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Urbanization is a global phenomenon with profound effects on the ecology

and evolution of organisms. We examined the relative roles of natural selec-

tion, genetic drift and gene flow in influencing the evolution of white clover

(Trifolium repens), which thrives in urban and rural areas. Trifolium repens
exhibits a Mendelian polymorphism for the production of hydrogen cyanide

(HCN), a potent antiherbivore defence. We quantified the relative frequency

of HCN in 490 populations sampled along urban–rural transects in 20 cities.

We also characterized genetic variation within 120 populations in eight cities

using 16 microsatellite loci. HCN frequency increased by 0.6% for every kilo-

metre from an urban centre, and the strength of this relationship did not

significantly vary between cities. Populations did not exhibit changes in gen-

etic diversity with increasing urbanization, indicating that genetic drift is

unlikely to explain urban–rural clines in HCN frequency. Populations fre-

quently exhibited isolation-by-distance and extensive gene flow along

most urban–rural transects, with the exception of a single city that exhibited

genetic differentiation between urban and rural populations. Our results show

that urbanization repeatedly drives parallel evolution of an ecologically

important trait across many cities that vary in size, and this evolution is

best explained by urban–rural gradients in natural selection.
1. Introduction
Urbanization is among the most important anthropogenic disturbances affect-

ing biotic and abiotic environments [1–3]. Approximately 3% of Earth’s land

surface is covered in urban development [4,5], and cities are continuing to

expand throughout the world [6]. Recent evidence suggests that urbanization

may be the dominant anthropogenic factor affecting the evolution of popu-

lations [7]. For example, changes in the environment caused by urbanization

can alter natural selection and adaptive evolution [8]. Urban populations may

also experience greater genetic drift because they are often smaller and more

isolated than non-urban populations [9,10]. Finally, urban development can

restrict dispersal and the movement of alleles across a landscape (i.e. gene

flow), leading to greater genetic differentiation between populations [11,12].

Although the effects of urbanization on selection, genetic drift and gene flow

have been studied individually in different systems, how these mechanisms

interact to affect evolution across multiple cities of a single species has not

been examined.

Environmental changes associated with urbanization can drive the evol-

ution of novel adaptations within populations. Urban development leads to

changes in multiple biotic and abiotic environmental factors, including
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increased pollution, warmer temperatures, more impervious

surface and homogenization of communities [13]. These

changes can alter natural selection on populations [8]. For

example, coastal waters surrounding urban areas frequently

have greater PCB concentrations, which can be lethal to fish

[14]. This PCB contamination has imposed strong selection

on at least two fish species (Microgadus tomcod and Fundulus
heteroclitus), which has resulted in the evolution of resistance

in aryl-hydrocarbon receptor genes [14,15]. Similarly, the

abundance of buildings in Puerto Rico’s cities has caused

urban populations of the crested anole (Anolis cristatellus) to

evolve longer limbs and stickier toe pads, which increases

the ability of these lizards to adhere to and travel along

smooth artificial surfaces in urban environments [16,17].

However, whether these effects of urbanization on natural

selection and adaptive evolution are consistent across cities

is poorly understood.

Urbanization can also have large effects on non-adaptive

evolutionary processes, such as genetic drift. The construc-

tion of buildings and roads fragments natural habitats [18],

which can isolate and reduce the size of existing populations,

causing a population bottleneck [2,19]. Urban fragmentation

and environmental change can also lead to local extirpation

of urban populations and subsequent recolonization from

non-urban populations. Such recolonization events are fre-

quently associated with founder events in which new urban

populations are established by a small number of individuals

(e.g. [20]). Under both scenarios, population bottlenecks and

founder events are expected to make populations more sen-

sitive to stochastic changes in allele frequencies [7]. Recent

simulations show that such neutral processes can lead to

the evolution of phenotypic and genetic clines, which are

typically and potentially erroneously attributed to adaptive

evolution [21,22].

The effects of urbanization on fragmentation are also

expected to affect gene flow between populations. Numerous

studies suggest that major roads [23,24], buildings [10] and

natural barriers [11] restrict gene flow within cities, whereas

corridors of natural or restored habitat can facilitate gene

flow in some organisms [25,26]. For example, red-backed sala-

mander populations that persist in forest fragments within the

oldest parts of Montreal, Canada, have genetically diverged

following 300þ years of isolation with limited gene flow. By

contrast, populations in, more recently, fragmented urban for-

ests and contiguous non-urban forests show less genetic

divergence. Most previous research on the effects of urbaniz-

ation on gene flow has focused on patterns of genetic

variation within and between populations in a single city [7].

