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Whole genome prediction (WGP) modeling and genome-wide association (GWA)
analyses are big data issues in agricultural quantitative genetics. Both areas require
meaningful input from the statistical scholarly community in order to further improve
the accuracy of prediction of genetic merit and inference on putative causal variants
as well as improving the computational efficiency of existing methods and algorithms.
These concerns have become increasingly critical as new sequencing technologies will
only exacerbate current model dimensionality problems. We focus primarily on mixed
model and hierarchical Bayesian analyses which have been most commonly pursued by
animal and plant breeders for WGP thus far. We draw attention to our observation that
many such previous analyses have not carefully inferred upon hyperparameters defined
at the top levels of the Bayesian model hierarchy, but simply arbitrarily specify their
values. We also reassess previous discussions on WGP model dimensionality, believing
that useful data augmentation schemes utilized in various Markov Chain Monte Carlo
(MCMC) schemes have led to a general misunderstanding that heavy-tailed or variable
selection-based WGP models may be highly parameterized relative to more standard
mixed model representations. Computational efficiency is addressed with respect to
MCMC and competitive, albeit approximate, alternatives. Furthermore, GWA analyses
are reassessed, encouraging a greater reliance on shrinkage-based inferences based on
critically chosen priors, instead of potentially nonreproducible fixed effects P value-
based inference.
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1. BACKGROUND

Genetic evaluation of livestock has inspired many statistical developments with a very
good and extensive historical account written by Gianola and Rosa (2015) and a much
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shorter yet effective summary provided in Gianola (2000). Indeed, it can be readily argued
that the need to provide such genetic evaluations provided the early motivation in formal-
izing prediction of random effects (Hazel 1943), followed by the development of mixed
effects models to additionally adjust for nongenetic systematic or “fixed” effects (Hen-
derson et al. 1959). Animal geneticists were also early adopters of Bayesian inference
(Gianola and Fernando 1986), even before these methods became heavily popularized by
introduction of the Markov Chain Monte Carlo (MCMC) algorithm (Gelfand et al. 1990).
Of course, hierarchical modeling inference, whether based on classical mixed models or
Bayesian analyses, is now pervasively used in many areas of agricultural, biological, and
environmental statistics research and applications, including those published in this jour-
nal.

During the latter part of the twentieth century, animal and plant breeders valiantly strived
for algorithmic and computing strategy improvements, whether it pertained to the estimation
of variance components (Gilmour et al. 1995; Johnson and Thompson 1995; Meyer 1989;
Misztal 1990; Misztal and Perez-Enciso 1993) or solving large systems of mixed model
equations (Schaeffer and Kennedy 1986; Strandén and Lidauer 1999). These developments
were driven by increasing sizes of databases as the number (n) of records and the number
(q) of animals (i.e., number of levels of random effects) processed in these mixed model
equations exponentially increased over time with both n and q having exceeded 10million
(M) for American Holstein dairy cattle genetic evaluations several decades ago (Wiggans
et al. 1988)! These challenges were further compounded by the fact that typically q > n
as historical pedigree information can be extensive and because of the desire to genetically
evaluate both male and female breeding stock for sex-limited traits (e.g., dairy bulls do not
produce milk). In other words, predictions of genetic merit are typically desired for many
animals that have no records of their own. Hence, animal breeders have been historically
accustomed to solving “big data” problems, in no small part because of their passion for
reliable quantitative genetic inference, not much unlike the physicists, engineers, or neuro-
scientists earnestly trying to confront their own statistical inferential challenges as described
in Brown and Kass (2009).

The twenty-first century generation of quantitative geneticists face far greater chal-
lenges, primarily because of the advent of genomic selection based on whole genome
prediction (WGP), a concept commonly attributed to Meuwissen et al. (2001) although
some earlier credit should also be given to Nejati-Javaremi et al. (1997). WGP is
defined as the prediction of genetic merit of individuals based on dense genotypic
marker information. Some very good recent reviews on WGP have been provided in
the context of applications to aquaculture (Taylor 2014), livestock production (Blasco
and Toro 2014; Garrick et al. 2014; Goddard et al. 2010), crop production (Desta and
Ortiz 2014; Jannink et al. 2010; Jonas and de Koning 2013), and forestry (Gratta-
paglia and Resende 2010). Meuwissen et al. (2001) foresaw that genome sequencing
technologies would make genotypes based on thousands (K) and now even millions
(Druet et al. 2014), of single nucleotide polymorphism (SNP) markers widely avail-
able for livestock breeding; nevertheless, current genetic evaluation systems are typically
based on genotypes derived from tens of thousands of SNP markers (Wiggans et al.
2011).
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SNPmarkers are biallelic markers such that the provided SNP-specific covariates are typ-
ically either of value 0, 1, or 2, i.e., the number of copies of an arbitrarily chosen reference
allele. Assuming that these polymorphic SNP markers are in close proximity or associa-
tion, more specifically linkage disequilibrium (LD), with polymorphic genes or quantitative
trait loci (QTL) that influence the trait of interest, Meuwissen et al. (2001) conjectured
and demonstrated by simulation that the jointly estimated effects of all SNP markers in a
penalized regression analysis, whether based on classical mixed model or more extensive
hierarchical Bayesian specifications, should provide reliable estimates (i.e., WGP) of the
total genetic merit of animals for the trait of interest.

There have been a large number of comparisons made between various WGP methods
and models against each other based on simulation and/or analysis of real data, some of
which are summarized in recent reviews (de los Campos et al. 2013; Gianola 2013). The use
of hierarchical Bayesian analyses forWGP has particularly proliferated in the animal breed-
ing and genetics community (Gianola 2013; Gianola et al. 2009). Increasingly, others are
focusing their attention on discovering segregating genes with major effects as in genome-
wide association (GWA) analyses (Hayes 2013) based either on just using phenotypic data
as the response variables or further integrating these phenotypes with other ‘omics’ response
variables such as gene expression or proteomics data (Kadarmideen 2014). It is not the intent
of this review to necessarily endorse one statistical paradigm, method, model or computing
strategy over another except to suggest that WGP and GWA research is in critical need
of intellectual input from the broader statistical community, particularly given that there is
currently a dire shortage of quantitative geneticists able to work on these issues (Eisen 2008;
Misztal 2007).

In this review, nevertheless, we will highlight that the rigor of many previous WGP
model assessments may have been compromised due to improper specification or tuning
of key hyperparameters at the higher levels of the model hierarchy. Hyperparameters typ-
ically refer to those parameters that define the distribution of effects specified in the first
stage (likelihood) or even later stages of a Bayesian hierarchical model. For the simplest
hierarchical model, being the linear mixed model, hyperparameters are merely synonymous
with variance components; hence, hyperparameter inference in mixed models then equates
to variance component estimation, an already established research area (Searle et al. 1992).
However, hyperparameter inference is further extended to include other parameters that
characterize the nature of heavy-tailedness or variable selection in more flexible hierarchi-
cal WGP model specifications.

