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Abstract

Key message Genomic selection using data from an on-going breeding program can improve gain from selection, 

relative to phenotypic selection, by significantly increasing the number of lines that can be evaluated.

Abstract The early stages of phenotyping involve few observations and can be quite inaccurate. Genomic selection (GS) 
could improve selection accuracy and alter resource allocation. Our objectives were (1) to compare the prediction accu-
racy of GS and phenotyping in stage-1 and stage-2 field evaluations and (2) to assess the value of stage-1 phenotyping for 
advancing lines to stage-2 testing. We built training populations from 1769 wheat breeding lines that were genotyped and 
phenotyped for yield, test weight, Fusarium head blight resistance, heading date, and height. The lines were in cohorts, and 
analyses were done by cohort. Phenotypes or GS estimated breeding values were used to determine the trait value of stage-1 
lines, and these values were correlated with their phenotypes from stage-2 trials. This was repeated for stage-2 to stage-3 
trials. The prediction accuracy of GS and phenotypes was similar to each other regardless of the amount (0, 50, 100%) of 
stage-1 data incorporated in the GS model. Ranking of stage-1 lines by GS predictions that used no stage-1 phenotypic data 
had marginally lower correspondence to stage-2 phenotypic rankings than rankings of stage-1 lines based on phenotypes. 
Stage-1 lines ranked high by GS had slightly inferior phenotypes in stage-2 trials than lines ranked high by phenotypes. 
Cost analysis indicated that replacing stage-1 phenotyping with GS would allow nearly three times more stage-1 candidates 
to be assessed and provide 0.84–2.23 times greater gain from selection. We conclude that GS can complement or replace 
phenotyping in early stages of phenotyping.

Abbreviations

AST1  Predictions and selections based on GEBVs 
using all stage-1 phenotypic data

FHB  Fusarium head blight
FST1  Predictions and selections based on GEBVs 

using ½ stage-1 phenotypic data-based select-
ing lines based on family relations

GEBV  Genomic estimated breeding values
GS  Genomic selection

NST1  Predictions and selections based on GEBVs 
using no stage-1 phenotypic data

NST1-1K  Same as NST1 except predictions made with a 
just 10% of the markers

PHEN  Predictions and selections based on 
phenotypes

PS  Phenotypic selection
RST1  Predictions and selections based on GEBVs 

using ½ stage-1 phenotypic data based on 
random selection of lines

TP  Training population

Introduction

Genomic selection (GS) was first proposed by Meuwissen 
et al. (2001). In GS, a training population (TP) is formed 
if individuals who are phenotyped and genotyped with 
molecular markers. Those data are co-analyzed to build a 
prediction model. The model can then be used to predict 
the trait value of unphenotyped individuals that are related 
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to the TP and have been genotyped with the same markers. 
The GS model calculates genomic estimated breeding values 
(GEBVs) for the unphenotyped individuals that can be used 
for selection in the same manner as phenotypic data.

Much early research on GS focused on requirements 
to optimize TPs and GS models. Many questions remain, 
however, regarding GS implementation in plant breeding 
programs. In general, two applications of GS have been pro-
posed. The first application is for the population improve-
ment phase of a program where recombination creates new 
genetic variation and testable progeny are generated. GS in 
this phase can increase the rate of genetic gain by reducing 
the duration of a recurrent selection breeding cycle (Bassi 
et al. 2015; Gaynor et al. 2017; Heffner et al. 2010; Jannink 
et al. 2010). GS can also be applied to the product develop-
ment phase of breeding where progeny are evaluated for 
performance in a stage-gate process. GS could enhance field 
trial selection by integrating genotypic and phenotypic data 
as opposed to advancing lines using phenotypic data alone 
(Bernal-Vasquez et al. 2017; Longin et al. 2015; Gaynor 
et al. 2017; He et al. 2016; Marulanda et al. 2016; Tolhurst 
et al. 2019). Field-testing lines is the most expensive phase 
of a breeding program: GS could make it considerably more 
efficient in terms of money spent and resource allocation. A 
plant breeding program can potentially use GS in place of 
phenotypic selection (PS) to advance lines, or it can inte-
grate GS and PS predictions to make more informed selec-
tions as compared to PS alone.

GS can be used to enhance the product development phase 
(e.g., field testing) of breeding by integrating GS into the selec-
tion of lines to advance to the next stages of testing (Longin 
et al. 2015; Marulanda et al. 2016; Gaynor et al. 2017). This 
application of GS would have the greatest value when applied 
to early stages of field evaluations (stage-1, stage-2), where 
phenotypic selection among a large set of lines is based on 
data from few replications and locations, often resulting in 
lower accuracy than later stages of testing. Thus, much of the 
genetic variation generated by a program is evaluated in trials 
that may produce low entry-mean heritability due to use of 
few replications and test sites. A program could use GEBVs 
and phenotypes to make selections, or even replace the earli-
est stage of PS with GS. In this application, the TP could be 
breeding lines that have been phenotyped in past trials. The 
TP is used to obtain the GEBVs of new lines that are either 
in stage-1 or stage-2 trials or are candidates to enter stage-1 
trials. In the first instance, phenotypic and GEBVs could both 
be used to advance lines from one stage of testing to the next 
stage, while in the later situation the stage-1 trial would not 
even be conducted: the candidate lines would be advanced 
to stage-2 testing based solely on their GEBVs. Using simu-
lations, Marulanda et al. (2016) showed that selecting lines 
based on GEBVs prior to field testing and reducing the years 
of field testing prior to selecting lines to be used as parents 

improved annual genetic gain compared to a traditional phe-
notyping scheme. Gaynor et al. (2017) also used simulations 
to evaluate the merits of using GS in the product develop-
ment and population improvement (rapid cycling) phases of a 
breeding program. Their results showed that using GS to select 
superior lines either prior to stage-1 testing or in conjunction 
with stage-1 testing was superior to PS alone: using GS in 
both phases of a breeding program provided the greatest gain.

The conclusions of these simulation results have been sup-
ported by empirical results in wheat. The primary obstacle to 
implementing this strategy is that GS, like PS, needs to predict 
line performance in an unobserved future season. This need is 
not addressed in many experiments that estimate GS accuracy 
using cross-validation. In cross-validation, data from the same 
set of environments are used to build the GS model and in the 
validation, hence leading to upward bias of GS model predic-
tion accuracy in actual breeding situations (Michel et al. 2016). 
Michel et al. (2017) assessed the predictive ability of GS and 
PS by correlating GEBVs and phenotypes from stage-1 trials 
to phenotypes obtained from multi-environment trials con-
ducted in other seasons. They reported that the accuracy of 
GS + PS was double that of PS alone for wheat grain yield 
and protein content. They also reported that GEBVs estimated 
using data from past years had a higher correlation with future 
performance than did phenotypes. Similar results have been 
noted in wheat from breadmaking quality traits (Michel et al. 
2016). Belamkar et al. (2018) conducted a similar investigation 
using wheat grain yield. They found that both GS and PS pre-
diction accuracy between stages of testing was variable from 
season to season, with GS and PS each having seasons where 
one had double the prediction accuracy of the other. They rec-
ommended that selection in stage-1 trials be done using both 
PS and GS. Others have also noted that prediction accuracies 
varied across sets of lines and trials (Sallam and Smith, 2016).

The use of GS could be beneficial in the early stages of 
field testing even if GS and PS had similar accuracy if geno-
typing costs less than phenotyping (Rajsic et al. 2016). If GS 
costs less than PS, then more stage-1 lines could be evalu-
ated using GS than by PS which would result in increased 
selection intensity. Eliminating a stage of phenotyping could 
also reduce the duration of a breeding cycle. Our objectives 
were (1) to compare the prediction accuracy of GS and PS 
in stage-1 and stage-2 field evaluations and (2) to assess the 
use of GS in stage-1 testing.

Materials and methods

Phenotypic data

Each season the Ohio State University (OSU) winter wheat 
breeding program evaluates lines in stage-1 through stage-4 
trials, with stage-1 trials being the least advanced trial and 
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stage-4 trials being the most advanced trial (Fig. 1, Table 1). 
In a typical cycle, we make 150 crosses among 25 elite par-
ents chosen based on their phenotypes in past trials. The 
parents are all chosen for their superior trait values, espe-
cially yield. There are some common parents among cohorts, 
and all parents are samples from the adapted gene pool for 

the upper Midwest. The 150 crosses are advanced to the F4 
generation where 100 spikes are randomly selected from 
each family, and seed of each spike composited to form an 
F4:5 line. The 15,000 F4:5 lines are grown in a single 1M 
rows, and 1000 are harvested as F4:6 bulks that are entered 
into the stage-1 trials. This phase of the breeding takes five 
seasons and four years. In a typical year, the program pheno-
types about 1000 new lines in stage-1, 250 lines in stage-2, 
40 lines in stage-3, and 20 lines in stage-4 trials. Stage-1 
trials are conducted at one Ohio location (Wooster), stage-
2, and stage-3 trials are conducted at three Ohio locations 
(Wooster, Northwest Agricultural Research Station, North 
Central Agricultural Research Station), and stage-4 trials 
are conducted at six Ohio locations (all stage-3 locations 
plus locations in Crawford, Darke, and Pickaway counties).

Phenotypic data from stage-1 through stage-4 trials from 
seasons 2013–2018 were used for this analysis (Table 1). 
Five wheat traits were analyzed: grain yield (tonnes/ha), test 
weight (kg/hL), height (cm), heading date (Julian days to 
50% of the plants attaining Feekes stage 10.1) and resist-
ance to Fusarium head blight (FHB, caused by Fusarium 

graminearum). Grain yield and test weight data were col-
lected in all testing locations, while height, heading date and 
FHB were only collected in Wooster, OH. Grain yield and 
test weight were collected by the plot combine and adjusted 
to 13% moisture. Harvested area of stage-1 yield plots was 
2.32 m2 from 2013 to 2017 and 3.25 m2 in 2018. Harvested 
area of stage-2, stage-3, and stage-4 yield plots was 4.64 m2. 
Stage-1 and stage-2 trials consist of one replication per envi-
ronment, stage-3 trials have two replications per environ-
ment, and stage-4 trials have three to four replications per 
environment.

