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PREFACE 

"The seven good cows are seven years; 
and the seven good ears are seven years: 

the dream is one.” 

Genesis XLI:26 

When I started working on the subject of economic aspects of animal breeding, 
I was reminded of the story of a woman walking down the street complaining, 
"My son-in-law doesn’t know how to play cards! He doesn’t know how to play 
cards!" 

Finally someone stops her and asks, "What’s so terrible about that?" 

The woman answers, "The problem is that he does!" 

To a large extent we animal breeders have been like the son-in-law in the 
story. We have been busy breeding even though we do not know how to do it. 

Many sophisticated readers may object to this analogy. They can argue that we 
have a good understanding of the principles of genetics, and even if we do not 
know how to apply these principles directly to many traits of interest, we can 
still use statistics and quantitative genetics to change population values for these 

traits. It can further be argued that not only do we know how to breed, we have 
been doing it successfully for quite a while. During the last fifty years, great 
progress has been made in various domestic species; cows give more milk, 
poultry grow faster, and give more eggs, etc. Nevertheless, the question still 
remains: "True we are doing something, but are we doing the right thing?" 

Generally breeders have tried to breed for clearly defined, obtainable goals 

without regard as to whether these goals are desirable. In the example of dairy 
cattle, there is a wealth of literature dealing with how to breed for increased milk 
production, but very few papers address the question of whether or not we 
should be doing this. 

Many geneticists and breeders will explain this discrepancy by saying that 

since breeding goals are generally determined by economic considerations, this 

problem should be left to economists. Convinced of the veracity of this 
statement, I went to my university library, and took out half a dozen books on 
agricultural economics. None of them mentioned breeding or genetics. Pursuing 
this question further in the literature, I became convinced that, whether or not 

economists should by right be pursuing this question, the fact is that they are not. 

The vast majority of work done on determining breeding goals has been done by 
geneticists, who have acquired some training in economics (present company 

included). 

Another objection that the sophisticated readers may raise is that breeding 
goals are often rigidly determined by factors beyond our control. Clearly dogs
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and cats are bred for certain characteristics that have no economic importance, 

other than the fact that people are willing to pay for them. Even with farm 

animals, farmers in many countries will prefer animals they consider attractive, 

regardless of the effect of these traits on economic performance. These 

arguments still do not contradict the need for determination of breeding goals 

within an economic context. Although a cow’s color may have no effect on her 

ability to produce milk, if someone is willing to pay more for red cows, this 

trait, by definition, has economic importance. 

A final objection that my hypothetical reader could raise to my opening 

analogy is that the problem has been solved long ago. In 1943 L. N. Hazel 

published "The genetic basis for constructing selection indexes" in Genetics. 

This classic paper, which is the basis for economic selection index provided the 

methodology for determining selection goals based on the relative economic 

values of the traits under consideration. Again here we see an anomaly when we 

survey the literature. Although the principles of selection index have been 

known for over forty years, relatively few scientific studies, or commercial 

enterprises have actually attempted to apply them in the method envisioned in 

Hazel’s paper. One reason for this is that the basic principles of selection index 

are not a complete solution to the problem of determination of selection goals. 

(I should mention that I have no intention to belittle the importance of this paper, 

which will be the basis for a large part of this book.) Without going into detail 

at this point, I would just mention that economic selection index assumes that the 

relative economic weights of the traits under consideration are known. If this is 

not the case, then traditional selection index is of no use in determination of 

breeding objectives. 

The goals of this book are to review and organize the literature dealing with 

economic evaluation of genetic differences, determination of breeding goals 

within an economic context, and economic evaluation of breeding programs. 

Although nearly all of the material presented can be found in scientific literature, 

it is scattered through a number of different journals and symposia. To the best 

of my knowledge no similar work on the subject exists. There are a few review 

articles that deal with certain aspects of the general topic, and these will be 

discussed in detail, but no review article deals with the entire question. 

One difficulty I encountered in summarizing the literature was the 

inconsistency of symbols used by different authors, or even the same authors in 

different papers. I have therefore made a supreme effort throughout to be 

consistent in the use of symbols, and not to use the same symbol to represent two 

different quantities. I used the convention of denoting vectors in lower case bold 

type, and matrices in upper case bold type. Scalars were denoted by both lower 

and uppercase regular type symbols. Where possible I tried to accept the most 

commonly used terminology. It was nevertheless necessary to alter the symbols 

used in many papers to conform to the standard I adopted. Unfortunately, in a 

few cases, I even had to alter the symbols for quantities presented in a single 

literature source because of a conflict with symbols used elsewhere in this book.



Economic Aspects of Animal Breeding 

To aid the reader, an alphabetical glossary of symbols is presented after the text. 
Even though this book is entitled Economic Aspects of Animal Breeding, 

most of the material discussed is also relevant to plant breeding. The reason for 

the limitation in the title is that, even though most of the problems discussed are 

applicable to all domestic species, these problems are generally more acute in 
animal breeding. Therefore although there are a few mentions of problems 
specific to plant breeding, nearly all the examples brought will deal with 
domestic animals. Economic Aspects of Animal Breeding is written on the level 

of a graduate student in genetics or animal breeding. Established scientists may 
find some of the material unnecessary. 