It is therefore unclear whether the effects of urbanization on

non-adaptive evolution (i.e. genetic drift and gene flow) gener-

alize across cities, especially when cities vary in area, human

population size and other features such as road and building

density. If certain urban features restrict or facilitate gene

flow, this may have important consequences for the ability

of populations to genetically diverge and adapt to urban

environments [27]. Thus, the study of population genetic

structure across multiple cities can greatly advance our

understanding of the effects of urbanization on evolution.

This paper expands on our recent research on urban

evolution in white clover, Trifolium repens (Fabaceae).

Trifolium repens is a perennial herbaceous plant, native to Eur-

asia and introduced globally to temperate environments [28].

This species exhibits a Mendelian polymorphism for the
production of hydrogen cyanide (HCN), in which plants

either produce HCN (cyanogenic) or lack the ability to pro-

duce HCN (acyanogenic) [29]. HCN is a potent

antiherbivore chemical defence that reduces damage by

many invertebrate and mammalian herbivores [30–32].

HCN also imposes an ecological cost on plants by reducing

freezing tolerance [33–35]. We previously showed that the fre-

quency of cyanogenic genotypes within populations decreased

with urbanization across three large cities (Toronto, Boston

and New York), whereas there was no change in a fourth

city (Montreal) [36]. Experiments, temperature gradients and

GIS implicated a role of reduced snow depth and colder mini-

mum winter temperatures within city centres, ultimately

selecting against HCN in favour of acyanogenic genotypes.

The city that lacked a cline consistently had more snow in

both urban and rural environments than the cities that

showed clines. Our previous work did not resolve whether

urban–rural clines in HCN are a phenomenon restricted to

large metropolitan areas, or whether they may also occur in

smaller cities and towns. The study by Thompson et al. [36]

also did not provide any insights into the potential roles

that genetic drift and gene flow may play in constraining or

facilitating the evolution of HCN in response to urbanization.

This latter gap is important because recent simulations

show that neutral processes can independently lead to the

evolution of lower HCN within cities, whereas high gene

flow may prevent the evolution of such clines [21].

Here, we examine how natural selection, genetic drift and

gene flow may affect HCN evolution in T. repens in response

to urbanization. The first two questions we asked were: (1)

does T. repens evolve parallel clines in HCN in response to

urbanization, and (2) does the strength of urban–rural

clines vary with city size? Answering question 1 allowed us

to understand whether our earlier results [36] generalize to

smaller cities and towns, such that T. repens populations con-

sistently evolve lower HCN in urban than rural populations.

In answering question 2, we expected that urban–rural clines

would be strongest in large cities, either because environmental

gradients are longer and stronger, and thus associated with a

greater change in selection, or because the opportunity for

population bottlenecks and reduced gene flow might be greater

in large cities [27,37]. After testing the generality of urban–

rural clines in HCN, we used 16 microsatellite molecular

markers to characterize the population genetic structure of

T. repens along urban–rural clines. These analyses answered

two additional questions: (3) do urban populations have less

genetic diversity than rural populations, and (4) are urban

populations genetically differentiated from rural populations,

after accounting for the effects of dispersal limitation (i.e. iso-

lation-by-distance (IBD))? A loss of genetic diversity (Q3)

would be expected if colonization of urban areas from rural

populations was associated with population bottlenecks. We

expected that genetic differentiation would be weakest between

urban and rural populations of small cities (Q4) if gene flow

between urban and rural populations was negatively related to

city size [27]. Finally, recent reviews claim that native species

frequently show greater genetic differentiation among urban

populations because of habitat fragmentation leading to

increased drift and decreased gene flow [7]. Whether this pre-

diction applies to introduced species like T. repens, which thrive

in urban environments, is unclear. This is the first study we are

aware of that examines how selection, genetic drift and gene

flow affect evolution across multiple urban environments.

http://rspb.royalsocietypublishing.org/
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Figure 1. Map of southern Ontario showing the location of the cities sampled. We sampled HCN frequency along transects in each of 20 cities and population
genetic structure in eight of these cities (yellow text). The size of circles is scaled to city area. Further information on these populations is available in the electronic
supplementary material, table S1. (Online version in colour.)
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2. Material and methods
(a) Study system
Our study focused on the evolution of T. repens along

urban–rural transects across cities in south-central Ontario,

Canada. Trifolium repens is introduced to North America,

where it thrives in areas with regular grazing or mowing, includ-

ing pastures, lawns and roadsides in urban and rural

environments. Plants are self-incompatible, producing clusters

of flowers that are packed into dense inflorescences pollinated

by bees [38]. Plants also reproduce clonally through stems

(i.e. stolons) that grow horizontally along the soil surface, and

a single clone can occupy an area up to 1 m across [38].

