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Abstract:  33 

Humans have bred different lineages of domestic dogs for different tasks, like hunting, herding, 34 
guarding, or companionship.  These behavioral differences must be the result of underlying neural 35 
differences, but surprisingly, this topic has gone largely unexplored.  The current study examined 36 
whether and how selective breeding by humans has altered the gross organization of the brain in dogs.  37 
We assessed regional volumetric variation in MRI studies of 62 male and female dogs of 33 breeds.  38 
Notably, neuroanatomical variation is plainly visible across breeds.  This variation is distributed non-39 
randomly across the brain.  A whole-brain, data-driven independent components analysis established 40 
that specific regional sub-networks covary significantly with each other.  Variation in these networks is 41 
not simply the result of variation in total brain size, total body size, or skull shape.  Furthermore, the 42 
anatomy of these networks correlates significantly with different behavioral specialization(s) such as 43 
sight hunting, scent hunting, guarding, and companionship.  Importantly, a phylogenetic analysis 44 
revealed that most change has occurred in the terminal branches of the dog phylogenetic tree, 45 
indicating strong, recent selection in individual breeds.  Together, these results establish that brain 46 
anatomy varies significantly in dogs, likely due to human-applied selection for behavior.   47 

 48 

Significance statement: 49 

Dog breeds are known to vary in cognition, temperament, and behavior, but the neural origins of this 50 
variation are unknown.  In an MRI-based analysis, we found that brain anatomy covaries significantly 51 
with behavioral specializations like sight hunting, scent hunting, guarding, and companionship.  52 
Neuroanatomical variation is not simply driven by brain size, body size, or skull shape, and is focused in 53 
specific networks of regions.  Nearly all of the identified variation occurs in the terminal branches of the 54 
dog phylogenetic tree, indicating strong, recent selection in individual breeds.  These results indicate 55 
that through selective breeding, humans have significantly altered the brains of different lineages of 56 
domestic dogs in different ways. 57 
 58 

  59 
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Introduction 60 

A major goal of modern neuroscience is to understand how variation in behavior, cognition, and 61 
emotion relates to underlying neural mechanisms.  A massive “natural experiment” in this arena has 62 
been right under our noses: domestic dogs.  Humans have selectively bred dogs for different, specialized 63 
abilities – herding or protecting livestock; hunting by sight or smell; guarding property or providing 64 
companionship.  Significant breed differences in temperament, trainability, and social behavior are 65 
readily appreciable by the casual observer, and have also been documented quantitatively (e.g., (Serpell 66 
and Hsu 2005, Tonoike, Nagasawa et al. 2015)).  Furthermore, recent genetic research indicates that this 67 
behavioral variation is highly heritable (MacLean, Snyder-Mackler et al. 2019).   68 

This panoply of behavioral specializations must rely on underlying neural specializations.  A small 69 
number of studies have investigated neural variation in dogs, including, for example, the effects of skull 70 
shape on brain morphology (e.g., (Carreira and Ferreira 2015, Pilegaard, Berendt et al. 2017) and 71 
anatomical correlates of aggression (e.g., (Jacobs, Van Den Broeck et al. 2007, Vage, Bonsdorff et al. 72 
2010)).   However, the neural underpinnings of behavioral differences between breeds remain largely 73 
unknown. 74 

Most modern dog breeds were developed in an intentional, goal-driven manner relatively recently in 75 
evolutionary time; estimates for the origins of the various modern breeds vary between the past few 76 
thousand to the past few hundred years (Larson, Karlsson et al. 2012).  This strong selection pressure 77 
suggests that brain differences between breeds may be closely tied to behavior.  However, selection 78 
also occurred for outward physical appearance, including craniofacial morphology.  This may have 79 
placed constraints on the internal dimensions of the skull, which in turn may have had secondary effects 80 
on brain morphology.  There is substantial diversification of skull shape across dog breeds, and this has 81 
been linked to behavioral differences (Drake and Klingenberg 2010, McGreevy, Georgevsky et al. 2013).  82 
Alternatively, neuroanatomical variation may be explained primarily by body size rather than breed 83 
membership, with different breeds’ brains representing minor, random, scaled-up or scaled-down 84 
variants of a basic species-wide pattern.   85 

Any attempt to determine whether breeding for behavior has altered dog brains would have to be able 86 
to differentiate between these competing (and potentially interacting) hypotheses.  A simple 87 
comparison of regional volumes would be insufficient for several reasons.  First, a significant difference 88 
in the volume of, for example, the amygdala in pit bulls versus golden retrievers might seem intuitively 89 
meaningful, but in order to ascertain whether such a difference was truly the result of selection pressure 90 
on behavior, the phylogenetic structure of the dog family tree needs to be taken in to account in order 91 
to partition variance attributable to inheritance, and equal statistical priority needs to be given to the 92 
alternative hypotheses that observed variation in morphology.  Second, and perhaps most importantly, 93 
a priori comparisons of regional gray matter volumes presuppose that experimenters can identify 94 
meaningful borders between regions.  For highly conserved structures with clear anatomical boundaries, 95 
like the amygdala, this task is surmountable – but very little is known about the organization of higher-96 
order cortical regions in dogs, and some complex behaviors that are the focus of selective breeding, like 97 
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herding or interspecies communication, almost certainly rely on some of these areas.  For this reason, 98 
even creating the regional outlines for a simple ROI analysis would be problematic. 99 

Therefore, the current study took a totally data-driven, whole-brain, agnostic approach to assessing 100 
morphological variation across dog brains.  Our goal was to (a) determine whether significant non-101 
random variation in brain anatomy exists across dogs, and if so, (b) differentiate between the competing 102 
and possibly interacting explanations for this variation. 103 