Resistance to FHB was assessed in an inoculated and 
misted FHB nursery as described by Sneller et al. (2010). 
Each replication in the FHB nursery consists of a single 
one-meter row. Stage-1 FHB trials had two replications, 
while the stage-2, stage-3, and stage-4 FHB trials had three 
replications. FHB index data were collected approximately 
24 days after inoculation and flowering (Feekes stage 10.5) 

Fig. 1  Schematic of a typical breeding cycle of the Ohio State Uni-
versity winter wheat breeding program. The numbers of crosses and 
lines varies somewhat from cycle to cycle

Table 1  Summary of the 
number lines in a cohort, the 
number of lines genotyped, and 
seasons (years) of testing whose 
phenotypic data were used in 
the analysis

The number in parentheses is the number of genotyped lines that were phenotyped in that year and trial

Cohort # Lines in 
cohort

# Lines 
genotyped

Stage 1 Stage 2 Stage 3 Stage 4 Other

OH12 807 73 2013 (73) 2014 (73) 2015 (73) 2016 (8) 2017 Stage-4(9) 
2018 Stage-
4(1)

OH13 889 38 2014 (38) 2015 (38) 2016 (38) 2017 (11) 2018 Stage-4(3)

OH14 715 249 2015 (249) 2016 (249) 2017 (38) 2018 (11)

OH15 603 251 2016 (251) 2017 (251) 2018 (72)

OH16 478 473 2017 (473) 2018 (252)

OH17 775 656 2018 (656)
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by assessing the percentage of spikelets showing FHB symp-
toms in three 0.33 m areas per replication.

Grain yield and test weight data were spatially analyzed 
for within trial variation using P-splines in R package 
SpATS (v.1.0-9) using the “SpATS” function (Rodríguez-
Álvarez et al. 2018). The model used to analyze each trial 
separately was:

where y is the vector of phenotypic observations, g is the 
vector of fixed genotypic effects, Xg is the design matrix of 
fixed genotypic effects, XsBs and Zss form the fixed and ran-
dom component, respectively, of the mixed model expres-
sion of the smooth spatial surface, u is the vector of random 
row and column effects accounting for discontinuous field 
variation, Zu is the design matrix of random row and column 
effects, and ε is the vector of residuals (Velazco et al. 2017). 
Stage-1 and stage-2 trials were spatially adjusted using 400 
knots, and stage-3 and stage-4 trials were spatially adjusted 
using 100 knots. Best linear unbiased estimates (BLUEs) 
were estimated for each line within a trial and used in down-
stream analysis.

Each trait was analyzed with a random effects model 
using R package lme4 (v. 1.1-21) using the “lmer” function 
(Bates et al. 2015) to estimate best linear unbiased predictors 
(BLUPs) for each line. Line BLUPs were estimated for each 
trait with the following model:

where yijk is the ijkth phenotypic observation, μ is the overall 
mean, gi is the effect of the ith genotype, ej is the effect of 
the jth environment, geij is the interaction of the ith geno-
type with the jth environment, tk(ej) is the effect of the kth 
trial nested within the jth environment, and εijk is the error 
of the ijkth observation. All effects were considered ran-
dom. The same model was also used considering genotypes 
effects to be fixed to generate best linear unbiased estima-
tors (BLUEs). We obtained the correlation of the BLUEs 
and BLUPs using the CORR procedure of SAS (SAS, 2017)

Genotypic data

DNA was extracted from 1769 lines OSU wheat lines using 
the Qiagen DNeasy 96 Plant Kit (Qiaqen Inc., Valencia, 
CA, USA). Genomic libraries were prepared according to 
Poland et al. (2012). Genotyping-by-sequencing of 100 base 
pair single end reads was done at Michigan State Univer-
sity using the Illumina HiSeq 4000 platform. A set of 400 
randomly selected lines was first used for single nucleo-
tide polymorphism (SNP) discovery by comparing their 
sequences to the wheat reference genome (Appels et al. 
2018) in the TASSEL-GBS pipeline (Glaubitz et al. 2014). 
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In total, ~ 190,000 SNPs were detected. These same SNPs 
were called for all the other lines used in analysis. Only 
SNPs with less than 20% missing data and greater than 0.05 
minor allele frequency were retained. Missing marker scores 
were imputed using an expectation–maximization algorithm 
in R package rrBLUP (v. 4.6) using the “A.mat” function 
(Endelman 2011). To ensure even marker genome coverage 
and reduce marker redundancy, a SNP tagging procedure 
using a threshold of r = 0.8 was conducted to identify the 
most informative markers (Rinaldo et al. 2005; Huang et al. 
2016). After this tagging procedure, a total of 12,037 high-
quality and evenly distributed SNPs were used for analysis.

Training populations for genomic selection

In the OSU winter wheat breeding program,  F4:5 families 
are planted in a single one-meter row called a headrow. 
Lines are named by the season when they are selected 
from a headrow nursery. For example, lines that were har-
vested from the 2012 headrow nursery are identified as 
OH12 lines and collectively referred to as the OH12 cohort. 
The evaluation of a new cohort of lines is initiated every 
year. Each cohort is then subjected to selection in stage-1 
through stage-4 trials (Table 1). This study used data from 
the OH12 to OH17 cohorts. Not all lines from a cohort were 
genotyped due to lack of remnant seed when this study was 
initiated. In total, data from 1740 breeding lines from six 
cohorts and 29 checks were available for potential use in 
training populations. Population structure among all 1769 
lines was assessed using principal component analysis of 
the marker data in the R stats package (v. 3.5.3) using the 
“prcomp” function (R Core Development Team 2019). 
Euclidean distance between cohorts was calculated using 
the first three principal components. Euclidean distance was 
first calculated between all lines individually and then aver-
aged to calculate mean Euclidean distance between cohorts. 
The OH16 and OH17 cohorts appeared to be split into two 
groups (Fig. 2): we grouped OH16 and OH17 lines with a 
PC1 value of < −10 into left groups (OH16L, OH17L) and 
those with PC1 values > −10 into right groups (OH16R, 
OH17R). Genetic differentiation between the cohorts was 
estimated using pairwise  FST according to Weir and Cocker-
ham (1984) using the R package hierfstat (v. 0.04-22) using 
the “pairwise.WCfst” function (Goudet and Jombart 2015).

We assessed the ability of using phenotypic BLUPs or 
using GEBVs to predict performance of a cohort in the next 
stage of testing. Specifically, we estimated line BLUPs and 
GEBVs for each cohort in stage-1 and stage-2 trials and cor-
related those values with their phenotypes in stage-2 and 
stage-3 trials, respectively. This correlation is our defini-
tion of a prediction accuracy. Prediction accuracies were 
estimated for each trait and for each cohort separately, then 
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averaged over cohorts to estimate the mean prediction accu-
racy for each trait and prediction method.

To prevent upward bias of prediction accuracy and simu-
late a breeding program, we adopted the approach shown 
in Fig. 3 to form training populations for each cohort that 
reflect the data that would be available to a breeder. To make 
selections, a breeder has data from the current selection sea-
son and other seasons, but not from the target season which 
lies in the future. For example, assume we are estimating 
the stage-1 to stage-2 (stage-1 > 2) prediction accuracy of 
the OH15 cohort (Fig. 3). The OH15 cohort was in the 2016 
stage-1 trial, and selected lines were advanced to the 2017 
stage-2 trial: for the OH15 cohort, 2016 is the selection sea-
son and 2017 is the target season (Table 1, Fig. 3). First, 
all phenotypic data from the 2017 target season are deleted 
from any possible TP for the OH15 cohort. Next, pheno-
typic data from the 2016 selection season and other seasons 
(2013, 2014, 2015, and 2018) were used as a TP to build a 
GS model to predict the performance of OH15 lines in 2017. 
Any data from OH15 lines from the other seasons (2018 in 
this example) were removed from the TP. The remaining 
phenotypic data were used to estimate phenotypic BLUPs 
for all lines. Then, only phenotypic BLUPs for lines that 
were genotyped were used as the TP to build a GS model 
and estimate GEBVs for the OH15 cohort. The phenotypic 
BLUPs (referred to as PHENs) and GEBVs for OH15 lines 
were then correlated with their stage-2 phenotypes to cal-
culate the prediction accuracy of PHEN and GEBVs from 
stage-1 to stage-2 (termed stage-1 > 2). This methodol-
ogy was employed for all cohorts to estimate prediction 

accuracies from stage-1 > 2, and from stage-2 to stage-3 
(stage-2 > 3). Stage-2 and stage-3 target season phenotypic 
data were averaged across environments, and the mean was 
used in the correlation analysis. Any analysis with less than 
30 lines was not conducted.

Genomic selection

GS models were built using R package rrBLUP (v. 4.6) to 
estimate marker effects for each trait using ridge regression 
BLUP (RR-BLUP) using the “mixed.solve” function (Endel-
man, 2011). RR-BLUP was chosen primarily for computa-
tional efficiency because Huang et al. (2016) found that RR-
BLUP had comparable accuracy to other GS models for all 
wheat traits in the Ohio State University breeding program. 
The model used to estimate marker effects was:

where y is the vector of phenotypic BLUPs, Z is the design 
matrix of marker values (−1,0,1), u is the vector of marker 
effects, and ε is the vector of residuals.

We evaluated the value of stage-1 phenotypic data 
by calculating GEBVs with varying amounts of stage-1 
data (Table 2). The GEBVs were estimated using: (1) a 
TP containing all stage-1 phenotypic data from the selec-
tion season and other seasons (AST1); (2) a TP using no 
stage-1 phenotypic data (NST1); or (3) TPs using stage-1 
phenotypic data from only ½ of lines in the cohort being 

� = �� + �

Fig. 2  Plot of the first two prin-
cipal components of the marker 
data of 1740 wheat lines from 
the OH12 to OH17 cohorts
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predicted (Table 2). We used two strategies to select ½ the 
stage-1 lines for inclusion in the TPs: 1) randomly select 
½ the stage-1 lines (RST1); and 2) randomly select ½ the 
stage-1 lines from within each family in the cohort (FST1). 
We created ten random subsets of lines for the RST1 and 
FST1 analyses, tested each separately, and compared the 
average accuracy of the 10 analyses against the accuracy 

of the other TPs. In addition, two more TPs were used 
only for FHB index: (1) BLUPs using only stage-1 pheno-
typic data from only one replication (1RPHEN), and (2), 
a TP that uses only one stage-1 replication from the selec-
tion season (1RST1). Two analyses were done using data 
from each replication separately. The results from these 

Fig. 3  Diagram of forming prediction populations and the train-
ing populations (TP) used to obtain predicted values (PHEN, AST1, 
NST1, RST1, FST1, 1RST1) of lines in the OH15 cohort for estimat-

ing OH15 stage-1 > 2 prediction accuracy. The stage-1 trials of OH15 
lines were conducted in 2016, while the stage-2 trials of selected 
OH15 lines were conducted in 2017

Table 2  Summary of methods used to predict the value of lines

Methods vary by the amount of stage-1 phenotypic data and marker data used in the prediction
a GEBV genomic estimated breeding value
b BLUP best linear unbiased predictor
c Only used to analyze FHB index

Prediction method code Type of prediction Phenotypic and marker data used

PHEN Phenotype  BLUPb All stage-1 data, no markers

1RPHENc Phenotype BLUP One replication of stage-1 FHB data, no markers

AST1 GS  GEBVa All stage-1 data, all markers

NST1 GS GEBV No stage-1 data, all markers

NST1-1 K GS GEBV No stage-1 data, only 1212 markers

RST1 GS GEBV Data from random selection of ½ of stage-1 lines in cohort, all marker data

FST1 GS GEBV Data from random selection of ½ of stage-1 lines from each family in 
cohort, all marker data

1RST1c GS GEBV One replication of stage-1 FHB data, all marker data
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two replications were averaged and compared. The data 
used for each phenotypic and GS model are summarized 
in Table 2.

