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Genomic Prediction of Complex Traits in Animal Breeding
with Long Breeding History, the Dairy Cattle Case
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Abstract

In accordance with the infinitesimal model for quantitative traits, a very large number of genes affect nearly
all economic traits. In only two cases has the causative polymorphism been determined for genes affecting
economic traits in dairy cattle. Most current methods for genomic evaluation are based on the “two-step”
method. Genetic evaluations are computed by the individual animal model, and functions of the evaluations
of progeny-tested sires are the dependent variable for estimation of marker effects. With the adoption of
genomic evaluation in 2008, annual rates of genetic gain in the US increased from �50–100% for yield
traits and from threefold to fourfold for lowly heritable traits, including female fertility, herd-life and
somatic cell concentration. Gradual elimination of the progeny test scheme has led to a reduction in the
number of sires with daughter records and less genetic ties between years. As genotyping costs decrease, the
number of cows genotyped will continue to increase, and these records will become the basic data used to
compute genomic evaluations, most likely via application of “single-step” methodologies. Less emphasis in
selection goals will be placed on milk production traits, and more on health, reproduction, and efficiency
traits and “environmentally friendly” production. Genetic variance for economic traits is maintained by
increase in frequency of rare alleles, new mutations, and changes in selection goals and management.
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1 Introduction

Nearly all traits of economic importance in dairy cattle are recorded
only on females. All breeding programs must deal with the anomaly
that male fertility is nearly unlimited, while cows, without biotech-
nological intervention, produce at best a single calf per year. Begin-
ning in the 1950s “progeny test” schemes were implemented in
dairy cattle breeding programs in most developed countries. An
example for the Israeli dairy cattle population, consisting of
~120,000 cows, nearly all of the Holstein breed, is diagramed in
Fig. 1 [1]. Prior to genomic selection, a cohort of ~50 young bulls
were each mated to a sample of 500–1000 cows in order to produce
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50–100 daughters per young bull. Approximately 10% of the bulls
with the highest genetic evaluations, based on the performance of
their daughters, were then selected for mating to the general pop-
ulation. The main disadvantage of the progeny test scheme is that,
although bulls reach sexual maturity at the age of 1 year, bulls are
approximately 5 years old by the time that progeny test records
from the first crop of daughters is available. In addition, the num-
ber of bulls that can be progeny tested is limited, and will generally
be dependent on the total size of the milk-recorded population
[1]. Annual genetic gain is computed as the sum of genetic gain per
generation over the four paths of inheritance; sire-to-son, sire-to-
daughter, dam-to-son, and dam-to-daughter; divided by the sum
of the four generation intervals.

Studies proposing the application of marker-assisted selection
in dairy cattle were first published in the 1980s (reviewed by [1]).
Nearly all studies assumed that the main gain of marker-assisted
selection would be extensive use of young bulls based on both
pedigree andmarker information. Thus, the mean generation inter-
val from sires to their progeny would be reduced, increasing the
mean genetic gain per year. This scheme only becomes practical if
the reliabilities of genomic evaluations of young bulls are signifi-
cantly higher than their reliabilities based only on pedigree
[1]. (“Accuracy” is defined as the correlation between the genetic
evaluation and the actual breeding value, and “reliability” is defined

Fig. 1 The Israeli dairy cattle breeding program prior to the introduction of

genomics. Each year ~5 young bulls are selected for general service, and are

used on the average for 4 years. Thus, ~20 bulls are in general service each

year. Only ~4 of these bulls are used as bull sires, and mated to 200 elite cows.

The remaining elite cows are mated using imported semen of foreign bulls. Elite

cows and bulls for general service are selected based on their genetic

evaluations for the Israeli breeding index. The genetic evaluations of the young

bulls are based chiefly on the records of their daughters, ~100 daughters/bull.

Genetic evaluations are computed three times yearly
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as the square of the accuracy, or the coefficient of determination of
the evaluation relative to the actual breeding value [1].) The early
studies assumed that a relatively small number of chromosomal
segments would be followed by <100 markers, e.g., Hayes and
Goddard [2]. Several breeding programs based on this strategy
were in fact applied to dairy cattle beginning in the first decade of
this century [3, 4].

With the introduction of high-density SNP chips in 2008
including >50,000 markers [5], genomic selection became a real-
ity. By 2014, this technology was successfully implemented in the
United States, Canada, Great Britain, Ireland, New Zealand,
Australia, France, the Netherlands, Germany, and the Scandinavian
countries [6]. Adoption of genomic selection breeding programs in
the major dairy producing countries has led to significant changes
in the worldwide dairy industry.

In this chapter, I will first describe the methods used for genetic
evaluation of dairy cattle prior to the introduction of genomics. I
will then discuss what we now know about the nature of genetic
variation for economic traits, methods to compute genomic evalua-
tions based on high-density SNP chips, factors that affect the
accuracy of genomic evaluations, the changes that have occurred
in commercial breeding programs due to the introduction of geno-
mic evaluations, evaluation of actual genetic progress as compared
to expectations, and make predictions of future directions.

