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Multi-Stage Index Selection
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Summary. Selection index theory is extended to cover the case of selection in several stages.
General algebra is given for adjusting in later stages for the effects of selection in earlier stages.

In addition a method is developed for the incorporation of an index into an index. This simplifies the
reuse of data from earlier stages of selection. A numerical example is used to illustrate the methods
and to compare three single-stage and three two~-stage selection procedures.

Introduction

When genes act additively, selection is the appropriate
method for changing the genetic constitution of a popula-
tion. The maximum gain from selection is obtained by
using a selection index (Hazel, 1943; Henderson, 1963).
The more complex the selection objective, and the more
comprehensive the data to be considered, the more ad-
vantageous itbecomesto use an index. Poor estimates of
the current genetic structure of the population may make
indexes inefficient (Heidhues and Henderson, 1962;
Harris, 1964), but these conditions also undermine the
basis for any alternative selection procedure. In gene-
ral, therefore, selection is optimised by the use of an
index.

In many modern plant and animal improvement pro-
grammes, selection is a continuous process, and seve-
ral successive screenings may be applied in a single
generation. For example, in the selection of dual-pur-
pose bulls for use in artificial insemination in several
European countries, the bulls are first selected using
information about their parents; they are subsequently
screened for their own growth potentialin a performance
test station, and finally selected on the basis of a com-
prehensive dairy progeny test of their daughters. The
selection objective remains constant, but different infor-
mation is used, and different selection intensity isap-
plied at each stage. The final evaluation of a bull maybe
used as information in the selection of the next genera-
tion. There is thus a continuous cascade of information
through time. With modern computing equipment, it
should be possible to use all this information. In pract-
ice, each stage is most often treated as an entirely se-
parate operation because of the theoretical and practical
problem of dealing with selection at several levels. The
purpose of this paper is to provide a theorectical frame-

work and a data management algorithm which should
make possible efficient multi-stage index selection.
Dickerson andHazel (1944 ) give the methodfor deal-
ing with the case of selection for a single trait in two
stages. Its mathematical background is given by Cochran
(1951). Jain and Amble (1962) extend this treatment to
three stages. Papers by Cohen (1950), Finney (1956),
Robson (1964), Young (1972) and Wang (1972) deal with
aspects of the distributional properties of truncated po-

pulations and of their consequences in selection.

One Stage Selection

The information required in constructing a selection in-
dex can be specified inthefollowing 4 vectorsand 3 ma-

trices.

Y= Yl’ eesss, Y _ is a vector of additive genetic val-

m
ues for the m traits included in

the aggregate genotype.

VAV eeeee, V is a vector of constants, usually

m
representing the relative economic
values of the m traits in Y.

1 srrees Xn

1
I
b

is a vector of phenotypic measures
for the n variables or sources of
information be included in the

index.

1=
1
=2

ceeee; b

10 n is a vector of weighting factors to

be used in the index.

v

is an n X h matrix of phenotypic
covariances between the n variab-

les in X.

[o]

is an n X n matrix of phenotypic
covariances betweenthe n variables

in X and the m traits in Y.
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is an m X m matrix of genotypic

|a

covariances between the m traits

in Y.

The aggregate genotype or breeding value is defined as
T=v'Y :lel + v2Y2 + oeee + vam'

Since T is not measurable, it cannot be selected
for directly. Improvement in T is brought about by se~
lection on an index or selection criterion:

X

I=Db X:b1 1

+ b2X2 + oees + ann'

The weighting factors in I are obtained by solving the

index equations.

Pb = Gv

to give b = P lGv
The variance of the index, the variance of the aggre-
gate genotype and the covariance of index and aggregate

genotype are

2 2
or =b'Pb or

=v'Cv o7y =b'Pb

The genetic change, in economic units, resulting from
one round of selection is i_cI, where { is the selection
differential achieved on a standardised distributioncor-

responding to the distribution of index values.