 104 

Materials and Methods 105 

 106 
Subjects 107 

The dataset included T2-weighted MRI scans from 62 purebred dogs of 33 different breeds.  These were 108 
grouped into 10 different breed groups as defined by American Kennel Club, which ostensibly represent 109 
groupings that were developed for similar behavioral specializations, such as herding or hunting.  Table 110 
1 lists the breed, breed group, and other data for all dogs included in the study.    111 

 112 

ID Breed Sex 
Age 
(years) 

Body 
mass 
(kg) 

Cephalic 
index 
(from 
database) 

Neuro-
cephalic 
index 

Brain 
volume 
(mm3) 

Ostensible behavioral specialization 
/ purpose 

1 Basset 
Hound 

Male 4.0 28.1 0.74 51.89 100070.10 scent hunting  

2 Beagle Male 14.3 17.0 0.74 61.82 82750.29 scent hunting  

3 Beagle Male 4.0 11.7 0.76 61.82 64887.65 scent hunting  

4 Beagle Male ND 28.5 0.85 61.82 23259.63 scent hunting  

5 Beagle Male 4.0 8.3 0.82 61.82 66733.96 scent hunting  

6 Beagle Male 1.7 28.5 0.78 61.82 65738.93 scent hunting  

7 Bichon Frise Male 9.0 9.3 0.80 61.51 61849.71 explicit companionship  

8 Border 
Collie 

Male 6.1 28.2 0.65 54.38 83215.10 herding  

9 Border 
Collie 

Male 5.6 20.6 0.65 54.38 81668.60 herding  

10 Boston 
Terrier 

Male 11.9 12.5 0.90 92.62 66301.82 explicit companionship 
vermin control 
sport fighting  

11 Boston 
Terrier 

Male 5.8 8.9 0.90 92.62 76426.61 explicit companionship vermin 
control 
sport fighting  

12 Boxer Male 8.1 31.8 0.68 67.19 81555.33 guarding/protecting/sentinel work 
police/military work, war  
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sport fighting  

13 Boxer Male 5.0 34.2 0.67 67.19 80814.97 guarding/protecting/sentinel work 
police/military work, war 
sport fighting  

14 Boxer Female 10.7 31.8 0.83 66.28 93337.26 guarding/protecting/sentinel work  
police/military work, war  
sport fighting  

15 Boxer Male 9.3 40.8 0.70 67.19 82323.66 guarding/protecting/sentinel work  
police/military work, war  
sport fighting  

16 Bulldog Male 1.0 16.8 0.74 90.18 63154.13 explicit companionship  
sport fighting  

17 Bulldog Male 4.4 30.0 0.77 90.18 80128.00 explicit companionship  
sport fighting  

18 Cavalier 
King Charles 
Spaniel 

Female 0.5 3.2 0.81 76.77 55777.97 explicit companionship  

19 Cavalier 
King Charles 
Spaniel 

Female 0.5 14.5 0.92 76.77 64695.16 explicit companionship  

20 Cocker 
Spaniel 

Female 6.4 18.1 0.75 61.01 66708.41 bird retrieval 

21 Dachsund Female 11.3 4.9 0.79 51.76 44076.29 vermin control  
scent hunting  

22 Dachsund Female 6.6 6.4 0.77 51.76 60492.56 vermin control  
scent hunting  

23 Dachsund Male 7.8 5.6 0.81 49.59 57168.79 vermin control  
scent hunting  

24 Dachsund Female 1.8 5.3 0.81 51.76 49716.87 vermin control  
scent hunting  

25 Doberman 
Pinscher 

Female 4.7 29.8 0.62 46.96 80287.44 guarding/protecting/sentinel work  
police/military work, war  

26 English 
Pointer 

Male 7.3 27.3 0.74 ND 91448.24 bird retrieval 

27 German 
Short 
Haired 
Pointer 

Female 6.2 27.0 0.73 48.30 75612.46 bird retrieval 

28 Golden 
Retriever 

Male 10.0 39.8 0.69 56.52 96010.49 bird retrieval 

29 Golden 
Retriever 

Male 6.0 42.2 0.70 56.52 96941.92 bird retrieval 

30 Golden 
Retriever 

Male 11.0 34.9 0.68 56.52 86438.69 bird retrieval 

31 Greyhound Female 7.5 36.7 0.65 45.83 97610.47 sight hunting  

32 Greyhound Male 3.8 37.1 0.65 46.84 97774.89 sight hunting  

33 Greyhound Female 2.2 36.0 0.66 45.83 101969.38 sight hunting  
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34 Jack Russell 
Terrier 