The cyanogenesis polymorphism is controlled by two

unlinked Mendelian inherited loci, CYP79D15 and Li.
CYP79D15 is involved in the production of the cyanogenic glyco-

sides linamarin and lotaustralin [29,39]. Li encodes the enzyme

linamarase, which hydrolyses the cyanogenic glycoside to pro-

duce HCN [40,41]. The cyanogenic glycoside and linamarase

are stored in different parts of the cell and come into contact to

produce HCN when the tissue is damaged [29]. A plant requires

a functional copy of both CYP79D15 and Li to produce HCN,

and these alleles have dominant expression. Non-functional

alleles occur at both loci and are caused by a partial or complete

deletion of the exon [39,40,42]. Plants that are homozygous for a

non-functional allele at either locus are acyanogenic. Multiple

studies show that HCN is an effective defence against generalist

herbivores [30–32]. Independent work also shows that HCN

decreases tolerance to freezing, putatively through autotoxicity

because HCN interferes with cellular respiration [33–35]. As a

result of the joint effects of HCN in defence and reduced freezing

tolerance, Daday [28,43] showed that the frequency of cyano-

genic genotypes decreased at higher latitudes in Europe, North

America and Japan.
South-central Ontario is a temperate climate dominated by

agricultural land and interspersed cities and towns (hereafter

referred to as ‘cities’). We restricted sampling to a single

geographical area to minimize large-scale climatic variation

(e.g. snow fall and temperature), while selecting cities to vary

in characteristics that might influence selection, drift and gene

flow [27]. We selected 20 cities that varied by two orders of mag-

nitude in area and human population size, and by one order of

magnitude in human population density (figure 1; electronic

supplementary material, table S1). All city statistics were taken

from the 2016 Canadian census data [44].
(b) Population sampling and hydrogen cyanide assays
In each city, we identified a linear transect that captured a gradi-

ent in urbanization, including urban (high percentage of area

covered in buildings and roads), suburban (high density residen-

tial areas) and rural areas. Our transects were designed so that

half of the distance of each transect passed from the city centre

to the outer edge of the suburbs (hereafter referred to as

‘urban’), and an equal distance passed through rural areas.

Since cities varied in size, the length of transects varied accord-

ingly. We sampled between 20 and 40 sites within each city

(mean 24.5), recording the latitude and longitude of sampling

locations, with roughly half of the sites located in urban areas

and the balance located in rural areas. Distances between adja-

cent sampling sites were adjusted based on the length of the

transect, ranging from 150 to 500 m apart depending on city

size. Collection sites included road boulevards, public parks,

church yards, roadside ditches and residential lawns. In total,

we sampled 490 sites across the 20 cities, and we treated individ-

ual sites as our unit of replication. We hereafter refer to sampling

sites as ‘populations’. We sampled, on average, 20 plants per

population (range 9–26) for a total of 9905 plants. To avoid

http://rspb.royalsocietypublishing.org/
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Figure 2. The relationship between the frequency of individuals producing
hydrogen cyanide (HCN) and distance from urban centres across 20 cities.
HCN frequency indicates the frequency of functional alleles at CYP79D15
and Li, which are both required to produce HCN. Distance was standardized
to vary between 0 (city centre) and 1 (furthest rural population); the results
based on non-standardized distance were qualitatively identical (electronic
supplementary material, table S2). The relationship between HCN and distance
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Data points were removed to avoid clutter. Numbers correspond to each city,
with numbers on the right labeling cities with positives slopes and numbers
on the left labeling cities with negative slopes, although mixed model analysis
showed that the slopes did not significantly vary between cities. Cities: 1—
Acton, 2—Angus, 3—Barrie, 4—Bradford, 5—Brantford, 6—Cobourg,
7—Elmira, 8—Everett, 9—Fergus, 10—Georgetown, 11—Guelph, 12—
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sampling the same clone twice, plant samples were collected at a

minimum of 3 m apart.

Each plant was assayed for the presence or absence of HCN

using the Feigl–Anger assay method of Gleadow et al. [45].