2 Genetic Evaluation of Dairy Cattle Prior to Genomics

Unlike model species and most agricultural plants, genetic evalua-
tion of dairy cattle has always been based on analysis of field records
from commercial herds with different management systems and
climate. Until the 1980s, routine genetic evaluations for nearly all
major dairy cattle breeding programs were based on “sire models”
[1]. That is the dependent variable in the prediction model was the
cow’s first parity production, and the independent variable of inter-
est was the sires’ genetic value. Since the distributions of the sires’
daughters across herds was not orthogonal, it was necessary to
correct for the herd, or herd-year-season (HYS) effect. Usually
this effect was absorbed to reduce the number of equations. Con-
sidering the computing limitations prior to this century, and that
large dairy populations included thousands of sires, these systems of
equations could only be solved by iteration. Sire models did not
account for relationships other than between the cow and her sire,
and did not provide genetic evaluations for the individual cows [1].

In 1976, Henderson devised a simple algorithm to compute
the inverse of the numerator relationship matrix from a list of
animals and their parents [7]. Based on this algorithm, and the
increase in computing capabilities, it became possible to apply
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“animal models” [1] for routine genetic analysis. A simple individ-
ual animal model (IAM) is given in Eq. 1:

Y ijk ¼ H i þ a j þ p j þ eijk ð1Þ

whereYijk is record k of individual j in HYS i,Hi is the fixed effect of
HYS i, aj is the random additive genetic effect of individual j, pj is
the random permanent environmental effect for individual j, and
eijk is the random residual associated with each record.

As noted previously, sire models generally considered only the
cows’ first parity records, because two or more records on the same
cow will have a positive covariance. In the IAM this covariance is
taken into account by inclusion of a “permanent environmental”
effect, common to all records of each cow, in addition to the
additive genetic effect of the cow. Thus, the IAM includes two
equations for each cow included in the analysis. Since large dairy
populations include millions of cows, the IAM was not computa-
tionally feasible until the 1980s. In a fixed model, the additive
genetic and permanent environmental effects would be completely
confounded, because each level of these two effects refer to the
same individual. In the IAM these effects can be estimated sepa-
rately, because both are assumed to be random, and their variance
structures are different. The variance matrix for the permanent
environmental effect will be Iσ2p , where I is an identity matrix and

σ
2
p is the variance component of the permanent environmental

effect. The variance matrix for the additive genetic effect will
be Aσ

2
a , where A is the numerator relationship matrix and σ

2
a is

additive genetic variance. (Throughout this chapter, I will employ
the conventions that matrices will be denoted by upper case letters,
vectors by lower case letters, and both will be denoted in bold type.
The transpose of a matrix will be denoted by an apostrophe and the
inverse of a matrix by the minus one power.) For most economic
traits in dairy cattle, only females will have records. Individuals
without records, such as sires of cows or dams of cows without
records, will be included in the analysis via the relationship matrix.
Thus, in the IAM sire evaluations are derived via the relationship
matrix. Even with current computing capabilities, a typical com-
mercial IAM containing millions of equations can only be solved by
iteration [1].

The IAM as described would accurately reflect reality if the
pedigree of all animals could be traced back to a group of unrelated
animals [1]. However, this is never the case. Various animals of
different ages will have missing pedigree information. Thus, a fixed
“genetic group” effect is usually included in the model to account
for genetic trend and other genetic effects not included in the
known genetic relationships. Thompson [8] proposed a grouping
strategy based on “phantom parents.” Each individual with
unknown parents is assigned to phantom parents. These phantom
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parents are then assigned into groups based on year of birth, sex,
and whether the sire, dam or both parents are unknown. The
genetic evaluations are then computed as the sum of the additive
genetic effects and the group effects of each individual. Westell et al.
[9] developed a simple algorithm to directly compute estimated
breeding values that incorporate the group effects for each
individual.

Including the genetic group effect, the IAM of Eq. 1 can now
be described in matrix format as follows:

y ¼ Hh þ Za þ ZAgg þ Pp þ e ð2Þ

where y represents the vector of animal record; h, a, g, and p are
vectors of effects for HYS, additive genetic effect, unknown-parent
group, and permanent environment, respectively;H, Z, ZAg and P,
are incidence matrices for these effects; and e is the residual vari-
ance. The matrix Ag relates animals to unknown-ancestor groups,
via the algorithm of Westell et al. [9].

VanRaden and Wiggans [10] demonstrated that important
elements of the IAM could be expressed as relatively simple alge-
braic formulae. The cow’s own information is summarized by her
“yield deviation” (YD), a weighted average of yields adjusted for
effects other than genetic merit and error. Defining bh and bp as the
vectors of solutions for the HYS and permanent environmental
effect, each cow’s YD is computed as the element of Z0(y–Hbh-Pbp)
for that cow divided by the corresponding diagonal element of Z0Z;
i.e., a weighted average of the cow’s yields adjusted for effects other
than genetic merit and residual.