Male ND 14.0 0.80 59.28 70125.35 vermin control  

35 Keeshound Male 7.2 21.6 0.71 60.18 68766.94 explicit companionship  
guarding/protecting/sentinel work  

36 Labrador 
Retriever 

Male 9.7 32.6 0.65 55.82 94762.33 bird retrieval 

37 Labrador 
Retriever 

Female 5.0 30.5 0.66 56.11 84161.70 bird retrieval 

38 Lhasa Apso Female 10.7 13.2 0.93 ND 58177.18 guarding/protecting/sentinel work  

39 Lhasa Apso Female 4.0 7.6 0.86 ND 58152.92 guarding/protecting/sentinel work  

40 Maltese Male 6.6 6.0 0.81 65.29 46642.03 explicit companionship  

41 Maltese Male 10.0 3.0 0.84 65.29 35280.20 explicit companionship  

42 Maltese Male 5.5 6.6 0.77 65.29 46629.97 explicit companionship  

43 Maltese Male 6.0 8.9 0.88 65.29 47610.27 explicit companionship  

44 Maltese Female 6.0 2.0 0.92 68.83 28052.45 explicit companionship  

45 Maltese Female 4.9 3.4 0.85 68.83 46330.73 explicit companionship  

46 Miniature 
Schnauzer 

Male 9.4 12.8 0.77 51.79 62053.63 vermin control  

47 Miniature 
Schnauzer 

Female 6.3 5.0 0.80 54.99 53517.22 vermin control  

48 Old English 
Sheepdog 

Male 3.7 33.1 0.69 54.39 80709.26 herding  

49 Pit Bull Male 2.1 27.1 0.72 69.96 80571.31 sport fighting  

50 Siberian 
Husky 

Female 3.0 18.1 0.67 55.17 62094.04 running/racing  

51 Silky Terrier Male 3.0 4.4 0.84 58.23 46832.08 vermin control  

52 Springer 
Spaniel 

Female 1.1 18.4 0.75 49.34 72442.26 bird retrieval 

53 Standard 
Poodle 

Female 7.9 22.6 0.73 ND 80235.75 bird retrieval 

54 Weimaraner Male 3.3 48.4 0.66 49.05 110812.36 sight hunting  

55 Welsh Corgi Male 5.6 15.1 0.72 63.09 83234.19 herding  

56 West 
Highland 
White 
Terrier 

Male 5.9 11.0 0.78 60.84 72254.08 vermin control  

57 Wheaton 
Terrier 

Male 7.0 19.2 0.71 ND 70234.47 guarding/protecting/sentinel work  
herding  
vermin control  
bird retrieval 

58 Whippet Female 15.5 13.6 0.72 50.60 71357.64 sight hunting  

59 Yorkshire 
Terrier 

Female 3.8 3.9 0.82 ND 45103.02 explicit companionship  
vermin control  

60 Yorkshire Male 13.0 4.2 0.81 ND 45217.54 explicit companionship  
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Terrier vermin control  

61 Yorkshire 
Terrier 

Male 0.8 3.5 0.79 ND 38163.05 explicit companionship  
vermin control  

62 Yorkshire 
Terrier 

Male 11.5 3.2 0.82 ND 51760.84 explicit companionship  
vermin control  

 113 

Table 1.  Data for all dogs used in the study.  Dogs from mixed/unknown breeds were excluded from analyses that used breed 114 
group as an independent variable.  Cephalic indices are sex- and breed-specific averages from a large public database (Stone, 115 
McGreevy et al. 2016).  Missing data denoted with “ND”. 116 

 117 
Image acquisition and preprocessing 118 
 119 
T2-weighted MRI images were acquired on a 3.0T GE HDx MRI unit with a GE 5147137-2 3.0T HD T/R 120 
Quad Extremity Coil.  Images were opportunistically collected at the Veterinary Teaching Hospital at the 121 
University of Georgia at Athens from dogs that were referred for neurological examination but were not 122 
found to have any neuroanatomical abnormalities.  All scans were re-reviewed by a board-certified 123 
veterinary neurologist before inclusion.   124 
 125 
The preprocessing pipeline was implemented using the NiPype workflow engine (Gorgolewski, Burns et 126 
al. 2011).  Both transverse-acquired and sagittally-acquired images were available for each dog.  127 
Transverse-acquired images ranged from 0.234 mm2 in-plane resolution and 2.699 mm slice distance to 128 
0.352 mm2 in-plane resolution and 3.499 mm slice distance.  Sagittally-acquired images ranged from 129 
0.273 mm2 in-plane resolution and 3.200 mm slice distance to 0.430 mm2 in-plane resolution and 3.200 130 
mm slice distance. To maximize the use of all available anatomical information, the transverse and 131 
sagittal images were combined as follows.  First, we manually performed skull-stripping on the 132 
transverse image.  Next, we determined the smallest region of interest (ROI) that completely covered 133 
the brain from the brain mask image.  The transverse image and transverse brain mask were then 134 
cropped using the computed ROI coordinates.  Then, the transverse images were resampled to produce 135 
isotropic voxels in all three dimensions, the sagittal image was resliced so that it was in the same 136 
orientation as the transverse images, and a rigid registration was computed from the sagittally-acquired 137 
image to the original transverse image.  The region containing the brain was then cropped in the sagittal 138 
image, and we then registered the smaller cropped sagittal image to the isotropically-resampled 139 
transverse brain image using a rigid registration.  Finally, the cropped transverse and sagittal images 140 
were then rescaled so that the robust mean intensity of both images was 100, the images were 141 
averaged together, and then the brain mask applied to this combined image.   A general diagram 142 
illustrating the overall processing pipeline is included in Figure 1-1, and a detailed NiPype registration 143 
workflow is included in Figure 1-2, both available in the extended data.  Additionally, the accompanying 144 
registration code is available at https://gist.github.com/dgutman/a0e05028fab9c6509a997f703a1c7413.    145 
 146 
Template creation 147 
 148 
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We produced a study-specific template representing the average brain morphology across the entire 149 
group, equally unbiased toward any particular image.  This was accomplished using the 150 
buildtemplateparallel.sh script in the ANTS software package (Avants, Tustison et al. 2009), which 151 
nonlinearly registers each image into a common spatial framework.   152 
 153 
Experimental design and statistical analyses 154 
 155 
Morphological analyses 156 
 157 
During nonlinear registration, a warpfield is produced that represents the mapping from the original 158 
image to the target image.  The Jacobian of the warpfield represents the degree of warping that had to 159 
occur in each original image in order to bring it into alignment with the target image. To localize 160 
significant variation in gray matter morphology, we applied a one-sample t-test on the demeaned log 161 
Jacobian determinant images.  This was accomplished using FSL’s randomise, a tool for Monte Carlo 162 
permutation testing on general linear models (Winkler, Ridgway et al. 2014).  This analysis permutes the 163 
sign of the log Jacobian and tests the null hypothesis that variation from the mean is random and 164 
therefore symmetrically distributed and centered around zero.  The resultant t-statistic image was 165 
thresholded at p<0.05, after multiple comparisons correction was carried out using threshold-free 166 
cluster enhancement (Smith and Nichols 2009). 167 
 168 
To calculate neurocephalic index, we identified maximally distant points on the left-right, rostral-caudal, 169 
and dorsal-ventral axes; neurocephalic index was computed the ratio of brain width to brain length x 170 
100. 171 
 172 
Cephalic index is defined as the ratio of skull width to skull length x 100.  For many scans in our 173 
database, the exterior of the skull was not visible, but a large database of skull measurements is publicly 174 
available (Stone, McGreevy et al. 2016).  We computed male and female average cephalic indices 175 
separately for each breed and used these sex-specific, breed-average measures in our analyses. 176 
 177 
To identify regional co-variation in gray matter morphology, we used GIFT, a software package for 178 
Matlab (Calhoun, Adali et al. 2001).  GIFT’s toolbox for source-based morphometry (SBM) (Xu, Groth et 179 
al. 2009) is a multivariate alternative to voxel-based morphometry (VBM).  It uses independent 180 
components analysis to identify spatially distinct, distributed networks of regions that covary across 181 
individuals, and computes their statistical relationship to other categorical or continuous variables.  T2-182 
weighted images underwent bias field correction using ANTS’s Atropos N4 tool (Avants, Tustison et al. 183 
2011) and segmentation into gray matter, white matter, and cerebrospinal fluid using FSL’s FAST tool 184 
(Zhang, Brady et al. 2001).  Gray matter segmentations were warped to the study-specific template and 185 
modulated by their log Jacobian determinants to produce per-subject maps of the degree of 186 
morphological divergence from the study-specific group-average template.  In other words, the input to 187 
SBM consisted of gray matter maps for each subject, where intensity at each voxel corresponded to the 188 
degree of deformation required in order to come into alignment with the template (i.e., the demeaned 189 
log Jacobians).  The number of sources was estimated using Akaike’s information criterion (AIC, (Akaike 190 
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1974)); the application of AIC in SBM is described in (Xu, Groth et al. 2009).  This procedure identified six 191 
components, each of which were thresholded at Z scores above 1.96 or below -1.96.  Multiple 192 
regression and ANOVA analyses were then used to compute the relationship of each component to 193 
American Kennel Club-defined breed groups, with the statistical threshold set at p<0.05 after multiple 194 
comparisons correction. 195 
 196 
Phylogenetic statistics 197 
 198 
Because comparative data may be non-independent due to shared phylogenetic history, the 199 
assumptions of standard statistical methods may be violated (Harvey and Pagel 1991). We therefore 200 
used phylogenetic comparative methods that account for phylogenetic non-independence by including 201 
expected phylogenetic variance-covariance among species into the error term of generalized least-202 
squares (‘pGLS’) linear models (Rohlf 2001). When quantifying linear models we additionally included a 203 
lambda parameter to account for phylogenetic signal (Pagel 1997). To test for differences in statistical fit 204 
among linear models that include different parameters (for example, the inclusion of grouping variables 205 
to test for differences among breed groups), we used least-squares phylogenetic analysis of covariance 206 
(pANCOVA) (Smaers and Rohlf 2016, Smaers and Mongle 2018). It should be noted that ‘phylogenetic’ 207 
approaches such as pGLS and pANCOVA are interpreted in the same way as standard least-squares 208 
approaches. The only difference between standard and phylogenetic least-squares approaches is that 209 
the phylogenetic approaches weight data points according to phylogenetic relatedness (Rohlf, 2001). 210 