The book is divided into five parts. Part I deals with basic concepts 
necessary for dealing with the questions of interest. This part includes very little 
material not found in other texts on the specific topics covered. A more 
advanced reader may wish to skip some or all of this part. Part II, which deals 

with economic evaluation of genetic differences, includes material which, 

although present in the literature, might be unfamiliar to many geneticists and 
commercial breeders. Part III on advanced topics in selection index, requires a 
reasonable familiarity with matrix algebra. The more casual readers may wish 
to skip chapter 9, which is highly mathematical. Part IV, on the economic 
evaluation of breeding programs contains a significant quantity of original 
material, because the literature is relatively weak on this topic. This part also 
includes economic aspects of new advances in biotechnology. The final part 
deals with crossbreeding and heterosis, which is of importance in most domestic 
species. 

I would first thank all the authors whose work I have included in Economic 
Aspects of Animal Breeding. Chief among them is my teacher, the late Dr. Rom 

Moav, who first interested me in this topic, and is still the major source for this 

text. If his life had not been tragically cut short, he might have written this 
book. As Isaac Newton said, "If I can see far, it is only because I stand on the 

shoulders of giants." I also thank my teacher, Dr. Morris Soller, Rom Moav’s 

colleague, who encouraged me to begin this undertaking, and my wife Hedva 
who gave me the support necessary to finish. I also wish to thank Michael 
Grossman for his encouragement, and Suzanne M. Hubbard for helping through 
the intricacies of modern word processing and graphics. Finally I thank Ephraim 
Ezra for encouragement, and useful suggestions throughout. 

Joel Ira Weller 

Rehovot, Israel 

August, 1993 
Elul, 5753





PART I 

BASIC CONCEPTS 

This section summarizes basic concepts in quantitative genetics, economics, 
matrix algebra, and systems analysis, necessary for understanding the main topics 

of this book. As stated in the Preface, very little material not found in other 
texts is presented, and readers familiar with the topics covered may choose to 

skip the relevant chapters. On the other hand, readers not familiar with the 

concepts presented may wish additional reading. The texts upon which I relied 

to write this section, and which I recommend for additional information were: 

Quantitative Genetics (Falconer, 1964); Economics (Samuelson, 1980; and 

Matrix Algebra Useful in Statistics (Searle, 1982). I was unable to locate a 

suitable text on systems analysis, but for the interested reader I would 

recommend The Study of Agricultural Systems (Dalton, 1975) which although not 

a text, is the most relevant work on the topic of which I am aware.



Chapter One 

Basic Concepts in Quantitative Genetics 

1.1 Introduction 

The principles of quantitative genetics have served until the present as the basis 

for most genetic improvement of domestic species by human manipulation. 
These principles will be summarized in this chapter. Rather than deal with 
individual genes, quantitative genetics deals chiefly with trait values, and 
statistics of these values derived from populations of interest. The most 

important statistics are the arithmetic mean and the variance. In the case of the 

normal distribution, these two statistics define the population in question. We 
will assume that the reader has an understanding of the basic principles of 
Mendelian genetics and statistics. Therefore, relatively simple statistic terms, 
such as normal distribution, mean, variance, standard deviation, correlation, and 

regression will not be defined. 

1.2 Quantitative vs. categorical traits 

Shortly after Gregor Mendel’s results in pea plants were rediscovered in 1900, 

(Mendel, 1866; Peters, 1959) the question arose as to whether these results were 

applicable to most traits of economic importance in domestic species. Traits 
such as milk yield, fruit weight, or growth weight did not seem to have the 
simple distributions of values that Mendel found in the traits he studied. Instead, 

nearly all of these traits had close to normal distributions, or could be converted 

to normal distributions by relatively simple transformations. Furthermore, 
experiments conducted in the early part of this century showed that although 

there generally was some similarity between parents and offspring, it did not 
seem to conform to the simple Mendelian rules (Johannsen, 1903). These traits 

were termed quantitative traits, and their genetic analysis was termed quantitative 

genetics. 
It soon became clear that if the phenotypic value for these traits was 

determined by a number of Mendelian loci segregating independently, then the 
statistical distribution for the trait within the population would approach 

normality (Fisher, 1930). This would be true whether the mode of inheritance
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of the individual loci was dominant or codominant. The greater the 
environmental effect on the trait in question, the lower the number of loci 

necessary to obtain a nearly normal distribution. However, even if the number 

of loci affecting a quantitative trait was low, determination of the effect of the 
individual loci (termed polygenes) would be difficult, if not close to impossible. 
It was argued that the important questions on quantitative traits from a breeding 
point of view, such as optimization of selection programs, genetic evaluation of 
animals, and prediction of the response to selection, could be answered without 

knowledge of the molecular mode of inheritance. Thus even though the 

Mendelian rules were correct on the underlying level, they were generally 

irrelevant. 

1.3. Phenotype vs. genotype, environmental and genetic 

variation 

Mendel, through his experiments, understood that there was a difference between 
phenotype (the observed expression of a given trait) and genotype (the 
individual’s genetic component for the trait). He demonstrated that plants with 
the same phenotypic value could have different genotypes. Since the genotypes 
for quantitative traits are determined by a number of loci, a major goal of 

quantitative genetics is to estimate what fraction of the trait in question is 
determined by the individual’s genotype. Algebraically this relationship can be 
written as follows: 

x=gte [1.1] 

where x is the observed or phenotypic trait value for the individual, g is the 
- individual’s genetic value, and e is the difference between x and g, which 

includes all non-genetic factors that determine an individual’s observed trait 

value. To distinguish from the genetic effect included in g, e will be termed the 
environmental effect. Since there is clearly a mathematical dependency between 

g and e, we will assume throughout that all factors are measured as deviations 
from the population mean. For. example a particular cow may give 9000 kg 
milk/yr while the population mean is 8000. Then x will equal 1000 kg/yr. 
Assuming we know that g = 300 kg/yr, we can then deduce that the 
environmental effect for this cow is 700 kg/yr. 