We assessed the prediction accuracy of the NST1 method 
when using a subset of markers. The NST1-1 K method is 
a NST1 prediction based on a set of 1123 SNPs as com-
pared to 12,037 SNPs used in NST1. The 1123 markers were 
selected by repeating the SNP tagging procedure detailed 
by Rinaldo et al. (2005) using a threshold of r = 0.0002: this 
is a very low threshold but was required to obtain a set of 
1123 markers.

We compared the accuracy of GS when using BLUEs 
or BLUPs. This was done using tenfold cross-validation in 
a training population of 886 lines that had been tested in 
stage-2 or higher trials. Data from stage-1 trials were not 
used in this analysis. The analysis was conducted using 
rrBLUP.

Value of stage‑1 selections in stage‑2 trials

We determined what percentage of stage-1 lines ranked 
as the best 5, 10, 15, and 20% based on predicted values 
(PHEN, AST1, NST1) were also in the best 5,10, 15, and 
20% of lines based on stage-2 phenotypes. Also, the aver-
age stage-2 trait value of the best 5, 10, 15, and 20% of the 
stage-1 lines, based on predicted values, was determined 
and compared to one another using a t test. This was done 
for grain yield and FHB for the OH14, OH15, and OH16 
cohorts.

Cost analysis and gain from indirect 
selection

Genotyping and phenotyping costs for yield and FHB index 
were estimated for stage-1 trials. Stage-1 operating costs 
of testing 1000 lines were estimated for various prediction 
schemes. We assumed a fixed stage-1 budget that was equal 
to that of phenotyping 1000 lines with a trial at one location 
with one replication for grain yield and two replications for 
FHB. We assumed that 250 stage-1 lines would be advanced 
to stage-2 testing regardless of selection scheme and selec-
tion intensity (k) was calculated for each selection scheme.

We assessed gain from indirect selection where the selec-
tion trait (trait X) is the predicted values of stage-1 lines 
and the target trait (trait Y) is performance in stage-2 stage 
such that:

where rg is the genetic correlation between traits X and Y, kx 
is the selection intensity for trait X, hx is the square root of 

Gy.x = rgkxhx�ay

the heritability of trait X, and σay is the additive variance of 
trait Y. The genetic correlations (rg) between the predicted 
values (PHEN or NST1) and stage-2 phenotypes were esti-
mated using R package sommer (v. 3.9.3) using the “cov-
2cor” function (Covarrubias-Pazaran 2016). The heritability 
of PHEN from stage-1 trials was calculated as

We estimated the heritability of the stage-1 GEBVs with 
R package ASReml-R (Butler et al. 2009) using the genomic 
BLUP model, which was shown to be equivalent to rrBLUP 
model (Habier et al. 2007). In this model, an inverse additive 
relationship matrix was first formatted according to Nazarian 
and Gezan (2016) and one-time prediction was conducted. 
Heritability was calculated with the formula:

where �2

A
 was the additive genetic variance from genomic 

BLUP model and �2

error
 is the error variance.

Results

We want to start with some clarification of terms. A “stage-1 
line” is any line that is being evaluated for quantitative traits, 
and in particular for yield, for the first time. This initial eval-
uation could be in a stage-1 phenotypic trial or the evalua-
tion could be based on only predicted values from GS. We 
refer to “stage-1 trial” as a field evaluation. A “stage-2 trial” 
is a trial of selected stage-1 lines and conducted in multiple 
environments. If the stage-1 lines are selected based solely 
on GEBVs, then they could be advanced to the stage-2 trial 
without actually being in a stage-1 phenotyping trial. Thus, 
a stage-2 trail could consist of lines that have not been phe-
notyped in a stage-1 trial: we chose to retain the stage-2 
identifier for consistency.

We used phenotype BLUPs in the GS analysis instead of 
BLUES though this raises the question of double shrinkage 
and some have suggested that using BLUEs is more appro-
priate sand provides higher GS accuracy that BLUPs (Gar-
rick et al. 2009; Ostersen et al. 2011; Piepho et al. 2008). 
Huang et al. (2016) found that GS accuracy was identical 
for all wheat traits in our program using BLUEs or BLUPs. 
This is expected when BLUEs and BLUPs are correlated 
(Piepho et al. 2008). The correlation of BLUEs and BLUPs 
for our traits ranged from 0.87 (height) to 0.98 (FHB). We 
also estimated the accuracy of GS for each trait in a training 
population comprised of 886 of the lines that were tested in 
stage-2 or higher trials using cross-validation. The difference 
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of GS accuracy ranged from 0.01 (FHB) to 0.04 (height). 
Given that BLUEs and BLUPs produced nearly identical 
results we chose to use BLUPs as we considered our stage-1 
lines to result from a random selection of lines from a larger 
population of similar germplasm.

Trait variance components

Variance components were obtained for each trait for all fac-
tors. Variation in grain yield, heading date, and test weight 
was largely attributed to environment (Table 3) as com-
pared to height and FHB index where variation was largely 
attributed to genetics. The proportion of genetic variance to 
collective G×E and error variance was low for test weight 
(0.24) and grain yield (0.53) as compared to FHB index 
(0.93), height (1.13), and heading date (1.35).

Population structure of OSU breeding lines

Population structure of the 1769 genotyped lines was 
assessed using principal component analysis (PCA) which 
suggested two clusters, termed left and right clusters, rela-
tive to a PC1 score of -10 (Fig. 2). The left cluster was pri-
marily composed of lines from the OH16 and OH17 cohorts 
with minimal representation from earlier cohorts (Fig. 2). 
The right cluster shown in Fig. 2 contained 69.9% of lines, 
and all OSU cohorts were represented in that cluster. The 
OH16 and OH17 cohorts were then each divided into two 
subcohorts (left (L) and right (R)). This formed the OH16L, 

OH16R, OH17L, and OH17R subcohorts. The mean Euclid-
ean distance between the OH16L and OH17L subcohorts 
and cohorts in the right cluster was approximately double the 
mean distance between cohorts in the right cluster (Table 4). 
The  FST values between cohorts suggest little differentiation 
among the cohorts in the right cluster or among cohorts in 
the left cluster (FST values between cohorts within a clus-
ter were all < 0.06) and moderate differentiation between 
the right and left side groups (FST value of 0.092 to 0.125) 
(Table 4) (Hartl and Clark 1997).

Analysis of prediction accuracy

We assessed several GS approaches using training popula-
tions that pertain to applied breeding situations. A breeder 
must decide whether to phenotype all new stage-1 candidate 
lines in a stage-1 field trial, a portion of those lines, or to 
not conduct stage-1 phenotyping at all. In each scenario, GS 
could be used to either supplement or replace PS. When no 
stage-1 phenotyping is conducted, then GS predicted val-
ues substitute for stage-1 phenotypes for advancing lines to 
stage-2 trials. Stage-2 phenotyping will be used regardless 
of the scheme used to select among stage-1 lines.

We assembled TPs for each cohort that varied by the 
degree that they used stage-1 phenotypic data. These TPs 
were then used to build GS models used to estimate the 
GEBVs for lines within a cohort. These GEBVs were cor-
related to the phenotypes of the same line in the subsequent 
testing stage. In order to simulate PS, we correlated the phe-
notypes (PHEN) of the lines from one stage of testing with 

Table 3  Summary of variance 
components for each trait 
from the random effects model 
analysis of all lines from all 
environments and trials

a FHB = index of resistance to Fusarium head blight

Grain yield Test weight Height Heading date FHB  indexa

Genotype 0.233 1.63 31.0 1.98 119.74

Environment 0.697 2.40 17.1 15.60 70.70

G×E 0.145 11.96 6.7 0.55 55.86

Trial 0.146 19.14 7.3 0.70 15.33

Error 0.288 8.27 20.7 0.74 72.18

Table 4  Mean Euclidean 
distance within (on diagonal) 
and between cohorts (below 
diagonal) calculated from the 
first two principal component 
scores and the genetic 
differentiation between cohorts 
(above diagonal) using pairwise 
FST

OH12 OH13 OH14 OH15 OH16L OH16R OH17L OH17R

OH12 25.66 0.024 0.026 0.046 0.105 0.044 0.113 0.036

OH13 27.08 25.90 0.026 0.058 0.117 0.056 0.120 0.048

OH14 27.17 27.45 26.12 0.038 0.118 0.045 0.125 0.042

OH15 36.83 35.89 35.71 31.57 0.113 0.035 0.119 0.045

OH16L 61.39 64.42 67.43 69.34 33.36 0.092 0.058 0.111

OH16R 39.42 40.31 39.02 35.20 63.17 29.91 0.112 0.027

OH17L 68.22 68.67 74.50 72.02 48.54 73.02 32.82 0.113

OH17R 32.11 32.77 31.70 30.39 63.71 29.05 71.75 24.23
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their phenotypes from the subsequent stage of testing. The 
correlations of predicted values with the phenotypes in the 
subsequent stage of testing are defined as prediction accura-
cies. Across all traits, the correlation of predicted value of 
lines in stage-2 and their phenotypes in stage-3 (stage-2 > 3) 
was greater than the correlation between stage-1 predicted 
values and their stage-2 phenotypes (stage-1 > 2) (Table 5).

For grain yield, prediction accuracy using GS (e.g., 
AST1, NST1, etc., methods) was slightly greater than for 
phenotypes (PHEN) (Table 5). The inclusion of stage-1 
phenotypic data in the training population did not improve 
stage-1 > 2 or stage-2 > 3 GS prediction accuracy as accu-
racy with NST1, RST1, FST1, and AST1 methods was 
nearly equal to each other and to the accuracy of PHEN 
(Table 5). Prediction accuracy varied by cohort (“Appen-
dix”). All prediction methods had an accuracy of ~ 0.00 for 
stage-1 > 2 for OH12 and OH14 cohorts except NST1, which 
had an accuracy of 0.17 and 0.12, respectively. Stage-1 > 2 

prediction accuracy ranged from ~ 0.00 to 0.44 across pre-
diction methods and cohorts, while stage-2 > 3 prediction 
accuracy ranged from ~ 0.00 to 0.53 across prediction meth-
ods and cohorts.