We further investigated the relationship between morphological components and the phylogenetic tree 211 
by estimating the amount of change that occurs on each lineage using a multiple variance Brownian 212 
motion approach (Smaers, Mongle et al. 2016, Smaers and Mongle 2018). This approach estimates 213 
phenotypic change along individual lineages of a tree and has been shown to provide more accurate 214 
estimates than traditional ancestral estimation methods (Smaers and Mongle 2017).  215 

Lastly, we use multi-regime Ornstein-Uhlenbeck (‘OU’) approaches to estimate phylogenetic shifts in 216 
mean value directly from the data. This approach has become a standard approach in comparative 217 
biology to model trait change across a phylogeny. Specifically, this approach quantifies the evolution of 218 
a continuous trait ‘X’ as dX(t)= α[θ – X(t)]dt + σdB(t) where ‘σ’ captures the stochastic evolution of 219 
Brownian motion, ‘α’ determines the rate of adaptive evolution towards an optimum trait value ‘θ’ (90). 220 
This standard OU model has been modified into multiple-regime OU models allowing optima to vary 221 
across the phylogeny (Butler and King 2004). Such multi-regime OU models allow modelling trait 222 
evolution towards different ‘regimes’ that each display a different mean trait value. In other words, 223 
these approaches allow estimating directly from the data where in a phylogeny a shift in mean value of 224 
a trait has occurred. To overcome inherent difficulties with optimizing OU parameters (Ho and Ane 225 
2014), several algorithmic improvements have been proposed. Here, we use the approach proposed by 226 
Khabbazian et al. (2016). 227 

Results 228 
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Neuromorphological variation is plainly visible across breeds.  Midline sagittal images from the raw, 229 
native-space scans of selected dogs are shown in Figure 1A.  To provide a common spatial reference for 230 
measuring this variation, we created an unbiased, diffeomorphic template using the ANTS software 231 
package (Avants, Tustison et al. 2009).  This template represents the average brain for the entire 232 
dataset, and is shown in Figure 1B.   233 

To visualize morphological variation in a more standardized manner, we nonlinearly warped the 234 
template to each dog’s native-space image.  This allowed us to examine breed variation in brain 235 
morphology and size with invariant contrast and resolution.  We also additionally re-scaled these images 236 
to have constant rostral-caudal lengths.  This allowed us to more clearly visualize variation in 237 
morphology independent from variation in size.  Both sets of scaled template images are shown in 238 
Figure 1A.   239 

