studies of de novo mutations (DNMs) in humans have estimated 
the mutation rate of single-nucleotide variants to be approximately 
1 × 10−8 mutations per generation, giving rise to 45–60 DNMs per 
genome2–5. The susceptibility to DNMs varies by several orders of 
magnitude along the genome and may be influenced by factors such 
as nucleotide content, replication timing, distance to recombina-
tion hotspots, nucleosome occupancy, transcription, and chromatin  
‘openness’4,6. Several mechanisms of DNA mutation are known, most 
predominantly involving DNA replication7. The latter mechanism also 
explains the 3.9:1 ratio of DNMs on the paternal allele to the maternal 
allele, as there are many more germline cell divisions in spermatogen-
esis than in oogenesis2. We hypothesize that the different underlying 
biology of male and female gametogenesis results in differences in 
mutational signatures between paternally and maternally transmitted 
DNMs. These signatures will provide insight into the mechanisms 
underlying de novo mutations in human germline cells.

Studies to date have lacked sufficient sample size to determine the 
parental allele for large numbers of DNMs so as to compare DNMs of 
paternal and maternal origin. In this study, whole-genome sequencing 
(WGS) was performed on 832 offspring–parent trios, with an average 
of 60× coverage, by Complete Genomics Inc. (Table 1, Supplementary 
Tables 1–4; see Online Methods for a description of the cohort)8. 
After removing an outlier and one twin from each of the monozygotic 
twin pairs, de novo mutations were identified for the autosomes of 816 
trios. A random forest classifier was used to remove potential false 
positives from the initial set of putative DNMs, resulting in 36,441 
DNMs, or an average of 45 DNMs per individual (Online Methods 
and Supplementary Tables 5–8). Quality assessment of these results 
based on monozygotic twin concordance and Sanger validations 
of a subset of DNMs indicated high specificity (Supplementary  
Tables 9–11, Online Methods). Overall, the nucleotide substi-
tution frequencies for DNMs were dominated by C–T and T–C 
changes, giving rise to a transition/transversion ratio (Ts/Tv) of 2.23. 
Haplotype assembly of all mutations successfully phased 19.8% of all 
DNMs, resulting in a set of 7,216 phased DNMs (Online Methods, 
Supplementary Tables 12–15). Assessing the parental origin of 
DNMs, we found that 5,640 DNMs were on the paternal allele and 
1,576 on the maternal allele, giving rise to the expected median 
paternal/maternal ratio of 3.6:1 (Supplementary Fig. 1)2,3.

Multiple studies have shown that the numbers of DNMs in offspring 
are positively correlated with increasing paternal age at the time of 
conception2,3. Using our phased DNMs, we were able to confirm  
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Table 1  Cohort description
Birth constellation No. births No. children No. sequenced samples

Singletons 731 731 2,193

Dizygotic twins 35 70 140

Monozygotic twins 14 28 56

Triplet 1 3 5

Total 781 832 2,394

The cohort consists of 731 trios, 49 quartets, and one quintet, resulting in a total of 
832 children.
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this correlation, and we found an increase of 0.91 paternally transmitted 
DNMs (95% confidence interval (CI) by bootstrap sampling: 0.81–1.02) 
per year (Fig. 1a, Supplementary Tables 16 and 17, Supplementary 
Fig. 2). Interestingly, our data also showed a smaller maternal age effect, 
consisting of 0.24 maternally transmitted DNMs (95% CI by bootstrap 
sampling: 0.15–0.34) per year (Fig. 1b, Supplementary Table 18).  
The result is consistent with a previous study on maternal age effect 
that used a subset of this cohort (693 singleton trios). In this previous 
study, a different algorithm was used to call de novo variants, and the 
maternal age effect was assessed by regressing both parents’ ages on 
the total number of DNMs9. The finding of a maternal age effect is  
consistent with the speculation that spontaneous mutations accumulate 
over time in the female germline10,11.