Although equation [1.1] seems trivial, it is in fact the basis for 
determination of the genetic values of individual animals, which is the basis for 
genetic selection. Since breeding is our major concern, the main question of 
interest is determination of g. Of course once this is done we will also know e. 

We will start by assuming that both g and e are normally distributed. This is 
generally a reasonable assumption for e, since that part of the observed value not
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determined by genetics will probably be determined by a large number of more- 
or-less independent factors. (It can readily be shown that the distribution of any 
trait derived as the sum of a large number of relatively small factors, will tend 
to normality, regardless of the distributions of the individual factors.) For g the 

assumption of normality will also hold, unless the genotype is chiefly determined 
by a very few major genes. 

How then do we distinguish between g and e? One method that comes to 
mind is to try to control e. For example, give all individuals the same 

environment. Thus all differences between individuals will be due to g. 
Although in theory correct, this is nearly impossible in practice. Not all 
environmental factors that can affect quantitative traits are known, and even some 
known factors are beyond our control. Certain factors which at first glance may 
seem of no importance are sometimes found to have major effects on traits of 

economic importance, such as position of a chick in the hen house. For species 

with vegetative reproduction this problem can be solved by raising large numbers 
of genetically identical individuals. Over a large sample, it can be assumed that 
the mean environmental effect is zero, and any deviation of the isogenic sample 
mean from the population mean can be ascribed to g. This is in fact commonly 
done for many commercial plants, but is of course not possible for most animal 

species of economical importance. 

1.4 Additive and non-additive genetic variation 

For animals, the main method for estimation of g will be by comparison between 

relatives. For instance, a sire or a dam passes on half of its genes to its offspring. 
However, this type of analysis is also more complicated than it appears at first 

glance. One pitfall with this type of analysis can be explained by going back to 
the results of Mendel. The loci that Mendel studied displayed complete 
dominance. Thus if both parents were homozygous, one for the recessive and the 
other for the dominant allele, the offspring would be similar only to the parent 
with the dominant allele. Even in this situation, there will still be a positive 
correlation between the phenotype of parents and their progeny over the whole 
population. To deal with this and similar problems, quantitative genetics have 
defined two types of genetic effects, additive and non-additive. Algebraically the 
relationship can be written as follows: 

g=-g,.+ & [1.2] 

Where g, is the additive portion of an individual’s genotype, g, is the non- 
additive portion, and g the individual’s genetic value, as defined previously. — 
Included in the additive portion of an individual genotype will be those factors 
that determine the similarity between parents and progeny, while g, includes
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factors in the individual’s genotype which will not affect the phenotype of the 
progeny in an additive manner. We have already seen that for loci with a 
dominant-recessive mode of inheritance, part of the genetic component will 

behave in a non-additive manner. On a statistical level this can be considered an 
interaction between the two alleles of the loci. 

Although Mendel in his experiments found simple dominant-recessive 
relationships for the loci he studied, this is not necessarily the case for all loci. 

A situation of partial dominance is also possible. For example, assume that the 

mean value of a trait in a population is 100 units, and that a given locus with two 
alleles, A and a, affects this trait. Assume further that individuals with the 

genotype AA have a mean value of 110 units, and individuals with the genotype 
aa have a mean value of 90. If this locus behaves in the classical Mendelian 
fashion then individuals with genotype Aa will also have a mean value of 110. 

We will now define three alternative possibilities: 

1. Codominance: individuals with genotype Aa have a mean value equal to the 
mean of the two homozygotes. In this situation the gene will contribute only to 
the additive component of genetic variance. 

2. Partial dominance: individuals with genotype Aa will have a mean between 
the homozygote midpoint and one of the homozygotes. In this case, as in the 
case of complete dominance, this gene will contribute to both the additive and 
non-additive genetic components. 
3. Overdominance: the mean value of the heterozygote is outside the range of 

the two homozygotes. In the extreme case, where the two homozygotes have 

equal value, then this locus will contribute only to the non-additive component 

of genetic variance. 

Just as there can be intralocus interactions, there can also be interloci 

interactions. Genetics term interactions between loci "epistasis". Dominance and 
epistasis are the two factors that account for non-additive genetic effects. Thus 
equation [1.2] can be expanded as follows: 

g=g,+g,+ 8, [1.3] 

where g, and g, are the individual’s deviation from the population mean due to 
dominance and epistatic effects, respectively. In most domestic animals, it is very 

difficult to estimate g, + g.. 
Since the additive genetic effects explain the similarity between parents and 

offspring, it is also called the animal’s breeding value. Thus for example if a 
particular dairy cattle sire has a large number of daughters, and these daughters 
average 500 kg milk above the population, it can be deduced that the sire’s 
breeding value is 2 x 500 = 1000. The mean daughter difference is multiplied 
by two because only half of the sire’s genes are transmitted to each daughter.
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For this reason, the sire evaluations published in some countries, including the 
US, are termed "Predicted Differences", or "Predicted transmitting abilities", 

which are equal to one half of the animal’s breeding value. 