Detailed methods for the assay are provided in the electronic

supplementary material, text S1. The Feigl–Anger assay for

HCN provides virtually identical results to PCR assays for the

presence of dominant alleles at CYP79D15 and Li [30,39,40]

and thus was an accurate method for screening cyanogenic gen-

otypes. The data from the Feigl–Anger assay were used to

calculate the relative frequency of cyanogenic plants (hereafter

‘HCN frequency’) within populations.

(c) City characteristics
We quantified several characteristics from each city as potential

explanatory factors for the evolution of HCN and population

genetic variation. To understand how urbanization along the

transect was associated with evolution of HCN and population

genetic variation, we calculated the distance of each population

from the urban centre. Since equal halves of each transect were

in urban and rural areas, yet transects varied in length, we stan-

dardized the length of each city’s transect to a minimum value of

0 (city centre) and a maximum of 1 (furthest rural population).

This ensured that the most urban part of each transect

(value ¼ 0), the suburban–rural transition area (value �0.5)

and the furthest rural section of the transect (value ¼ 1), were

compared on an identical scale across all cities. Qualitatively

identical results and conclusions were found when we used

non-standardized distance (electronic supplementary material,

table S2). Importantly, standardized distance was a strong predic-

tor of % impervious surface (F1,111 ¼ 225.03, p ¼ 1.68 � 10228,

R2 ¼ 0.64, N ¼ 120) and the number of buildings (F1,113 ¼ 91.58,

p ¼ 4.44 � 10216, R2 ¼ 0.42, N ¼ 120), after accounting for vari-

ation among cities. From every population, we measured the

density of T. repens plants from five randomly located positions

within the population. Density was estimated using a 0.5 �
0.5 m quadrat divided into 25 equal area cells. Within each

quadrat, we counted the number of cells containing T. repens
and averaged the number of occupied cells across the five quad-

rats as our measure of plant density. Using the 2016 Statistics

Canada Census data [44], we collected data on the total area,

human population size and human population density of each

city sampled. We also recorded the number of dwellings and

dwelling density, but these metrics were nearly perfectly corre-

lated with human population size and density, respectively, so

they were removed from analyses. Finally, we determined the

% impervious surface and the number of buildings within a

100 m radius of each population sampled for population genetic

structure using the polygon area tool in Google Earth Pro

7.3.0.3832 (Google, Inc., Mountain View, CA, USA). These

measurements were made on the most recent image available

for each population as of November 2017. Per cent impervious

surface and the number of buildings were positively correlated

with each other (r ¼ 0.61, p , 0.001).

(d) Extraction of DNA and microsatellite genotyping
We studied the population genetic structure of T. repens across

eight cities (figure 1; electronic supplementary material, table S1),

which were selected to capture variation in city size. The popu-

lations and individuals used were a subset of those used in the

HCN assay. In each city, 150 individuals (15 populations with

10 individuals per population) were selected for DNA extraction

and genotyping, for a total of 1200 individuals. The 15 popu-

lations within each city included urban and rural populations

interspersed along each transect. Populations and individuals

were selected without knowledge of how they varied in HCN

frequency.
Detailed molecular methods for DNA extraction, microsatellite

amplification and diagnostics used to assess the efficacy of markers

at depicting neutral evolution are provided in the electronic

supplementary material, text S1. We characterized population

genetic variation within and between populations using 16 micro-

satellite loci that reliably amplified and met the assumptions

of Hardy–Weinberg equilibrium and showed no linkage

disequilibrium (electronic supplementary material, table S3).

(e) Statistical analyses
All methods for statistical analyses are provided in electronic

supplementary material, text S1. Briefly, questions 1 and 3

were addressed using linear mixed-effects models, and question

2 used multiple linear regression. Question 4 implemented a

combination of standard population genetic statistics, redun-

dancy analysis [46], Mantel correlograms [46] and estimates of

population genetic structure using discriminant analysis of prin-

cipal components (DAPC) [47] and the program STRUCTURE [48].