To identify local genomic factors that influence DNM susceptibility 
in male and female germline cells, we divided the human autosomes 
into 1-megabase (Mb) windows and examined the linear correla-
tions between several genomic features and mutation rates that have 

previously been related to germline mutation rates3,6,12 (Fig. 2a,  
Supplementary Table 19, Supplementary Fig. 3). For mutation rates 
in each of the age–gender groups, we performed multiple robust 
regressions using the subset of features selected by optimizing for 
residual variance (Online Methods).

Mutation rates in both older fathers and older mothers are strongly 
positively correlated with DNA methylation and negatively correlated 
with histone H3 Lys36 trimethylation (H3K36me3), indicating that the 
higher mutation rates are correlated with depletion of transcription. 
Interestingly, H3K9me3 was highly correlated with all but mutation 
rate within young mothers, and it was previously shown to account 
for more than 40% of the somatic mutation variation in cancer in  
the human genome12.

We investigated how paternally and maternally derived DNMs 
were distributed across the genome. A multivariate Poisson hidden 
Markov model selected four hidden states of mutational patterns in 
young and old parents based on the Akaike information criterion 
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a bFigure 1  Correlation of paternal and maternal age 
with the number of DNMs with resolved parent 
of origin. (a,b) Simple linear regression plots on 
normalized number of phased DNMs versus the 
respective paternal (a) and maternal age (b), with 
10,000 bootstrap resampling. The underlying 
data can be found in Supplementary Table 14. 
The number of phased DNMs was normalized by 
the proportion of phased variant for each proband. 
Where the number of normalized DNMs of a 
particular parental origin equals 0, this indicates 
that there are no DNMs in the proband that could 
be confidently assigned to the specified parent of 
origin. Regression plots for the observed number 
of phased DNMs are in Supplementary Figure 2, 
where a similar trend can be observed.
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Figure 2  Regions enriched for maternally and paternally derived DNMs. (a) t-statistic of the features selected to be included in the multiple regressions 
of each of the age–gender category for DNM mutation rates. All features included have asymptotic approximate P value < 0.05. The mutation rates  
and values for each feature in each 1-Mb window are shown in Supplementary Table 22. (b) Number of DNMs on paternal and maternal allele in the 
whole genome and the genes CSMD1 and WWOX in the analysis cohort (sequenced by CGI platform, based on all autosomes), in the second or  
validation cohort (independent samples sequenced by Illumina platform; * signifies data based on eight chromosomes only: chromosomes 2, 3, 4, 7,  
8, 12, 14, 16), and in the GoNL cohort15. The number of counts is shown in Supplementary Table 23.
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(Supplementary Note and Supplementary 
Table 20). Notably, the two 1-Mb windows 
that exhibit the highest maternal muta-
tion rates are spanned by one large gene 
each, CSMD1 and WWOX (Supplementary  
Tables 21–23). WWOX is at a well-known 
fragile site in the genome13 and is known to 
be involved in human gonad development14.  
We confirmed the same pattern of enrich-
ment of maternal mutations in these two 
genic regions in an external control cohort of 656 trios with WGS 
by the Illumina platform, as well as in data from the GoNL project15 
(Online Methods, Fig. 2b).

Cancer genome sequencing studies have identified mutational 
signatures thought to reflect distinct underlying mutational mecha-
nisms16. Applying this line of reasoning to DNMs, we hypothesized 
that DNMs of different parental origin show discriminative muta-
tional signatures. Indeed, we observe significant differences in nucle-
otide substitution patterns between paternal and maternal DNMs. 
Paternally derived DNMs contain a higher frequency of T–G and C–A 
substitutions than maternal DNMs (Bonferroni-corrected bootstrap-
ping test P = 1.49 × 10−2 and P = 1.91 × 10−2, respectively), whereas 
maternally derived DNMs contain more C–T mutations (Bonferroni-
corrected P = 2.7 × 10−3, Fig. 3a, Supplementary Table 24).  
Following these initial observations, we investigated whether paternal 
and maternal DNMs give rise to different mutation signatures and 
compared nucleotide substitutions within the context of the adjacent  