1.5 Variance components, heritability, and repeatability 

For any trait of interest, a central question will be how important are the various 

components that determine the individual’s phenotype. In other words, how 
much of the total variation in the population is explained by gy, gp, gz, and e? 
From basic statistics we know that for any two variables, x and y, if: 

z=xty [1.4] 

then: 

0, = 0, + 0,7 + 20, [1.5] 

where o,’, o,”, and 0,” are the variance of z, x, and y, respectively, and g,, is the 
covariance between x and y. Thus from equations [1.1] and [1.5] we can deduce 

the following equality: 

0, = 4, + 6,’ + 20, [1.6] 

where o,, o,”, and o,’ are the variances for x, g, and e, and g,, is the covariance 
between g and e. We will generally assume that 0,, is zero, even though in 
many practical situations this is not the case. For example, farmers may vary 

the amount of feed given to individual cows on the basis of the cow’s sire and 

dam. This will generate a positive covariance between the environment (feeding 

level) and the genome (sire and dam genetic level). 0,” and g,’ will therefore be 

termed the variance components of o,”._ Based on equation [1.3], and again 
assuming that all covariances are equal to zero, the phenotypic variance can be 
decomposed as follows: 

0,2 = 6,’ + dp + 0,” + Go,” [1.7] 

where g,”, Op’, and o,” are the additive, dominance, and epistatic genetic 
components of variance, and the other terms are as defined previously. Since, 

as stated previously, the additive effects determine similarities between relatives, 

we will be most interested with o,”. Although it is possible to estimate the other 

components of variance in equation [1.7] for specific population structures, it 

will almost always be more difficult than estimation of o,” and is generally not 
done for animal populations.
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How do geneticists estimate 0,2? Two methods are generally used; parent- 
offspring regressions, and analysis of variance. The first case can be illustrated 

by assuming that we have milk records on a number of dam-daughter pairs. We 

then compute the regression of the daughter on her dam. The following equation 

can be described: 

b,, = 9,,/0,° [1.8] 

where b,, is the regression of offspring on her dam, g,, is the parent-offspring 

covariance, and 9g,’ is the phenotypic variance, as defined above. Assuming that 

there are no sources of similarity between daughters and dams except for additive 
genetic variance, then g,, will be equal to one half of the o,”, since, as stated 
above, a parent passes one half of its genome to its progeny. Thus o,” can be 

estimated as follows: 

6,2 = 2b, 0 [1.9] 

For example assume that go,” for annual milk production = 1,000,000 kg, and b,, 

= 0.12. Then o,? = 240,000 kg. 
To estimate a,” by analysis of variance, assume that we have a population 

consisting of a number of sires, each with a relatively large number of daughters. 

Assume further that each sire was mated to a random sample of dams, and that 
all environmental effects are randomly distributed. If these conditions are true, 

we can then assume that the between-sire component of variance from an 
ANOVA analysis will consist only of additive genetic effects. Since as stated 
previously, a parent contributes only half of its genome to its progeny, the 

between-sire component of variance will be 1/4 0,2. (Remember that variances 
are differences squared. Therefore the 1/2 effect of the genome that is passed 
must be squared on the level of variance components.) Thus if the between-sire 
component of variance for annual milk production is 60,000 kg, o,? = 4 x 

60,000 = 240,000 kg, the same result as presented above. 

Since different traits are measured in different units, 0,’ values cannot be 

compared across traits. For this and other purposes, heritability (h’), a unitless 
statistic is defined as follows: 

h? = 0,7/0,” [1.10] 

It might strange that the symbol for heritability is "h?" and not h, especially since 

the square root of heritability is not as important a statistic. This symbol is 
derived from Wright’s 1921 terminology, and is universally accepted. Clearly 
the same methods described above to estimate g, can also be used to estimate 
heritability. We will now rewrite equation [1.8] in terms of heritability:
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b,, = 0,,/0,? = 0,7/(20,7) = h’/2 [1.11] 

Thus in the example above where b,, = 0.12, h? = 0.24, h’ can also be derived 
as o,’/0,2 = 240,000/1,000,000 = 0.24, the same value. 

Sometimes it is possible to sample the phenotype several times on the same 

individual, each time with a different environmental component. Examples are 
milk production of a cow over several lactations, or the number of piglets in a 

litter over several litters. In these cases it is of interest to estimate how much of 

the variance is due to genetics and the permanent environmental effects, vs. 

environmental effects which will differ for each expression of the trait. In 

essence we are asking how much is this individual "worth" for a given trait. 

This statistic is called "repeatability" and is defined as follows: 

rpt = (0,’ + opp )/o,” [1.12] 

where rpt is repeatability, op,” is the permanent environmental effect, and the 
other terms are as defined previously. Note that the numerator includes 0,’ all 

the genetic variance, and not just 0,”. Since we are interested in this case in the 

phenotypic expression of the trait in common, all the genetic variance, including 

the non-additive portion, is included in the numerator. As an example we can 

again take dairy cattle, where repeatability for milk production has been 

estimated at 0.5. Remember that heritability for this trait is only about 0.25. 
Of course repeatability will always be greater than or equal to heritability, and 

for many traits the difference is quite significant. 

Unfortunately, this same term, "repeatability", has been defined differently 

in some of the quantitative genetics literature. In the hope of reducing the 

confusion, which already exists, the second definition of repeatability will be 

presented shortly. 

1.6 Estimation of breeding values 

Until now we have been describing the genetic and phenotypic parameters of 

populations. The main goal of agricultural genetics is to modify the genetic 

parameters of populations of interest. (Throughout we will consider mainly the 

goal of changing population means, although changing variances is also 

sometimes important and will be considered later.) The main vehicle for 

changing the mean genetic value will be selection, i.e. progeny of individuals of 

the desired genotype will be kept for reproductive purposes, while individuals 

with undesirable genotypes will not reproduce, or their progeny will be 

discarded. The two central questions in genetic selection are: the determination 

of candidates for selection, and estimation of the expected response to selection. 