Test weight data were only available to estimate 
stage-2 > 3 prediction accuracies (Table  5). The OH15 
stage-2 > 3 prediction accuracy was low, ranging from 
− 0.17 to − 0.14 across prediction methods (“Appendix”). 
Excluding the OH15 stage-2 > 3 prediction accuracy, accu-
racy ranged from 0.32-0.55 for PHEN and 0.10–0.58 across 
GS prediction methods.

For height, PHEN had greater accuracy than all GS pre-
diction methods for stage-1 > 2 and stage-2 > 3 (Table 5). 
Using all (AST1) or half (RST1, FST1), the stage-1 phe-
notypic data versus no stage-1 data (NST1) significantly 
increased GS prediction accuracy from stage-1 > 2, but not 
from stage-2 > 3 (Table 5). The prediction accuracy, PHEN 
and GS prediction methods that used stage-1 phenotypic data 

Table 5  Summary of stage-1 to 
stage-2 (stage-1 > 2) and stage-2 
to stage-3 (stage-2 > 3) mean 
prediction accuracy for each 
prediction method and trait

a Means are averaged over the individual analyses for each of the six cohorts for Stage-1 > 2 and five 
cohorts for Stage-2 > 3
b Summary of prediction methods is provided in Table 2

Trait Prediction  methodb Stage-1 > 2 mean predic-
tion accuracy
± s.e. (r)a

Stage-2 > 3 mean predic-
tion accuracy ± s.e. (r)a

Grain yield PHEN 0.14 ± 0.08 0.30 ± 0.11

AST1 0.17 ± 0.08 0.32 ± 0.11

NST1 0.17 ± 0.02 0.35 ± 0.13

NST1-1 k 0.14 ± 0.04 0.31 ± 0.10

RST1 0.16 ± 0.07

FST1 0.16 ± 0.07

Test weight PHEN 0.30 ± 0.16

AST1 0.22 ± 0.16

NST1 0.20 ± 0.13

Height PHEN 0.44 ± 0.07 0.50 ± 0.05

AST1 0.34 ± 0.05 0.42 ± 0.04

NST1 0.15 ± 0.06 0.39 ± 0.05

RST1 0.34 ± 0.04

FST1 0.34 ± 0.04

Heading date PHEN 0.59 ± 0.04 0.72 ± 0.02

AST1 0.59 ± 0.03 0.69 ± 0.03

NST1 0.37 ± 0.07 0.70 ± 0.03

RST1 0.54 ± 0.05

FST1 0.54 ± 0.04

FHB index PHEN 0.31 ± 0.13 0.49 ± 0.04

AST1 0.37 ± 0.12 0.45 ± 0.06

NST1 0.30 ± 0.02 0.42 ± 0.08

NST1-1K 0.25 ± 0.01 0.41 ± 0.08

RST1 0.32 ± 0.11

FST1 0.32 ± 0.11

1RPHEN 0.27 ± 0.11

1RST1 0.33 ± 0.11
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ranged from 0.28 to 0.57 for stage-1 > 2, while NST1 predic-
tions ranged from 0.04 to 0.28 (“Appendix”). Stage-2 > 3 
prediction accuracy ranged from 0.28 to 0.64 across predic-
tion methods.

Heading date had the highest prediction accuracy of any 
trait. NST1 had lower stage-1 > 2 accuracy than other predic-
tion methods but was equivalent to other prediction methods 
from stage-2 > 3 (Table 5). Similar to height, using all or 
half the phenotypic data from the stage-1 trials increased 
GS stage-1 > 2 prediction accuracy compared to NST1 
(Table 5). For stage-1 > 2 prediction accuracy, PHEN and 
GS prediction methods using stage-1 phenotypic data ranged 
from 0.43 to 0.68, while NST1 ranged from 0.19 to 0.57. 
Stage-2 > 3 prediction accuracy ranged from 0.56 to 0.77 
across all prediction methods (“Appendix”).

All prediction methods provided nearly equal accuracy 
for FHB index (Table 5). For the OH14 cohort, stage-1 > 2 
prediction accuracy for PHEN and AST1 was ~ 0.00, while 
NST1 accuracy was 0.28. Excluding the results of the OH14 
cohort, stage-1 > 2 accuracy ranged from 0.15 to 0.58 across 
all prediction methods. Stage-2 > 3 accuracy ranged from 
0.34 to 0.60 across all prediction methods.

Across all traits and cohorts, the accuracy of NST1 
appeared superior to PHEN when the accuracy of PHEN 
was low (Fig. 4). Prediction accuracy was estimated for grain 
yield and FHB index for 17 stage-1 > 2 and stage-2 > 3 com-
parisons. For six of these, the prediction accuracy of PHEN 

was < 0.2 with an average prediction accuracy of 0.039, 
while the average prediction accuracy of NST1 in these six 
cases was 0.165 (Fig. 4).

A low-density marker set of 1123 markers (versus 12,037 
markers) was tested with the NST1 prediction method for 
grain yield and FHB index. This prediction method was 
termed NST1-1 K. The NST1-1 K methods resulted in 
slightly lower stage-1 > 2 and stage-2 > 3 prediction accu-
racy for grain yield and FHB index compared to NST1 
which used all markers SNPs (Table 5).

Selection coincidence analysis

The correlation of stage-1 AST1 and PHEN predictions 
exceeded 0.81 in all three cohorts, while NST1 predic-
tions were not highly correlated with PHEN in the OH14 
(r = 0.12), OH15 (r = 0.25), or OH16 (r = 0.29) cohorts. This 
suggests that NST1 would select different lines than AST1 
or PHEN.

We observed the percentage of stage-1 lines ranked as 
the best 5, 10, 15, or 20% based on stage-1 predicted val-
ues (PHEN, AST1, NST1) that were also ranked in the 
same percentile based on stage-2 phenotypes. This was 
done for grain yield and FHB for three cohorts (OH14, 
OH15, and OH16). None of the stage-1 GS or PS predic-
tion rankings were very good at selecting a high percentage 

Fig. 4  Regression of genomic 
selection prediction accuracy 
using no stage-1 data (NST1) 
versus accuracy using only 
phenotypic (PHEN) for grain 
yield and Fusarium head blight 
(FHB) index for all stage-1 > 2 
and stage-2 > 3 analyses
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of lines that were in the same percentile in the stage-2 tri-
als (Table 6). For example, on average, only 29.5% of the 
lines ranked in the best 20% for yield based on stage-1 
phenotypes (PHEN) were also in the top 20% based on 
stage-2 phenotypes. The percentage of lines ranked in the 
same percentile increased as selection pressure decreased 
from 5 to 20%. On average, ranking stage-1 lines based on 
PHEN and AST1 gave similar results for yield and both 
were superior to NST1. For FHB, a greater percentage of 
lines were similarly ranked between stage-1 and stage-2 
when using AST1 stage-1 predictions than when using 
PHEN stage-1 prediction: AST1 and PHEN predictions 
were both superior to using NST1 predictions.

We compared the mean stage-2 phenotype of lines 
selected as the best 5, 10, 15, and 20% of stage-1 lines based 
on predicted values (PHEN, AST1, NST1). The mean of the 
selected lines was expressed as a percentage of the mean 
stage-2 phenotype for that cohort (Table 7). For example, on 
average, lines selected in the best 5% of stage-1 lines based 
on PHEN yielded 6.6% above the mean in the stage-2 tri-
als. In contrast, on average, lines selected in the best 5% of 
stage-1 lines based on NST1 yielded 3.0% above the mean 
in the stage-2 trials. On average, using PHEN or AST1 
predictions produced similar stage-2 yields while NST1 
was slightly inferior, though just one (OH16 yield) of the 
phenotypic differences between NST1 and PHEN selected 
lines were significant at P < 0.05 (Table 7). Low values are 
desired for FHB index. For FHB, lines ranked by stage-1 
AST1 predictions had lower FHB index in stage-2 trials 
than lines ranked by PHEN, and both methods were superior 

than NST1, though just one of those difference (OH15) was 
significant.

Cost analysis and gain from indirect 
selection

The costs to evaluate 1000 stage-1 candidate lines using dif-
ferent selection schemes were compared. The PHEN selec-
tion scheme represents the current phenotypic selection 
scheme used by the OSU winter wheat breeding program 
and was considered as the base cost: it consists of one plot 
for grain yield and two plots for FHB index. The cost to 
phenotype one yield plot and one FHB plot was estimated to 
be $12.50 and $5.50, respectively. The costs included labor, 
equipment depreciation, and supplies for seed preparation, 
seed packaging, arranging packets for planting, planting, 
plot maintenance, data collection, harvesting, travel, data 
processing, and data analysis. Genotyping costs were esti-
mated to be $8.00 per line assuming the use of an ampli-
con-based marker platform (Buckler et al. 2016) that would 
provide data on ~ 1200 SNPs. The comparison of the NST1 
and the NST1-1K prediction accuracy (Table 5) showed that 
a low-cost assay of ~ 1200 markers was statistically equiva-
lent to the accuracy obtained using 12,000 markers. The 
genotyping cost includes expenses (labor, supplies, space 
rental, shipping) to grow plants in a greenhouse, sample tis-
sue, DNA isolation, genotyping, and data analysis. The cur-
rent phenotyping program of 1000 stage-1 lines would cost 
$23,500 per season. Obtaining genotype data for the AST1 

Table 6  Percentage of stage-1 
lines selected in the best 5, 
10, 15, and 20% based on one 
of three prediction methods 
(PHEN, AST1, NST1) that were 
in the same percentile when 
ranked by stage-2 phenotypic 
data

The analysis was done by cohort for grain yield and Fusarium head blight (FHB) index
a Summary of prediction methods is provided in Table 2

Cohort Selected  % Yield FHB index

PHENa AST1 NST1 PHEN AST1 NST1

OH14 Top 5% 7.7 7.7 0.0 7.7 15.4 0.0

OH14 Top 10% 19.2 15.4 7.7 3.8 11.5 15.4

OH14 Top 15% 18.4 15.8 13.2 10.5 21.1 21.1

OH14 Top 20% 23.1 13.5 19.2 15.4 17.3 26.9

OH15 Top 5% 23.1 23.1 0.0 0.0 23.1 0.0

OH15 Top 10% 23.1 23.1 15.4 19.2 34.6 11.5

OH15 Top 15% 34.2 34.2 23.7 28.9 39.5 26.3

OH15 Top 20% 30.8 36.5 28.8 34.6 48.1 26.9

OH16 Top 5% 7.7 15.4 7.7 7.7 15.4 0.0

OH16 Top 10% 30.8 23.1 23.1 30.8 34.6 11.5

OH16 Top 15% 28.9 26.3 15.8 39.5 44.7 21.1

OH16 Top 20% 34.6 23.1 21.2 46.2 48.1 25.0

AVG Top 5% 12.8 15.4 2.6 5.1 17.9 0.0

AVG Top 10% 24.4 20.5 15.4 17.9 26.9 12.8

AVG Top 15% 27.2 25.4 17.5 26.3 35.1 22.8

AVG Top 20% 29.5 24.4 23.1 32.1 37.8 26.3
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prediction-based phenotyping and genotyping adds $8000 to 
the PHEN cost for a total cost of $31,500 for AST1. NSTI 
requires only genotyping and would cost $8000 per season. 
The accuracy results presented in Table 5 show no advantage 
of AST1 over PHEN or NST1. No further analysis of AST1 
was performed as AST1 costs more than PHEN and offers 
no accuracy advantage.