To carry out quantitative assessments of regional variation in gray matter morphology, we used the 240 
Jacobian determinants of the native-space-to-template spatial deformation fields to produce a variation 241 
intensity map.  These fields represent a map of where and how much each dog’s scan had to adjust in 242 
order to become aligned to the group-average template.  The standard deviation of these maps thus 243 
indexes the extent to which brain anatomy varies across individuals, and is shown in Figure 1C.   244 

To determine whether this variation was randomly distributed across the brain or focused in specific 245 
areas, we applied Monte Carlo permutation testing on the demeaned Jacobian determinant images.  246 
Importantly, this revealed that a large proportion of the brain shows significant gray matter 247 
morphological variation across subjects, illustrated in Figure 1D.   248 

  249 
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Fig. 1. Neuroanatomical 250 
variation in domestic 251 
dogs. 252 
(A) MRI images and 3D 253 
reconstructions of warped 254 
template from 10 selected 255 
dogs of different breeds.  256 
Public-domain photos 257 
from Wikimedia 258 
Commons.   259 
(B) Unbiased group-260 
average template for this 261 
dataset. See Figures 1-1 262 
and 1-2 for processing 263 
schematics. 264 
Neuroanatomical labels 265 
(based on (Palazzi 2011, 266 
Datta, Lee et al. 2012, 267 
Evans and de Lahunta 268 
2013)): a) olfactory 269 
peduncle; b) orbital 270 
(presylvian) gyrus; c) 271 
proreal gyrus; d) pre 272 
cruciate gyrus; e) 273 
postcruciate gyrus;  f) 274 
marginal (lateral) gyrus; g) 275 
ectomarginal gyrus;  h) 276 
suprasylvian gyrus; i) 277 
ectosylvian gyrus; j) sylvian 278 
gyrus;  k) insular cortex;  l) 279
piriform lobe.   280 
(C) Brain-wide 281 
morphological variation, 282 
regardless of breed, as 283 
indexed by the standard 284 
deviation of all dogs’ 285 
Jacobian determinant 286 
images.  287 
(D) A Monte Carlo 288 
permutation test on 289 
demeaned gray matter 290 
Jacobian determinant 291 
images revealed that 292 
much of gray matter 293 
shows significant deviation 294 
from group-mean 295 
morphology. Colored 296 
regions are all p<.05 after 297 
multiple comparison 298 
correction; T statistic 299 
values are illustrated.   300 
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Given these results, we next sought to determine what accounts for this variation by probing the extent 301
to which it is related to body size, head shape, and/or breed group membership. 302

Figure 2A shows the relationship between brain volume and body mass. The scaling coefficient of this 303
relationship (pGLS; b=0.231, 95% CI=0.26-0.36) is significantly lower than that observed across most 304
mammals (~0.67), indicating the occurrence of more variation in body size relative to variation in brain 305
size than would be expected. Importantly, using the tree structure from a recent large-scale genomic 306
analysis (Parker, Dreger et al. 2017), we were able to determine that the phylogenetic signal of the 307
brain-body allometry is negative – i.e., that variation present at the tree’s terminal branches is not 308
predicted by the deeper structure of the tree.  If grade shifts in the brain-body allometry exist, these 309
would putatively show differences among different breeds. We tested this hypothesis by estimating 310
putative grade shifts in the brain to body allometry directly from the data using an OU modelling 311
approach (Khabbazian, Kriebel et al. 2016). This analysis revealed no grade shifts, thereby indicating that 312
a one-grade allometry is the best explanation of the bivariate brain to body relationship.      313

 314

Fig. 2. Phylogenetic generalized least squares (pGLS) analyses on gross brain, body, and skull measurements.  (A) Brain 315
volume vs. body mass. (B) Neurocephalic index vs. cephalic index.  Plotted points represent breed averages, not individuals.   316

In mammals, head shape is commonly measured using cephalic index (also known as skull index), 317
calculated as maximum head width divided by maximum head length.  We were interested in the 318
possibility that human-driven selection on external craniofacial morphology may have had on the 319
internal dimensions of the skull.  To assess this, we computed an analogous neurocephalic index for each 320
dog (maximum internal cranial cavity length divided by maximum internal cranial cavity width).  Figure 321
2B shows the relationship between neurocephalic and cephalic index. Cephalic index is a significant 322
predictor of neurocephalic index (pGLS: b=0.37, t=3.70, p<0.01). Also here we questioned whether grade 323
shifts in this allometry exist, putatively showing differences among breeds.  This analysis revealed that 324
the neurocephalic-cephalic allometry was thus best explained by a two-grade model (F=31.19, p<0.001).  325
The breeds on the higher grade, with a greater neurocephalic index for a given cephalic index, were as 326
follows: Basset hound, beagle, German short-haired pointer, dachshund, cavalier King Charles spaniel, 327
springer spaniel, west highland white terrier, silky terrier, bichon frise, and maltese.  Importantly, this 328
grade difference in the neurocephalic to cephalic index aligns with a significant difference in body size 329



 

13 
 

(pANOVA: F=9.73, p<0.01; average body size 11kg, versus 23kg in other breeds). Smaller-bodied dogs 330 
hereby have a higher neurocephalic index (more spherical brains) for a given cephalic index (external 331 
head shape).   332 

If variation in dog brain anatomy is unrelated to behavior, then variation should be randomly distributed 333 
across regions.  Alternatively, if this variation represents heritable adaptations for behavior, then 334 
significant covariance should exist in separable, independent sub-networks of regions.  To assess this, 335 
we performed source-based morphometry, a multivariate alternative to voxel-based morphometry 336 
which makes use of independent components analysis.  This was accomplished using the GIFT software 337 
package (Xu, Groth et al. 2009).  Results revealed 6 networks where regional volume covaried 338 
significantly across individuals.  Figure 3 shows these networks, along with factor loadings for each 339 
breed group.  Major anatomical constituents of each network are labeled.  Additional research is needed 340 
to definitively link the function of each network to its adaptive role in response to behavior selection.  341 
However, we note putative roles which may serve as initial hypotheses for future research.   342 