As stated above, there is no method at present to directly determine the
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genetic value of an individual. If we look at equation [1.1] we see that two 
animals with equal genetic values can have different phenotypic values due to 

environmental factors. Thus the "“best" individual phenotypically is not 

necessarily the "best" genetically. However if the covariance between genetic 

and environmental effects is insignificant, then there will be a positive correlation 

between genetic and phenotypic values. From equation [1.8] and [1.9] we see 
that if g, is greater than zero, there will be a positive regression of offspring 

performance on parental performance for the trait of interest, equal to half of the 

heritability. Using this regression constant we can then write the following 

equation: 

Yop = by(Yp) [1.13] 

where Y,,, is the predicted trait value for a progeny of a given parent, Y> is the 

trait value of the parent. As stated previously, we will assume that both Y,, and 

Yp are measured as deviations from the population mean. As defined above in 

section 1.3, Y,, is the predicted difference of the parent, which is equal to 1/2 
of its breeding value. Thus the following equation can also be formulated. 

BV, = 2b,,(Yp) = b(Yp) [1.14] 

where BV, is the parent’s breeding value. Thus heritability is also the regression 
of breeding value on phenotypic value. 

In many practical breeding situations, an individual is evaluated on the basis 

of the phenotypic values of a number of related individuals. In this case, 

breeding values can be estimated by a methodology called "selection index". (In 
the literature, the term, "selection index," is used both for the methodology 

described above, and for determination of economic weighting of individual traits 

in an overall breeding objective. To distinguish between the two, we will denote 

the former "genetic selection index", and the latter "economic selection index".) 

In the simple case where the breeding value of a single individual is estimated 

from a single quantity, selection index can be formulated as follows: 

BV, = b(x,) [1.15] 

where BV, is the estimated breeding value for individual i, b is a regression 

constant, x; is the phenotypic deviation from the population mean on the group 

of related individuals j. As for any regression, b can be calculated as the 
covariance of BV; and x,, divided by the variance of x, For example, a common 

situation is the evaluation of a sire on the basis of the records of a number of 

progeny. In this case the sire’s breeding value can be estimated as a regression 

on the mean of progeny records, Y,., as follows:
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(1/2)o,? 
BV, = (Y>.) [1.16] 

(1/4)o,? + [(3/4)o,? + o,7/n 

  

where n is the number of progeny, and go,” now includes all phenotypic variance 
not included in o,”. This equation is derived as follows: The covariance between 
the parent’s breeding value and the mean of the progeny’s records is (1/2)o,”, 

since each progeny receives half of its genes from the parent. The variance of 

Yp. will be the denominator of the right-hand side of equation [1.16], and is 

computed as follows: The variance of the mean of a sample will be the variance 
of the sum of the sample divided by n’. The variance of the sum will be the sum 
of the variances and twice all the possible covariances, as shown in equation 

[1.5] for a sample of two observations. The covariance among progeny will be 

1/40,7, since each offspring receives a random one half of its genes from the 

common parent. It can be shown that after summing and combining these 

variances and covariances, the denominator of equation [1.16] is obtained. In 

terms of heritability equation [1.16] can be rewritten as follows: 

(1/2)h? 
BV, = (Yp-) [1.17] 

(1/4)h? + (1 — (1/4)h’)/n 

  

In the case of a single progeny, this equation reduces to the same value as 

equation [1.11], and as n approaches infinity, BVP will approach Y,. As defined 

previously the predicted difference of the parent will be equal to one half of the 

breeding value, that 1s: 

(1/4)k? 
PD = (Y>.) [1.18] 

(1/4)h? + (1 — (1/4)h?)/n 
  

The regression of PD on Yp. is also denoted as "repeatability", especially by 
dairy cattle breeders. This definition should not be confused with the definition 

of repeatability brought above in Section 1.5, which is the more generally 

accepted definition. This regression is also equal to the coefficient of 

determination between the evaluation and the individual’s true genetic value. If 

the phenotypic performance of the individual is the only information available, 
then the coefficient of determination will be equal to the heritability of the trait. 
In both cases the square root of this quantity will be equal to the correlation 

between the evaluation and the true genetic value. This correlation is sometimes 

called the "accuracy" of the evaluation. To minimize confusion in this book 

henceforth, only the definition of Section 1.5 will be used for repeatability. 
Similar to the case just described, selection index formulas can be derived 

to estimate breeding values for any combination of individuals, based on which
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relatives have records. However these calculations become quite complicated, 
unless use is made of matrix algebra. This will be discussed in Chapter 3, 
where the general framework for both genetic and economic selection index will 
be formulated. 

1.7 Estimation of response to selection 

We will now discuss the estimation of the expected response to selection, which 
we will see is intimately related to the estimation of breeding values. We will 
start with the simplest situation called "mass selection." In mass selection, we 

assume that we have a population of individuals which we wish to select for a 

given trait. Individuals with the highest value for this trait are selected as 
parents for the next generation. These individuals are then mated among 
themselves to produce progeny for the next generation. An example of selection 
of beef cattle for weight at weaning is illustrated in Figure 1.1. In this example, 
the objective is to increase the mean value for this trait by mass selection. 

Heritability is assumed to be 0.25. The phenotypic value of each dam and her 
progeny in a simulated population are plotted. Although the correlation between 

parents and progeny is evident, there are individual parents with high values who 
had offspring with low values. 

We will select by only keeping progeny of parents with the highest 10% of 

trait values. This type of selection is called truncation selection, and the 

truncation value is marked in Figure 1.1. Assuming that the selected individuals 
have a mean value of S above the general population mean, the mean of their 

progeny can be estimated as follows: 

¢ = b,,S [1.19] 

where ¢ is the difference between the progeny mean and the general mean in the 
parental generation, and b,, is the regression of offspring on the midparent value. 