We compared the value of NST1 and PHEN in the theo-
retical framework of indirect selection (Gy.x) where we use 
trait X (NST1 or PHEN predictions) to improve trait Y (trait 
value in stage-2):

We assumed equal funding for both schemes (e.g., 
$23,500 per season) and that �

ay
 is a constant between the 

PHEN and NST1 selection schemes. The NST1 scheme 
requires no stage-1 phenotyping, so all the $23,500 from 
the PHEN scheme is used to genotype a total of 2938 lines 
that are candidates for stage-2 testing. We assumed that 250 
lines would be advanced to stage-2 trials using PHEN or 
NST1. For NST1, advancing 250 of 2938 lines to stage-2 
results in a selection intensity of kx = 1.827, while advancing 
250 of 1000 lines using PHEN produces a selection intensity 
of kx = 1.271 (Table 8). For grain yield, the genetic corre-
lation of PHEN predictions with stage-2 phenotypes was 
lower than the correlation of NST1 predictions with stage-2 

Gy.x = rgkxhx�ay

phenotype (Table 8). The opposite was observed for FHB. 
Estimates of heritability of PHEN and NST1 predictors were 
nearly equal for grain yield and for FHB index. Given these 
estimates, Gx.y was 2.23 times greater for grain yield using 
NST1 than PHEN (Table 8). The genetic correlations for 
PHEN and NST1 were not significantly different for grain 
yield or FHB index. If we assume that rg is equal (0.21) for 
PHEN and NST1, then Gx.y for grain yield using NST1 is 
1.38 times greater than using PHEN. For FHB index, Gx.y 
for NST1 is just 84% of the gain we would predict for PHEN, 
though it is 1.44 times greater for NST1 than PHEN if we 
assume equal rg (0.43) for both methods, as suggested by 
their standard errors.

Discussion

We found that stage-1 > 2 and stage-2 > 3 prediction accu-
racy with GS using training populations with no stage-1 
phenotypic data (NST1) was equivalent to selection based 
solely on phenotypes (PHEN), or to GS training popula-
tions that use stage-1 phenotypic data (AST1, RST1, FST1) 
for grain yield and FHB index (Table 5). NST1 predictions 
produced lower accuracy than other predictions for height 
and heading date, though this appears to be due to low vari-
ance of NST1 GEBVs compared to the variance of PHEN 
values (data not shown). The correlation of NST1 and PHEN 

Table 7  Mean stage-2 
phenotype of lines, expressed 
as a percent of the mean of all 
stage-2 lines from that cohort, 
selected in the best 5, 10, 15, or 
20% of stage-1 lines as ranked 
by one of three prediction 
methods (PHEN, AST1, NST1)

The analysis was done by cohort for grain yield and Fusarium head blight (FHB) index. Note that low val-
ues are desired for FHB

*Indicates a mean that is significantly (P < 0.05) different than the value in the PHEN column for that trait 
and row based on a ttest
a Summary of prediction methods is provided in Table 2

Cohort Selected  % Yield FHB

PHENa AST1 NST1 PHEN AST1 NST1

OH14 5 100.6 101.2 101.7 96.5 85.4 88.1

OH14 10 101.2 100.6 101.1 101.7 87.9 85.1

OH14 15 100.0 100.6 101.8 99.0 87.6 86.1

OH14 20 99.7 100.6 102.0 93.6 89.1 85.9

OH15 5 109.8 107.5 102.2 47.3 35.5 82.8

OH15 10 106.7 104.8 104.5 51.5 45.0 77.5*

OH15 15 104.2 104.6 103.3 65.7 53.8 82.8

OH15 20 103.0 104.5 103.1 62.7 59.8 82.8

OH16 5 109.5 110.1 105.1 57.6 53.4 69.8

OH16 10 108.1 107.4 103.2 62.9 53.7 73.5

OH16 15 107.8 105.4 102.6* 60.6 55.0 76.7

OH16 20 105.8 104.8 101.7 64.9 59.6 83.0

Average 5 106.6 106.3 103.0 67.2 58.1 80.3

Average 10 105.3 104.2 102.9 72.0 62.2 78.7

Average 15 104.0 103.5 102.6 75.1 65.5 81.9

Average 20 102.8 103.3 102.3 73.7 69.5 83.9
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stage-1 predictions was generally low, and lines selected by 
PHEN had slightly better performance in stage-2 trials than 
selections based on NST1 (Tables 6, 7). Based solely on 
performance of lines in stage-2 trials, we would conclude 
that AST1 is the superior selection method due to its slight 
advantages for selecting for FHB resistance (Tables 6, 7). 
The AST1 methods though are the most expensive due to 
the cost of both phenotyping and genotyping.

The accuracy of GS and PS varied considerable by cohort 
though when the accuracy of PS was low, the accuracy of 
GS was also low (Fig. 4). This suggests that the value of GS 
relative to PS may not vary greatly over seasons. This differs 
from the results of Belamkar et al. (2018) who found that 
one method was considerable superior to the other depend-
ing on the season. The estimated accuracies were generally 
low likely because they are between unique seasons and not 
from cross-validation. Higher accuracies would obviously 
be desired, yet breeders sometimes must deal with instances 
when data from one season poorly predict performance in 
the future. Of course, this situation is not known when mak-
ing current selections and is a major issue restricting genetic 
gain for many quantitative traits. A breeder must use past 
experience to decide which approach is most likely to be 
better and use that approach.

One advantage of GS is that it can cost less than pheno-
typing and the NST1 method was the least expensive selec-
tion scheme. The low cost of the NST1 selection scheme 
translated into the ability to evaluate nearly three times 
more lines and to exert higher selection pressure as com-
pared to PHEN or AST1 (Table 8). This would result in 
greater gains from indirect selection among stage-1 lines for 
NST1 than PHEN for grain yield and for FHB index under 
certain assumptions (Table 8). Our results are dependent on 
our estimated cost of phenotype and genotyping. There is a 
strong trends of increasing phenotyping costs and decreasing 
genotyping costs which further favors NST1 over PHEN.

We speculated that using phenotypic data from multiple 
years to predict the value of stage-1 lines, as is done with the 
GS methods, would be superior to using stage-1 phenotypes 

collected from one location and one year as is done by our 
PHEN method. Our data did not support this hypothesis. In 
contrast to our results, Michel et al. (2017) reported greater 
prediction accuracy for GS than for PHEN for grain yield 
in wheat. Our GS prediction accuracy results were similar 
to those of Belamkar et al. (2018) in that PHEN and GS 
prediction accuracy varied by cohort (which is confounded 
with selection season) while having similar mean predictive 
ability. We noted a positive trend between PHEN and GS 
prediction accuracy by cohort as reported by Heffner et al. 
(2011a). In our study, yield phenotypes in the 2016 stage-2 
or stage-3 trials were poorly correlated with their respec-
tive predicted values regardless of the prediction method. In 
other pairs of years, the prediction accuracy of stage-1 > 2 
and stage-2 > 3 was not associated. The low prediction accu-
racy of some cohorts is unlikely due to poor relatedness of 
that cohort with the applied TP as the genetic differentiation 
among cohorts was quite low (Table 4). Our results sug-
gest that the genotype by environment interactions in our 
data set (Table 3) limits our ability to predict the value of 
lines in untested (e.g., future) environments, even when data 
from multiple years were incorporated in the GS predictions. 
This was also noted by Pembleton et al. (2018) in perennial 
ryegrass.

Marker density had minimal impact on NST1 prediction 
accuracy for grain yield and FHB index (Table 5). Song 
et al. (2017) reported that GS accuracy in wheat with 5716 
or 1473 markers was nearly identical, while Poland et al. 
(2012) reported that GS accuracy was nearly identical with 
34,749 versus 1827 markers. Abed et al. (2018) reported 
2000 SNPs producing equivalent accuracy as 35,000 SNPs 
for barley traits. Lower marker densities can reduce geno-
typing cost, which in turn can allow more lines to be geno-
typed for selection. Identifying a highly predictive and stable 
subset of markers could potentially increase GS prediction 
accuracy further (Hoffstetter et al. 2016; Huang et al. 2018), 
as the 1123 SNPs used in this analysis were only selected on 
the basis of even genome coverage. Selecting markers based 
on their association with traits could be useful, though such 

Table 8  Comparison of gain in stage-2 grain yield or FHB index from indirect selection ( Gy.x = rgkxhx�ay ) based on using either genomic selec-
tion with no stage-1 phenotypic data (NST1) or using stage-1 phenotypic data only (PHEN)

a Selection intensity was calculated assuming 250 lines are advanced from stage-1 to stage-2
b Trial size was calculated assuming a budget of $23,500
c Summary of prediction methods is provi±ded in Table 2

Trait Selection  methodc Trial  sizeb % Selected hx Selection 
 intensitya (kx)

Genetic correlation (rg) Gx.y 
relative to 
PHEN

Grain yield PHEN 1000 25.0 0.76 1.271 0.13 ± 0.22 1

NST1 2938 8.5 0.73 1.827 0.21 ± 0.04 2.23

FHB index PHEN 1000 25.0 0.81 1.271 0.43 ± 0.27 1

NST1 2938 8.5 0.81 1.827 0.26 ± 0.05 0.87
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markers may be trait and environment specific, and thus less 
predictive than markers selected for genome coverage. It 
may prove best to use such selected markers to supplement 
a set of markers designed to cover the entire genome.

Using the theoretical framework of indirect selection, 
we found that replacing stage-1 phenotyping with GS pre-
dictions that do not use stage-1 phenotypic data provided 
greater genetic gain than selection using stage-1 phenotypic 
data (PHEN): utilizing data from other seasons in GS was 
as good as conducting a stage-1 trial as described here (1 
season, 1 plot at one location for yield, 2 plots at one loca-
tion for FHB index). Utilizing training data from other sea-
sons requires that the lines evaluated in those seasons must 
be related to the current stage-1 candidates, as occurred in 
our data sets (Table 4, Fig. 2). The consistency of the rela-
tionships between the cohorts in this study facilitates this 
application of GS. Breeders will need to monitor the rela-
tionship among cohorts when deciding what lines to use in 
their training populations.

