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I. THEORY 

THE characters with which a plant breeder is principally concerned are those known as 
‘( quantitative characters ”. They present particular difficulty because heritable variations 
are masked by larger non-heritable variations which make it difficult to determine the 
genotypic values of individual plants or lines unless we have sufficient seed and facilities 
to grow replicated plots of each line. In the earlier stages of selection breeders try to 
select plants in the field on the basis of observable characters which they believe may be 
associated with the desired character or quality (for example, grain and ear sizes as indices 
to yielding ability, or flintiness of grain as an index of protein content), but the actual 
worth to be attributed to each character is usually unknown. The problem may be ap- 
proached by seeking to determine what “discriminant function ” (Fisher, 1936) of the 
observable characters may best indicate the (‘genetic value” of a plant or line. 

Suppose that in a wheat-selection programme we are required to bonsider n characters, 
say xl, x 2 ,  ... x,. Let us evaluate each in terms of one of them, say xl. For example, 
suppose we take xl to represent yield of grain; x2 may represent baking quality and we 
may consider that an advance of 10 in baking score is equal in value to an advance of 
1 bushel per acre in yield; x3 may represent resistance to flag smut and we may evaluate 
a decrease of 20 per cent infection as worth 1 bushel of yield;* and so on. Let these values 
be designated a,, a2, . . . , an. Then taking yield, x, , as standard and units as indicated, we 

will have al= 1, a2=0.1, a3= -0.05, etc. 

Then, if 6 is the value of x to be expected due to genotype, the genotypic value of a line 

may be scored as $=a,fI+a262+ * * *  +ar&tn ...... (1). 

This, however, cannot be directly evaluated since we can observe only the phenotypes 

* Characters such as disease resistance may introduce other considerations which will not be taken up in 
detail here. For example, we may grow the planta in a disease-infested nursery and suppose that the disease- 
resisting qualities are sufficiently represented in our measure of yield so that no attention need be given to 
disease as a separate character. But if we are interested in producing disease-resisting varieties for use as a 
control measure to reduce the prevalence of disease in a district we may consider disease resistance as a character 
of value in itself and be willing to sacrifice something in yield to obtain it. Again, we may wish to keep the 
plant-breeding nursery free of disease but we may take some grain from each plant and test it in the laboratory 
for disease-resisting properties, which will then require evaluation independently of characters observed in 
the field. 
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which, because of non-heritable variations, do not accurately represent their genotypes. 
Let the phenotypes be scored according to the equation 

Y = 6 1 ~ l + b 2 ~ 2 + . . . + 6 f i ~ n  ...... (2). 

Our problem is then to find the values of b such that the function Y may best discriminate 
those lines which have the greatest genotypic value #. 

Suppose that we have a large number of plant lines and we have decided to select for 
further propagation one qth part of them. Assuming that the values of Y for each line 
are normally distributed with variance V ,  their frequency distribution may be represented 
by Fig. 1, and the lines to be selected will be those falling in the shaded area q, that is 
all those having Y greater than a fixed value Y'.  If Y be transformed to a variate, u, 
with unit variance and mean at  zero, that is 

Y - P  
d V  ' 

u= - 

then the value of u' = ( Y' - H)/ d V corresponding to any given value of q may be ascertained 
from a table of the normal probability integral. 

U -1 0 I U' 

Fig. 1. 

Let the regression coefficient of # on Y be B. Then the mean value of 1,4 associated with 
any given value of Y is given by 

( I , ! J - $ ) = B ( Y - H ) = B ( V ) ~ U  ...... ( 3 ) .  