¢ can also be defined as the response to selection. In the case of mass selection, 

the regression coefficient, b,,, will be equal to the heritability. Thus to predict 

the response to selection, it is necessary in this case to know the heritability and 

S.



12 Economic Aspects of Animal Breeding 

  320 

2807 

240 

200 

Pr
og

en
y 

we
ig

ht
 

(k
g)

 

160 

  

120         

80 1 I i I 

80 120 160 200 240 280 320 

Dam weight (kg) 

Figure 1.1. Regression of progeny on dam weaning weight for beef cattle. 

Each point represents the weaning weight of a progeny and her dam. Solid line 

is the regression. Broken line is the value for truncation selection based on dam 

weaning weight. 

We have already described methods for estimating h?. However it is not 

immediately evident how to estimate S. If we select the 10% best cows, how 

much better will these cows be than the population mean? Clearly, S will 
depend on the trait units. Therefore we will define a new unitless quantity, i, 
as follows: 

i = S/op [1.20] 

where i is the "selection intensity", and op is the phenotypic standard deviation. 
If the population is large and has a near normal distribution, i can be computed 

as follows: 

1 = Z/p [1.21] 

where z is the ordinate of the normal curve, and p is the proportion of 
individuals selected. Combining equations [1.19] and [1.20], and substituting h? 

for b,, for the case of mass selection, we have:
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o = ih’o, [1.22] 

For example, assume that we are selecting cattle on weaning weight. The 

heritability of this trait is 0.25, and the phenotypic standard deviation is 40kg. 

If the highest 10% are selected as parents for the next generation, p = 0.1, and 

z = 0.18. Therefore, 1 = 0.18/0.1 = 1.8, and the selection response will be: 

@ = 0.25(0.18)40/0.1 = 18kg. This is the response per generation. Often it will 
be of interest to compute the response per unit time, which we will denote AG. 

In this case we will define the following equation: 

AG = @/L [1.23] 

where L is the generation interval. 

Since h? is the ratio of genetic to phenotypic variance, equation [1.18] can 
be rewritten as follows: 

¢ = ih(o,) [1.24] 

where g, is the genetic standard deviation. (Remember that we previously 

defined "h" as the "accuracy" of the genetic evaluation.) Equation [1.24] is 

useful if selection is based on genetic evaluations, rather than phenotypic records. 

As shown previously, for the case of sires evaluated based on their progeny, the 
accuracy of the evaluation will be the square root of the regression coefficient 
in equation [1.18]. 

Finally, we will consider the case of different selection intensities along the 

different paths of inheritance. For vertebrates there are four paths of 

inheritance: sires of one generation to sires of the next, dams to dams, dams to 

Sires, and sires to dams. In nearly all selection schemes, both the selection 

intensities and generation intervals for the four paths will be different. For 

example, since a cow produces only one calf a year, selection intensity along the 

dam-to-dam path will be low. Nearly all female calves must be raised for 

replacement. However, since male fertility is extremely high, especially with 

artificial insemination, only a few bull calves must be kept for breeding. 

Therefore the dam-to-sire breeding path can have a very high selection intensity. 
Under these conditions, AG can be computed as follows: 

AG = 1¢/XZL [1.25] 

that is, the genetic response per unit time will be equal to the sum of responses 

over all selection paths, divided by the sum of their generation intervals.
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1.8 Inbreeding and selection 

Inbreeding results from the mating of related individuals, and generally has a 

negative effect on the fitness of species which are normally outbreeders. The 

negative effect of inbreeding in normally outbred populations is due to a major 

increase in frequency of the expression of rare deleterious recessive alleles. For 
example, if the frequency of a deleterious, recessive allele is 0.01, then the 
frequency of homozygotes assuming random mating will be (0.01)? = 0.0001. 

However, for inbred individuals the frequency may be much higher, because the 

inbred progeny can receive the same allele from both parents if they are 

descendant from the same carrier. For example, a progeny from the mating of 
two half-sibs will have a probability of 1/8 of receiving the same grandparent 

allele from both parents. This probability is called the "coefficient of 

inbreeding". 

Selection, by limiting the number of individuals used as parents for the next 
generation, almost always results in an increase in the level of inbreeding in the 
population. Furthermore, the increase of inbreeding per generation is 
cumulative. Van Vleck (1981) gives the following formula for the increase in 

inbreeding, AF, per generation: 

AF = (Ng + Np)/(8NsNp) [1.26] 

Where N, and N, are the number of sires and dams per generation. 

Numerous studies have reported negative effects of inbreeding on traits of 

economic importance, such as growth rate and milk production. In addition, 

inbreeding, like selection, decreases genetic variance, and so decreases the rate 

of genetic gain. However, this second problem is generally insignificant relative 
to the rate of increase in the expression of negative alleles. 

1.9 Summary 

In this chapter we demonstrated how the basic rules of Mendelian genetics were 
used to explain the continuous variation found in most traits of economic 
importance. We showed that even though the expressions of these traits are 

affected by many genes and environmental effects, predictions useful in breeding 

can be made, if adequate information is obtained. Only part of the genetic 

factors passed from one generation to the next will actually explain the similarity 

between most relatives. Information on the individual itself, and its relatives, 

can be used to estimate the individual’s breeding value, and to predict response 
to selection. 

Several important statistics were introduced in this chapter. The important 

unitless statistics are heritability (h’), repeatability (rpt), accuracy (h), and
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selection intensity (i). The important statistics which are measured in trait units 
are breeding value (BV), predicted difference (PD), and the response to selection 

AG. Important variance components, which are in trait units squared are the 

phenotypic (0,2), the additive genetic (0,2), and the environmental (g,’) 
components of variance.