Two Stage Selection

Let the variables 2_(1 = X1 s veey Xr be available for the
first stage of selection. Let the additional variables
X, =X_ ., «.., X_ become available for the second
-2 r+l n
stage.

Selection can then be done in one or two stages, and

the data can be used in several ways:

1. One-stage selection on )_(1 and )_{2 ,

2. One-stage selection on X r

3. One-stageselectiononl 1 and X, , where I1 is the
index that would have been used for option 2 above,
4, Two-stage selection, using 2_(1 in the first stage
and §1 and }_(2 in the second,

5. Two-stage selection, using _)51 in the first stage
and 2_(2 in the second,

6. Two-~stage selection, using 51 in the first stage

and I1 and X, in the second.

2

Procedures 1 and 2 are straightforward applications

and X,. Pro-

of a selection index on variates _)_(_1, orX 2

1
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cedures 4,5 and 6 require that all the variances and
covariances linking X 1 with 2_(2 and Y be adjusted for
the effects of selection on X 1° Alternatives 3 and 6 re-
quire the incorporation of an index into an index. In the
sections which follow, the general algebra for these two
requirements is developed. A numerical example is then
used to illustrate the methods and to compare the selec-

tion alternatives.

Incorporation of an index into an index

The variance-covariance matrix for the full set of vari-
ates and genotypic values can be represented by the

following supermatrix.

rn

(1)

©

.

2

7

If first stage selection is to take place on )_(1 = §1 s
ey Xr this matrix can be re-labelled as follows:
M:

1 =
E (X, X,, Y)'(Xy,X,, X) =

1 b
i
t
:
S Q fr

;
i
3
|
! bn-r (2)
|
]
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If variates X are now replaced by their index I
b 1 X1 , then a new reduced matrix can be constructed
to contain the variances and covariances of the variates
and genotypic values involved in stage 2.
M, -
EQ.X,, ¥) ', X,, ¥) =

bish N

Note that the section (R) of the original variance-
covariance supermatrix involving )_(2 and Y is unaffect-
ed by collapsing 51 into an index. The first element of
this new matrix is the variance of I1 , and the remain-
der of the first row and column contain the covariances
of I1 with the elements of )_(2 and Y. If no prior selec-
tion has taken place on I 11 then this supermatrix can be
repartitioned to give the input matrices needed to calcu-

late an index on the variates I 1 X s swasy Xn’ that

r+1
is for selection procedure 3.

Adjustment for prior selection on I,

If selection has taken place on I 12 then the variances
and covariances in this matrix must be modified totake
account of this. If there are any 3 normally distributed
variates whose mutual covariances are known, and if
truncation selection takes place on one of them, the co-
variances adjusted for the effects of selection can be ob-
tained from a generalisation of formula (10) of Cochran
(1951). Let the variates be Z; 5 245 and z,, and their
covariances be 01], %k and ajk . Assume truncation se-
lection on z; at a point t giving a standardised selection
differential i . These can be combined into a single se-
lection parameter s = ({ - t). A general expression

for a covariance after selection is then

-1
oy S (4)
This can be used to modify a whole maitrix of covari-

ances for the effects of selection on any one variate as

follows. Let the ratio of the selection paramseter, s, to
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the variance of the prior index, 012 be w = s/CII2 = s/
g’1_531. In the case of two-stage selection withthe

second stage based on I and X, (i.e. procedure 6)

define a vector,

T =(b}Sb,,b}Q),

that is define it to be the first row of the matrix M_ in
(3). The variances and covariances in Mr can then be

adjusted for prior selection on I 1 by calculating
J - 1
M =M_-T'Tw. (5)

This matrix can now be repartitioned to give the
input matrices for a selection index based on 1 1’ X re1’
cee, Xn where prior selection has taken place on [ 1

It becomes

3*
—r -
E*(I 2, X) ! (11:)_(23 Y_)'
: 3
|
!
p* :' G* (n=re)
!
|
:
—————————————— e (6)
i
|
G‘. i C‘ L m
!
1
|

In the case of selection procedures 4 and 5, define

a vector

=b;(s,Q)
that is, define it to be the product of 21 and the first r
rows of the supermatrix M in (2). The variances and
covariances in M can then be adjusted for prior selec-

tion on I1 by calculating

M =M-T'T w. (7)
This supermatrix can now be repartitioned to give ad-

justed input matrices corresponding to those in (1).