Bumming for all values of Y greater than Y' and dividing by their frequency, q, the mean 
value or expectation of (# - 4) to be associated with the selected values of Y is 

=!'B (V)& 
q 

..... .(4), 

where z is the ordinate of the unit normal curve at the deviate u', and E (# - 4) may be 
described as the expectation of genetic advance above the mean of the original population 
for a given intensity of selection q. The selection intensity having been determined, z is 
also fixed, and therefore to maximize E (#-4) we require to maximize B (V)4 .  
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Assume now, by hypothesis, that an observed value of a character xi may be treated as 
the sum of two parts, ti due to genotypic and ei due to environmental factors, so that 

Further, let us awume that the two parts are independent, that is, the covariance of ti 
and ei has an expectation of zero. Then if t i$ ,  gi,, and e, ,  be the variances of xi, ti and 
ei respectively, ti, = gri + eti. 
Similarly, let the covariances of xi and xi be tij, of 5, and tJ be Sir, and of ei and e j  be ei,, 

with similar additive connexions. 

Xi = ti + q. 

Then the variance of Y is 
V = E  ( Y  - F)2 

=b;tll+b%t,+ ... +2blbzt la+2blb3~3+ ... 
= C C bibrti j ,  

n n  

i = l j - 1  

and the covariance of a,h and Y is 
W = E  (*-$) ( Y -  7)  

=a1b1g11+a2bZg22+ * * *  + ( a l b 2 + u 2 b 1 )  912+(a1b3+u3b1) g13+ .-. 
n n  

since the expectations of (tiej)  for all values of i and j are zero. The regression of 4 on Y 
is then 

and .. , . . . . ( 6 ) .  

Putting log B (V)i=log W - g  log V 

it is easy to obtain 

and this is equal to zero (that is log B (V)i-and therefore also B( V)i-is maximum) when 
17 

X b j G j = Y  Za,glj= KA, 
i W J  

We can thus obtain n equations of the general form 
b,tl ,+b,t ,+. . .+b,t l ,=KA,,  
61 t, + b.& + . . . + 6, t,, = KA, , 
.................................... 
b , t l n + b s t +  ... +bntnn=KAn, 

n 
which may be written briefly as Cb,tiJ = KAi 

j = l  

. . . . . (6). 

...... (7), 

where i is constant in each equation, A,  = Cu,g,, and K = V /  W .  
J 
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The solutions of these n equations are given by 
b, = KXA5cij ...... (8), 

.I 
where j is now constant in each equation and the values of cfr are given by the matrix* 

which is the reciprocal of 

That is, 

[ 5 ..................... ; j j j  ; 1, 
I ..................... 

= I t l .  

where TSj  is the co-factor of t t j  in 1 t I . 
K which is constant in all equations, and it is sufficient to evaluate simply 

Since we are interested only in the relative values of the b’s it is unnecessary to evaluate 

bj/K = ZA,c,j=d,. 
i 

From equation (7) Zb,t,, = KZa,g,, . 
3 3 

XZb,b,t,5 = y i a , g , ,  
i 3  

Therefore 

and B (V)*= dKZXb,a,g,,= dKZb,A,= dXd,A,.  
i 3  2 i .  

Substituting in equation (4) the expectation of genetic advance is therefore 
(z/q) d m  ......( lo), 

where z /q  is a constant depending on the intensity of selection whose value for any given 
selection intensity q can be ascertained from the Kelley-Wood table of the normal prob- 
ability integral (Kelley, 1923). The units of this expression are the same aa those by which 
the standard character zl has been meaaured. 

The hypothetical premises from which the above deductions proceed are (1) that 
genotypic and environmental effects are additive to give the observed magnitude of a 
character, (2) that they are independent, and (3) that Y and t,b are normally distributed. 
The first two are comparable to the assumptions usually made in applying other statistical . In practice ........... are found by solving the equations yf4f =o ...... (9), 

pt,,=o, 
except that %5t,f = 1. 

1 
Similarly cl*, c, . cB, ... are the solutions of the equations 

except that 

eta. (Fisher, 1926-34, Seo.29): 
EUGENICS VII, 111 
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methods which depend upon linear functions. They appear inherently reasonable but 
perhaps deserve to be the subject of research. With respect to the third, since estimates 
of regression coefficients are not biassed by considerable departure of the frequency 
distributions of the variates from normal, such departure would not affect the procedure 
used to determine the b's ; but since the derivation of equation (4) does depend directly 
on the distribution of Y departure from normality would affect estimates of genetic 
advance. 