Analyses were performed using R v. 3.4.0 statistical software

[49] unless otherwise noted.
3. Results
(a) Does Trifolium repens evolve parallel clines in

hydrogen cyanide in response to urbanization?
The frequency of HCN within populations of T. repens
consistently evolved in response to urbanization. Across the

20 cities, the main effect of distance from the urban centre

http://rspb.royalsocietypublishing.org/


distance from urban centre

0.65 city

Acton
Brantford
Elmira
Everett
Fergus
Guelph
Port Hope
Waterloo

0.60

0.55

0.50

ob
se

rv
ed

 h
et

er
oz

yg
os

ity

0 0.25 0.50 0.75 1.00

rspb.royalsocietypublishing.org

5

 on July 19, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
was positively related to the proportion of plants that pro-

duced HCN within populations (figure 2; distance: F1,476 ¼

6.57, p ¼ 0.011), with an average increase in HCN frequency

of 0.6% for every additional kilometre from the urban

centre. The slope of HCN frequency versus distance did not

significantly vary between cities, and the maximum-likeli-

hood estimate of variance among slopes was 0 (95% CI:

0–0.013) (distance � city: x1 , 0.001, p ¼ 0.5). Cities signifi-

cantly varied 2.2-fold in the average frequency of HCN,

from 20.6 to 44.7% of plants producing HCN (x1 ¼ 26.1,

p , 0.001).
Figure 3. The relationship between observed heterozygosity and distance
from urban centres across eight cities. The overall relationship across all
cities is shown by the solid line in bold. A small number of data points
were omitted above and below the minimum and maximum values
shown on the y-axis to effectively illustrate the interaction.

Proc.R.Soc.B
285:20181019
(b) Does the strength of urban – rural clines vary with
city size?

The strength of urban–rural clines in HCN frequency was

unrelated to city size. The area of a city was not significantly

related to the slope of the relationship between HCN

frequency and distance (slope ¼ 20.001, t18 ¼ 20.256, p ¼
0.801). Multiple linear regression analysis that included

human population size, population density, city area and

average plant density did not identify any significant predic-

tors of variation in the strength of urban–rural clines using a

backward model selection procedure, which was expected

given the non-significant interaction between city and

distance.

The average density of T. repens plants strongly predicted

the average HCN frequency within a city. Using multiple

linear regression, the density of plants and the area of the

city were both retained after a backward selection procedure,

and these two variables explained 58% of the total variation

in HCN frequency. The density of clover plants was nega-

tively related to HCN frequency (HCN versus density:

slope ¼ 20.140, t16 ¼ 24.723, p , 0.001), indicating that

cities with denser clover populations were associated with

lower HCN frequency. The area of the city was negatively

related to HCN frequency, but the relationship was non-

significant (HCN versus area: slope ¼ 20.003, t16 ¼ 21.514,

p ¼ 0.149).
(c) Do urban populations have less genetic diversity
than rural populations?

Urban and rural populations did not consistently differ in

levels of genetic diversity (figure 3; electronic supplementary

material, tables S4 and S5). The main effect of distance from

the urban centre did not significantly predict any measure

of genetic diversity (electronic supplementary material,

table S4). When we substituted distance for % impervious

surface and the number of buildings, we found that these

variables also did not predict variation in observed hetero-

zygosity (HO), expected heterozygosity (HE) or the

inbreeding coefficient (FIS) ( p . 0.25). By contrast, % imper-

vious surface was positively related to allelic richness (AR)

(slopeAR versus sqrt(% impervious) ¼ 0.46, F1,112 ¼ 10.35, p ¼
0.002) (electronic supplementary material, figure S1), and

the number of buildings was negatively related to AR

(slopeAR versus sqrt(buildings) ¼ 20.04, F1,112 ¼ 5.95, p ¼ 0.016).

When these predictor variables were regressed against AR

individually, % impervious surface was still a significant pre-

dictor of AR (F1,112 ¼ 4.53, p ¼ 0.035), whereas the number of

buildings was not (F1,112 ¼ 0.35, p ¼ 0.557), suggesting the
effects of urbanization on AR are largely associated with

factors correlated with impervious surface.

Cities significantly varied in every measure of genetic

diversity (electronic supplementary material, table S4). For

example, mean observed heterozygosity varied between

0.535 in Port Hope and 0.618 in Waterloo (electronic sup-

plementary material, table S5). Similarly, mean AR per

locus within populations varied between 3.25 in Acton and

5.33 in Fergus (electronic supplementary material, table S5).

Distance and city interacted to affect only HO ( p ¼ 0.035; elec-

tronic supplementary material, table S4), indicating that in

some cases genetic diversity was lower in urban areas, and

in other cases the opposite was true (figure 3). Using pair-

wise Pearson correlations, we did not find any effects of

T. repens plant density, HCN frequency, the strength of

HCN urban–rural clines or the characteristics of cities (city

area, % impervious surface, number of buildings, human

population size and population density) on mean levels of

genetic diversity within cities (electronic supplementary

material, table S6).

(d) Are urban populations genetically differentiated
from rural populations, after accounting for
isolation-by-distance?