nucleotides. Indeed, within the set of 7,216 phased mutations, we 
found significant differences between the nucleotide contexts of 
paternally and maternally derived DNMs (χ2 test P = 2.9 × 10−8;  
Fig. 3b, Supplementary Table 25, Supplementary Fig. 4). More 
specifically, paternally derived DNMs are enriched in transitions in 
A[.]G contexts, especially ACG>ATG and ATG>ACG (Bonferroni-
corrected P = 1.3 × 10−2 and P = 1 × 10−3, respectively). Additionally, 
we observed overrepresentation of ATA>ACA mutations (Bonferroni-
corrected P = 4.28 × 10−2) for DNMs of paternal origin. Among 
maternally derived DNMs, CCA>CTA, GCA>GTA and TCT>TGT 
mutations were significantly overrepresented (Bonferroni-corrected 
P = 4 × 10−4, P = 5 × 10−4, P = 1 × 10−3, respectively). Interestingly, 
these differences between signatures of paternally and maternally 
derived DNMs became more pronounced with increasing age of 
the parents at conception. Unsupervised hierarchical clustering of 
trinucleotide DNMs binned by age and parent of origin almost per-
fectly separates paternally and maternally derived DNMs (Fig. 3c,  
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Figure 3  Differences in paternal and maternal 
mutation profiles and correlation with parental 
age at conception. (a) Nucleotide substitution 
ratios in maternal and paternal sets. Asterisks 
indicate substitutions whose ratios differ 
significantly between the two (P < 0.05 after 
Bonferroni correction). (b) Heatmap of parental 
mutation profile differences split by nucleotide 
substitutions (columns) and nucleotide context 
(that is, the adjacent nucleotides; rows); blue 
and red indicate overrepresentation in father  
or mothers, respectively. Green boxes highlight 
the mutation categories that differ more than 
1% of mutation load with a bootstrapping  
P value <0.05. (c) Hierarchical clustering of 
paternal and maternal mutations, sorted by 
age of the parent and grouped into groups of 
approximately 500 mutations (Online Methods 
and Supplementary Table 26). Maternal 
signatures are more closely related to those of 
young fathers than those of young fathers are to 
those of old fathers (P = 0.113). Axis indicates 
number of mutations; the age categories are 
denoted as y = young, m = moderate and o = old,  
sorted from youngest to oldest as yyy < yy < y < 
ym < ymm < m < omm < om < o < oo < ooo.  
(d) Different coefficients of correlation for age 
of parent and number of mutations between the 
parents. Boxplots of the mutation categories 
highlighted in b (box, interquartile range; 
line, median; whiskers, extreme values <1.5 
× interquartile ranges from box borders). 
Spearman correlation coefficients were Fisher-
transformed to assess the significances of the 
difference. Asterisks mark categories that differ 
with P < 0.05 after bootstrapping. Numbers 
above the x axis indicate the number of offspring 
with the respective number of mutations.
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Supplementary Table 26). The only exceptions are DNMs from 
the youngest fathers, whose signatures are apparently more simi-
lar to maternally derived DNMs than to those from older fathers. 
Additionally, the observed parent-of-origin-specific mutations cor-
relate with the age at conception of the respective parent (Fig. 3d).

The differences that we observe between signatures of paternally 
derived DNMs from older fathers and those of younger fathers and 
mothers may hint at distinct mutational processes, some of which 
become more significant with increasing paternal age. Our overall 
DNM spectrum closely resembles that of Rahbari et al.17 (Pearson’s  
R = 0.98) (Supplementary Fig. 5), who found that the spectrum 
could be decomposed into the two cancer signatures 1 and 5 (ref. 18).  
However, the difference we observed between maternal and pater-
nal spectra did not show similarity to any of the known signatures 
(Pearson’s R < 0.35, Supplementary Fig. 6). Of note, we find an 
enrichment of maternal DNMs with motifs of APOBEC-medi-
ated mutagenesis (χ2 test for enrichment P = 0.029), which are 
known to result from aberrant DNA double-strand break repair16.  
The efficiency of oocyte double-strand break repair is known to 
decrease in aging women16, which might result in a higher suscepti-
bility to APOBEC-mediated mutations. Overall, these results suggest 
that aging may trigger mutagenic processes in male sperm that do not 
occur in female oocytes.