Network 1 includes the nucleus accumbens, dorsal and ventral caudate, cingulate gyrus, olfactory 343 
peduncle, and gyrus rectus (medial prefrontal cortex).  These regions are part of or connected to the 344 
mesolimbic reward system, a network implicated in reward signaling related to reinforcement learning, 345 
incentive salience, and motivation broadly across species (Alcaro, Huber et al. 2007, O'Connell and 346 
Hofmann 2011); in dogs, the caudate nucleus activates for both food reward and human social reward 347 
(Cook, Prichard et al. 2016).  Tentatively, this network might be relevant for social bonding to humans, 348 
training, and skill learning.   349 

Network 2 involves brain regions involved in olfaction and gustation, including the piriform lobe, which 350 
contains olfactory cortex, and the insula and pseudosylvian sylcus, where the cortical representation of 351 
taste is located (Evans and de Lahunta 2013).  This component also involves regions of medial frontal 352 
cortex, which is involved in downstream or higher-order processing of chemosensation and shows 353 
activation in response to olfactory stimulation in awake but not sedated dogs (Jia, Pustovyy et al. 2014).   354 
We propose that this network might support volitional (as opposed to instinctive) responses to olfactory 355 
and gustatory stimuli.  356 

Network 3 includes a distributed network of subcortical regions that are involved movement, eye 357 
movement, vision, and spatial navigation, including the lateral geniculate nucleus, pulvinar, 358 
hippocampus, cerebellum, oculomotor nucleus, interpeduncular nucleus, ventral tegmental area, and 359 
substantia nigra.  It also involves cortical regions, including the medial part of the frontal gyrus 360 
(supplementary motor area) and the lateral gyrus (visual cortex).  Tentatively, this network may reflect a 361 
circuit involved in moving through the physical environment.   362 

  363 
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 364

Fig. 3.  Covarying regional networks in dog brain morphology.  Independent components analysis revealed 6 regional networks 365
where morphology covaried significantly across individuals.  Red and blue regions are volumetrically anticorrelated: in 366
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individuals where red is larger, blue tends to be smaller, and vice versa.  Graphs represent volumetric quantification of the top 5 367 
anatomical constituents of each of the 2 portions of each component. 368 

Network 4 involves higher-order cortical regions that may be involved in social action and interaction.  369 
The precruciate and prorean gyri house premotor and prefrontal cortex, respectively, while the gyrus 370 
rectus is part of medial prefrontal cortex.  The expansion of frontal cortex has been linked to increased 371 
sociality in extant hyena species (Holekamp, Sakai et al. 2007), and notably, the prorean gyrus has been 372 
linked to the emergence of pack structure in canid evolution (Radinsky 1969).  The sylvian, ectosylvian, 373 
and suprasylvian gyri represent regions of lateral sensory cortex situated between gustatory, auditory, 374 
and somatosensory cortex (Evans and de Lahunta 2013), and likely contain higher-order association 375 
areas related to sensation and perception.  In domestic dog fMRI studies, multisensory activation in 376 
these regions has been observed during the presentation of dog and human faces and vocalizations 377 
(Cuaya, Hernandez-Perez et al. 2016, Andics, Gacsi et al. 2017, Thompkins, Ramaiahgari et al. 2018).   378 

Network 5 includes limbic regions that have a well-established role in fear, stress, and anxiety, including 379 
the hypothalamus, amygdala, and hippocampus and adjacent dentate gyrus (for a review, see (Tovote, 380 
Fadok et al. 2015)).  These regions are involved in the HPA axis, which regulates behavioral and 381 
endocrine responses to environmental stressors and threats.  Some of these regions are also involved in 382 
other affective and instinctual processes, including mating, memory, and aggression (O'Connell and 383 
Hofmann 2011). 384 

Network 6 includes early sensory processing regions for olfaction and vision, including the olfactory 385 
peduncle and part of the lateral gyrus, which is the location of primary visual cortex (Evans and de 386 
Lahunta 2013).   387 

Next, we investigated the relationship between these components, total brain size, and skull 388 
morphology.  A significant relationship with total brain volume was present for all but Component 6, 389 
where it was marginal but did not meet significance  (Component 1: t = 3.663, p = 0.001; Component 2: t 390 
= -2.608, p = 0.014; Component 3: t = 6.219, p < .001; Component 4: t = -6.325, p < .001; Component 5: t 391 
= 3.938, p < .001; Component 6: t = 1.845, p = 0.076).   Components 3, 4, and 6 showed significant 392 
relationships with cephalic index, while Component 1 was marginal (Component 1: t = -1.945, p = 0.064; 393 
Component 3: t = -2.165, p = 0.041; Component 4: t = 2.411, p = 0.024; Component 6: t = -2.171, p = 394 
0.041; pGLS).  Components 1, 3, 4, and 6 showed significant relationships with neurocephalic index 395 
(Component 1: t = -2.258, p = 0.032; Component 3: t = -3.823, p = 0.001; Component 4: t = 7.066; p < 396 
.001; Component 6: t = -2.890, p = 0.007, pGLS).   397 

We also investigated the relationship between these covarying morphological components and the 398 
phylogenetic tree.  If variation in brain organization mainly reflects the deep ancestry of the tree, with 399 
little relationship to recent behavioral specializations, then brain morphometry should be highly 400 
statistically dependent on phylogenetic structure (i.e., high phylogenetic signal).  Conversely, if brain 401 
organization is strongly tied to selective breeding for behavioral traits, then morphological traits should 402 
be divorced from the structure of the tree (i.e., low phylogenetic signal).  We observed the latter (Figure 403 
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4).  The majority of changes that occur in these components take place on the terminal branches of the 404
phylogenetic tree. 405