We frequently found evidence for IBD, but infrequently

detected significant genetic differentiation between urban

and rural environments. Genetic differentiation between popu-

lations within cities was relatively low (mean FST ¼ 0.054), yet

we detected significant genetic differentiation (FST . 0 at p ,

0.05) in 73% of all pair-wise population comparisons (elec-

tronic supplementary material, table S7). Geographical

distance significantly ( p , 0.05) predicted the strength of

genetic differentiation (i.e. IBD) between populations in

three of eight cities (electronic supplementary material,

table S8), and populations were significantly less genetically

differentiated at distances less than 2 km in five of eight

cities (electronic supplementary material, table S9). Genetic

differentiation between urban and rural populations

(urban–rural comparisons: mean FST ¼ 0.056) was slightly

greater than differentiation among urban populations

(urban–urban comparisons: mean FST ¼ 0.051) or among

rural populations (rural–rural comparisons: mean FST ¼

0.053) (electronic supplementary material, table S10). Despite

http://rspb.royalsocietypublishing.org/
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these differences, differentiation between urban and rural

populations was only significantly greater in the cities of

Fergus and Port Hope, after accounting for IBD (electronic

supplementary material, table S8). When we implemented a

Bonferroni correction based on eight tests (critical p-value ¼

0.0063), Port Hope was non-significant ( puncorrected ¼ 0.033),

and Fergus nearly met the conservative Bonferroni threshold

( puncorrected ¼ 0.0097). We found similar results when we

tested the effects of % impervious surface or the number of

buildings on genetic differentiation. After accounting for

IBD, % impervious surface (RDA: p , 0.001, R2 ¼ 0.15) and

the number of buildings (RDA: p ¼ 0.011, R2 ¼ 0.11) were

negatively related to differentiation among populations in

Fergus, indicative of the most urbanized populations being

the least differentiated from one another. These predictors

were not significant in any other city ( p . 0.05).

We found that populations were genetically structured

within and between cities. DAPC resulted in 10 distinct genetic

clusters when all plants were included from all cities, with

Guelph being the most genetically distinct (electronic sup-

plementary material, figure S2). The DAPC ordination also

showed that the urban and rural populations in Fergus were

genetically distinct from one another, whereas there was

broad overlap in the genetic structure of urban and rural popu-

lations in all other cities (electronic supplementary material,

figure S2). When we examined population genetic structure

within cities using STRUCTURE, we found that the optimal

number of genetic clusters (K ) within cities ranged from 2 to

10 (mean+ s.d. ¼ 4.25+2.96) (figure 4). Acton and Fergus

both had an optimal number of two clusters that were geo-

graphically separated along the urban–rural transect, and

RDA (see above) showed that this differentiation was only

significantly related to urbanization in the case of Fergus, con-

sistent with the results from the DAPC. The remaining six

cities showed evidence of extensive admixture within and

between populations along urban–rural transects (figure 4).
4. Discussion
Our results show that T. repens has consistently evolved

decreased HCN in response to urbanization across 20 cities,

and that this parallel evolution is best explained by changes

in natural selection and not genetic drift or gene flow.

These conclusions follow from four key results. First,

T. repens populations evolved clines in HCN frequency

regardless of city size, with an increase in the frequency of

HCN genotypes from urban to rural populations (Q1 and

Q2). Second, we did not find a consistent decrease in genetic

diversity with increasing urbanization, as expected if the

effects of genetic drift were greater in cities (Q3). To the con-

trary, % impervious surface was associated with greater

allelic richness (AR), consistent with urbanization supporting

more genetic diversity within urban T. repens populations.

Third, urbanization was only unequivocally associated with

greater genetic differentiation between populations in one

city (Fergus) (Q4). Moreover, FST values were generally low

and most cities exhibited a population genetic structure that

was consistent with frequent gene flow between urban and

non-urban populations. Here, we discuss how these results

provide insights into the relative roles of natural selection,

genetic drift and gene flow in shaping the evolution of

T. repens in response to urbanization.
(a) Parallel evolution in response to urbanization
Our study provides clear and compelling evidence that urban-