Confirming previous observations3,15, we found that a subset of 
DNMs are spatially clustered on the genome, with mutual proximities 
below 10 kb (χ2 test for enrichment P < 2 × 10−16). This affects 662 
DNMs in 304 clusters (1.8% of all DNMs). Interestingly, the number 
of such clusters per individual correlates with the age of both par-
ents (Fig. 4a, Supplementary Tables 27 and 28; Kruskal–Wallis test  
P = 1.37 × 10−4 and P = 2.19 × 10−4 for mother and father, respec-
tively). The nucleotide substitution profile of DNMs in clusters differs 
markedly from nonclustering DNMs (χ2 test P < 2 × 10−16, Fig. 4b), 
as is most prominently demonstrated by a Ts/Tv of 0.72 for clustered 
DNMs compared to 2.23 for all nonclustered DNMs, which accords 
with previous observations15. We determined the parent of origin 
for 53 out of the 304 mutation clusters. In all but one phased cluster, 
the DNMs came from the same parent, supportive of a single muta-
tional event as the cause (Supplementary Table 15). Interestingly, 
the DNM clusters did not show a paternal bias but were evenly 
divided between the maternal and paternal alleles (Fisher’s exact test,  
P = 0.74; Supplementary Table 29). This may indicate that the under-
lying mechanism of DNM clusters may be the same for fathers and 
mothers. We did not observe significant differences in nucleotide 
substitution profiles between DNM clusters from paternal and mater-
nal origin, which is consistent with this hypothesis, but could also 
be due to a lack of statistical power due to the low number of events. 
Because many mechanisms that have been proposed to cause clustered 
DNMs encompass action of endogenous proteins of APOBEC and 
activation-induced deaminase (AID)19, we scanned the nucleotides  
surrounding the clustered and nonclustered DNMs for the specific 

APOBEC motif and AID motif. Clustered DNMs contained signifi-
cantly more APOBEC-like mutations (χ2 test, P = 1.06 × 10−6) and 
AID-like mutations (χ2 test, P = 0.017), together accounting for about 
a quarter of all clustered DNMs (Supplementary Table 30).

Taken together, our results show that the difference in biology 
of male and female gametogenesis gives rise to distinct mutational  
signatures in offspring that diverge with increasing parental age.

URLs. Glu-genetics: https://code.google.com/p/glu-genetics.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. De novo mutation calls used in this manuscript are 
available in dbGaP under accession number phs001055.v1.p1.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Patient cohort. All participating families were enrolled in the Inova 
Translational Medicine Institute’s (ITMI) IRB-approved research protocol enti-
tled “Molecular Study of Preterm Birth’” (WIRB #20110624), with informed 
consent obtained for all participants. The eligibility criteria for families are 
listed in Supplementary Table 31. The clinical information was extracted 
from electronic medical records (EMR) and self-reported questionnaires. 
This study includes 832 newborns at the Inova Fairfax Hospital (Table 1). 
For all analyses performed in this manuscript, except for the monozygotic 
twin comparison and the coverage analysis, we randomly removed one twin 
from each of the monozygotic twin pairs; we also removed one outlier who has 
more than twice the mean number of DNMs in this cohort. The final analysis 
cohort consists of 816 trios. Of these 816 trios, 292 were born preterm (<37 
weeks) (Supplementary Table 1). Babies in 51 families (76 probands) were 
conceived with assisted reproductive technology (Supplementary Table 2). 
The external cohort of 656 trios (630 singletons and 13 twin pairs) is a subset 
of the families enrolled in the First 1,000 Days of Study, conducted the Inova 
Translational Medicine Institute. The details on cohort demographics and 
sequencing information was previously described in ref. 20.