Our stage-1 trials were not very predictive of stage-2 yield 
or FHB index regardless of the prediction method. Using 
more replications and locations in the stage-1 trial could 
provide better PHEN results as shown by the stage-2 > 3 
prediction accuracies. But employing more plots per line at 
stage-1 testing also increases the expense per line and will 
restrict the number of lines assessed when budgets are fixed. 
Investing more money in moderately predictive phenotyping 
of stage-1 lines does not seem wise and would further limit 
the number of lines that can be tested. Low-cost genotyping 
is needed to realize the advantages of NST1 scheme (Rajsic 
et al. 2016). With low-cost genotyping, the NST1 prediction 
scheme provides similar selection efficacy as stage-1 phe-
notyping along with the opportunity to evaluate many more 
lines and increase genetic gain because of greater selection 
intensity.

There are other considerations for replacing stage-1 
phenotyping with NST1 selection. In our program, the 
seed of candidates for stage-1 testing is derived from a 
single one-meter row that provides a limited amount of 
seed. In our program, the stage-1 trial also serves as a seed 
increase, so a stage-2 trial can be planted from the selected 
stage-1 lines. We need to determine a way to increase the 
amount of seed harvested from the one-meter rows, so the 
selected lines could go directly to a stage-2 trial or modify 
the amount of seed needed for a stage-2 trial. The NST1 
was not very predictive of heading date and height, so 
we will need to obtain accurate phenotypic estimates of 
these highly heritable traits from the one-meter row nurs-
ery. Other traits that we did not assess are also important. 
Cross-validation results suggest that GS accuracy for soft 
wheat quality traits is high (Heffner et al. 2011b; Hoffstet-
ter et al. 2016; Huang et al. 2016, 2018), so we hope that 
the NST1 scheme can work for these traits. In addition, 

we would need to create the new cohort, isolate DNA, 
genotype all members, predict their value, and prepare 
the selected lines for planting in the stage-2 trial in about 
60 days. Rapid genotyping and data processing will be 
essential to attain this turn-around time.

Some advanced GS models could prove beneficial to the 
NST1 predictions. GS models that estimate marker by envi-
ronment interactions were not used in this analysis (Crossa 
et al. 2006; Lopez-Cruz et al. 2015) and may be of limited 
value as we must predict performance in future environments 
that have not been sampled. Burgueño et al. (2012) reported 
that incorporating marker by environment interactions into 
GS models did not improve the ability to predict the value 
of untested lines: only the main effect of untested lines could 
be predicted as was done in this study. Lopez-Cruz et al. 
(2015) reported similar results. Oakley et al. (2015) reported 
that a one-step prediction process using data from individual 
reps, provided greater GS accuracy that using means over 
replications. Using high-throughput phenotyping platforms 
to measure secondary traits for use in GS models is another 
promising approach to improve GS prediction accuracy 
(Rutkoski et al. 2016; Philomi et al. 2019; Sun et al. 2019). 
Also, schemes that use both phenotypic and genotypic data 
could be further investigated to enhance selection in stage-2 
trials where phenotypic data are always collected. If NST1 
predictions were used to make selections of stage-1 candi-
date lines in place of stage-1 phenotyping, genotypic data 
would be available to potentially aid in subsequent stage-2 
selections.

In conclusion, GS is proving to be a valuable tool for 
improving the efficiency of the population improvement and 
product development phases of breeding field trials (Gaynor 
et al. 2016). Our results, as well as those of others, show that 
introducing GS into a program can have a dramatic benefit 
to a breeding program. But applying GS requires a thorough 
assessment of the impact of GS on genetic gain, cost per unit 
of gain, allocation of field-testing resources, and operational 
considerations in all phases of breeding phases.
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Appendix: Prediction accuracy by trait, 
stage, prediction method, and cohort

Trait Cohort Stages Model Prediction 
accuracy

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

PHEN − 0.060

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

PHEN 0.098

Yield OH12 2014 Stage-2 
to 2015 
Stage-3

PHEN 0.383

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

PHEN 0.027

Yield OH13 2015 Stage-2 
to 2016 
Stage-3

PHEN − 0.015

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

PHEN 0.413

Yield OH14 2016 Stage-2 
to 2017 
Stage-3

PHEN 0.302

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

PHEN 0.210

Yield OH15 2017 Stage-2 
to 2018 
Stage-3

PHEN 0.517

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

AST1 0.022

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

AST1 0.130

Yield OH12 2014 Stage-2 
to 2015 
Stage-3

AST1 0.309

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

AST1 0.008

Yield OH13 2015 Stage-2 
to 2016 
Stage-3

AST1 0.009

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

AST1 0.450

Yield OH14 2016 Stage-2 
to 2017 
Stage-3

AST1 0.416

Trait Cohort Stages Model Prediction 
accuracy

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

AST1 0.246

Yield OH15 2017 Stage-2 
to 2018 
Stage-3

AST1 0.528

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

NST1 0.171

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

NST1 0.181

Yield OH12 2014 Stage-2 
to 2015 
Stage-3

NST1 0.456

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

NST1 0.127

Yield OH13 2015 Stage-2 
to 2016 
Stage-3

NST1 − 0.039

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

NST1 0.219

Yield OH14 2016 Stage-2 
to 2017 
Stage-3

NST1 0.444

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

NST1 0.127

Yield OH15 2017 Stage-2 
to 2018 
Stage-3

NST1 0.536

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

RST1 0.053

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

RST1 0.108

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

RST1 0.010

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

RST1 0.360

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

RST1 0.272

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

FST1 0.053

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

FST1 0.108

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

FST1 0.015
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Trait Cohort Stages Model Prediction 
accuracy

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

FST1 0.356

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

FST1 0.266

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

NST1-1K 0.267

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

NST1-1K 0.163

Yield OH12 2014 Stage-2 
to 2015 
Stage-3

NST1-1K 0.429

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

NST1-1K 0.141

Yield OH13 2015 Stage-2 
to 2016 
Stage-3

NST1-1K 0.026

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

NST1-1K 0.071

Yield OH14 2016 Stage-2 
to 2017 
Stage-3

NST1-1K 0.296

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

NST1-1K 0.074

Yield OH15 2017 Stage-2 
to 2018 
Stage-3

NST1-1K 0.490

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

NST1-0.5 0.147

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

NST1-0.5 0.039

Yield OH12 2014 Stage-2 
to 2015 
Stage-3

NST1-0.5 0.418

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

NST1-0.5 0.104

Yield OH13 2015 Stage-2 
to 2016 
Stage-3

NST1-0.5 − 0.077

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

NST1-0.5 0.190

Yield OH14 2016 Stage-2 
to 2017 
Stage-3

NST1-0.5 0.339

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

NST1-0.5 0.088

Trait Cohort Stages Model Prediction 
accuracy

Yield OH15 2017 Stage-2 
to 2018 
Stage-3

NST1-0.5 0.542

Yield OH12 2013 Stage-1 
to 2014 
Stage-2

NST1-1.5 0.126

Yield OH13 2014 Stage-1 
to 2015 
Stage-2

NST1-1.5 0.112

Yield OH12 2014 Stage-2 
to 2015 
Stage-3

NST1-1.5 0.416

Yield OH14 2015 Stage-1 
to 2016 
Stage-2

NST1-1.5 0.126

Yield OH13 2015 Stage-2 
to 2016 
Stage-3

NST1-1.5 − 0.058

Yield OH15 2016 Stage-1 
to 2017 
Stage-2

NST1-1.5 0.225

Yield OH14 2016 Stage-2 
to 2017 
Stage-3

NST1-1.5 0.419

Yield OH16 2017 Stage-1 
to 2018 
Stage-2

NST1-1.5 0.088

Yield OH15 2017 Stage-2 
to 2018 
Stage-3

NST1-1.5 0.529

Test Weight OH12 2014 Stage-2 
to 2015 
Stage-3

PHEN 0.352

Test Weight OH13 2015 Stage-2 
to 2016 
Stage-3

PHEN 0.477

Test Weight OH14 2016 Stage-2 
to 2017 
Stage-3

PHEN 0.558

Test Weight OH15 2017 Stage-2 
to 2018 
Stage-3

PHEN − 0.170

Test Weight OH12 2014 Stage-2 
to 2015 
Stage-3

AST1 0.141

Test Weight OH13 2015 Stage-2 
to 2016 
Stage-3

AST1 0.316

Test Weight OH14 2016 Stage-2 
to 2017 
Stage-3

AST1 0.583

Test Weight OH15 2017 Stage-2 
to 2018 
Stage-3

AST1 − 0.178

Test Weight OH12 2014 Stage-2 
to 2015 
Stage-3

NST1 0.157
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Trait Cohort Stages Model Prediction 
accuracy

Test Weight OH13 2015 Stage-2 
to 2016 
Stage-3

NST1 0.338

Test Weight OH14 2016 Stage-2 
to 2017 
Stage-3

NST1 0.469

Test Weight OH15 2017 Stage-2 
to 2018 
Stage-3

NST1 − 0.145

Height OH12 2013 Stage-1 
to 2014 
Stage-2

PHEN 0.572

Height OH13 2014 Stage-1 
to 2015 
Stage-2

PHEN 0.285

Height OH12 2014 Stage-2 
to 2015 
Stage-3

PHEN 0.395

Height OH14 2015 Stage-1 
to 2016 
Stage-2

PHEN

Height OH13 2015 Stage-2 
to 2016 
Stage-3

PHEN 0.472

Height OH15 2016 Stage-1 
to 2017 
Stage-2

PHEN 0.520

Height OH14 2016 Stage-2 
to 2017 
Stage-3

PHEN 0.488

Height OH16 2017 Stage-1 
to 2018 
Stage-2

PHEN 0.376

Height OH15 2017 Stage-2 
to 2018 
Stage-3

PHEN 0.646

Height OH12 2013 Stage-1 
to 2014 
Stage-2

AST1 0.281

Height OH13 2014 Stage-1 
to 2015 
Stage-2

AST1 0.312

Height OH12 2014 Stage-2 
to 2015 
Stage-3

AST1 0.321

Height OH14 2015 Stage-1 
to 2016 
Stage-2

AST1

Height OH13 2015 Stage-2 
to 2016 
Stage-3

AST1 0.436

Height OH15 2016 Stage-1 
to 2017 
Stage-2

AST1 0.494

Height OH14 2016 Stage-2 
to 2017 
Stage-3

AST1 0.409

Trait Cohort Stages Model Prediction 
accuracy

Height OH16 2017 Stage-1 
to 2018 
Stage-2

AST1 0.283

Height OH15 2017 Stage-2 
to 2018 
Stage-3

AST1 0.499

Height OH12 2013 Stage-1 
to 2014 
Stage-2

NST1 0.057

Height OH13 2014 Stage-1 
to 2015 
Stage-2

NST1 0.281

Height OH12 2014 Stage-2 
to 2015 
Stage-3

NST1 0.353

Height OH14 2015 Stage-1 
to 2016 
Stage-2

NST1

Height OH13 2015 Stage-2 
to 2016 
Stage-3

NST1 0.288

Height OH15 2016 Stage-1 
to 2017 
Stage-2

NST1 0.042

Height OH14 2016 Stage-2 
to 2017 
Stage-3

NST1 0.492

Height OH16 2017 Stage-1 
to 2018 
Stage-2

NST1 0.209

Height OH15 2017 Stage-2 
to 2018 
Stage-3

NST1 0.439

Height OH12 2013 Stage-1 
to 2014 
Stage-2

RST1 0.433

Height OH13 2014 Stage-1 
to 2015 
Stage-2

RST1 0.350

Height OH14 2015 Stage-1 
to 2016 
Stage-2

RST1 − 0.015

Height OH15 2016 Stage-1 
to 2017 
Stage-2

RST1 0.353

Height OH16 2017 Stage-1 
to 2018 
Stage-2

RST1 0.228

Height OH12 2013 Stage-1 
to 2014 
Stage-2

FST1 0.433

Height OH13 2014 Stage-1 
to 2015 
Stage-2

FST1 0.350

Height OH14 2015 Stage-1 
to 2016 
Stage-2

FST1 − 0.015
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Trait Cohort Stages Model Prediction 
accuracy