For each bull with daughter records in the analysis, the bull’s
daughter yield deviation (DYD) is computed by summing over all
daughters with records as follows:

DYD ¼

PN

1

qprog W2prog YDprog � PTAmate

�� �

PN

1

qprog W2prog

ð3Þ

whereN is the number of daughters of each sire. For each daughter
with records, qprog equals 1 if progeny’s other parent is known and
two-third if unknown. W2prog ¼ the number of lactations of the
cow divided by the sum of the number of lactations of the cow and

2qprog σ
2
e =σ

2
a

� �
, where σ2e and σ

2
a are the residual and additive genetic

variances. YDprog is the daughter’s YD. PTAmate is the predicted
transmitting ability of the cow’s dam, the bull’s mate. PTA is half of
the animal’s breeding value. Thus, a DYD is the weighted mean of
the bull’s daughters’ YD corrected for the genetic merit of the
daughters’ dams. This definition of DYD is somewhat simplified,
as compared to the definition of VanRaden and Wiggans [10],
based on the assumption that all lactation records are weighted
equally.
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VanRaden and Wiggans [10] wrote: “The DYDmay be helpful
in explaining evaluations and also as a dependent variable in statis-
tical tests and calculation of conversions across countries.” Unlike a
simple mean of the cows’ records or a simple mean of bull’s daugh-
ter records, YD and DYD are corrected for the other effects
included in the model. However, unlike genetic evaluations which
are based on random effects, both YD and DYD are not regressed
toward the mean as a function of the additive genetic variance.

3 Detection of Segregating Quantitative Trait Loci (QTL) in Dairy Cattle, the
“Granddaughter Design”

With the discovery of DNA level genetic markers in the 1980s and
especially microsatellites in 1989 [11] detection of the individual
quantitative trait loci (QTL) affecting quantitative traits became
possible for all agricultural species of interest. Unlike most plant
species, production of experimental dairy cattle populations specif-
ically for QTL detection was not a viable option. As noted previ-
ously, prior to genomics, genetic evaluation of dairy cattle was
based on the progeny test scheme. Thus, only a small fraction of
males is used as parents of the next generation, but each sire has
many daughters. Furthermore, these bulls are generally progeny of
an even smaller number of grandsires. Based on this population
structure, Weller et al. [12] proposed the granddaughter design,
which could be applied to large commercial dairy cattle popula-
tions. This design is diagrammed in Fig. 2. They proposed geno-
typing only the grandsires and their progeny-tested sons. Since the
genetic evaluation of each son is based on 50–100 daughters, the
reliability of their evaluations are close to 90% for a moderately
heritable trait, such as milk production. In each grandsire family, for
each marker, the sons are divided into two groups based on which
grand-paternal allele was passed, and significance of the contrast is
tested. This design is able to randomize all sources of variation not
linked to a specific chromosomal region [12].

In the first preliminary granddaughter design performed on the
Israeli Holstein population, the genetic evaluations of the sires were
the dependent variables [13]. Georges et al. [14] first proposed that
DYD should be used as the dependent variable for the granddaugh-
ter design. The vast majority of published studies based on analysis
of bull genotypes have used either DYD or “de-regressed” genetic
evaluations as the dependent variable. Formula to compute
de-regressed genetic evaluations are given in VanRaden et al.
[15]. Analysis of DYD as the dependent variable has the advantage,
compared to genetic evaluations, that the variance of DYD
decreases with the number of actual records included in the bull’s
DYD. Thus weighting DYD by the reliabilities of the genetic
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evaluations should yield “reasonable” results. That is, the weight-
ing factor of a record should be inversely related to the residual
variance. In the statistical analysis of the granddaughter design,
more weight would be given to DYD based on more daughter
records, and these DYD would have lower variances. During the
1990s the granddaughter design was applied to most of the major
dairy cattle populations (reviewed by [1]). All of these studies
claimed that segregating QTL were detected, and became the
basis for the first commercial marker-assisted selection
programs [1].

4 The Architecture of Quantitative Genetic Variation, Major Genes vs The
Infinitesimal Model

As noted previously, prior to the development of high density
SNP-chips, all studies that proposed methods for marker-assisted
selection assumed that a relatively low number of chromosomal
segments would be followed, each containing a single gene of
interest (e. g [16]). It is now clear that the infinitesimal model,
first proposed by Fisher [17] seems to be much closer to reality.
That is, genetic variation in quantitative traits is determined by a
very large number of loci, each with very small effects.