11. EXAMPLES 
(i) A variety trial. Smith (1936) reports two variety trials with Australian wheat 

varieties grown in replicated square yard plots. In addition to yield of grain the com- 
ponents of yield-ear number, grain number and grain size-and weight of straw were 
observed. Suppose that it is required to discriminate from these observations the genotypic 
values of the varieties with respect to yield of grain. 

The data have been recorded as the logarithms of observed figures so we shall take &s 

our variates 
x,=logarithm of yield of grain per plant at 0.01 sq. yd. per plant. 
x2= ,, ,, ear number per plant. 
x3= 9, ,, average number of grains per ear. 
x,= ,> ,, average weight per grain. 
x5= ,, ,, weight of straw per plant. 

Obviously z,= xz + x3 + x4 ...... ( l l ) ,  
and, if we are concerned only with yield of grain, our equation of value is 

3311 
- 
- 
- 

y5 = x, = x, + "3 + x4 
that is, we may take either a, = 1 and a, = a3 = a, = a, = 0 

- 1810 - 1391 
1535 1299 
- 2087 
- - 

. . . . . . ( 12) ; 

.. . . ..( 13), 
or 
Both sets of constants lead to precisely the same results throughout. 

the variates x, to x4. Let the discriminant function be 

a,=a5=0 and a,=a3=a,= 1 . . . . . .( 14). 

On account of the identity ( 1  1) we can have only three independent equations among 

Y=b2x2+b3x3+b4x4+b~X~ 
For the 1933 experiment analyses of variance and covariance are given in Table XXI 

of the paper cited. As estimates of tir we may take one-sixth* of the mean squares and 
mean products between varieties. This gives a matrix for tii as in Table I. 

Table I. t i i fo r  means of 6 plots (1933), x lo6 

. . . . . . (15). 

5 

385 
216 
488 
859 

* For immediate purposes we could obviously take simply the intervariety mean squares for t ,  and inter- 
variety less error mean squares for g; but intervariety sums of squares having been determined from sums 
of 6 plots, one-sixth of these values is more convenient for further calculations to be described later. 



H. F A I R F I E L D  SMITH 

2 3 

1 - 48 946 
2 3086 - 1743 
3 - 1363 
4 - - 
5 - - 

245 

4 6 

1993 913 
- 1392 252 

1326 171 
2069 490 
- 654 

Solving the system of equations (9) gives values of c,, as in Table 11. 

2 
3 
4 
5 

~- 

Table 11. c,, for means of 6 plots (1933) 

2 

1536.432 - 
- 
- 

18620173 162.390 - 1272.259 
3647.819 - 702.274 - 1397.975 

1150.743 - 541.279 
2411.184 

As estimates of e,, we may take one-sixth of the mean squares and mean products for 
remainder (or error), and by subtracting these from the corresponding values of i& in 
Table I we obtain estimates of gi, (Table 111) (compare Smith, 1936, Appendix 4). 

Table 111. g,, for the 1933 experiment, x los 

A 

- 
- 48 
946 

1993 
913 

Owing to the identity (11)  the A factors may be derived either from row 1 of Table I11 
using (13), or from rows 2-5 using (14). Then substituting numerical values from Tables I1 
and I11 in equations (8) we find 

Yl cc 0*8487~2+0.6839~3+ 1'1269x4- 0.1371~6, 

which is the linear function of the characters x2 to x5 which may best discriminate the 
genotypic yield potentialities of the various varieties under the conditions of this 
experiment. 

We may, if desired, take one of our characters, say x3 (grain number per ear), as having 
unit value and rewrite the formula as 

Y1 cc 1.241 1x2 + ~3 + 1 . 6 4 7 9 ~ ~  - 0 . 2 0 0 5 ~ ~ .  

If we do not wish to evaluate grain number (5) but wish to use instead total weight of 
grain (xl), the appropriate function is given by replacing x3 by its equivalent (xl-x2-x4). 
Thus Y1 cc XI + 0.241 1x2 + 0'6479x4 - 0.2005~6 

and this formula is identicai with that which would have been obtained had we decided 
from the first to use these variates in the discriminant function (15). It indicates the 
extent to which observations of x2, x4 and x, may contribute to our knowledge of genotypic 
yielding ability over and above such information aa would be given by observing yield 
of grain alone. 