We focus primarily on parametric WGP in the context of prediction but also discuss the
implications of these efforts in GWA analyses which are often based on the same statistical
models as WGP except that the focus is on inferring putative causal variants instead of the
prediction of total genetic merit. We furthermore reconsider the issue of model dimension-
ality in the context of augmented models, computational aspects, including alternatives to
MCMC inference, and point to future yet unresolved areas of work, again hoping to harness
the intellectual energy of the broader statistics community that might develop a passion for
quantitative genetics research.
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2. AN INTRODUCTION TOWHOLE GENOME PREDICTION
MODELING

The first-stage specification of virtually all parametric WGP models can be written as
follows:

yi = x′
iβ + z′

ig + ei , i = 1, 2, . . . , n, (1)

or jointly for all n records as

y = Xβ + Zg + e (2)

where y = {yi }ni=1 ,X = [ x1 x2 · · · xn ]′, and Z = [ z1 z2 · · · zn ]′ are known, and
e = {ei }ni=1. Here yi represents the record on subject i whereas g = {

g j
}m
j=1 such that g j

represents the random effect of SNP j and considered to be a random draw from distribution
p

(
g j |ϑ

)
, where ϑ represents a vector of hyperparameters, and ei is typically N I I D

(
0, σ 2

e

)
.

Furthermore, z′
i = [ zi1 zi2 . . . zim ] represents them-dimensional row vector of SNP geno-

types on subject i where zi j ⊂ {0, 1, 2} denotes the number of copies of a reference allele
at SNP j on subject i . Finally, β represents a vector of unknown fixed effects with x′

i being
the corresponding known p-dimensional row vector of covariates.

Noting that typically m � n, Meuwissen et al. (2001) recognized the need to specify
a penalty or prior, i.e., p

(
g j |ϑ

)
, in order to be able to even estimate g; i.e., otherwise,

treating g as fixed would make g nonestimable (Gianola 2013). Yet even with m < n (e.g.,
Wiggans et al. 2015), it is reasonable to assume exchangeability amongst the elements of g
and hence specify a prior. Typically, elements of g are specified to be independent a priori;
i.e., p(g|ϑ) = ∏m

j=1 p
(
g j |ϑ

)
. If p

(
g j |ϑ

) ≡ N (0, σ 2
g ), then the sole hyperparameter is

ϑ = σ 2
g . A commonly used inferential strategy in this case might to use restricted maximum

likelihood (REML) to estimate variance components like σ 2
g and σ 2

e (Searle et al. 1992)
followed by the use of best linear unbiased predictions (BLUP) of g, often referred to as
ridge regression BLUP (rrBLUP) of g, and, subsequently, genomic BLUP (GBLUP) of
the genetic merit u = Zg of all animals conditional on these REML estimates. We should
quickly add, nevertheless, that the term GBLUP is generally reserved for the mixed model
reparameterization used to directly solve for BLUP of u instead of directly solving for BLUP
of g. That is, in GBLUP, the genotypes Z are typically rescaled such that u = Z∗g with

var (u) = Z∗Z∗′σ 2
g where Z∗ has elements z∗i j = zi j−2 p̂ j

k with k =
√
2

∑m
j=1 p̂ j (1 − p̂ j )

based on p̂ j = 1
2n

∑n
i=1 zi j denoting the estimate of the frequency of the reference allele

for SNP j . That is, Z∗Z∗′ can be regarded as a genomic marker derived matrix of realized
additive genetic relationships between animals (Habier et al. 2007) as opposed to a matrix of
expected additive genetic relationships derived simply from a pedigree (Henderson 1976).
Computational advantages of the GBLUP as opposed to the rrBLUP solving approach are
quite apparent when m � q; furthermore, it is computationally feasible using GBLUP
to backsolve for BLUP (g) from BLUP (u) (Gauldron-Duarte et al. 2014; Strandén and
Garrick 2009). An important point worth noting is that u as defined above only pertains
to the portion of the genetic merit that is marked by genotypes (i.e., Z or Z*) such that it
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has been often recommended to additionally model polygenic effects based on the use of
pedigree information (Calus and Veerkamp 2007).

In addition to the rrBLUP specification provided above, Meuwissen et al. (2001) further
conjectured that gmight be better characterized by heavier tailed specifications like a scaled
Student t density, i.e., p(g j |ϑ) = tν(0, σ 2

g ), thereby requiring an additional degrees of

freedom hyperparameter ν such that ϑ = [σ 2
g ν ]′ . They labeled this model as BayesA.

Meuwissen et al. (2001) further extended BayesA with a variable selection specification
called BayesB such that p(g j |ϑ) ≡ tν(0, σ 2

g ) with probability π for non-zero g j and a

point mass on zero with probability 1 − π ; in other words, ϑ = [σ 2
g ν π ]′ extends by

yet one more hyperparameter π . Note that Meuwissen et al. (2001) did not work explicitly
with a scaled Student t formulation but its well known hierarchical specification based on
a scale mixture of normals (Andrews and Mallows 1974). That is, g j |ϑ ∼ tν(0, σ 2

g ) is
marginally equivalent to g j |σ 2

g j
∼ N (0, σ 2

g j
) followed by σ 2

g j
|σ 2

g , ν ∼ χ−2(ν, νσ 2
g ) with

E(σ 2
g j

|σ 2
g , ν) = ν

ν−2σ
2
g . Meuwissen et al. (2001) and most other subsequent researchers

refer to σ 2
g j

as SNP-specific variances; however, since the dimension of each g j is simply 1,

the σ 2
g j

should perhaps be merely characterized as augmented variables as discussed later.

Also, Meuwissen et al. (2001) defined π as Prob(σ 2
g j

= 0) = Prob(g j = 0) whereas we
prefer the opposite definition of π = Prob(g j = 1) in this review, similar to what is more
commonly defined in the conventional variable selection literature (O’Hara and Sillanpää
2009).

SinceMeuwissen et al. (2001), there have been various other extensions including the use
of alternative heavy-tailed specifications for g such as, for example, the Laplace distribution
inBayesianLASSO (de losCampos et al. 2009b), specifications based onmodeling elements
of g as correlated (Yang and Tempelman 2012), a mixture based on a normal distribution for
non-zero g and a point mass on 0 in BayesC (Habier et al. 2011), a closely related mixture

on two normals (high variance σ 2
g for non-zero g j , low variance

σ 2
g
c with c � 1 for “zero”

g j , both distributions centered on zero) as in stochastic search and variable selection or
SSVS (George and McCulloch 1993; Verbyla et al. 2009), or even more extensive variable
selection based on the mixture of three or more distributional components for g such as in
BayesR (Erbe et al. 2012). This ever expanding library of Bayesian parametric approaches to
WGP, with labels that typically involve various letter/symbol suffixes to “Bayes,” has been
satirically referred to as “Bayesian alphabet” analyses (Gianola 2013; Gianola et al. 2009).
Criticisms of these approaches have been followed by a stronger advocacy for alternative
approaches based on machine learning and/or nonparametric techniques (de Los Campos
et al. 2009a; De los Campos et al. 2010b; González-Recio et al. 2014; Morota and Gianola
2014)with the basic premise being that these lattermethods are better designed for prediction
rather than for inference.