We will briefly review the evidence both from dairy cattle and
humans. By 2008, tens of thousands of humans were genotyped for

Fig. 2 The granddaughter design to detect segregating quantitative trait loci. A

single chromosome is shown, although in practice all chromosomes with genetic

markers are analyzed
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high density SNP-chips. This data was used to detect genes affect-
ing human height, an easy to measure trait with a heritability of
~90%. The surprising result was that no major genes were detected,
and that those genes that were detected only accounted for a small
fraction of the total additive genetic variance. Maher [18] discussed
this anomaly in detail and proposed various explanations. Visscher
[19] was able to demonstrate that most of the genetic variance
could be explained by analysis of chromosomal segments, rather
than specific genes. That is most of the additive genetic variance was
due to a very large number of genes with effects too small to be
detected even with a sample of tens of thousands of individuals.

The second line of evidence comes from the results of SNP
chips in dairy cattle. The first practical methods for genomic evalu-
ation were based on estimation of the effects of all valid markers on
the trait of interest, and summation of these effects to obtain the
genomic evaluation for each individual [20]. Assuming a relatively
low number of genes affecting any specific trait, the estimated
effects associated with most markers should only represent random
variation. Thus, it should be possible to select a subset of markers
that only include those markers actually in linkage disequilibrium
with genes affecting the trait analyzed. Determination of genomic
evaluations by this subset of markers should be more accurate, due
to the reduction of “random noise” generated by markers with no
effects. In practice, genomic evaluation based on selected subsets of
markers has at best been only marginally better than evaluation on
all markers, and in most cases not nearly as efficient [21].

The third line of evidence comes from the causative poly-
morphisms, the “quantitative trait nucleotides” (QTN) that have
been determined in dairy cattle. The search for QTLs has been in
high gear for nearly 20 years. Yet, only 2 QTN have been found
that meet all the criteria for positive detection of a QTN proposed
by Ron and Weller [22], and Weller and Ron [23]; DGAT1 that
chiefly affects milk fat concentration [24]; and ABCG2, which
chiefly affects protein concentration [25].

The current release of the cattle QTL data base contains
160,659 cattle QTLs curated from 1030 publications and represent
675 different cattle traits [26] (https://www.animalgenome.org/
cgi-bin/QTLdb/index). Due to differing trait definitions, possible
genetic differences between populations and the relatively large
confidence intervals for QTL location, it is unclear as to how
many of these associations can be considered confirmed by inde-
pendent studies. In the modified granddaughter design of Weller
et al. [27], genotypes for 83 grandsires and 17,217 sons were
determined by imputation for 3,148,506 polymorphisms across
the entire genome. A total of 30 trait-by-chromosomal segment
effects segregating in the USHolstein population with probabilities
of <10�20 to accept the null hypotheses of no segregating gene
affecting the trait within the chromosomal segment were found.
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However, they were not able to conclusively determine the QTN
for any additional loci, and none of the effects found explained
more than a few percent of the genetic variance.

DGAT1 and ABCG2 can be considered the exceptions that
prove the rule. Both fat and protein concentration have heritability
greater than 50%, and are traits that have not been under direct
selection. The polymorphisms for DGAT1 has been maintained in
the population, because the effect of allele substitution is approxi-
mately neutral with respect to most selection indices; the allele that
increases fat concentration also decreased protein production
[22]. With respect to ABCG2 the allele that increases protein
concentration reduces fluid milk production [22]. Until 1980,
selection in most countries was chiefly for fluid milk, which resulted
in an increase in the allele that increases milk volume. Since then
protein production has become the main trait for selection in most
countries, and the allele that increases protein concentration has
reached fixation in most commercial populations [28]. Genetic
trends for protein and fat concentration and frequency of the
ABCG2 581Y allele, the allele that causes increased protein and
fat concentration, in the Israeli Holstein cow population are plotted
by birth year in Fig. 3.

5 Computation of Genomic Evaluations in Dairy Cattle Based on Analysis of Sire
Evaluations

The mathematically optimal solution for computation of genomic
evaluations for dairy cattle based on the IAM would be to include a
marker effect for each SNP into the animal model. The genomic
evaluation for each animal would then be the sum of the genetic
groups and additive genetic effect given in Eq. 2, which would

Fig. 3 Genetic trends for protein and fat concentration and frequency of the

ABCG2 581Y allele in the Israeli Holstein cow population by birth year. ─, ABCG2

581Y allele frequency; ─, mean yearly breeding values for fat percentage; ─,

mean yearly breeding values for protein percentage
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include all genetic effects not linked to the markers, and the sum of
the effects of all genotyped markers. This model cannot be applied
in practice, because only a small fraction of the animals included in
the standard evaluations of commercial dairy populations have
genotypes; and in the early years, these were chiefly sires, who are
included the IAM analysis only through the relationship matrix.

The first practical method for genomic evaluation in dairy cattle
was proposed by VanRaden [20], using DYD as the dependent
variable. The vector of sires’ DYD, y, can be modeled as follows:

y ¼ xb þ Zu þ e ð4Þ

where b is the mean (the only fixed effect in the model); x is a vector
with all elements equal to one; u are the marker effects, which are
assumed to be random; Z is the matrix that relates marker effects to
the individual records; and e is the random error vector with
variance matrix R. All markers were assumed to be biallelic.