...... (16), 

17-2 
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The 1932 experiment (loc. cit. Table XIX) with approximately the same group of 
varieties gave the formulae 

Y ,  a 0~784x,+0~771x3+0~955x4 

cc 1*017+x3+ 1 . 2 3 9 ~ ~  

a zl + 0 . 0 1 7 ~ ~  + 0 . 2 3 9 ~ ~ .  

Straw weight (x5) has not been included in these formulae because in 1932 straw production 
of one or two varieties seemed abnormally erratic. The relative values of the yield com- 
ponents show notable similarity to the 1933 figures for as much as the 1932 experiment 
was on much poorer and more heterogeneous soil. The principal difference, the lower value 
of weight per grain (x4) in 1932, is due to this character having had a higher experimental 
error in 1932 than in 1933. The eminence of weight per grain in both years is due partly 
to its having the highest genetic correlation with yield (compare Smith, 1936, 111) and 
partly to its experimental error (eu) being considerably lower than that of the other 
characters . 

The values of (CdA)* are 0.05227 for the 1933 data and 0.05234 for the 1932 data. For 
a 10 per cent selection intensity, q= 0.1, z/q= 1.755; therefore the expectation of genetic 
advance for a 10 per cent selection among a population of plant lines having statistics 
similar to the above would be 1.755 x 0.0523= 0.0918. Since the characters have been 
measured as logarithms and log-1 0.0918= 1.235, it  is indicated that the average yield of 
the selected 10 per cent would be about 23.5 per cent greater than the average of the 
population. 

(ii) Effect of varying experimental errors (or quantity of material averaged). It is of some 
interest to consider how the discriminant functions would be affected if for reasons of 
labour, space or quantity of seed we could sow only a small area with each variety or line. 
Suppose we had only one square yard plot of each and we had 50 or 60 lines so that the 
total area of the experiment was unaltered. Suppose also that the genetic variability were 
the same ;t8 between the 10 varieties considered above, that is, with respect to the 1933 
conditions, Table I11 still provides the estimates of g .  Estimates of e will be given by 
mean squares and products in the row of the analyses entitled "total soil effects ",Table XXI, 
and are reproduced in Table IV. 

Table IV. e i j  for single phi% (1933), x los 
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Adding Tables I11 and IV we obtain estimates of t i j  as in Table V. 

Table V. tij for single plots (1933), x los 

, --\, j 
i .. -. 

2 
3 
4 

247 

2 3 4 5 

4780 - 9384 - 1409 1205 
- 2933 1233 524 
- - 2254 550 
- 5 I 

Proceeding as before, the discriminant function is found to be 

Y3 cc - 0 * 0 0 3 8 ~ ~  - 0 . 1 0 0 5 ~ ~  + 0 . 8 8 2 2 ~ ~  + 0.2240~5 

cc - 0.0379~2- ~3 + 8 . 7 7 5 5 ~ ~  + 2.2278~5 

a -xl+0.9621x2+ 9-7755x4+2-2278x5. 

Similarly for 1932 we find 

Y4%C 0.184X2+o.347~3+00.67~4 

oc 0 . 5 3 0 ~ ~  + x3 + 1 . 6 5 6 ~ ~  

cc XI - 0 . 4 7 0 ~ ~  + 0'656x4. 

The outstanding feature of these formulae is the relatively enhanced value of weight 
per grain due to the relative accuracy with which it may be measured even in small 
samples. The difference between the two experiments in this respect becomes particularly 
accentuated. 

The values of (XdA)* are 0.04320 for 1933 and 0.04284 for 1932, indicating about 19 per 
cent as the expectation of genetic advance for a selection intensity of 10 per cent. But for 
comparison with the former figure (23.5 per cent) for a 10 per cent selection intensity 
among means of five plots it must be noted that if strains are grown in only one plot each, 
then five times as many strains can be grown for equal ground and labour and selection 
may be five times as intense as formerly. For q = 0.02, z/q = 2-4209, and the expectation of 
genetic advance = 0.043 x 2.421 = 0.1041 in logarithms = 27.1 per cent. 