3. INFERENCE ON HYPERPARAMETERS

3.1. GENERAL ISSUES CONCERNING SPECIFICATION OF HYPERPARAMETERS

An important precursor for linear mixed model inference is how to specify variance
components such as σ 2

g or σ 2
e . As indicated previously, these hyperparameters are typically
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estimated using REML such that one should really then refer to the corresponding estimates
of g as empirical (e-) rrBLUP (Robinson 1991) leading to e-GBLUP of ui = z′

i g as being
the estimated genetic merit of subject i ; however, we will not make the distinction between
rrBLUP and e-rrBLUP, for example, in this review. Typically, e-rrBLUP(g) is generally
not meaningfully different from posterior means of g based on fully Bayes inference using
MCMC on a rrBLUP model, provided that the posterior marginal density of the variance
components σ 2

g and σ 2
e (i.e., p(σ 2

g , σ 2
e |y)) is reasonably symmetric (Gianola et al. 1986).

As with any hierarchical Bayesian model analysis, it is important to determine which
hyperparameters are estimable andwhich are not. If hyperparameters are used to structurally
specify distributional forms for exchangeable elements, such as g (and augmented variables
{σ 2

g j
}mj=1 as another example) then they are generally estimable, although then arbitrarily

vague or, conversely, justifiably informative priors with known parameters should be spec-
ified, in turn, on these hyperparameters. Examples not only include σ 2

g in linear mixed
models (e.g., rrBLUP or GBLUP), but additionally ν in BayesA and π in BayesB, for
example. Arbitrarily specifying these hyperparameters can lead to a substantial degradation
in performance as previously noted in WGP modeling (Lehermeier et al. 2013; Yang et al.
2015). Conversely, independent subjective priors with known hyperparameters are typically
specified separately for parameters that are not considered to be exchangeable such as, for
example, elements of β. Further illustrations of structural versus subjective priors is provided
in Bello et al. (2010) and Kizilkaya and Tempelman (2005).

For WGP models with hierarchical specifications beyond rrBLUP, such as BayesA and
BayesB, it has not generally been too obvious how to estimate or specify other hyper-
parameters, even though these specifications have been widely recognized to be vitally
important (Gianola 2013; Gianola et al. 2009; Hill 2014). That such specification or tun-
ing is important should be intuitive. For example, as it pertains to the use of two different
marker densities (i.e., different m or lengths of z′

i , i = 1, 2, . . . , n) for the same set of phe-
notypes (i.e., same n), it should be obvious that the genomic variance component σ 2

g should
differ between the two analyses accordingly, assuming that z′

i has not been rescaled any
differently (e.g., all elements of z′

i are either 0, 1, or 2 in both cases). That is, using Eq. (1)
and following de los Campos et al. (2013), var(ui ) = var(z′

ig) = z′
iziσ

2
g using rrBLUP

or var(z′
ig) = z′

iziE(σ 2
g j

|σ 2
g , ν) = z′

izi
ν

ν−2σ
2
g using BayesA, should not inherently differ

a great deal between two analyses differing only in the row dimension, m, of z′
i . Hence,

σ 2
g , being the typical or average SNP variance component, should decrease with larger m

as the cumulative genetic variability would need to be distributed over a greater number of
markers. Similarly, the specification of π should also be expected to decrease asm increases
based on a variable selection procedure such as BayesB, as has been demonstrated in pre-
vious studies (Yang et al. 2015; Yang and Tempelman 2012). That is, the ratio of the “true”
number (mo) of QTL relative to m should decrease with increasing m. Furthermore, with
π < 1, σ 2

g should be substantially greater in BayesB than what is specified for BayesA
since σ 2

g is spread over a smaller number of non-zero markers in BayesB. Finally, as also
determined by Yang and Tempelman (2012) and Yang et al. (2015), heavier tailed speci-
fications (i.e., lower ν) are generally inferred in models without variable selection such as
BayesA compared to BayesB. So as π · m increases (noting again that π = 1 in BayesA),
the distribution of g should be inferred to be more extreme (i.e., heavier tailed) than those



Challenges in Quantitative Genomics

obtained at lower marker densities and/or with BayesB variable selection; independently, de
los Campos et al. (2013) also conjectured a more extreme distribution of effects with higher
marker densities as well. To recapitulate, it should be obvious that these hyperparameters
should not be arbitrarily specified but that attempts be made to estimate at least some of
them.

3.2. METHOD OF MOMENTS APPROACHES

A seemingly reasonable strategy for estimating or tuning hyperparameters is based on a
methods ofmoments strategy, often referred to as the heritability-based rules (de los Campos
et al. 2013; Lehermeier et al. 2013; Pérez and de los Campos 2014). Recall again that
var(z′

ig) = z′
iziσ

2
g under a rrBLUP specification. Averaging across all n subjects then, the

average or overall genetic variance is defined to beMSXσ 2
g whereMSX = (1/n)

∑n
i=1 z

′
izi ;

for other hierarchical Bayesian models, the corresponding genetic variance depends upon
other hyperparameters in ϑ in addition to σ 2

g . Hence, if the heritability (h2) of a trait is
“known”whichmaybe a dubious assumption formost field data analyses, one couldmultiply
h2 by the phenotypic variance σ 2

y and equate it toMSXσ 2
g to solve or tune for σ

2
g in a rrBLUP

specification; de losCampos et al. (2013) further demonstrated how this sameapproach could
be used to tune σ 2

g in BayesA or BayesB models, holding constant ν and π .
However, as Lehermeier et al. (2013) duly noted, this strategy is based on rather strong

assumptions, the most prominent being the independence of marker effects which may
be tenuous if strong LD (i.e., strong multicollinearity) exists among the SNP markers. For
BayesA and BayesB, Lehermeier et al. (2013) demonstrated that using methods of moments
to provide these “optimal” values, as they described them, for σ 2

g may lead to poorer cross-
validation performance compared to specifying σ 2

g to be 1/10 of these optimal values. Also,
it may not be completely obvious whether to base hyperparameter specifications on means
or modes using this approach (although the label “methods of moments” would imply the
use of means), as they can be quite different from each other. Using the BayesA example
described by Lehermeier et al. (2013), the mean of a σ 2

gχ−2 (ν, ν) is ν
ν−2σ

2
g whereas the

mode is ν
ν+2σ

2
g . So if, ν = 4 as often arbitrarily specified, then the mean of the SNP specific

variances is 3 times greater than that of the mode; however, it is not totally obvious which
might be the better specification for σ 2

g if one was going to equate either the mean or the
mode to a “typical” value for SNP-specific variances.

3.3. CROSS-VALIDATION APPROACHES

Some researchers (Heslot et al. 2012; Usai et al. 2010) have suggested to use cross-
validation based on a preselected grid of values to estimate or tune hyperparameters ϑ;
tuning is then based on some criteria such as predictive performance in a validation subset
based on estimates derived from a training subset. The utility of this approach is somewhat
vulnerable to the choice of range and coarseness of grid of values of ϑ chosen, which in turn
is partly determined by the dimension of ϑ and the available computing resources. Hence,
as also noted by de los Campos et al. (2013) and Lehermeier et al. (2013), cross-validation
can be prohibitively expensive as a strategy for hyperparameter inference.
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As an interesting sidenote, several areas of study that have historically depended upon
cross-validation-based inference for tuning parameters, including smoothing splines (Rup-
pert et al. 2009), have increasingly relied more upon REML-like approaches to estimate
tuning parameters, particularly given the remarkable similarity to mixed model inference
for some of these semiparametric models. In fact, estimates based on REML tend to dis-
play greater stability than estimates derived from cross-validation tuning (Wang 1998). This
advantage of REML has been increasingly recognized for nonparametric WGP approaches
based on, for example, kernel regression (Endelman 2011).