Numerical Example

The data used in this example are taken from Hazel's
(1943) classic paper on selection indexes. The selection

objective or aggregate genotype in a swine selection



58

scheme consists of the three traits market weight (Yl) ,
market score (YZ) and number of pigs born per litter
(Y3) . Their relative economic weights are v = (1/3 12).
The information available on which to base selection

comprisses the five variates

E.P. Cunningham: Multi-stage Index Selection

X, = productivity of dam

X, = average market weight of pig and littermates

X. = average market score of pig and littermates.

From the variances, heritabilities and correlations given
by Hazel, it is possible to construct the P, G and C ma-
trices for the full system (1) as follows

X1 = pig's own market weight
X2 = pig's own market score M=E (X,Y) ' (X,Y) =
|
1015.0596 93.5066 -7.4323 457.9949 41.2218 ; 302.5893 13.5093 0.0
93.5066 22.8484 -3.7634 41,2218 8.2985 y 13.5093 2.2391 0.0
-7.4323 ~3.7634 94.4784 -7.4323 -3.7634 | 0.0 0.0 7.6339
457.9949 41.2218 -7.4323 457.9949 41.2218 { 181.5536 8.1056 0.0
41.2218 8.2985 -3.7634 41.2218 8.2985 i 8.1056 1.3435 0.0 (8)
_____________________________________________________________ L e
|
302.5893 13.5093 0.0 181.5536 8.1056 ;1 302.5893 13.5093 0.0
13.5093 2.2391 0.0 8.1056 1.3435 i 13.5093 2.2391 0.0
0.0 0.0 7.6339 0.0 0.0 , 0.0 0.0 15.2677
!

One-Stage Selection

If selection is to take place on all variates as a single
operation (procedure 1), this system can be solved di-
rectly to give the index weighting factors and various
measures of the effectiveness of the index. The weight-

ing factors are
b' = (0.0976 - 0.1654 0.1620 0.0867 -~ 0.1892)

The variance of the index is 17.6863 and its accuracy is
0.4087.

If information on the first three variates becomes
available sooner than information on the remaining two,
the vector of variates canthenbe dividedinto X 1 (X1X2X3)
and §2
(2) accordingly:

= (X4X5) , and the supermatrix can be relabelled

M:E(Kl’zz’ X) (_)Sl’)_(zs_Y_)z

If selection involves only X (procedure 2)the appro-
priate index can be found by simply ignoring 32 in solv-

ing this system. The weighting factors to use are

1

b, =8 G, ¥

1 1

where (_}1 consists of the first three rows of G. Their
numerical values are gi = (0.1350 - 0.2309 0.1630).
17 16.3646, andits
accuracy or correlation with the aggregate genotype is
0.3932.

The variance of this index is Ei Sb

As specified in selection procedure 3, single-stage
selection could be done using all five variates , but re-
placing the first three by their index 1 17 b i)_(1. Using

formula (3), the variance - covariance matrix of all

I
1015.0596 93.5066 -7.4323 457.9949 41.2218 | 302.5893 13.5093 0.0
93.5066 22.8484 -3.7643 41.2218 8.2985 | 13.5093 2.2391 0.0
-7.4323 ~3.7634 94.4784 ~7.4323 -3.7634 | 0.0 0.0 7.6339
|
f
457.9949 41.2218 -7.4323 457.9949 41.2218 | 181.5536 8.1056 0.0
41.2218 8.2985 -3.7634 41.2218 8.2985 |  8.1058 1.3435 0.0 {9)
|
____________________________________________________________ e
302.5893 13.5093 0.0 181.5536 8.1056 | 302.5893 13.5093 0.0
13.5093 2.2391 0.0 8.1056 1.3435 | 13.5093 2.2391 0.0
0.0 0.0 7.6339 0.0 0.0 | 0.0 0.0 15.2677