Since the data in the above examples were in logarithmic form the coefficients there 
obtained refer to variations in relative size of the variates. We could derive a system of 
equations appropriate to arithmetical values but the above simple transformations 
between coefficients appropriate to the whole and component parts of a composite character 
would no longer be available. It would then probably be best to consider yield and its 
components as four individual variates. The system would be to some degree artificial 
because, although yield is uniquely determined when values have been given to all its 
Components (say n in number), an (n+ 1)th equation is provided only by the discrepancy 
in attempting to describe a product function by a linear equation. 

- I - 2166 
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4,  I 

111. RATIOS AS SELECTIVE FACTORS 

It is a common practice among breeders to seek to use a ratio between two plant 
characters as a selective index. Particular attention has been given to  the ear : tiller ratio 
(the survival rate of tillers) and to the grain : straw ratio (the so-called “migration 
coefficient ” when considered as the ratio of grain to  total produce). 

Suppose we take the logarithm of grain : straw ratio aa a sixth variate (x6), then we may 

9.5 I 

write 

I 
1 5 

2891 913 
__-__ k y l  1 1 3128 1 1099 5 1  

X6 = x1 - x5, 

A I 

2891 
913 

and if we choose to replace observations on straw weight by observations of grain : straw 
ratio the discriminant function for means of six plots in 1933 (16) would become 

Yl cc 0.79952, + 0.241 1x2 + 0.64792, + 0 . 2 0 0 5 ~ ~ .  

Or, if we wished to  consider only total weights of grain and of straw, we would have, from 
Table XXI (Zoc. cit.): 
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can decide the respective merits of such slightly different procedures. Meantime it may 
be concluded that, while such ratios may occasionally provide supplementary knowledge, 
any attempt to use them to replace consideration of the primary variates will, except in 
very unusual circumstances, result in serious loss of information. 

IV. PRACTICAL APPLICATION 

For present application to selection it is clearly necessary that we should have some 
estimate of the genetic and total variances and covariances of d l  characters in the breeding 
programme. This given, the appropriate function may be determined a~ shown, and 
then applied to discriminate in a logical manner the lines to be retained. For best 
results it will always be desirable to be able to determine, from internal evidence, the 
discriminant most suitable for each particular case just as we seek to determine an 
experimental error for each separate experiment. But just as from past experience we 
can anticipate the approximate magnitude of the error which is likely to occur under 
given conditions, so we may hope that further research will enable us to anticipate the 
variances and covariances likely to occur among a given group of characters in segregates 
from some specified system of crosses. We may then construct a preliminary discriminant 
function which will serve for initial field selections. If for example we had a number of 
lines derived from a “composite hybrid mixture” (Harlan & Martini, 1929), we had reason 
to believe that the variances and covariances in the culture would be approximately as 
in the group of varieties studied above, and we had only small plots of less than 100 plants 
of each line, then, with respect to yield, initial field selection in such a culture would be 
concentrated almost entirely on size of grain. Definite suggestions must however await 
research on variability of characters in groups of segregates. At different stages in the 
selection process conditions may vary considerably from those indicated above for a group 
of established varieties. 

V. SUMMARY 

The object of this paper is to suggest how a method for selecting plant lines may be 
worked out in a logical and systematic manner. The value of a plant may be expressed as 
a linear function of its characters, then, using Fisher’s concept of “discriminant functions ”, 
we may derive that linear function of observable characters which will be the best available 
guide to the genetic value of each line. 

The expectation of “genetic advance” over the mean of the unselected population for 
any given selection intensity may also be estimated and used to compare the relative 
efficiencies of various breeding programmes. 

It is shown further that arbitrary ratios, such as the “migration coefficient ” or the 
“tiller survival rate”, are likely to be inefficient as indices to the genetic value of either 
of the characters whose ratio is observed. 
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