3.4. FORMAL INFERENCE ON HYPERPARAMETERS

Suggesting then that REML is a suitable strategy for estimating variance compo-
nents in rrBLUP (Endelman 2011), how should hyperparameter inference be conducted
in WGP models facilitating heavy-tails (BayesA, Bayesian LASSO) and/or variable selec-
tion (BayesB, BayesC)? In principle, hyperparameter inference should not really differ from
variance component estimation, such that likelihood and/or Bayesian inference strategies
should be considered. For example, Pinheiro et al. (2001) describe likelihood-based strate-
gies for estimating hyperparameters in the situation where both g and e are scaled Student
t distributed; in other words, their model is BayesA-like except that robust heavy-tailed
behavior is also conferred on the residuals. Subsequently, MCMC strategies for inferring
hyperparameters in BayesA and Bayesian LASSO models (Yi and Xu 2008), as well as
BayesB models (Yang et al. 2015; Yang and Tempelman 2012) have been provided. Con-
ceptually, if fully Bayes inference (i.e., using MCMC) is applied to a BayesB model, model
averaging is essentially conducted over several models since BayesA (i.e., π = 1), rrBLUP
(π = 1, ν → ∞), and BayesC (ν → ∞) are all special cases of BayesB.

However, there have been some challenges in attempting to estimate all hyperparameters,
most notably ν (Habier et al. 2011) because of the naturally high posterior correlation
between some of these hyperparameters. As another example,Gianola (2013) citeDuchemin
et al. (2012) who suggested identifiability problemswith BayesC, noting that asπ increased,
estimates of σ 2

g went down; in other words, the conclusion was drawn that π was not
separately estimable from σ 2

g . However, similar phenomena have been characteristic of
many other quantitative genetic models such that innovative MCMC strategies have been
proposed to help alleviate similar problems (Shariati and Sorensen 2008). Yang et al. (2015)
also noted the high posterior correlation between ν and σ 2

g in both BayesA and BayesB
models, yet proposed effective strategies based on the collapsed Gibbs sampler (Liu 1994)
to improveMCMCmixing for jointly inferring both hyperparameters. Conceptually,MCMC
inference on ν and σ 2

g in BayesA or BayesB should not be any different, for example, from
inferring upon similarly defined parameters in scaled Student t residual models as has been
successfully demonstrated previously (Rosa et al. 2003). Admittedly, however, inferential
issues would be more challenging for hyperparameters characterizing the distribution of g
than that of e, not just necessarily because of the difference in dimensionality (m � n), but
also because second stage prior specifications (i.e., on g) are further removed away from y
relative to the first stage likelihood specifications (i.e., on e) in the model hierarchy. In other
words, there is typically less information to estimate the (hyper)parameters that characterize
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the distribution of g relative to those that characterize the distribution of e. Many researchers
arbitrarily set ν in BayesA or BayesB models to values within 4 ≤ ν ≤ 6, as those values
represent specifications with rather heavy tails but where the first three central moments are
defined for a scaled Student t . However, Nadaf et al. (2012) has demonstrated that posterior
inferences of ν concentrated near 1 can lead to better WGP performance of BayesA models
compared to arbitrarily setting ν = 4.

One criticism that might be directed at much of the current MCMC-based research
on WGP modeling is the general lack of accountability regarding whether or not one has
demonstrably drawn a sufficient number ofMCMC samples, including the number of “burn-
in” samples to ensure that the sampler has converged in distribution to the true joint posterior
density (Gelman et al. 2014), before samples are even saved for inference. It is well known
that MCMC samples are highly autocorrelated over adjacently drawn cycles, particularly
in models that are highly parameterized; hence Monte Carlo error can be substantial if not
enough samples are drawn. A popular MCMC diagnostic metric is the effective sample
size (ESS) which estimates the number of effectively independent random samples from
the joint posterior distribution (Plummer et al. 2006). It is not unusual to find WGP studies
where less than a total of 100,000 MCMC samples have been drawn even though Yang and
Tempelman (2012) has noted the need for far more MCMC cycles in some WGP analyses
just to ensure ESS > 100 for some hyperparameters. Nevertheless, it should be quickly
added that 100 might be considered to be only a barely sufficient ESS to provide reliable
point estimates (i.e., posterior means), but certainly not reliable posterior densities. This
problem is particularly exacerbated for higher density SNP marker panels. Hence, further
research for improving computational efficiency of MCMC schemes in WGP modeling is
badly needed with emerging marker technologies (Yang et al. 2015).

4. DATA AUGMENTATION VERSUS THE CURSE OF
DIMENSIONALITY

4.1. HIERARCHICAL CONSTRUCTIONS

As indicated earlier, many of the proposed Bayesian alphabet models are merely exten-
sions of rrBLUP (or, equivalently, GBLUP) whereby p(g j |ϑ) is often specified to have
distributional assumptions other than Gaussian but for which the Gaussian is a special
case subset model. Indeed, most of these models are typically constructed by specifying
Gaussian densities for g conditional on SNP-specific augmented variables δ = {δ j }, i.e.,
p(g j |σ 2

g , δ j ) ≡ N (0, σ 2
g δ j ). Using δ then, we reparameterize the hierarchical construction

for BayesA very slightly fromMeuwissen et al. (2001) using δ j |v ∼ χ−2 (ν, ν), i.e., a scaled
inverted chi-square density defined such that E(δ j ) = ν

ν−2 . Nevertheless, it can be readily
demonstrated that marginally p(g j |ϑ) ≡ tν(0, σ 2

g ) using this specification as with BayesA.
BayesB additionally builds on top of BayesA by adding yet an another layer of augmented,
or rather, indicator variables which define membership conditionally into either one of two
mixture components: one defining a scaled Student t specification for non-zero g j and the
other being a point mass for g j on 0. Data augmentation is considered to be extremely
useful in MCMC inference because of the convenience of creating full conditional densities
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that are readily recognizable, albeit at the expense of increasing the number of variables or
working parts (Tanner and Wong 1987).

Now Gianola et al. (2009) and Habier et al. (2011) warned not only about the sensi-
tivity of g but also the sensitivity of augmented variables δ = {

δ j
}m
j=1 to hyperparameter

specifications. It is commonly perceived that the use of these augmented variables unduly
leads to highly parameterized models; for example, BayesA is typically characterized as
having at least 2m “parameters” if one counts both the dimension of g and δ. Hence BayesA,
for example, is typically perceived to not allow sufficient “Bayesian learning” from y for
meaningful inference on SNP-specific variances or, equivalently, δ (Gianola et al. 2009).
However, it is important to remember again that the marginal distribution of g is scaled
Student t in BayesA, such that, in principle, there really is only one additional parameter
(i.e., ν) relative to rrBLUP. That is, a scaled Student t distribution on the random effects
really only constitutes one additional parameter (i.e., ν) relative to a normal distribution
once δ is integrated out, recalling that as ν → ∞, BayesA converges to rrBLUP.