Chapter Two 

Basic Concepts in Economics 

2.1 Introduction 

Contrary to the previous chapter, which was a general review of quantitative 

genetics, in this chapter we will cover only those principles of economics 

relevant to animal breeding. There are many topics in economics that are 
generally covered in an introductory economics course that have little relevance 
to the topic at hand, and will therefore not be discussed. The topics we will 

consider are the production-possibility frontier; the law of diminishing returns; 

demand and supply curves; equilibrium and competition; elasticity of supply and 

demand; momentary, short- and long-term equilibrium; application of supply and 
demand; the dynamic cobweb; marginal cost and utility; fixed and variable costs; 
interest, discount, and inflation rates, and profit horizon. We will also discuss 

special topics in agricultural economics, including long-run decline, short-run 

instability, and government aid. Hopefully at the end of this chapter we will 
understand why "the price of pig, is something big," (H. J. Davenport) and what 

breeding can do about it. 

2.2 Production-possibility frontier and the law of diminishing 

returns 

A reasonable starting point for the discussion of economics is with the "Law of 

Scarcity". That is, no matter how affluent a society, no society can produce as 

many goods and services as people want. This is because resources (labor, 

capital, raw material, land, etc.) are limited. Those goods of which everyone 
has as much as he wants, no matter how important they may be, are therefore 
not economics goods. Thus on this world, air is not an economic good, and has 

no price. This of course is not the case in a space capsule, where air would be 

in limited supply, and therefore very valuable. 

Since resources necessary to produce economic goods are limited, a society 
must choose how much of what to produce with the limited means at hand. This 

problem is often in the news as the choice governments face between "guns or 

butter." In other words, if more resources of the society are directed to military
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expenditures (guns), there will be less resources left for other expenditures 

(butter). This of course will be true for all economic goods and services that 

society may wish to produce. 

This relationship is displayed graphically in Figure 2.1 for a hypothetical 

society. In this simple example we will assume that this society produces only 

two goods - guns and butter. We see that the maximum number of guns that this 

society can produce is 15,000, but this will only be accomplished if all resources 

are directed to production of guns. Conversely if all resources are directed to 

butter production, 5,000 tons of butter will be produced, but there will be no 

guns. If part of the resources are directed to each objective, both guns and 

butter will be produced, but less of each good than is absolutely possible. The 

curve that describes the maximum quantity of each good that can be produced, 

as a function of how resources are allocated, is called the "production-possibility 
frontier." Although it is possible to produce less than this frontier, 1f production 

is inefficient, it is not possible to produce more. 
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Figure 2.1. The production-possibility frontier for a hypothetical society that 

produces only two goods - guns and butter. 

In Figure 2.1, this curve is concave. This will be the general rule for 

production-possibility frontiers, and can be explained as follows: if we start with 

the situation where only butter is produced, and begin to direct resources to the
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production of guns, maximum total production will be obtained if those resources 

which are most efficient in the production of guns are directed first in this 

direction. It is reasonable that these resources will be less efficient in the 
production of butter, and thus the total quantity of goods produced will increase. 

As the production of guns increases, it will be necessary to direct in this 

direction more resources, which will be less efficient in the production of this 
commodity. Thus although production of guns will increase, the rate of increase 

will decline. 
Just as a society must choose between production of different goods, it must 

also choose between current consumption and investment. Through investment, 

or capital formation, it is possible to change the production-possibility frontier. 

By investing in new machinery, research and development, etc. a society can 

move to a situation where it is possible to produce both more guns and butter. 

Of course, this will be at the expense of less current production and 

consumption. This consideration is of special concern to animal improvement, 

since breeding is, by its nature, a long-term procedure. Animal breeding 
requires that resources be directed from current consumption to investment in 
breeding programs. For example, in the breeding of dairy cattle, resources are 

spent on record keeping and data analysis, so that superior sires can be selected. 

Future daughters of these sires will be able to produce more butter from the 

same resources, or the same quantity of butter from less resources. In economic 
terms the return can be measured in a change in the production-possibility 
frontier to the right. This situation is illustrated in Figure 2.2. 

Similar to the situation in Figure 2.1, the curves in Figure 2.2 are also 

concave. This means that, starting from a situation where all resources are 

directed to consumption, direction of a small fraction of all resources to 

investment will result in a relatively large "return" in increased future 

production. However, as more resources are directed to investment, the 

proportionate return in increased future production will be less. Again this is 
because those resources which can most efficiently increase future production 

will be directed first to investment. The discussion of investment will be 

continued in section 2.9. 
This principle, which explains the relationships in Figures 2.1 and 2.2, is 

call the "Law of Diminishing Returns". This law can be phrased as follows: as 
inputs are increased, production will increase, but each additional equal increase 

in inputs will result in a diminished increase in outputs, as compared to the 

previous increase. This law describes the relationship between inputs and 

outputs, not between alternative inputs or outputs. We have already seen one 

reason why this is true, namely, that generally speaking, the most efficient 

resources will be the first directed to production of a given good or service. 

Another reason is the concept of the limiting factor. This can be explained with 

the following example. Assume that ten workers take care of 1000 milk cows. 

For a given management system this number may not be nearly enough, and it 

is possible that by doubling the number of workers, production would more than
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double. What would happen if the number of workers are again doubled, this 
time to forty? With forty workers, it is still possible to feed the cows better and 
milk them more frequently. However at this point, doubling the number of 

workers will not double milk production. This is because factors other than 

labor are now limiting production, specifically the number of cows. 
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Figure 2.2. Investment vs. consumption in two countries. Solid line is the 

production-possibility for country A, broken line is the production-possibility 

frontier for country B. 