The positive covariance among markers in genetic linkage on
the same chromosome is taken into account via the Zmatrix, which
is computed as follows. Let M be the matrix that specifies which
marker alleles each individual inherited. Dimensions of M are the
number of individuals by the number of markers. If elements of M
are set to �1, 0, and 1 for the homozygote, heterozygote, and
other homozygote, respectively; diagonals of MM0 count the num-
ber of homozygous loci for each individual, and off-diagonals
measure the number of alleles shared by relatives. Let the frequency
of the second allele at locus i be pi, and let the matrix P contains
allele frequencies expressed as a difference from 0.5 and multiplied
by 2, so that column i of P is 2(pi � 0.5). Z is then defined asM – P,
so that mean values of the allele effects is Z ¼ 0. VanRaden [20]
assumed that allelic frequencies would be computed from the “base
animals.” That is animals with genotypes, but without ancestors
with genotypes. Aguilar et al. [29] investigated this question for
“single-step” models and concluded that assuming pi ¼ 0.5
resulted in optimal genomic evaluations.

In single trait analysis by the mixed model, it is generally
assumed that the residual matrix is equal to the identity matrix
times a constant. This will not be the case for DYD, since DYD of
related bulls will have a positive covariance. Various studies have
therefore assumed a variance matrix equal to the relationship matrix
among bulls multiplied by a constant. In addition, the residuals will
be a function of the number of daughter records per bull. The
standard procedure to account for this is to weight the DYD by
the reliabilities of the evaluations. Although this may be approxi-
mately correct, over the general range of sire reliabilities, it is not
clear what should be done with bulls with thousands of daughters.
These bulls should have residual variances approaching zero, and it
is unknown how the generalized linear model should behave in this
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situation. In the model of VanRaden [20] diagonals of R were
computed as: 1=Rdau � 1ð Þσ2e , where Rdau is the bull’s reliability
from daughters with parent information excluded, and σ

2
e is the

residual variance of the DYD not explained by the marker effects.
Off-diagonals were assumed to be zero, based on the assumption
that most of the common genetic effects among relatives would be
included in the marker effects.

VanRaden [20] gives three different methods to derive geno-
mic breeding values, but only one will be presented here. In this
method the vector of the effects of the individual markers, u, can be
derived from the following equations:

Z 0R�1Z þ Iλ
� �

u½ � ¼ Z 0R�1 y � xbb
� �

ð5Þ

where λ ¼ the ratio σ
2
e =σ

2
u, which equals the sum across marker loci

2 ∑ pi(1 � pi) times the ratio σ
2
e =σ

2
a , where σ

2
e , σ

2
u and σ

2
a are the

residual, marker and total additive genetic variance, and xbb are the
solutions for the means of y. Genomic breeding values are then
obtained as Z bu, where bu are the solutions for the marker effects. As
noted previously, all off-diagonal elements of R are assumed to be
zero. Therefore, R�1 can be computed by inverting each diagonal
element. Thus, this method is computationally tractable, as it is not
necessary to invert any large matrices, and Eq. 5 can be solved by
standard iteration algorithms, such as Gauss-Seidel [20].

Final genomic estimate of breeding values (GEBV) are derived
by selection index which includes three factors: (1) the estimated
direct genomic evaluations as described, (2) the parent average
genetic evaluations computed from the subset of genotyped ances-
tors using known relationships, and (3) parent average genetic
evaluations for individuals with genetic evaluations for both par-
ents, or pedigree indices of individuals without dam genetic
evaluations.

DYD are only computed for traits analyzed by the single trait
IAM. Thus DYD are not computed for fat and protein concentra-
tion, for which genetic evaluations are usually derived from the
genetic evaluations of milk, fat, and protein yield. DYD are also
not computed for alternative analysis models, such as a multi-trait
IAM in which each parity is considered as a separate trait [30]. In
these cases, VanRaden et al. [15] suggested analysis of de-regressed
genetic evaluations as the dependent variable.

6 “Single-step” Methods of Genomic Evaluation

As noted previously, until recently, only a small fraction of cows
with records were genotyped. This situation is quickly changing. By
March of 2021, more than 3.5 million North American Holstein
cows were genotyped (https://queries.uscdcb.com/Genotype/
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cur_density.html). Methods to compute genomic evaluations based
on incorporation of marker effects into the IAM, accounting for
the fact that only a small fraction of the animals were genotyped
were developed by Legarra et al. [31]. This method was termed
“single step,” as opposed to the method of VanRaden [20], which
was termed “two step.” Mathematical description of the single-step
model accounting for the fact that only a small fraction of animals
has genotypes is quite complex and beyond the scope of this
chapter. For extensive description of the single-step model see:
refs. 29, 31–33. I will summarize the advantages and disadvantages
of both methods, based on theoretical considerations, and results
on analysis of actual data.