ization causes parallel evolution in genes that control an

ecologically important trait. We found surprising consistency

in the evolution of HCN despite large variation in the charac-

teristics of cities. For example, two of the steepest clines in

HCN were found in one of the smallest cities (Fergus) and

one of the larger cities (Guelph) (figure 2). Examination of

the individual regression lines in figure 2, and from simple

linear regression performed on each city (electronic sup-

plementary material, table S11), might lead one to conclude

that the effects of urbanization on HCN differed between

cities. However, these slopes were, on average, positive and

not significantly different from one another, both when

distance was standardized and not standardized. This result

indicates that urbanization consistently leads to the evolution

of a decreased frequency of cyanogenic genotypes, and

multiple linear regression showed that variation in the charac-

teristics of cities (e.g. city size) do not alter this evolutionary

outcome. These findings extend our earlier work by showing

that evolution of HCN in response to urbanization is not

restricted to large metropolitan areas [36]. Remarkably, the

average change in % HCN along the 20 urban–rural gradients

(0.60% km21) was nearly identical to the rate of change ident-

ified in the nearby megacity of Toronto (0.65% km21), and

approximately twice the rate observed in New York (0.34%

km21) and Boston (0.27% km21). If this parallel evolution is

caused by natural selection, it implies that the functional

CYP79D15 and Li alleles controlling the production of

HCN are repeatedly selected against in cities as large as

New York (NY, USA) and as small as Fergus (ON, Canada).

The results from the T. repens system add to a small but

growing body of literature, suggesting that urbanization

may frequently cause parallel evolution at genetic and pheno-

typic levels across a wide diversity of organisms [8,14,51,52].

For example, blackbirds (Turdus merula) have independently

colonized cities from forest populations throughout Europe.

Urban T. merula populations show increased wariness to

foreign objects [53], less migratory behaviour [54,55] and

exhibit repeated evolution in the same allele of the SERT

gene, which is associated with harm avoidance behaviours

[56]. The plant Virginia pepperweed (Lepidium virginicum)

has evolved to grow faster, bolt earlier and to be more

fecund in urban populations compared to non-urban popu-

lations across four cities [57]. This consistent evolutionary

change in L. viriginicum appears to result from the repeated

invasion of the same haplotype into urban environments in

at least three of the four cities examined. Although natural

selection is typically invoked as the causal evolutionary

mechanism to explain these examples of parallel evolution,

we are unaware of any study that has examined whether

genetic drift and gene flow could contribute to these patterns.
(b) Effects of urbanization on genetic drift and genetic
diversity within populations

It has been claimed that urbanization leads to smaller, more

fragmented populations that are subject to stronger genetic

drift [7,27]. If true, then we expect urban populations to exhi-

bit less genetic diversity than non-urban populations. This

pattern has been reported from a diverse array of native

species, including mammals [9], birds [58], amphibians [12],
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reptiles [59], mollusks [60], insects [61], and plants [62]. The

effects of urbanization on genetic drift in introduced species

that thrive in urban environments is less clear [63,64].

Understanding how urbanization affects patterns of

genetic diversity within populations can be important for
discerning whether parallel clines in allele frequencies are

likely to have arisen due to natural selection or genetic

drift. This is especially relevant in a plant like T. repens, in

which the production of HCN results from the epistatic inter-

action between two loci, and the fixation of a non-functional

http://rspb.royalsocietypublishing.org/
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allele at either locus causes the population to be fixed for the

acyanogenic phenotype. Using simulation modelling, Santan-

gelo et al. [21] showed that population bottlenecks and

founder events preferentially result in the fixation of acyano-

genic genotypes and can lead to urban–rural clines in HCN

frequency as strong as those reported here. Thus, if T. repens
invades cities from rural areas, which is expected given the

agricultural history of this plant [65], populations may

evolve a decreased frequency of HCN in cities due to the

effects of genetic drift alone [21]. Although we cannot exam-

ine this process directly, we can test whether urban

populations show the expected pattern of decreased genetic

diversity at neutral loci, which should occur if urban popu-

lations experienced population bottlenecks or founder events.