Whole-genome sequencing (WGS). Whole blood samples were collected from 
all 2,394 subjects as previously described9,21. Genome sequences were assem-
bled with Complete Genomics’ Assembly Pipeline versions 2.0.0–2.0.3 using 
the NCBI build 37 human genome reference assembly22. All samples passed 
internal Complete Genomics quality control parameters. Coverage statistics 
were calculated using weight-sum sequence coverage depth. On average across 
all genomes, 70% of each genome and 80% of the coding regions had >40× 
coverage (Supplementary Table 3). WGS of the external cohort of 656 trios 
was performed by Illumina Services as described in Bodian et al. (2015)20.

Quality control. For all samples we gathered the Complete Genomics 
summary files that are intended for quality control of the samples. We per-
formed a principal-component analysis (PCA) on statistics from all samples 
(Supplementary Fig. 7). The major differentiating factor between samples 
was the number of identified single nucleotide variants. We found that the 
differences between samples for this statistic could be attributed to the ancestry 
admixture of individuals and the date of sequencing, which corresponded to 
the software version that was used for analysis. The latter component was, how-
ever, minor compared to the impact of admixture. We used 1000 genomes23 
phase 1 genotype calls in regions that qualify strict mask for high quality 
as the reference panel for admixture calculation. The samples were assigned 
admixture proportions of the 4 super populations (European, African, East 
Asian and Americas) using glu-genetics.

Callable genome fraction. Although WGS was performed, not all positions 
in the genome could be interrogated and this fraction varied considerably 
per trio. Therefore we calculated the callable fraction on a per trio basis by 
taking the union of all regions that were not called according to the Complete 
Genomics var-file based on all autosomes of the GRCh37 genome, excluding 
positions with “N” sequences (Supplementary Table 4). On average we found 
that across all chromosomes the minimal callable fraction was 88.94% and that 
on average 94.59% of the genome was called.

Identification of de novo mutations. The initial set of candidate DNMs was 
called as described previously24. Briefly, de novo variant calls for the autosomes 
were generated using the cgatools calldiff program (Complete Genomics). 
Calldiff compares two genomes and determines whether a variant is truly 
found in only the child’s genome by gathering variants into superloci and 
performing a local refinement of variant calls, explicitly assuming a diploid 
genome. For this reason, only DNMs on autosomes were included in this 
study. The individual comparisons to each parent were merged and filtered 
for variants with “varQuality = PASS”. Only high confidence de novo calls were 
extracted by selecting variants with the scores for both parents greater than 
or equal to 5. This resulted in a total of 55,049 DNMs and an average of 66  
de novo calls per individual.

Filtering of DNMs. In order to obtain only the most reliable set of de novo 
variants, we developed a random forest classifier. An elaborate training set of 
more than 4,000 true positive and false positive single nucleotide DNM calls 
was established consisting of putative de novo mutations validated by three 

different methods (Supplementary Table 5). We randomly selected 90% of 
our data as a training set, and the remaining 10% as a validation set. Feature 
selection showed highest contribution to correct classification for 7 features25 
(Supplementary Table 6). The out of bag estimate of error rate on the train-
ing data was 3.55%. The error rate on the remaining 10% test data was 2.93%. 
All called de novo mutations were then intersected with the callable genome 
fraction as well as regions that occur >4 times within the genome based on 
Duke 35bp uniqueness values26 (Supplementary Table 7).

To further validate the results of our classification, we compared de novo  
calls between 15 monozygotic twins, which should theoretically be fully 
concordant, and 35 dizygotic twins, which should be fully discordant. 
Comparison of 15 monozygotic twins showed a low error rate of less than 
10% (Supplementary Table 9). As expected, concordance between 35 dizy-
gotic twins was as low as 0.41%, of which some may be attributable to low-level 
mosaicism of one of the parents27 (Supplementary Table 10). In total, our 
algorithm classified 36,441 variants as de novo mutations (66.56%), yielding an 
average of 44 (95% CI: 43.1, 44.6) mutations per individual (Supplementary 
Table 8). 35,793 of those variants are single nucleotide variants. For the further 
analyses, we randomly removed one twin out of all monozygotic twin pairs, 
resulting in a cohort of 816 trios.