Data augmentation has been extensively used for MCMC inference in animal breeding
outside ofWGPapplications, includingprobitmixedmodels (Sorensen et al. 1995), censored
datamodels (Sorensen et al. 1998) and robust error models (Rosa et al. 2003) without similar
concerns. Perhaps one useful approach to address this dimensionality concern is to consider
methods that infer upon the effective number of parameters such as the deviance information
criterion (DIC) proposed by Spiegelhalter et al. (2002) as has been used byYi et al. (2014) for
WGPmodels. It is intriguing that currently there are proposals to use estimates of augmented
variables from previous analyses as inputs to subsequent or updated WGP analyses (Calus
et al. 2014); however, this practice deserves further study over and beyond the realization that
LD associations between SNPmarkers and causal variants will break down over subsequent
generations (Fragomeni et al. 2014).

4.2. EFFECTS OF DETERMINEDNESS AND MODEL COMPLEXITY

Recently, Wimmer et al. (2013) has suggested that determinedness, defined as the ratio
n/m, and model complexity, defined as the ratio mo/n may influence the relative utility of
hierarchical Bayesian specifications for WGP analyses. Specifically, Wimmer et al. (2013)
concluded that as mo/n increased and n/m decreased, the effectiveness of hierarchical
Bayesian WGP models, whether based on heavy-tailed and/or variable selection specifi-
cations, for improving prediction accuracy beyond rrBLUP diminished. Furthermore, their
performance relative to rrBLUP particularly degradedwith higher average levels of pairwise
LD between the markers, an observation also independently noted by de los Campos et al.
(2013). However, in Wimmer et al. (2013), specifications on various elements of the hyper-
parameters were either arbitrarily chosen, with different values of π chosen for different
species/traits based on somewhat ad hoc criteria, or based on the aforementioned methods
of moments approach for σ 2

g . It might be curious to reassess these comparisons based on
the more formal inferential approaches as described earlier. At any rate, there appears to
be, on average, a slight advantage in predictive accuracy for heavy-tailed and/or variable
selection specifications for WGP based on an extensive review of the literature thus far (de
los Campos et al. 2013). As an interesting sidenote, Vattikuti et al. (2014) also focused their
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attention on the joint effects of determinedness and model complexity but for GWA which
is addressed in a subsequent section.

4.3. INCREASING MARKER DENSITIES

O’Hara and Sillanpää (2009) suggested that m should be no more than 10–15 times
greater than n when using any penalized regression analyses such as those suggested in this
review whereas González-Recio et al. (2014) has suggested a corresponding m:n ratio cap
of 50–100. With a 777K SNP chip as becoming increasingly common for Holstein cattle
(Wiggans et al. 2011), this conservatively would imply that the number of animals should
be no less than, say, 50,000. But with emerging gene chips based on 28M+ different SNP
markers based on sequencing technologies (Daetwyler et al. 2014), it seems apparent that
manymore phenotypic recordswill be needed than are currently available formany livestock
species, particularly in light of the fact that multicollinearity among adjacent markers will
be typically extreme. Within a completely different context, Allenby et al. (2014) wrote that
focusing on statistical sufficiency or data compression will become increasingly important,
drawing the analogy that inferences will be akin to finding a needle in a haystack that keeps
getting increasingly bigger. Yang et al. (2015) recognized that reliable inferences on hyper-
parameters could be rather formidable with extremely high marker densities, particularly
as MCMC diagnostic performance (i.e., ESS) degrades substantially for the same number
of MCMC cycles with a higher m/n while the computational cost of each MCMC cycle
increases proportionally tom. They proposed that inferences on g, regardless of whichWGP
model is used, could be based on values of ϑ extrapolated from inferences based on lower
marker density panels; nevertheless, further work is badly needed in this area.

It is also important to recognize, as elucidated by de los Campos et al. (2013) that the
implications of increasing marker densities are much different in animal and plant breeding,
where LD is extensive and large, compared to human genetics where LD is considerably
lower. That is, de los Campos et al. (2013) suggested that pursuingm > 10, 000may not lead
to any sizeable increases in prediction accuracy for some dairy cattle traits whereas human
research continues to benefits from m exceeding hundreds of thousands. However, these
results did not factor into account the potential impact of haplotyping which is addressed
subsequently in this review.

4.4. MODELING CORRELATION

Most WGP researchers do not model correlation between elements of g, particularly
those pertaining to SNP markers in close proximity to each other. Yang and Tempelman
(2012) proposed modeling nonstationary correlation among the elements of g using a first-
order antedependence specification based on the order of SNPmarkerswithin chromosomes,
believing that any such dependence between elements of g in the vicinity of a QTL was not
simply due to multicollinearity. One proposed model, ante-BayesA, was based on superim-
posing first-order antedependence relationships on gwithin a scaled Student t distributional
framework with a second model, ante-BayesB, further superimposing variable selection on
top of ante-BayesA. They determined that prediction accuracy was enhanced in these mod-
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els relative to their conventional BayesA and BayesB counterparts, using both simulation
and application to weight data on mice.

de los Campos et al. (2013), citing work from Hastie (2009), noted that when predictors
are correlated, something that occurs when LD span over long regions, methods performing
variable selection were often outperformed by rrBLUP. Since QTL in large LD blocks
are usually characterized by a high degree of correlation between elements of g in those
regions, it might seem worthy to further investigate how specifying antedependence might
facilitate variable selection in these situations using, for example, ante-BayesB.Furthermore,
it also seems reasonable to consider using nonstationary correlation structures like first order
antedependence to estimate the effective number of markers, in much the same manner
that the numerator relationship matrix between animals can be used to infer the effective
population size or effective number of unrelated individuals (Pérez-Enciso 1995).

5. COMPUTATIONAL EFFICIENCY

5.1. IMPROVING MCMC SCHEMES

As noted previously, animal breeders are naturally concerned as much about computa-
tional efficiency as they are about statistical modeling given ever increasing m and n. This
may again explain the partial reluctance, for example, to conduct formal inference on ϑ

or modeling correlation between elements of g in Bayesian alphabet models. Furthermore,
many scientists working most closely with the industry on very large datasets are rather
content with the relative performance of GBLUP based on standard REML/BLUPmethods,
particularly since GBLUP has been demonstrated to be amenable to including information
on non-genotyped animals as described later. Other than GBLUP, most other hierarchical
Bayesian WGP models have been analyzed using MCMC which is often deemed to be
computationally expensive. Furthermore, MCMC does not allow a form of ‘memory’ when
re-running or updating analyses based on the collection of more data. As Allenby et al.
(2014) attests, “real-time” posterior densities are very difficult to get with big data using
MCMC in an era where just-in-time analysis updates are increasingly demanded (Liu et al.
2014). This is particularly true in animal breeding where inferences on breeding values are
continually updated (Wiggans et al. 2015).