Advantages of the two-step method include no change to the
regular evaluations and simple steps for predicting genomic values
for young genotyped animals. Furthermore, overall computing
time will be considerable less than for single-step methods. The
main disadvantage is that genotypes of cows are not included in the
analysis. Models have been proposed that included both bull and
cow genotypes with daughter yields as the dependent variable for
cows, but their application to actual data have not resulted in more
accurate evaluations [34]. Additional disadvantages include
weighting parameters, such as variance components [35] or selec-
tion index coefficients [15], loss of information, and biased evalua-
tions [29, 32]. Furthermore, the extension to alternative analysis
models, such as multi-trait evaluations or test-day models is not
obvious. As noted previously, there are several problems in the use
of DYD as the dependent variable. These problems are weights
(caused by different amount of information in the original data
set), bias (caused by selection, for example), accuracy (for animals
in small herds), and collinearity (for example, the yield deviations of
two cows in the same herd). Furthermore, if genomic selection is
used, the expectation of Mendelian sampling in selected animals is
not zero, which can lead to biased evaluations [36]. Although
single-step methodologies appear to be superior on theoretical
considerations, and can be readily applied to any analysis model,
differences in accuracy of prediction between the two methods on
actual data so far are at best minimal [35]. In addition, single-step
methods have three drawbacks: (a) They require much more exten-
sive computing, due to the generally huge number of equations
included in the analysis model. (b) It is necessary to partition the
genetic variance between the fraction associated with markers and
the remainder that is independent of the marker effects. Although
this factor can theoretically be computed for historical data, it is
unknown for animals that have not yet produced records.
(c) Convergence to solutions by iteration is problematic [33].
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7 The Factors that Affect the Accuracy of Genomic Evaluations

Nearly all studies that compared genomic evaluations to traditional
genetic evaluations based only on phenotypic records and relation-
ships have assumed that the basis for comparison for young animals
without records or progeny records is the animal’s parent average of
genetic evaluations (PA) derived by standard mixed model meth-
odology. The main criteria for comparison are accuracy and bias of
the evaluations. Two basic methods have been applied in the litera-
ture for evaluation of genomic breeding values. In the first method,
applied by Meuwissen et al. [37], simulated data sets are derived,
and genomic breeding values are computed on the simulated data.
This method has the advantages that the estimated breeding values
can be compared to the “true” (simulated) breeding values, and
that any number of simulated data sets can be generated. The main
disadvantage is that it is not known how accurately the simulation
algorithm actually corresponds to actual data.

The second method, first applied by [15], is based on analysis
of actual data. On real data the true breeding values are not known.
Genomic estimated genetic values for young animals with geno-
types, but without trait records or progeny records, are compared
to standard estimated breeding values on the same animals based on
progeny records produced later. The data is divided into “training”
and “validation” data sets. Generally, this is accomplished by divid-
ing the population into old and young animals, respectively. If the
validation set is comprised of young animals, only animals with
their own trait records or records of progeny can be used for
validation. In this case, the squared correlation between the two
estimates should equal the reliability of the genomic evaluations
divided by the reliability of the daughter-based evaluations
[15]. Bias of the evaluation is measured by the regression of true
genetic values on estimated genetic values. If evaluations are unbi-
ased then this regression should not be significantly different from
unity. That is the covariance of the estimated and true genetic
values should equal the variance of the estimated genetic values.

VanRaden et al. [15] used genotypes for 38,416 markers and
the August 2003 genetic evaluations for 3576 Holstein bulls born
before 1999 to predict the January 2008 daughter deviations for
1759 bulls born from 1999 through 2002. Five milk yield traits,
5 fitness traits, 16 conformation traits, and net merit were analyzed.
Combined predictions were more accurate than official PA for all
27 traits, with coefficients of determination 0.05 to 0.38 greater for
the genomic evaluations. Reduction of the number of markers by
half had virtually no effect on the coefficients of determination for
the genomic evaluations. Over the range of 1151–3576 predictor
bulls, gains in reliability for net merit were nearly linear with
increasing numbers of predictor bulls, and gains for most other
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individual traits followed that same pattern. More recent results
show that this trend appears to hold up to 10,000 predictor bulls
[35]. Numerous studies have shown that accuracies of genomic
evaluations are no higher than PA, if less than 1000 bulls are
included in the training population (e. g., [15, 21]). Colombani
et al. [38] found that regression slopes of observed DYD on pre-
dicted DYD for Holsteins were less than unity for all methods for all
traits, but highest for standard mixed model evaluations. On a
practical level this means that the highest genomic evaluations are
somewhat inflated. Differences in accuracy between single and
multi-stage methodology were minimal, but single-stage meth-
odologies might have an advantage in bias, and for genetic evalua-
tion of young animals that were not genotyped [29].