While we attempted to filter out post-zygotic mutations by including the 
fraction of reads with the variant allele in our random forest classifier, there 
are inevitably a small number of post-zygotic mutations included in the final 
set. It was previously estimated that the proportion of post-zygotic mutations is 
around 6.5%27. Based on the discordance rate of the 15 monozygotic twins, the 
proportion of mosaicism in our final set is at most 10%. The true proportion is 
likely to be much lower, as allelic ratios for the filtered DNMs are closer to 0.5 
compared to known heterozygous SNPs, while allelic ratios of the unfiltered 
DNMs have a wider range (Supplementary Fig. 8). Furthermore, post-zygotic 
mutations will affect both paternal and maternal chromosomes and thereby is 
unlikely to introduce any biases for our analyses.

Experimental validation. In order to access the accuracy of our DNM calls, 
we randomly selected subsets of DNMs from each variant type, namely, sin-
gle nucleotide substitutions (SNVs), clustered single nucleotide substitutions 
(clustered SNVs), InDels (small insertions and deletions) and block substitu-
tions (Supplementary Table 11) and Sanger sequenced the proband and both 
the parents. Sanger sequencing succeeded for 92 variants (43 SNVs, 16 Indels/
Block Substitutions, and 33 clustered SNVs). Among these, the clustered SNVs 
had the highest validation rate of 93.9%, whereas SNVs and InDels/block 
substitutions achieved validation rates of 88.4% and 87.5% respectively.

Phasing of de novo mutations. In order to identify the parental origin of the 
DNM allele, we applied a haplotype assembly strategy: considering that the 
human autosomes are diploid and that a DNM affects only one of the two alleles,  
we attempted a reconstruction of the two distinct alleles. The reconstruction 
is based on the inherited variants close to the DNM. Some of the variants can 
only be inherited by one of the parents (informative SNPs). We applied the 
HapCompass algorithm27 to assemble the haplotypes of the region 1 kb on 
both sides around the DNM. If an assembled allele carried an informative 
SNP, we could advise a parental origin to the DNM. Only single nucleotide 
substitution variants were phased.

To assess the correctness, we compared the HapCompass results of six inde-
pendent trios sequenced by CGI (not part of this cohort) to results from Long 
Fragment Read (LFR) Sequencing28. In total, 53 variants were successfully phased 
for which LFR data also provided phasing information. For 51 of these (96%) 
both technologies were concordant for the parent of origin (Supplementary 
Table 12). In our cohort, we obtained phasing information for 7,216 DNMs 
of the total 35,793 (20.16%). This percentage is comparable to the percent-
ages of phased mutations in other peer-reviewed studies, although slightly 
lower due to the limited sequencing read size (Supplementary Table 13b).  
In total 5,640 variants were paternal in origin (78.16%) and 1,576 were mater-
nal in origin (21.84%) (Supplementary Table 13a). We discerned no major 
differences between phased and unphased DNMs (Supplementary Figs. 9  
and 10). Further, we compared the results of phasing in 65 trios in our cohort 
that were sequenced by both CGI and Illumina technologies. We used the 
DNMs detected using data generated by CGI, and phased using GATK 
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HaplotypeCaller, PhaseByTransmision, and ReadBackedPhasing with Illumina 
sequenced and assembled reads (Supplementary Table 32). Comparison of 
phasing results showed a 99.75% concordance.

Variant annotation. All 36,441 variants were annotated with SNPEff  
version 3.4e (ref. 29) and then loaded into the Gemini software Version 
0.13.1 (ref. 30). We found 1.67% of variants affected the coding regions 
(Supplementary Table 33). We additionally annotated the variants with custom 
bed files on CpG positions and GC content based on 200 bp sliding window.

Simulation of DNMs. In order to compare our data to a random set of DNMs, 
we generated 1,000,000 positions across the callable human genome with the 
same base frequencies and substitution rate as we observed for the DNMs in 
the 816 trios. The variant allele was then created by mutating the reference base 
according to empirical distribution of the substitution rates observed from our 
filtered single nucleotide DNMs. All simulated variants were annotated by 
SNPEff-Gemini as described above (Supplementary Table 34).