To address this concern, it has been suggested to run multiple shorter chain analyses
and using meta-analytic methods to combine the results based on previous MCMC analyses
(Allenby et al. 2014). In the meantime, researchers continue to strive to improve computa-
tional efficiency of MCMC sampling schemes in animal breeding (Shariati and Sorensen
2008; Shariati et al. 2009; Yang et al. 2015). Animal breeding scientists have been particu-
larly astute in developing computational enhancements for WGP models including parallel
computing (Fernando et al. 2014; Wu et al. 2012), Gauss Seidel residual updating (Legarra
and Misztal 2008), or other right-hand-side updating strategies (Calus 2014). Although
most code created for public domain use is written using efficient low-level programming
languages such as FORTRAN, C or C++ (Aguilar et al. 2014; Fernando 2009), often with
convenient R wrapper packages (Endelman 2011; Pérez and de los Campos 2014; Wimmer
et al. 2012), the animal breeding community nevertheless has also been conscientious to
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provide lucid R code for pedagogical purposes as well (Gondro et al. 2013) in an attempt
to train and engage future researchers to further pursue these challenges.

5.2. APPROXIMATE ANALYTICAL APPROACHES

Provided that it is carefully conducted, MCMC provides a current gold standard for
fully Bayesian inference. However, because of its computational burden, there is a desire
to consider other approximate analytical approaches for Bayesian alphabet models beyond
GBLUP. Strategies based on expectation maximization (EM) have drawn increasing interest
for WGPmodels in animal breeding (Kärkkäinen and Sillanpää 2012). In fact, EM has been
characterized as a form of “big data Bayes” (Allenby et al. 2014) whereby the primary
focus is adapting computationally efficient strategies to compute joint posterior modes.
Furthermore, EM is amenable to analysis updates whereby one can readily use solutions
from a previous analysis as starting values for the current analysis.

Nevertheless, EM implementations in WGP modeling have faced several criticisms.
Firstly, it has been noted by de los Campos et al. (2013) that the vast majority of current EM
WGP proposals do not provide estimates of uncertainty about the estimated marker effects
(g) or breeding values (u = Zg). This is in spite of the fact that there are well established
strategies to provide the observed information matrix or asymptotic standard errors for such
estimates when using EM (Louis 1982; Meng and Rubin 1991). However, perhaps an even
more serious concern with these EM schemes is that they are known to converge or get
trapped at local modes that can be very different from global maxima (de los Campos et al.
2013;Gianola 2013). This is a particular concern asmuch previousWGPEM-based research
has been based on using g = 0 as starting values as noted by Chen and Tempelman (2015).

As illustrated by Kärkkäinen and Sillanpää (2012), the Bayesian LASSO prior on g j

can be constructed in at least two different ways. Firstly, it can be constructed directly
or marginally as g j ∼ Laplace(g j |λ), i.e., a Laplace distribution characterized by hyper-
parameter λ. Kärkkäinen and Sillanpää (2012) labeled the corresponding model based on
the direct use of this prior as the nonhierarchical Laplace approach. However, as simi-
larly demonstrated previously for BayesA, the Bayesian LASSO prior can be also con-
structed hierarchically, i.e., g j ∼ N (0, σ 2

g δi ) followed by δi ∼ Exp (λ)) where δ = {δ j }
again represents a vector of augmented variables that one must contend with in this so-
called hierarchical Laplace approach. Based on a simulation study, Kärkkäinen and Sillan-
pää (2012) concluded that use of the hierarchical versus nonhierarchical Laplace models
lead to substantially different EM-based inferences on g. That this could be even possi-
ble is rather difficult to understand given that marginally both constructions essentially
define the same model; however, perhaps convergence of g was to low probability pos-
terior modes for one or both (i.e., nonhierarchical versus hierarchical) of the alternative
constructions.

Recently, a potential solution to identifying sparse high posterior probability modes that
appears to be resilient to starting values has been proposed for high dimensional variable
selection models based on the use of SSVS modeling within an EM framework (Rockova
and George 2014a) and has been adapted for WGP in this special issue (Chen and Tem-
pelman 2015). Subsequent developments used to help mitigate the effects of high levels of



R. J. Tempelman

multicollinearity for high dimensional SSVS regression are further proposed in Rockova
and George (2014b) and warrant further investigation for WGP modeling.

One final critical issue is how to estimate hyperparameters (ϑ) in EM-like implemen-
tations. Kärkkäinen and Sillanpää (2012) deemed such a process to be nearly impossible.
Chen and Tempelman (2015) propose a REML like strategy to estimate all elements of ϑ in a
SSVS or BayesAWGPwithin an EM inference framework. An obvious limitation using EM
is that uncertainty in the hyperparameters may not be adequately accounted for as it would
be in a fully Bayesian analysis. For example, Lehermeier et al. (2013) noted that formally
allowing for uncertainty on the key hyperparameter in Bayesian LASSO was preferred to
assigning fixed “optimal” values to that same hyperparameter, as the former strategy better
allowed for Bayesian learning from the data. At any rate, alternative “empirical Bayes”
like strategies for inferring hyperparameters in WGP models seem warranted, such as the
strategy proposed by Perez-Elizalde et al. (2015) for kernel regression WGP models in this
special issue, the integrated nested Laplace approximation (Rue et al. 2009) or Laplace’s
method (Tierney and Kadane 1986). Variational Bayes (Logsdon et al. 2010) and approx-
imate Bayesian computation (Technow et al. 2015) are emerging analytical approaches
worthy of further pursuit in WGP modeling as they may overcome the noted limitations of
EM-based estimation while allowing inference that more closely matches MCMC but at a
fraction of the computational cost.

6. GENOME-WIDE ASSOCIATION ANALYSES

GWA analysis refers to quantitative genetic analysis that is focused on inferences on
SNP effects (i.e., g) rather than on predicting cumulative genetic merit (i.e., u = Zg) of all
individuals. This area is widely recognized to be plagued by lack of reproducibility across
studies (Li and Meyre 2012). Before the advent of WGPmodels, many GWA analyses were
simply based on a series of single marker regression analyses. However, this was eventually
recognized to be suboptimal for various reasons, including the inability to account for
population structure (Hayes 2013). Perhaps one of the most popular tests that account for
population structure is called EMMA (Kang et al. 2008). In EMMA, the basic linear model
[2], based on the rrBLUPassumptions, is adapted except that the effect g j for the SNPmarker
of interest is treated as fixed in a series of mixed model analyses for j = 1, 2, . . . ,m; i.e.,

y = Xβ+z j g j + Z− jg− j + e. (3)

Here Z− j refers to Z without column j where z j refers to column j of Z and not to
be confused with z′

i from Eq. (1) which refers to row i of Z. Typically in EMMA and
other related work (Gauldron-Duarte et al. 2014), Eq. (3) is rewritten using u = Z− jg− j

such that var (u) = Z− jZ′− jσ
2
g although the typical simplifying assumption is made that

Z− jZ′− j ≈ ZZ′ for all m analyses involving Eq. (3) in order to save computing time. Like
β, g j is treated as a fixed effect such that mixed model inferences for testing Ho: g j = 0,
j = 1, 2, . . . ,m is then typically based on a t- or z-based fixed effects test. This test statistic
is derived by dividing the generalized least squares (GLS) estimate of g j by its estimated
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standard error, typically basing the P value on a Bonferroni correction or other multiple
testing adjustments (Storey and Tibshirani 2003) as determined by the total number (m) of
SNP markers tested.