Height OH15 2016 Stage-1 
to 2017 
Stage-2

FST1 0.356

Height OH16 2017 Stage-1 
to 2018 
Stage-2

FST1 0.225

Heading Date OH12 2013 Stage-1 
to 2014 
Stage-2

PHEN 0.434

Heading Date OH13 2014 Stage-1 
to 2015 
Stage-2

PHEN 0.686

Heading Date OH12 2014 Stage-2 
to 2015 
Stage-3

PHEN 0.664

Heading Date OH14 2015 Stage-1 
to 2016 
Stage-2

PHEN 0.588

Heading Date OH13 2015 Stage-2 
to 2016 
Stage-3

PHEN 0.726

Heading Date OH15 2016 Stage-1 
to 2017 
Stage-2

PHEN 0.607

Heading Date OH14 2016 Stage-2 
to 2017 
Stage-3

PHEN 0.752

Heading Date OH16 2017 Stage-1 
to 2018 
Stage-2

PHEN 0.619

Heading Date OH15 2017 Stage-2 
to 2018 
Stage-3

PHEN 0.744

Heading Date OH12 2013 Stage-1 
to 2014 
Stage-2

AST1 0.471

Heading Date OH13 2014 Stage-1 
to 2015 
Stage-2

AST1 0.660

Heading Date OH12 2014 Stage-2 
to 2015 
Stage-3

AST1 0.614

Heading Date OH14 2015 Stage-1 
to 2016 
Stage-2

AST1 0.564

Heading Date OH13 2015 Stage-2 
to 2016 
Stage-3

AST1 0.681

Heading Date OH15 2016 Stage-1 
to 2017 
Stage-2

AST1 0.621

Heading Date OH14 2016 Stage-2 
to 2017 
Stage-3

AST1 0.720

Heading Date OH16 2017 Stage-1 
to 2018 
Stage-2

AST1 0.645

Trait Cohort Stages Model Prediction 
accuracy

Heading Date OH15 2017 Stage-2 
to 2018 
Stage-3

AST1 0.734

Heading Date OH12 2013 Stage-1 
to 2014 
Stage-2

NST1 0.282

Heading Date OH13 2014 Stage-1 
to 2015 
Stage-2

NST1 0.576

Heading Date OH12 2014 Stage-2 
to 2015 
Stage-3

NST1 0.670

Heading Date OH14 2015 Stage-1 
to 2016 
Stage-2

NST1 0.191

Heading Date OH13 2015 Stage-2 
to 2016 
Stage-3

NST1 0.643

Heading Date OH15 2016 Stage-1 
to 2017 
Stage-2

NST1 0.284

Heading Date OH14 2016 Stage-2 
to 2017 
Stage-3

NST1 0.707

Heading Date OH16 2017 Stage-1 
to 2018 
Stage-2

NST1 0.502

Heading Date OH15 2017 Stage-2 
to 2018 
Stage-3

NST1 0.774

Heading Date OH12 2013 Stage-1 
to 2014 
Stage-2

RST1 0.496

Heading Date OH13 2014 Stage-1 
to 2015 
Stage-2

RST1 0.698

Heading Date OH14 2015 Stage-1 
to 2016 
Stage-2

RST1 0.418

Heading Date OH15 2016 Stage-1 
to 2017 
Stage-2

RST1 0.519

Heading Date OH16 2017 Stage-1 
to 2018 
Stage-2

RST1 0.559

Heading Date OH12 2013 Stage-1 
to 2014 
Stage-2

FST1 0.496

Heading Date OH13 2014 Stage-1 
to 2015 
Stage-2

FST1 0.698

Heading Date OH14 2015 Stage-1 
to 2016 
Stage-2

FST1 0.435

Heading Date OH15 2016 Stage-1 
to 2017 
Stage-2

FST1 0.516
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Trait Cohort Stages Model Prediction 
accuracy

Heading Date OH16 2017 Stage-1 
to 2018 
Stage-2

FST1 0.573

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

PHEN 0.155

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

PHEN

FHB Index OH12 2014 Stage-2 
to 2015 
Stage-3

PHEN 0.402

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

PHEN 0.027

FHB Index OH13 2015 Stage-2 
to 2016 
Stage-3

PHEN 0.543

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

PHEN 0.494

FHB Index OH14 2016 Stage-2 
to 2017 
Stage-3

PHEN 0.454

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

PHEN 0.566

FHB Index OH15 2017 Stage-2 
to 2018 
Stage-3

PHEN 0.556

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

AST1 0.280

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

AST1

FHB Index OH12 2014 Stage-2 
to 2015 
Stage-3

AST1 0.343

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

AST1 0.066

FHB Index OH13 2015 Stage-2 
to 2016 
Stage-3

AST1 0.408

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

AST1 0.536

FHB Index OH14 2016 Stage-2 
to 2017 
Stage-3

AST1 0.448

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

AST1 0.588

FHB Index OH15 2017 Stage-2 
to 2018 
Stage-3

AST1 0.604

Trait Cohort Stages Model Prediction 
accuracy

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

NST1 0.271

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

NST1

FHB Index OH12 2014 Stage-2 
to 2015 
Stage-3

NST1 0.197

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

NST1 0.280

FHB Index OH13 2015 Stage-2 
to 2016 
Stage-3

NST1 0.444

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

NST1 0.282

FHB Index OH14 2016 Stage-2 
to 2017 
Stage-3

NST1 0.512

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

NST1 0.356

FHB Index OH15 2017 Stage-2 
to 2018 
Stage-3

NST1 0.530

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

RST1 0.230

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

RST1 0.382

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

RST1 0.065

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

RST1 0.463

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

RST1 0.525

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

FST1 0.230

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

FST1 0.382

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

FST1 0.065

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

FST1 0.444

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

FST1 0.534



 Theoretical and Applied Genetics

1 3

Trait Cohort Stages Model Prediction 
accuracy

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

1RPHEN 0.169

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

1RPHEN 0.473

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

1RPHEN 0.030

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

1RPHEN 0.401

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

1RPHEN 0.497

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

1RST1 0.276

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

1RST1 0.407

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

1RST1 0.052

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

1RST1 0.442

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

1RST1 0.555

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

NST1-1K 0.234

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

NST1-1K 0.237

FHB Index OH12 2014 Stage-2 
to 2015 
Stage-3

NST1-1K 0.166

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

NST1-1K 0.232

FHB Index OH13 2015 Stage-2 
to 2016 
Stage-3

NST1-1K 0.491

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

NST1-1K 0.285

FHB Index OH14 2016 Stage-2 
to 2017 
Stage-3

NST1-1K 0.488

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

NST1-1K 0.262

FHB Index OH15 2017 Stage-2 
to 2018 
Stage-3

NST1-1K 0.480

Trait Cohort Stages Model Prediction 
accuracy

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

NST1-0.5 0.237

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

NST1-0.5 − 0.058

FHB Index OH12 2014 Stage-2 
to 2015 
Stage-3

NST1-0.5 0.184

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

NST1-0.5 0.317

FHB Index OH13 2015 Stage-2 
to 2016 
Stage-3

NST1-0.5 0.299

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

NST1-0.5 0.249

FHB Index OH14 2016 Stage-2 
to 2017 
Stage-3

NST1-0.5 0.457

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

NST1-0.5 0.264

FHB Index OH15 2017 Stage-2 
to 2018 
Stage-3

NST1-0.5 0.512

FHB Index OH12 2013 Stage-1 
to 2014 
Stage-2

NST1-1.5 0.281

FHB Index OH13 2014 Stage-1 
to 2015 
Stage-2

NST1-1.5 0.063

FHB Index OH12 2014 Stage-2 
to 2015 
Stage-3

NST1-1.5 0.189

FHB Index OH14 2015 Stage-1 
to 2016 
Stage-2

NST1-1.5 0.278

FHB Index OH13 2015 Stage-2 
to 2016 
Stage-3

NST1-1.5 0.299

FHB Index OH15 2016 Stage-1 
to 2017 
Stage-2

NST1-1.5 0.282

FHB Index OH14 2016 Stage-2 
to 2017 
Stage-3

NST1-1.5 0.501

FHB Index OH16 2017 Stage-1 
to 2018 
Stage-2

NST1-1.5 0.326

FHB Index OH15 2017 Stage-2 
to 2018 
Stage-3

NST1-1.5 0.520



Theoretical and Applied Genetics 

1 3

References

Abed A, Pérez-Rodríguez P, Crossa J, Belzile F (2018) When less can 
be better: how can we make genomic selection more cost-effective 
and accurate in barley? Theor Appl Genet 131(9):1873–1890

Appels R, International Wheat Genome Sequencing Consortium 
(IWGSC) et al (2018) Shifting the limits in wheat research and 
breeding using a fully annotated reference genome. Science 
361:6403

Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2015) Breeding 
schemes for the implementation of genomic selection in wheat 
(Triticum spp.). Plant Sci 242:23–36

Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear 
mixed-effects models using lme4. J Stat Softw 67(1):1

Belamkar V, Guttieri MJ, Hussain W, Jarquín D, El-basyoni I, Poland 
J, Lorenz A, Baenziger PS (2018) Genomic selection in prelimi-
nary yield trials in a winter wheat breeding program. G3: Genes 
Genomes Genetics 8(8):2735–2747

Bernal-Vasquez A-M, Gordillo A, Schmidt M, Piepho H-P (2017) 
Genomic prediction in early selection stages using multi-year data 
in a hybrid rye breeding program. BMC Genet 18(1):51

Buckler E,  Ilut D, Wang X, Kretzschmar T, Gore M, Mitchell S. 
(2016) rAmpSeq: Using repetitive sequences for robust genotyp-
ing. bioRxiv, 096628. https ://doi.org/10.1101/09662 8

Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic 
prediction of breeding values when modeling genotype x environ-
ment interaction using pedigree and dense molecular markers. 
Crop Sci 52:707–719

Butler D, Cullis B, Gilmour A, Gogel B (2009) ASReml-R reference 
manual. The State of Queensland, Department of Primary Indus-
tries and Fisheries, Brisbane, Australia

Covarrubias-Pazaran G (2016) Genome assisted prediction of 
quantitative traits using the R package sommer. PLoS ONE 
11(6):e0156744

Crossa J, Burgueno J, Cornelius P, McLaren G, Trethowan R, Krishna-
machari A (2006) Modeling genotype x environment interaction 
using additive genetic covariances of relatives for predicting 
breeding values of wheat genotypes. Crop Sci 46:1722–1733

Endelman JB (2011) Ridge regression and other Kernels for genomic 
selection with R package rrBLUP. Plant Genome J 4(3):250

Garrick DJ, Taylor JF, Fernando RL (2009) Deregressing esti-
mated breeding values and weighting information for 
genomic regression analyses. Genet Sel Evol. https ://doi.
org/10.1186/1297-9686-41-55

Gaynor RC, Gorjanc G, Bentley A, Ober E, Howell P, Jackson R, Mac-
Kay I, Hickey J (2017) A two-part strategy for using genomic 
selection to develop inbred lines. Crop Sci 57(5):2372–2386

Glaubitz J, Casstevens T, Lu F, Harriman J, Elshire R, Sun Q, Buckler 
E (2014) TASSEL-GBS: a high capacity genotyping by sequenc-
ing analysis pipeline. PLoS ONE. https ://doi.org/10.1371/journ 
al.pone.00903 46

Goudet J, Jombart T (2015) hierfstat: estimation and tests of hierarchi-
cal F-statistics. R package version 0.04-22

Habier D, Fernando R, Dekkers JC (2007) The impact of genetic rela-
tionship information on genome-assisted breeding values. Genet-
ics 177(4):2389–2397

Hartl DL, Clark GC (1997) Principles of population genetics. Sin-
auer Associates, Sunderland

He S, Schulthess A, Mirdita V, Zhao Y, Korzun V, Bothe B, 
Ebermeyer E, Reif J, Jiang Y (2016) Genomic selection in a 
commercial winter wheat population. Theor Appl Genetics 
1293:641–651

Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breed-
ing with genomic selection: gain per unit time and cost. Crop 
Sci 50:1681–1690. https ://doi.org/10.2135/crops ci200 9.11.0662

Heffner EL, Jannink J-L, Sorrells ME (2011a) Genomic selection accu-
racy using multifamily prediction models in a wheat breeding 
program. Plant Genome 4(1):65

Heffner EL, Jannink J-L, Iwata H, Sorrells E, Sorrells ME (2011b) 
Genomic selection accuracy for grain quality traits in biparen-
tal wheat populations. Crop Sci 51:2597–2606. https ://doi.
org/10.2135/crops ci201 1.05.0253

Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing train-
ing population data and validation of genomic selection for eco-
nomic traits in soft winter wheat. G3: Genes Genomes Genetics 
6(9):2919–2928

Huang M, Cabrera A, Hoffstetter A, Griffey C, Van Sanford D, Costa 
J, McKendry A, Sneller C (2016) Genomic selection for wheat 
traits and trait stability. Theor Appl Genetics 129(9):1697–1710

Huang M, Ward B, Griffey C, Van Sanford D, McKendry A, Brown-
Guedira G, Tyagi P, Sneller C (2018) The accuracy of genomic 
prediction between environments and populations for soft wheat 
traits. Crop Sci 58(6):2274–2288

Jannink J-L, Lorenz A, Iwata H (2010) Genomic selection in plant 
breeding: from theory to practice. Briefings Funct Genomics Pro-
teom 9(2):166–177

Longin C, Mi X, Würschum T (2015) Genomic selection in wheat: 
optimum allocation of test resources and comparison of breed-
ing strategies for line and hybrid breeding. Theor Appl Genetics 
128(7):1297–1306

Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink 
J-L, Singh RP, Autrique E, de los Campos G (2015) Increased pre-
diction accuracy in wheat breeding trials using a marker × environ-
ment interaction genomic selection model. G3: Genes Genomes 
Genetics 5(4):569–582

Marulanda J, Mi X, Melchinger AE, Xu J-L, Würschum T, Longin C 
(2016) Optimum breeding strategies using genomic selection for 
hybrid breeding in wheat, maize, rye, barley, rice and triticale. 
Theor Appl Genetics 129(10):1901–1913

Meuwissen TH, Hayes B, Goddard ME (2001) Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 
157(4):1819–1829

Michel S, Ametz C, Gungor H, Epure D, Grausgruber H, Löschen-
berger F, Buerstmayr H (2016) Genomic selection across multi-
ple breeding cycles in applied bread wheat breeding. Theor Appl 
Genetics 129(6):1179–1189

Michel S, Ametz C, Gungor H, Akgöl B, Epure D, Grausgruber H, 
Löschenberger F, Buerstmayr H (2017) Genomic assisted selec-
tion for enhancing line breeding: merging genomic and pheno-
typic selection in winter wheat breeding programs with prelimi-
nary yield trials. Theor Appl Genetics 130(2):363–376

Nazarian A, Gezan S (2016) GenoMatrix: a software package for ped-
igree-based and genomic prediction analyses on complex traits. 
J Hered 107(4):372–379. https ://doi.org/10.1093/jhere d/esw02 0 
Epub 2016 Mar 29

Ostersen T, Christensen OF, Henryon M, Neilson B, Su G, Madsen 
P (2011) Deregressed EBV as the response variable yield more 
reliable genomic predictions than traditional EBV in pure-bred 
pigs. Genet Sel Evol. https ://doi.org/10.1186/1297-9686-43-38

Pembleton L, Inch C, Baillie R, Drayton M, Thakur P, Ogaji Y, Span-
genberg G, Forster JW, Daetwyler HD, Cogan N (2018) Exploita-
tion of data from breeding programs supports rapid implementa-
tion of genomic selection for key agronomic traits in perennial 
ryegrass. Theor Appl Genetics 131(9):1891–1902

Philomi J, Montesinos-Lopez OA, Crossa J, Mondal S, Perez LG, 
Poland J, Huerta-Espino J, Crespo-Herrera L, Govindan V, Dre-
isigacker S, Shretha S, Perez-Rodriguez P, Espinosa FP, Singh 
RP (2019) Integrating genomic-enabled prediction and high-
throughput phenotyping in breeding for climate-resilient bread 
wheat. Theor Appl Genet 132:177–194. https ://doi.org/10.1007/
s0012 2-018-3206-3

https://doi.org/10.1101/096628
https://doi.org/10.1186/1297-9686-41-55
https://doi.org/10.1186/1297-9686-41-55
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.2135/cropsci2009.11.0662
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.1093/jhered/esw020
https://doi.org/10.1186/1297-9686-43-38
https://doi.org/10.1007/s00122-018-3206-3
https://doi.org/10.1007/s00122-018-3206-3


 Theoretical and Applied Genetics

1 3

Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for 
phenotypic selection in plant breeding and variety testing. Euphyt-
ica 161(1–2):209–228

Poland J, Brown P, Sorrells M, Jannink J-L (2012) Development of 
high-density genetic maps for barley and wheat using a novel 
two-enzyme genotyping-by-sequencing approach. PLoS ONE 
7(2):32253

R Core Team (2019) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. 
https ://www.R-proje ct.org/

Rajsic P, Weersink A, Navabi A, Peter Pauls K (2016) Economics of 
genomic selection: the role of prediction accuracy and relative 
genotyping costs. Euphytica 210(2):259–276

Rinaldo A, Bacanu S-A, Devlin B, Sonpar V, Wasserman L, Roeder 
K (2005) Characterization of multilocus linkage disequilibrium. 
Genetic Epidemiol 28(3):193–206

Rodríguez-Álvarez M, Boer M, van Eeuwijk FA, Eilers P (2018) Cor-
recting for spatial heterogeneity in plant breeding experiments 
with P-splines. Spatial Stat 23:52–71

Rutkoski J, Poland J, Mondal S, Autrique E, Pérez L, Crossa J, Reyn-
olds M, Singh R (2016) Canopy temperature and vegetation indi-
ces from high-throughput phenotyping improve accuracy of pedi-
gree and genomic selection for grain yield in wheat. G3: Genes 
Genomes Genetics 6(9):2799–2808

Sallam AH, Smith KP (2016) Genomic selection performs similarly to 
phenotypic selection in barley. Crop Sci 56(6):2871–2881

SAS Institute (2017) Base SAS 9.4 procedures guide: Statistical 
procedures

Sneller C, Paul P, Guttieri MJ (2010) Characterization of resistance 
to Fusarium head blight in an eastern US soft red winter wheat 
population. Crop Sci 50(1):123–133

Song J, Carver B, Powers C, Yan L, Klapste L, El-Kassaby Y, Chen 
C (2017) Practical application of genomic selection in a double-
haploid winter wheat breeding program. Mol Breed 37:117. https 
://doi.org/10.1007/x1103 2-017-0715-8

Sun J, Poland J, Mondal S, Crossa J, Juliana P, Singh R, Rutkoski J, 
Jannink J-L, Crespo-Herrera I, Velu G, Huerta-Espino H, Sor-
rells ME (2019) High-throughput phenotyping platforms enhance 
genomic selection for wheat grain yield across populations and 
cycles in early stage. Theor Appl Genetics 132(6):1705–1720

Tolhurst D, Mathews K, Smith A, Cullis B (2019) Genomic selection 
in multi-environment plant breeding trials using a factor analytic 
linear mixed model. J Anim Breed Genet 136:279–300

Velazco J, Rodríguez-Álvarez M, Boer M, Jordan D, Eilers P, Malosetti 
M, van Eeuwijk FA (2017) Modelling spatial trends in sorghum 
breeding field trials using a two-dimensional P-spline mixed 
model. Theor Appl Genetics 130(7):1375–1392

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis 
of population structure. Evolution 38(6):1358–1370

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.R-project.org/
https://doi.org/10.1007/x11032-017-0715-8
https://doi.org/10.1007/x11032-017-0715-8

	The value of early-stage phenotyping for wheat breeding in the age of genomic selection
	Abstract
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Phenotypic data
	Genotypic data

	Training populations for genomic selection
	Genomic selection
	Value of stage-1 selections in stage-2 trials
	Cost analysis and gain from indirect selection
	Results
	Trait variance components
	Population structure of OSU breeding lines
	Analysis of prediction accuracy
	Selection coincidence analysis
	Cost analysis and gain from indirect selection
	Discussion
	Acknowledgements 
	References