Identification of influence factors on the number of DNMs. We sought 
to examine the possible factors that are correlated with number of DNMs in 
each proband. We first performed least-squares multiple linear regression 
with the total number of DNMs (SNVs only, N = 35,793) as the response vari-
able, ages of the parents at conception, proband’s ethnicity (European, Asian, 
Americas, African, others), CGI software pipeline version (batch effect), mode 
of conception (natural versus assisted) and gestation status at delivery (pre-
term versus full term) as the predictor variables. We then fitted the multiple 
regression model again with only the predictors that were significant at the 
0.05 level, namely, ages of parents at conception and the mode of pregnancy  
(Fig. 1a, Supplementary Table 16). Both parents’ ages are positively corre-
lated with the total number of DNMs (P < 10−16 and P = 3 × 10−3, paternal  
and maternal respectively).

Next, we examined the linear correlation between unambiguous parent-of-
origin resolved number of DNMs and their respective parents’ ages. Since only 
~20% of the DNMs were phased, we estimated the true number of DNMs of 
each parental origin by dividing the number of DNMs phased by the propor-
tion phased in each trio. We then fit simple least-squares linear regression 
models to study the normalized number of phased paternal DNMs with their 
respective parental ages (Supplementary Tables 17 and 18). Paternal age is 
significantly associated with number of paternal DNMs, with an estimated 0.91 
DNMs per year increase in age (P < 2 × 10−16). Mother’s age is also significantly 
associated with number of maternal DNMs, with an estimated 0.24 DNMs per 
year increase in age (P = 4.49 × 10−7).

Mutation signatures. DNMs were grouped by nucleotide substitution 
and, where applicable, nucleotide contexts. Statistical significance of group 
comparisons was assessed in two ways: First, to get an overall indication of 
whether the mutation distribution depends on the grouping variable, we 
applied Pearson’s χ2 test for independence. The contingency table that we 
applied the test to lists the numbers of mutations by group and by mutation 
type. Second, if there was a significant difference between the two groups, 
we used a bootstrapping approach to identify the individual mutation types 
that differed. For this, we re-sampled the grouping variable 10,000-fold and 
calculated the difference between the relative mutation frequencies of every 
mutation category. These bootstrapped relative mutation frequencies were 
then compared to the observed differences between the groups. P values give 
the relative frequencies of bootstrapped differences that were larger than 
the observed ones. To account for multiple testing, we applied Bonferroni- 
correction by dividing the obtained P values by the number of possible muta-
tion categories (six in the case of substitutions, 96 in the case of substitutions 
and surrounding nucleotides).

Hierarchical clustering was performed using the hclust function from the 
“stats” package of the R statistical software31, using complete linkage method 
and Euclidean distances. Mutations were grouped by age of the parent into 
groups of approximately 500 mutations. This resulted in 3 groups of maternal  
mutations, labeled “y” (young), “m”(middle), “o” (old), corresponding to 
mothers of younger, intermediate and older ages. For paternal mutations, this 
resulted in 11 groups, labeled “yyy”, “yy”, “y”, “ym”, “ymm”, “m”, “omm”, “om”, 

“o”, “oo”, “ooo” to indicate the ages of the fathers (in ascending order). The 
age ranges of each group are given in Supplementary Table 26. To assess the 
validity of the calculated clusters, we used the R package pvclust to calculate 
so-called AU P values32. For comparing paternal and maternal age correlation 
with the incidence of mutation categories, we transformed Spearman correla-
tion coefficients by Fisher’s z transformation to a normal distribution. From 
these, one-sided P values were calculated.

Identification of DNM clusters. For each DNM, the distance to its closest 
neighbor on the same chromosome of the same individual was calculated. All 
DNM with distances below 10 kb were considered as clustered (Supplementary 
Table 27). The nucleotide profiles were compared with a χ2 test.