E.P. Cunningham: Multi-stage Index Selection 59
variates and traits involved becomes
— 1 -
Mr—E(I1’§23X) (11: )_(z’z)—
l
16.3646 51.0997 3.0353 ] 37.7433 1.3075 1.2437
l
| -
51.0997 457.9949 41.2218 | 181.5536 8.1056 0.0
3.0353 41.2218 8.2985 ! 8.1056 1.3435 0.0
__________________________________________________________________________________________________ (10)
37.7433 181.5536 8.1056 I 302.5893 13.5093 0.0
1.3075 8.1056 1.3435 { 13.5093 2.2391 0.0
1.2437 0.0 0.0 l 0.0 0.0 15.2677
|
If no selection has taken place on }_(1, this system This matrix can be used to calculate a secondstage

can be solved to give an index in which the first three

index basedonvariates I1 . X4 and Xs(i.e.procedure 6).

variates are replaced by their index I 1* Individuals would It has the same weighting factors as IZ above. Inother

be selected using the criterion

I,=0.78861

2 1 - 0.1951 X..

+0.0793 X4 5

The accuracy of this index is 0.4070, and its variance
is 17.5504.

Two-Stage Selection

In order to deal with the effect of stage 1 selection, it
is necessary to specify the amount of selection involved.
Assume that the upper 38 % of pigs on I1 are selected.
This gives a selection differential of I = 1.0 and implies
truncation at a point t = 0.305 on a standard normal

distribution or + 0.305 op on the actual distribution of

1
index values. The selection parameteris s =1(f - t) =

0.695 and w = s/cI2 = 0.695/16.3646 = 0.0425. Applying

these values to the matrix (10) as described in (5) the
matrix of variances and covariances adjusted for the ef-

fects of selection on I1 , is

3
M =B (1, X,,X) ' (1, %,,Y) =

words, the actual index is the same whether or notprior
selection on l1 has taken place. However because the
variances and covariances of its constituents are redu-
ced by selection on I1 , its variance is reducedto6.1787.
Its accuracy, or correlation with the aggregate genotype
is 0.2557.

For comparison with this index, we could consider
selecting solely on the information becoming available
at the second stage (X4 and XS) , but retaining the ad-
justments to variances and covariances which allow for
prior selection on I1 (procedure 5).This index is cal-
culated by discarding the first row and column of ma-
trix (11). It has a variance of 3.5661 and an accuracy
of 0.1943.

To calculate a second stage index which uses allfive
variates individually (procedure4), the original super-
matrix M must first be adjusted for prior selection on
I 1 by using formula 7. This adjusted supermatrix __N_I*
can then be repartitioned to give the input matrices for
the second stage index. The weighting factors whichit

produces are the same as where no prior selection has

4.9912 15.5854 0.9257 : 11.5117 0.3988 0.3793
|
!
15.5854 347.0989 34.6346 ' 99.6432 5.2681 ~-2.6990
0.9257 34.6346 7.9032 : 3.2402 1.1750 -0.1603
e (11)
11.5117 99.6432 3.2402 t 242.1881 11.4135 -1.9935
0.3988 5.2681 1.1750 1 11.4135 2.1666 -0.0690
0.3793 ~2.6990 -0.1603 ! -1.9935 -0.0690 15.2021
i
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taken place (option 1). However, the variance of thein-
dex and its accuracy are reduced to 6.3231 and 0.2308

respectively.