 406

Fig. 4.  Relationship between morphologically covarying regional brain networks and phylogenetic tree.  Circles indicate 407
factor loading.  Phylogenetic tree from (Parker, Dreger et al. 2017).   408

Finally, we investigated whether these regionally covarying morphological networks were related to 409
behavior.  The American Kennel Club groups individual breeds into breed groups, but these breed 410
groups change periodically and some groups contain breeds with disparate behavioral functions: for 411
example, the non-sporting group includes both poodles and shar-peis.  Therefore, rather using AKC 412
breed groups, we identified each individual breed’s ostensible behavioral specialization(s) as noted on 413
the AKC website (www.akc.org).  These were entered into in a multiple regression analysis using the 414
GIFT Source Based Morphometry toolbox.  Each of the 6 components showed significant correlation 415
with at least one behavioral specialization (Figure 5).   The behavioral specialization associated with the 416
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most components (4 out of 6) was explicit companionship, and the component associated with the most 417
behavioral specializations (6 out of 10) was Component 4, which involves regions involved in social 418
action and interaction.  Specific associations between associated brain networks and behavioral 419
specializations are also apparent.  For example, Component 3, which involves regions involved in 420
movement, eye movement, and spatial navigation, showed a significant correlation with sight hunting, 421
while Network 2, which involves regions involved in olfaction and gustation, showed a significant 422
correlation with scent hunting.   423

 424

Fig. 5: Relationship between morphologically covarying regional brain networks and ostensible behavioral specializations.  425
Colors indicate partial correlation coefficients resulting from multiple regression analysis on source-based morphometry results.  426
Outlined boxes are significant at p < .05.  427

428

Discussion 429

430
The current study took a comprehensive, data-driven, agnostic approach to investigating 431
neuroanatomical variation in domestic dogs.  We first questioned whether significant variation in dog 432
brain morphology even exists.  The answer is a clear “yes”: differences in gross brain anatomy are 433
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readily appreciable (see Figure 1A).  This observation was further confirmed by a whole-brain, multiple-434 
comparison-corrected, voxelwise statistical analysis (Figure 1C-1D).  Having established this basic 435 
finding, we then went on to probe the relationship between multiple, potentially interacting factors that 436 
might be linked to this variation: the total size of the body or brain, the external and internal 437 
morphology of the skull, the structure of the dog phylogenetic tree, and the organization of internal 438 
brain networks. 439 
 440 
Dogs show intraspecific variation in morphology to a degree rarely seen in nature.  There is a hundred-441 
fold difference between the body mass of a Chihuahua (~1 kg) and the body mass of a Great Dane (~100 442 
kg) (Sutter, Mosher et al. 2008).  However, we found that dog brain sizes do not scale commensurately 443 
to dog body sizes, as indicated by a relatively low scaling coefficient for the relationship between brain 444 
size and body mass.  To appreciate this effect, consider the adjacent dachshund and golden retriever 445 
images in Figure 1A: the dachsund’s brain takes up most of the available endocranial space, while the 446 
golden retriever shows noticeably larger sinuses.  A phylogenetic analysis revealed that changes in 447 
relative brain size are not predicated by relatedness and are more likely the result of selection on 448 
specific terminal branches of the phylogenetic tree (i.e., individual breeds).   449 

In comparative animal cognition research, total brain size is often used as a gross index of cognitive 450 
capacity.  Several previous studies have investigated the relationship between dog body size and 451 
cognition or behavior, with apparently contradictory results (see (Helton and Helton 2010, Stone, 452 
McGreevy et al. 2016) vs. (Broadway, Samuelson et al. 2017)).  Additionally, a study that used a single 453 
scaling metric across breeds found that larger-brained (i.e., larger-bodied) dogs performed better on 454 
tests of executive function (Horschler, Hare et al. 2019).  We found that larger dogs do tend to have 455 
larger brains, but that the brain:body allometry across breeds is low, indicating high variability in 456 
brain:body ratio across breeds (Figure 2A).  Furthermore, we found that a substantial amount of 457 
variation in internal dog brain morphology is related to total brain size, suggesting that evolutionary 458 
increases or decreases in relative brain volume may be driven by changes in specific groups of regions.  459 
Moreover, we found that these networks differed across breed groups.  Therefore, shifts in relative 460 
brain size may be related to expansion or contraction of specific networks, potentially leading to the 461 
presence or absence of correlations between body size and behavior depending on the specific breeds 462 
or behaviors being studied.   463 

We also found that selection for smaller body size has significantly influenced the internal morphology 464 
of the cranial cavity.  For a given cephalic index, or exterior skull shape, smaller-bodied dogs have more 465 
spherical brains (Figure 2B).  This is consistent with a previous analysis linking foreshortening of the skull 466 
to ventral pitching of the brain and olfactory bulb, resulting in a more spherical brain (Roberts, 467 
McGreevy et al. 2010).  We assessed the extent to which internal and exterior skull morphology were 468 
related to the covarying morphometric networks we identified.  More networks showed a significant 469 
relationship with neurocephalic index than with cephalic index, suggesting that variation in brain 470 
morphology appears to be more tied to the internal morphology of the cranial cavity than to external 471 
craniofacial morphology – which is perhaps not surprising.  Our results indicate that skull morphology is 472 
linked to the underlying anatomy of specific, different networks of brain regions; it is possible that this 473 



 