Mutation rates along the genome. We divided the human genome (hg19) into 
nonoverlapping 1-Mb windows. We chose 1 Mb as the window size because 
it is commonly believed that this captures the natural variation in mutation 
rate in human genomes33. We calculated the number of callable base pairs 
in each of the window by intersecting the windows with the callable regions 
using bedtools34, and discarding those windows with fewer than 50% callable 
bases. This yielded 2,659 1-Mb windows for analysis. For each window, we 
calculated the number of unique old and young fathers and mothers who 
passed on DNMs in the window, and we normalized it by the number of cal-
lable bases in the window. The old and young fathers are defined by whether 
their ages are greater than the median age. The same definition applies to the 
mothers. This provided multivariate mutation rates matrix consisting of 2,659 
rows with 4 columns for old fathers, young fathers, old mothers and young 
mothers (Supplementary Table 21; Supplementary Fig. 11).

We obtained the sex-averaged male and female recombination rates from 
the UCSC table browser35, the replication timing data from Table S2 from 
Koren et al.36 and the 1-Mb GC content sliding windows from direct calcula-
tion from the hg19 genome using a custom script. The rest of the genomic 
features, including DNase-hypersensitive sites (DHSs) from various tissues, 
BisulfiteSeq from ovary and testis, and H3K36me3, H3K4me1, H3K9me3 and 
H3K27ac from adult ovary, were downloaded from the Roadmap Epigenomics 
Project37. We used bedtools map to calculate the mean value for each 1-Mb 
window for the values described above. We used the R package FWDselect 
2.1.0 to perform feature selection using residual variance criteria with cross 
validation. Where a feature is available for both ovary and testis, we used the 
testis track for paternal mutations and the ovary track for maternal muta-
tions. Only DHSs from fetal tissues were used in the multiple linear regres-
sions due to the high correlation between DHSs tracks. We then performed  
multiple robust linear regressions with selected features for each of the muta-
tion rate category.

To study the mutation rate along the genome, we developed a multivariate 
Poisson hidden Markov model (PHMM) using the normalized DNM counts 
in each category as response variables. The model was implemented with the  
R package depmixS4 Version 1.3-2 (ref. 38) (see Supplementary Note for more 
details). The number of hidden states is determined by fitting models with 2 
to 6 states and comparing the Akaike information criterion (Supplementary 
Table 20a). The states are given names according to the parameter estimates. 
To further confirm that the regions enriched with maternal mutations are not 
due to random chance, we investigated the same segments in the genomes 
in a separate cohort of 656 trios sequenced by the Illumina platform. In 
addition, we compared to the cohorts of other published studies of DNM 
(Supplementary Table 35).

Identification of APOBEC-like and AID-like mutations. Both APOBEC 
and AID have nucleotide preferences in the mutations that they cause. The 
APOBEC motif was reported as TCW (mutated nucleotide underlined,  
W = A or T)39, while the AID signature is reported as WRCY (Y = C or T)40,41. 
We scanned the nucleotides surrounding the DNMs for the presence of these 
motifs. χ2 test for independence was used to assess differences.

Allele ratio comparisons. To assess the allele ratio distribution of the DNMs, 
we obtained the allele ratios of 100 heterozygous inherited SNPs per trio. 
The distribution of 83,200 SNP allele ratios, 55,049 unfiltered DNM allele 
ratios and 35,793 filtered single nucleotide DNM allele ratios are compared 
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in Supplementary Figure 8a,b. A Wilcoxon rank-sum test was used to assess 
the significance of the difference between groups.

Coverage comparisons. We compared the coverage of the DNM sites and 100 
randomly selected heterozygous inherited SNP sites in the parents by examining 
the weighted sum sequence from the coverageRefScore files. The distribution 
of the coverage of 83,200 random sites in each parent is compared with that of 
35,793 single nucleotide DNM sites in each parent (Supplementary Fig. 8c).

DNM spectrum comparison to previous studies. In order to compare the 
spectrum of DNMs in our cohort to the previous knowledge of DNMs, we 
collected the publicly available DNMs of earlier studies2–5,17,42. We chose the 
studies such that the resulting set matches the set analyzed by Rahbari et al.17. 
We obtained the spectra and compared them to our spectrum by calculating 
Pearson correlations (Supplementary Fig. 5).
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