In order to compare the effects of these different se-
lection procedures, it is necessary that they all havethe
same final intensity of selection. Let this be 6 %. Inthe
case of one-stage selection, this gives a selection diffe-
rential of two standard deviations. Equivalent selection
in the case of a two-stage procedure can be achieved by
taking the best 38 % on the first stage and the best 16 %

E.P. Cunningham: Multi-stage Index Selection

Discussion

The extension of the method to more thantwo stages of
selection is straightforward. The supermatrices _1\_4*01*
I\_/It, adjusted for prior selection on I1 could be regarded
as the starting point (1) for a two stage selection, thus
giving three stages in all. This can be repeated as often
as required. The main requirement is that the full vari-
ance-covariance matrix of all variates to be used and
traits to be selected for must be available at the begin-

ning.

Table 1. Relative effectiveness of the six selection procedures

Gain from selection

Selection Procedure i 9 Absolute Relative
1. One stage,
variates X1X2X3X4X5 2.0 4.2055 8.4110 100.0
2. One stage,
variates X1X2X3 2.0 4.0453 8.0806 96.2
3. One stage ,
variates 11)(4X5 2.0 4.1893 8.3786 99.6
4. Two stage,
variates XIXZXB in stage 1 1.0 4.0453
7.8675 93.5
variates X1X2X3X4X5 in stage 2 1.52 2.5146
5. Two stage,
variates X1X2X3 in stage 1 1.0 4.0453 6.9157 82.2
variates X4X5 in stage 2 1.52 1.8884
6. Two stage,
variates X1X2X3 in stage 1 1.0 4.0453
7.8236 93.0
variates 11X4X5 in stage 2 1.52 2.4857

(i.e. 8/38) of these remaining on the second stage. This
gives a selection differential of one standard deviation
for stage one, and 1.52 standard deviations for stage two.

The net effect of selection on any index, in economic
units, is {o; where I is the standardised selection diffe-
rential and o1 is the standard deviation of the index. The
relative effectiveness of the six options considered can
therefore be given as follows (Table 1).

One convenient result is that the actual index weight-
ing factors are not affected by prior selection. This of
course is the same thing as saying that a regression
coefficient is unaffected by selection on the independent
variate. In practice this simplifies the application of
multi-stage index selection, since new indexes need not
be calculated at different stages and for different inten-

sities of prior selection.
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The calculation of a selection index does not depend
on the form of multivariate distribution linking the va-
riates and traits involved. However, the calculation of
the effects of selection on the index is distribution de-
pendent. The methods given in this paper assume an
initial multivariate normal distribution. The results up
to and including the index to be used in the secondstage
should therefore be exact. The estimated gain from se-
cond stage selection will tend to be overestimated, since
the selection differential used relates to a normal distri-
bution, whereas the distribution of index values can be
expected to depart from normality. At the third stage,
both the index and its estimated effects will be biased
because the input matrices are adjusted on the assump-
tion that they were multivariate normal at stage 2. There
appears to be no exact solution for this problem, even
for the case where the vectors of variates X and oftraits
Y can each be regarded as a single variable. Jain and
Amble (1962) discuss alternative methods of dealing with
it, while Young (1972) gives a method of numerically
evaluating the mean and variance of selected populations
for up to four stages of selection.

The gradual deformation of the initial normal distri-
bution can be quite severe if selection is intense, if one
can judge from the effects in the bivariate case (Coch-
ran, 1951). It may be that with an array of variates inthe
selection criterion and an array of traits-in the selection
objective, that the normality of their multivariate distri-
bution is better protected than in the case of single va-
riate selection for a single trait objective. It may also
be that if two stages are separated by a generation, that
genetic segregation and recombination have the effect
of recreating normality in each generation. At any rate,
this problem of the decay of normality under repeated
selection is one which this paper does not attempt to
resolve.

It is encouraging that the more convenient procedure 6
is apparently almost as good as the full two stage proce-~
dure 4. In practice, it would often by very inconvenient
to be required to reassemble the original data used in
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the first stage of selection for reuse in the second stage.
However, if much the same result can be achieved me-
rely by using the index values calculated for the first-
stage as input variates for the second-stage, then the
practical possibilities of efficient multi-stage index se-

lection are greatly increased.
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