It might seem vexing that one would treat all elements of g as random (or having some
specified distributional form) in a WGP analysis whereas the element of g that is of specific
interest ismomentarily treated asfixed in aGWAanalysis.Alternatively, a randomeffects test
might be based on reverting from Eq. (3) back to Eq. (1) or (2), thereby treating all elements
of g as random, such that the point estimate of g j would be BLUP and the denominator of
a corresponding GWA test statistic would be the standard error of prediction for BLUP(g j )

defined as the square root of the prediction error variance (Gauldron-Duarte et al. 2014).Note
that the latter is also synonymous with the posterior standard deviation whereas BLUP(g j )

equates to the posterior mean from a Bayesian perspective; hence, the corresponding GWA
test statistic could be referred to as a posterior z score (Gelman et al. 2012). One obvious
reason why the random effects test is often avoided by GWA researchers that the shrinkage
of BLUP(g j ) to zero tends to be very “hard” (Hayes 2013) such that the random effects
test is rather conservative. In an example applied to backfat thickness in a pig resource
population based on a 44K (44,055) SNP marker panel, Gauldron-Duarte et al. (2014)
observed that the unadjusted (i.e.,with noBonferroni correction) shrinkageor randomeffects
test P values never went beneath 0.20! Conversely, statistically significant (Bonferroni
adjusted P < 0.05) SNP effects were determined using the fixed effects or EMMA test for
two different genomic regions previously determined as being important for that trait. The
EMMA test also appeared to preserve Type I error rates based on genome reshuffling or
permutation (Gauldron-Duarte et al. 2014).

Gianola (2013) wrote that BLUP is biased with respect to specific marker effects. Does
this reminder and the evidence provided by Gauldron-Duarte et al. (2014) then refute that
BLUP or “shrinkage is a good thing” (Allison et al. 2006; Robinson 1991), particularly as
even greater shrinkage of point estimates of g toward zero is to be far more likely as one
increases m/n? Gelman et al. (2012) seem to convincingly argue that shrinkage inference
in the context of high dimensional covariate inference is actually highly preferable to fixed
effects hypothesis testing, even when inference is focused on the individual regression
coefficients. With shrinkage comes borrowing of information across SNP such that point
estimates of g j are shifted toward each other and toward zero; hence, it is far less likely for
false positive results to occur with random effects testing as opposed to fixed effects testing,
even when a Bonferroni adjustment is invoked for the latter, albeit not for the shrinkage-
based random effects test. GWA actually characterizes a situation where it is rather unlikely
for the global null hypotheses to be true; that is, most g j will truly be non-zero, not only
because most traits are influenced by many genes (often thousands), but also because most
SNP markers are in non-zero LD with at least one of these genes. Hence, the generally
desired preservation of global Type I error may be somewhat misguided for GWA studies.
Gelman et al. (2012) further argue that the shrinkage penalty itself further builds multiple
testing concerns directly into the model such that there is no need to invoke multiple testing
adjustments on a random effects or posterior z score test.

However, since shrinkage estimation inherently involves borrowing of information across
exchangeable entities, a greater burden is placed on the model, i.e., careful specification of
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the prior on g. Recalling the harsh shrinkage provided by a Gaussian prior with rrBLUP
as described by Hayes (2013), one should alternatively consider pursuing sparser prior
specifications (i.e., heavy-tailed, variable selection or both) for GWA in a manner similar
to that described in Yi and Banerjee (2009) and Yi et al. (2014). This effectively facilitates
far less shrinkage for truly large values of g j whereas smaller values of g j are shrunk even
harder to 0 compared to the use of a Gaussian prior. The use of variable selection priors
in GWA are particularly attractive in that one can estimate the posterior probability that g j

is non-zero; this estimate might be considered an even more robust measure of association
as opposed to the use of P values (Hayes 2013). Furthermore, these posterior probabilities
have a strong theoretical connection with false discovery rate reporting (Käll et al. 2008).

Because of potentially high correlation between inferences on elements of g deriving
from adjacent SNP markers in the vicinity of a QTL, some individuals have advocated the
use of GWA inferences based on average estimates of g j contained within moving genomic
“windows” (Fernando andGarrick 2013). Awindowwould be defined as a subset of adjacent
markers such that the estimate of g j for the SNP in the middle of that window is based on an
average of the estimates of all g j within that window. Since it can be rather challenging on
how to properly specify the widths or boundaries of such windows, it might also be useful
to consider formal correlation modeling strategies, such as first order antedependence, for
example, to adaptively infer upon the appropriate width of such windows. Alternatively
a procedure based on smoothing splines has been recently proposed by Beissinger et al.
(2015).

7. MISCELLANEOUS ISSUES

7.1. COMBINING INFORMATION ON GENOTYPED AND NON-GENOTYPED

ANIMALS

As indicated earlier, animal breeders have been particularly resourceful in combining
developments in statistical, algorithmic, and computational sciences in addressing the needs
of the livestock industries. One particular WGP need that required a solution was how to
combine genetic evaluations on animals that have genomicmarker information with animals
that do not, particularly since high genotyping costs have generally precluded the use of
genotyping on all animals. Christensen and Lund (2010) and Legarra et al. (2009) indepen-
dently derived amodel nowknown as single-stepGBLUPor ss-GBLUP (Legarra et al. 2014)
by partitioning u into components from non-genotyped (u1) and genotyped animals (u2),
i.e., u = [u′

1 u′
2 ]′. The multivariate Gaussian prior density of u specified in ss-GBLUP is

loosely derived by conditioning arguments, i.e., writing p (u) = p (u1|u2) p (u2) whereby
p (u2) is based on using the realized genomic relationship matrix between genotyped ani-
mals, as indicated previously with GBLUP, whereas p (u1|u2) is based on imputing realized
relationships involving non-genotyped animals based on their pedigree-based relationships
with each other and with genotyped animals. The resulting hybrid genetic/genomic rela-
tionships, or correlation matrix, between all of u = [u′

1 u′
2 ]′ is typically referred to as

the “H” matrix, thereby making its usage particularly amenable for large scale BLUP-based
genetic/genomic evaluations (Fragomeni et al. 2015)within aGBLUPmodeling framework.
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The ss-GBLUP has been recently extended to a fully hierarchical Bayesian framework by
Fernando et al. (2014) with extensions for GWA analysis and an approximate “weighted”
ss-GBLUP approach that closely emulates BayesA both provided by Wang et al. (2012).

7.2. NONPARAMETRIC VERSUS PARAMETRIC APPROACHES?

Various nonparametric approaches toWGPhavebeenmore extensively advocated such as
kernel regression (Morota andGianola 2014) and various othermachine learning approaches
(González-Recio et al. 2014). Although they are not nearly used as widely as the Bayesian
alphabet models described thus far, they have been periodically demonstrated to be superior
with respect to predictive accuracy, particularly when epistasis is extensive (Howard et al.
2014). Nevertheless, it may be possible that some comparisons may have been affected by
improper tuning/inference of hyperparameters in both nonparametric and Bayesian alpha-
bet models as discussed previously. At any rate, nonparametric methods, which typically
involves specifying predictions as nonlinear functions of the SNP genotypes, appear to have
very attractive WGP properties and indeed deserve greater attention.