Our results show that urbanization did not lead to a con-

sistent loss of genetic diversity in T. repens, and some

measures of urbanization were associated with increased

genetic diversity. There was no consistent effect of distance

from the urban centre on any measure of genetic diversity

(electronic supplementary material, table S4). Contrary to

the pattern predicted for native species [27], % impervious

surface was associated with increased allelic richness, indicat-

ing that urban populations contained a greater number of

alleles per locus than non-urban populations (electronic sup-

plementary material, figure S1). Greater impervious surface

itself is unlikely to be the causal factor underlying this

relationship, but instead urban features that covary with

impervious surface. For example, most urban and suburban

habitats in Ontario have an abundance of mowed grass in

which T. repens thrives. By contrast, T. repens is often difficult

to find in rural areas because it is restricted to mowed areas

and grazed pastures, which are not always abundant in

rural Ontario. It does poorly in crop lands, roadsides with

tall grass and abandoned agricultural land undergoing suc-

cession [38]. Although the density of populations did not

change as a function of distance from the urban centre

(F1,478 ¼ 0.11, p ¼ 0.739), our qualitative observations suggest

that the total abundance of T. repens is greater in cities than

equivalently sized non-urban areas. Thus, contemporary

urban T. repens populations could support a greater diversity

of alleles than non-urban populations that tend to be more

fragmented. Other measures of genetic diversity (Ho, HE

and FIS) may have been less affected by urbanization because

the large number of alleles at each locus could have allowed

for the maintenance of high heterozygosity and low diver-

gence between populations (electronic supplementary

material, table S5).

Our results for the effects of urbanization on patterns of

spatial variation in genetic diversity suggest that while

urbanization may frequently reduce genetic diversity in

native species, the effects of urbanization on exotic species

that are abundant in urban environments may be reversed

[27]. This hypothesis requires further investigation before

firm conclusions can be made, but it is clear that urbanization

can have diverse effects on patterns of genetic diversity

depending on a species’ natural history.

(c) Effects of urbanization on genetic divergence and
gene flow between populations

Many artificial and natural features of urban environments

can impede the movement of alleles across a landscape due

to reduced dispersal, and these barriers can facilitate the
genetic divergence of populations [7]. Consistent with this

prediction, there is evidence for elevated differentiation

among urban populations (i.e. urban–urban comparisons)

[10,12,58] and between urban and non-urban populations

(i.e. urban–non-urban comparisons) [57,66]. When such

divergence occurs, it may facilitate adaptive divergence

between populations.

Urbanization did not have consistent effects on genetic

differentiation or gene flow among T. repens populations. Popu-

lations frequently exhibited greater relatedness at small spatial

scales (less than 2 km; electronic supplementary material, table

S9), whereas IBD was not detected at larger distances. Urban-

ization only increased genetic differentiation over and above

the effects of IBD unequivocally in one city (Fergus), and differ-

entiation among urban populations within cities was, on

average, lower than urban–rural and rural–rural comparisons

(electronic supplementary material, table S10). The genetic

structure of populations showed evidence of widespread

admixture across urban–rural transects in six of the eight

cities. For example, the clear cline in HCN frequency in

Guelph (figure 2) was associated with an optimal number of

four genetic clusters based on STRUCTURE (figure 4). These clus-

ters were admixed in both urban and rural populations.

Together, these results suggest that there was extensive gene

flow among populations along urban–rural transects, poten-

tially caused by human-mediated movement of seeds and

stolons, and parallel clines in T. repens evolved despite this

gene flow. These results also show that increasing city size

does not cause increased differentiation between urban and

non-urban T. repens populations.

(d) Relative importance of natural selection, genetic
drift and gene flow

The evolution of parallel clines in response to repeated environ-

mental gradients is often viewed as the hallmark of evolution

by natural selection. It is not widely appreciated that repeated

population bottlenecks or founder events can also lead to clines

at genetic and phenotypic levels [21]. Restricted gene flow can

facilitate adaptive genetic divergence along environmental gradi-

ents, whereas high gene flow may prevent adaptation to

environmental gradients. We are unaware of any study that has

compared the relative roles of natural selection, genetic drift

and gene flow in shaping the evolution of populations in

response to replicated urbanization gradients. However, the indi-

vidual components of these processes have been examined over

the course of multiple separate studies in the white-footed

mouse [9,25,67,68] and blackbird [56,58]. Examining the effects

of these processes in a single study would provide a strong test

of the relative roles of natural selection, drift and gene flow in

shaping the evolution of populations in response to urbanization.

Our study took such an approach and provides compelling

evidence that natural selection is the primary evolutionary

mechanism responsible for increasing HCN frequency with

decreasing urbanization. High plant abundance, high levels

of genetic diversity in populations and the lack of a consistent

reduction in genetic diversity in urban centres rule out genetic

drift as an explanatory factor for the evolution of clines in

HCN. We found significant genetic differentiation and little

evidence of admixture between urban and rural populations

of Fergus, which may have facilitated the evolution of a cline

in this city. The lack of clear differentiation and evidence of

gene flow between urban and rural populations in other

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org

9

 on July 19, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
cities might be expected to prevent the evolution of clines, yet

clines still evolved (figure 2). This finding implies that natural

selection between urban and rural populations is sufficiently

strong to show a clear pattern of adaptation despite the

homogenizing effects of gene flow.
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