8 How Genomics Has Changed the World Dairy Cattle Industry

The main objective for the establishment of the International Bull
Evaluation Service (Interbull) was to compute across country
genetic evaluations. The Multiple Across Country Evaluation
(MACE, [39]) algorithm was developed for this purpose, based
on bulls with genetic evaluations in more than a single country
(http://www.interbull.org/ib/interbullactivities). The major dif-
ferences in methodology, and the fact that genomic evaluations of
young sires still have low reliability relative to progeny-tested bulls,
make the question of across country comparisons of genomic eva-
luations even more difficult. New methodologies were developed
by VanRaden and Sullivan [40] for this purpose, and were
incorporated into the Genomic MACE, “GMACE,” algorithm
that is used by Interbull to compute multi-country genomic
evaluations.

Reduction in genotyping costs led to an exponential increase in
the number of animals genotyped per year. By March 2021, over
3.8 million Holsteins have been genotyped in North America, of
which over 90% are females (https://queries.uscdcb.com/Geno
type/cur_density.html). Costs for lower density chips have reached
the level at which routine genotyping of all female calves can be
economically justified for management decisions on the farm level
[41, 42].

Until the advent of genomic evaluation, gains in efficiency of
breeding programs due to increase in scale were minimal above
population sizes of ~100,000 milk-recorded cows. Thus, many
countries were able to run national breeding programs, and the
largest countries were also able to conduct breeding programs for
more than a single breed. With genomic evaluation, there is a
consensus that the main factor limiting the accuracy of genomic
evaluations is the number of bulls with genotypes and daughter
records (e.g., [15]). Thus, even the largest countries are pooling
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resources to conduct multi-national genomic selection programs.
Two major consortiums have been established; the Council on
Dairy Cattle Breeding (CDCB), which includes organizations
from the US, Canada, UK, Italy, Switzerland, and Japan (https://
www.uscdcb.com/); and Eurogenomics, which includes members
from Spain, the Netherlands, Belgium, France, Germany, Poland,
Denmark, Sweden, and Finland (http://www.eurogenomics.com/
). Eurogenomics currently included 35,000 bulls and 1.6 million
animals in the reference population. Membership in the Euroge-
nomics consortium is dependent on submission of a quota of bulls
with genotypes and genetic evaluations based on daughter records.
Recently a consortium of smaller countries that do not meet the
requirements of admission into Eurogenomics, “InterGenomics-
Holstein,” has been organized by Interbull to pull genotypes and
compute genomic evaluations for the smaller countries. Breeding
organizations from four countries are preliminary members: Ire-
land, Israel, Slovenia, and South Korea [43].

In the progeny test scheme, described in Fig. 1, a second crop
of daughters was produced from elite bulls approximately 5 years
after the first crop. This is no longer the case for genomic breeding
programs. An example for the Israeli Holstein genomic breeding
program as optimized by Reiner-Benaim et al. [44] is diagramed in
Fig. 4. The number of bull calves genotyped is 400, as compared to
50 bull calves progeny tested in the scheme in Fig. 1, but 40 are
used as sires each year. Thus, selection intensity along the sire-to-
sire path is still 1 in 10, but the mean generation interval along the
sire-to-dam path is reduced from ~7 to ~2 years. With genomic
selection, most bulls are used for general service for less than 1 year,
and only a very small sample of elite bulls are retained for further
service. The lack of ties between bulls of different ages will make it
more difficult to obtain accurate genetic evaluations across
generations [46].

With genomic evaluation, progeny testing of large numbers of
bulls is no longer necessary. Weller et al. [47] showed that for six
countries, US, Canada, Germany, France, Netherlands, and Israel;
the number of bulls with daughter records has been reduced from
~4500 in 1995 to ~2500 in 2010. Although the number of US
bulls with daughters decreased from ~1500 to ~1100; for Ger-
many, France, and the Netherlands the number of bulls with
daughters was reduced by more than half. The decrease was most
dramatic in Germany, which progeny tested >1000 bulls born in
1996, but only 308 in 2011. Although the progeny test of young
bulls with 50–100 daughters has not been completely eliminated,
numbers of bulls have decreased, and the mean number of daugh-
ters per young bull has increased.

Daughters are produced only from bull calves with high geno-
mic evaluations. These bulls are a selected sample with respect to
the “Mendelian sampling” component of the genetic variance of
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their parents. The genetic value of an individual can be decomposed
into the contribution from its sire, its dam and a Mendelian sam-
pling component, which should account for half of the genetic
variance in the population. However, if bull calves are selected
based on genotype, then only individuals with high Mendelian
sampling effects will be selected, which will bias evaluations based
on the standard relationship matrix [36]. Selection of bulls out of
an already selected population can also result in bias in the calcu-
lated genetic gain [42].