A current conceptual limitation is that it has not been clearly elucidated how these non-
parametric approaches could bemodified for inference, specifically for GWA types of analy-
ses. Superior prediction properties for WGP (i.e., on u) may not necessarily equate with
efficient inference on SNP-specific regression coefficients (i.e., on g) which does not appear
to be currently well defined, if at all, with nonparametric methods for GWA. This may be
another fruitful area for further study.

7.3. HAPLOTYPING

Animal breeders are gradually moving away from biallelic SNP-based modeling, as
predominantly described in this review, to multi-allelic haplotype effects in Z realizing that
SNP haplotypes (i.e,. groupings of SNP in high LD with each other) are likely to be in
higher LD with QTL than the individual biallelic SNP themselves (Cuyabano et al. 2014;
Hayes 2013). Now, this is not necessarily a trivial task as this implies that elements of Z
needs to be inferred based on a process called phasing, often with considerable uncertainty
particularly since the size of the blocks is often based on an arbitrary LD threshold. From a
modeling perspective, this involves modifying Model [2] such that g is now partitioned into
b < m genome-location defined haplotype blocks g = [ g′

1 g′
2 · · · g′

b ]′ with the dimension
of each such component g j of g being defined by the number of unique haplotypes in that
block. The corresponding columns of Z = [Z1 Z2 · · · Zb ] again represent 0–1–2 covariate
assignments (number of copies of each corresponding haplotype)within each of the b blocks.

It is curious that whereas fixed effects hypothesis testing has been advocated for GWA
biallelic marker modeling as described earlier, there has been no philosophical difficulty
treating elements of g as random effects for GWA analyses based on the use of multi-
allelic haplotypes (Hayes 2013). This may relate to the fact that the number of haplotypes
within each block is typically large enough to conveniently treat g j , j = 1, 2, . . ., b as
random. Doing so allows GWA evidence to be based on a likelihood ratio test for that
block-specific variance component providing, in essence, a “blessing of dimensionality.”
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Indeed, haplotyping-based inference will blur the distinction between what might be con-
sidered augmented variables versus haplotype block-specific variance components. At any
rate, it seems increasingly likely that haplotype-based modeling, whether for WGP or for
GWA, will be much more informative than biallelic SNP modeling, as has been described
previously, and thereby likely improve the relative performance of, say, variable selection-
based strategies to determine genomic regions of interest. In particular, haplotyping-based
WGP or GWA analyses will make far more efficient use of information deriving from high
marker density panels or sequencing technologies, i.e., much larger m. Even so, it will still
be imperative to properly estimate or tune hyperparameter specifications in these analy-
ses as well, although haplotype-based inference should lead to greater success with stable
hyperparameter inference than what has been attained up until now.

7.4. CRITERIA FOR ASSESSING GOODNESS OF FIT OR SUPERIORITY OF

PERFORMANCE

Evenwith simulation studies based ongenerating historical LDbetweenSNPand additive
SNP effects, we truly do not have a reasonable way of indicating what the “true” values of
the hyperparameters should be with parametric models. For example, π cannot be really
interpreted as the proportion of all SNPs that are QTL, for example, because π innately
depends upon the strength of LD associations between markers. Hence simulation studies
have primarily focused on comparisons between methods for prediction of genetic merit
(i.e., u) where analyses of real data have focused on cross-validation measures of accuracy
such as correlation which can be faulty measures of reproducibility (Irizarry 2015).

Given these concerns, itmay be useful to explore othermetrics for performance, including
those discussed near the end of González-Recio et al. (2014) or the Hellinger distance as
proposed by Lehermeier et al. (2013). Plasmode-based permutations of the data are also
useful to address false positive performance rates between competing methods for GWA
(Gauldron-Duarte et al. 2014). At any rate, this is an area that is dire need of further study
and investigation.

7.5. STRUCTURED POPULATIONS AND GENOTYPE BY ENVIRONMENT

INTERACTION

In heterogeneous populations where different strains or groups exist, marker effects (g)
should be allowed to vary betweengroups.Various promising statisticalmodels are presented
and tested by de los Campos et al. (2015) to allow for such heterogeneity. Similarly, when
the same strains or breeds are distributed across various environments, one should allow for
potential genetic by environment (G×E) interactions, particularly in an era of potentially
disruptive climate changes (Pregitzer et al. 2013). Nevertheless, G×Emodeling only further
intensifies the curse of dimensionality. Recently, Jarquin et al. (2014) presented a WGP
model for G×E based on high dimensional environmental covariates and genotypes using
kernel-based covariance functions. Nevertheless, they suggested that their Gaussian prior
specifications might be far too limiting, such that future research in variable selection and/or
heavy-tailed specifications are warranted.
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7.6. USING BIOLOGICAL INFORMATION TO AID WGP AND GWA

As the number of markers increase, it may be useful to consider how prior information
on known coding regions or QTL could be used to selectively choose or upweight SNP
markers in those regions relative to other markers. Although Schoen et al. (2014) have noted
such advantages in doing so, Morota et al. (2014) and Janss (2015) separately concluded
that markers in functionally annotated coding regions did not necessarily provide superior
predictive ability for WGP relative to SNP markers in noncoding regions. At any rate, it is
becoming increasingly important to link inferences on g to their cellular functions or to their
corresponding transcript or protein expression, being a basic objective of ‘omics research
(Kadarmideen 2014). Given the increasing emphasis on cross-disciplinarity as it pertains to
statistical research (Brown and Kass 2009), a statistician or quantitative geneticist working
in WGP or GWA will have far greater impact once he or she studies the biological context
of the work so that he/she is better able to generate ideas for future scientific investigation.

8. CONCLUDING REMARKS

Formidable challenges exist for WGP and GWA modeling, particularly, as real-time
analyses are becoming increasingly desired for both focus areas while, at the same time, the
number of marker covariates and phenotypes continue to increase. Although research on
alternative inferential approaches are needed, greater care is needed in correctly inferring
parameters in current WGP models, particularly those defined at the highest levels of the
model hierarchy (i.e., hyperparameters). Data augmentation schemes will require further
refinements (Van Dyk and Meng 2001) to order to facilitate computation for hierarchical
Bayesian WGP modeling. Furthermore, hypothesis testing strategies for GWA, perhaps
away from P value-based inferences (Halsey et al. 2015), should be reconsidered in favor
of shrinkage-based inferences in order to help improve the reproducibility of these studies.Of
course, any proposed method also needs to respect the overriding computational efficiency
concerns so that it can be pragmatically adopted! It should be also quickly added that any
future enhancements to both WGP and GWA modeling extend readily to human health
applications, particularly given the increasing interest in harnessing WGP for personalized
medicine, for example (de los Campos et al. 2010a).

Although intellectual property and/or economic considerations have limited the accessi-
bility of genomicmarker data (Jorasch 2005), more SNP data is becoming publicly available
in an effort to further harness the intellectual energy of the statistical and quantitative genet-
ics community (de Koning and McIntyre 2012). Other useful resources include the 1000
genomes project (http://www.1000genomes.org/) and the FraminghamHeart Study (https://
www.framinghamheartstudy.org/researchers/description-data/genetic-data.php).
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