19 
 

could underlie the reported associations between behavior and head shape (e.g., (Gacsi, McGreevy et al. 474 
2009, Helton 2009, McGreevy, Georgevsky et al. 2013)).  Not all networks showed a significant 475 
relationship with either cephalic index or neurocephalic index, indicating that variation in dog brain 476 
morphology is partially but not totally dependent on variation in skull morphology.  Importantly, we 477 
cannot say from the current analyses whether variation in skull morphology drives variation in brain 478 
morphology, the reverse, or both.   479 

In addition to these analyses of the gross external shape and size of the brain and skull, we also 480 
investigated internal brain organization.  This was accomplished using source-based morphometry to 481 
identify maximally independent networks that explain the variation present in the dataset.  We 482 
identified six such networks (Figure 3).  In the case of circuitry that is highly conserved across species – 483 
like circuitry for reward and motivation or fear and anxiety – it is a safe bet that research on other 484 
species is a good indicator of the functional role of these systems in dogs.  This cannot be assumed to be 485 
the case for circuits that involve higher-order cortical association areas.  Particularly in the case of our 486 
Network 4, it may be tempting to jump to conclusions about parallels with human cortical regions that 487 
are located in roughly the same location and are involved in similar tasks, e.g., the fusiform face area, 488 
Wernicke’s area, or the mirror system.  However, it is important to remember that primates and 489 
carnivores diverged further back in time than primates and rodents; humans are more closely related to 490 
mice than to dogs.  Our last common ancestor with dogs likely had a fairly smooth, simple brain (Kaas 491 
2011), and higher-order cortical association areas – along with whatever complex perceptual and 492 
cognitive abilities they support – have evolved independently in dogs and humans.  Therefore, we stress 493 
that the functional roles of these networks, and their relationship to selection on behavior in specific 494 
breeds, should at this point still be considered an open question.   495 

Having identified these six networks, we then investigated their relationship to the dog phylogenetic 496 
tree. We found that the majority of changes that occur in these components take place in the tree’s 497 
terminal branches (i.e., individual breeds).  This suggests that brain evolution in domestic dog breeds 498 
follows an “late burst model,” with directional changes in brain organization being primarily lineage-499 
specific.  We also assessed whether these networks were related to selective breeding, as evidenced by 500 
the ostensible behavioral specialization(s) of each breed as noted by the AKC.  In all six of the regionally 501 
covarying networks we found, significant correlations were found with at least one behavioral 502 
specialization.  Associations between brain networks and related behavioral specializations are 503 
apparent.  For example, Network 2, which involves regions that support higher-order olfactory 504 
processing, shows a significant correlation with scent hunting, while Network 3, which involves regions 505 
that support movement, eye movement, and spatial navigation, shows a significant correlation with 506 
sight hunting.  These findings strongly suggest that humans have altered the brains of different breeds 507 
of dogs in different ways through selective breeding.  508 

It is important to note that the current study was carried out on opportunistically-acquired data.  The 509 
dataset included different numbers of dogs from different breeds, and some breeds are not represented 510 
at all.  We used permutation testing for statistical hypothesis testing, which is a non-parametric 511 
approach appropriate for differing group sizes, but it is still possible that different patterns of variation 512 
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may have been obtained with a different sample makeup.  Nonetheless, we expect the basic finding that 513 
this variation exists would remain.   514 

Additionally, it should be noted that as dogs are increasingly bred to be house pets rather than working 515 
animals, selection on behavior is relaxing; significant behavioral differences have been found between 516 
working, show, and pet animals within a breed (e.g., (Lofgren, Wiener et al. 2014)).  To our knowledge, 517 
the dogs in the current study were all house pets.  Therefore, the findings reported here should be taken 518 
as representative of the innate breed-typical adaptations to brain organization that emerge without the 519 
input of specific experience – and may actually reflect relaxed or reduced versions of these adaptations.  520 
This might be akin to studying language circuitry in a lineage of language-deprived humans: humans 521 
almost certainly have some specialized “hard-wired” adaptations to this circuitry, but experience is 522 
required for the anatomical phenotype to fully emerge, and indeed it is difficult to consider language-523 
related neural adaptations divorced from the context of language exposure and learning.  Thus, future 524 
studies on purpose-bred dogs that are actively performing the tasks for which they are presumably 525 
adapted might expect to find additional or more pronounced neuroanatomical effects than we observed 526 
here.   527 

Together, these findings have relevance to both basic and applied science.  First and foremost, our 528 
findings introduce neural variation in domestic dog breeds as a novel opportunity for studying the 529 
evolution of brain-behavior relationships.  Dogs represent a “natural experiment” in behavioral selection 530 
which has been ongoing for thousands of years; it seems remarkable that attempts to observe the 531 
neurological results of this experiment have so far been fairly minimal.  Our findings also have 532 
implications for the current proliferation of fMRI studies in pet dogs, which nearly always group 533 
together dogs of varying breeds. The current study suggests that this approach might not be ideal, 534 
because there may be evolved breed differences in, e.g., functional responses to stimuli or anatomical 535 
distribution of receptors.  In line with this possibility, one study has already found that border collies and 536 
Siberian huskies respond significantly differently to intranasal oxytocin (Kovacs, Kis et al. 2016).  537 
Additionally, on a practical level, our findings open the door to brain-based assessment of the utility of 538 
different dogs for different tasks.  It might be possible, for example, to identify neural features that are 539 
linked to different breeds’ specializations for specific behaviors, and to selectively breed or train dogs 540 
for enhanced expression of those neural features.  Finally, on a philosophical level, these results tell us 541 
something fundamental about our own place in the larger animal kingdom: we have been systematically 542 
shaping the brains of another species.  543 
 544 
 545 
  546 
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Figure 1-1.  Conceptual schematic of neuroimaging analysis.   664
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 666 

Figure 1-2.  NiPype pipeline for merging axial and sagittal images from each dog before registration to 667 
the template.  Code is available online at 668 
https://gist.github.com/dgutman/a0e05028fab9c6509a997f703a1c7413.     669 
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