Garcı́a-Ruiz et al. [48] analyzed data from the US Holstein
population after nearly 2 generations of genomic selection. They
found major reductions in generation intervals, especially along the
sire of bull and sire of cow paths. Generation intervals along these
paths were reduced from 7 to 2.4 and 5 years, respectively. The
change in the dam of bull interval was smaller, from 5.2 to
2.6 years, even though this was originally assumed to be the main
pathway to increase genetic gain via genomic selection [1]. More
recent data from has shown a further reduction to generation
intervals of ~2.3 year for the sire and dam of bulls paths, and
3.8 years for sire of cows for offspring born in 2918 [49]. The
number of new artificial insemination bulls produced per year had
decreased. Annual rates of genetic gain increased from �50 to
100% for yield traits and from threefold to fourfold for lowly
heritable traits, including female fertility, herd-life and somatic
cell concentration [48]. It should be noted though, that these
calculations are based on the genomic evaluations, and generally
have not been validated by bulls with evaluations based on daughter
records. The major engine of gain was the use of much younger
bulls as bull sires.

Fig. 4 The Israeli dairy cattle breeding program with genomics as optimized

based on [44]. Currently genomic evaluations of the bull calves are computed by

CRV as described in [45]
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9 The Future

Genetic theory suggests that at some point genetic progress should
plateau either through exhaustion of genetic variability or through
development of antagonistic genetic relationships between the
selection objective and components of fitness. In long-term selec-
tion experiments, selection response usually ends after 20–30 gen-
erations [50], although in some cases significant response has
continued for over 100 generations [51]. Despite these considera-
tions, heritability of lactation milk yield in dairy cattle has actually
risen from �25% in the 1950s to �35% currently, likely partly due
to improved management [52]. Makanjuola et al. [49] compared
rates of inbreeding in the US Holstein and Jersey populations
during the last decade to the 1990s, which was prior to genomic
selection. Per generation, genomic inbreeding rates were slightly
higher for Holsteins, but lower for Jerseys. Apparently, little varia-
tion has been lost, and current rates of genetic gain are indeed
sustainable in the future. Genetic variance for economic traits is
maintained by increase in frequency of rare alleles, new mutations,
and changes in selection goals and management. As shown by
Weller et al. [47], selection can also increase genetic variance if
the frequency of the favorable allele is low.

Probably the most important challenge in the future will be
incorporation of new traits into the selection index, including
udder health, hoof health, other health traits, feed efficiency and
methane emissions [53–56]. Although there is consensus as to the
economic importance of most of these traits, they have not gener-
ally been included in breeding programs because of difficulty of
measurement and low heritability for nearly all health traits.

Throughout the chapter, we analyzed genomic evaluation as
applied within a single breed. Although crossbreeding in dairy
cattle is less common than other agricultural species, such as poul-
try and swine, there are commercial dairy crossbreeding systems,
especially in the tropics, and genomic evaluation has also been
applied to crossbred populations. Almost 50% of the
New Zealand dairy cattle population are crossbred cows
[57]. Khansefid et al. [57] found that crossbred predictions derived
from separate analyses of New Zealand Holstein and Jersey refer-
ence populations were similar in accuracy to crossbred predictions
derived from the two separate purebred reference sets and com-
bined proportional to breed composition. However, the latter
approach, which included crossbred animals, was less biased
by 0.13.

The main opportunity that has yet to be exploited with respect
to genomic evaluation is the huge number of genotyped cows. As
noted previously, over 3.5 million cows have been genotyped in
North America. Various studies have proposed deriving genomic
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evaluations for small populations based on genotypes of cows (e. g.,
[58, 59]). Pryce et al. [60] estimated that reliabilities of genomic
evaluations could be increased by up to 7%, with the incorporation
of 10,000 cow genotypes in addition to 3000 bull genotypes. For a
trait with heritability of 0.30 and cows with single records, <10
genotyped cows yield equivalent information to a single progeny-
tested bull with a reliability of 0.8 [61].

With genotyping costs of <50$ per animal, and accurate impu-
tation techniques, Weller et al. [44] predicted that future genomic
evaluation algorithms will be based on a single-step methodologies
incorporating hundreds of thousands of cows with genotypes and
trait records (e. g., [62, 63]). As noted previously, Misztal and
Legarra [33] found problems with convergence of solutions in
single-step methodologies. However, in all actual applications of
single-step methodology to date only a very small fraction of the
animals included in the analysis actually have genotypes. It is likely
that convergence problems will decrease if a larger fraction of the
population is genotyped. Since cows generally produce from three
to five lactation records, the current problem of shortage of genetic
ties among animals of different ages will also be solved.

10 Conclusions

The infinitesimal model of genetic variation in quantitative traits
seems to correspond very closely to reality. Genomic selection in
dairy cattle has led to enhanced rates of genetic improvement,
shortening of generation intervals, reduction in the number of
bulls with daughter records, and less genetic ties across years. In
the future, more use will be made of cow genotypes, with the
adoption of single-step methodologies for genomic evaluation.
More emphasis will be placed on health, reproduction, efficiency
of production, and environmentally friendly production. Genetic
variance for economic traits is maintained by increase in frequency
of rare alleles, new mutations, and changes in selection goals and
management. Thus, it is unlikely that a selection plateau will be
reached in the foreseeable future.
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