As we have shown above, future production can be increased by current 

investment. However, during the last hundred years, technological invention has 

been more important than mere thrift. The main factors that account for the 
spectacular increase in production in the modern age have been alternative power 
sources, machines, standardized parts, breakdown of complex processes into 

repetitive operations, and specialization. 

2.3 Demand and supply curves, equilibrium and competition 

In the previous section we considered production-possibility curves. These 
curves describe what happens to the production of different goods or services as
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resources are directed to or away from their production. Production of various 

goods or services will ultimately be determined by equilibrium of supply and 

demand. We will deal first with the effect of demand on production, as 

illustrated graphically by "demand curves." A hypothetical demand curve for 

milk is shown in Figure 2.3. In this curve the price of milk is plotted as a 

function of the supply of milk. Note that this price is the price that the market 

is willing to pay for milk - not the cost of production. 
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Figure 2.3. Demand curve for milk in a hypothetical country. 

Demand curves typically have a negative slope and are convex. The negative 

slope can be explained as follows: Most people will be willing to pay for a 

given commodity only if its price is below a certain level. However, in most 
cases, there will be a small minority who desire the commodity enough to pay 

a higher price than the rest of the population are willing to do. At limited 

supply, this minority will determine the demand price of the commodity. As the 

supply increases, the demand price will be determined by those potential buyers 

not included in the original group of buyers, who are willing to pay the next 
highest price. Demand curves are convex because for most goods or services, 

no matter how great the supply, as long as it is not unlimited, there will always 

be some minimal price that people will be willing to pay. Thus as a commodity 

becomes very abundant its price will go down less than its supply will increase.
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Conversely, as a commodity becomes very scarce, its price will go up much 

faster than its supply decreases. 

We will now deal with the complementary situation for supply. The 

hypothetical supply curve for milk production is shown in Figure 2.4, 

superimposed on the demand curve of Figure 2.3. Note that although the scales 

for both curves are the same, and both curves are convex, the slope of this curve 

is positive. Thus as more milk is produced, the cost of production of each unit 

increases. This of course corresponds to the law of diminishing returns 

explained in the previous section. At limited production, only those resources 

which are most efficient at production will be utilized, and the price will be low. 
As production increases, less efficient resources will be directed to production, 

and the price of production will increase. 
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Figure 2.4. Supply and demand curves for milk in a hypothetical country. D 
is the demand curve, and S is the supply curve. E is the point of equilibrium 

between supply and demand. 

Unlike demand curves, supply curves generally have a positive y-intercept, 

which means that there is a minimum price of production, no matter how little 

of a commodity is produced. Supply curves tend to be convex, because 

overcoming each limiting factor is more difficult than the next. Eventually a 

situation is reached of maximum possible production of a specific commodity,
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regardless of cost. In this case the slope of the supply curve tends to infinity. 
In Figure 2.4 there is a point of intersection between the demand and supply 

curves. With production at the level of this point, the price of production is 

equal to price of demand. This is the point of equilibrium between supply and 

demand, and barring outside interference, this will be the market price of the 

commodity in question. The consequences of prices other than the equilibrium 
price can be inferred from Figure 2.4. If, for example, the price of milk is 

above the equilibrium point, then demand for this commodity will be less than 

the supply. This will cause a decrease in production, which lowers the price of 

production. The magnitude of the demand at the new, lower, price of production 

will be greater than the previous level. If the demand quantity is still less than 
the quantity supplied, then production will decrease further until the equilibrium 

point is reached. Conversely, if the level of production is below the equilibrium 

point, then demand for this commodity is greater than supply. This will cause 

increased production, which will increase the cost of production, but decrease the 

quantity of the demand, again until equilibrium is achieved. 
As seen above in section 2.2 it is possible through investment to change the 

quantity of goods and services that a society can produce. If production becomes 

more efficient through, for example, mechanization, or genetic improvement of 

agricultural organisms, then it will be possible to produce more at the same cost 

of production. In other words the supply curve will shift to the right. This 
situation is illustrated in Figure 2.5. Assuming that the demand curve has 

remained constant, a new equilibrium point is reached with greater production 

at a lower price per unit. (Note that this case is different from the situation 

discussed above where supply was changed, but the supply curve remained 

constant.) Similar to the supply curve, the demand curve also tends to shift over 
time. Most advanced societies have in recent history become more affluent. 

This causes the demand curve for most commodities and services to shift to the 

right. Thus, at a given price demand will increase. As in the case of a shift in 

the supply curve, this will also cause a shift in the equilibrium point to the night, 

but unlike the previous case, the equilibrium price will be higher. 
The examples described until now in this section deal with a situation of 

"perfect" competition. Near perfect competition will occur only if there are 

numerous buyers and sellers for each commodity, and a free transfer of 

information about the prices and quantities for sale. This is hardly ever the case 

for agricultural products. In later sections we will describe the major factors that 

interfere with perfect competition and explain their effect on the price and 
quantity of goods actually produced.
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Figure 2.5. A shift in the supply curve for milk. S is the original supply curve. 

S’ is the new supply curve. E is the original equilibrium point. E’ is the new 

equilibrium point. 

2.4 Elasticity of demand and supply 

As shown above, as the price of a commodity increases, the demand will 

decrease. Therefore the slopes of demand curves are generally negative. A 

highly negative slope will mean that a large change in the price will affect the 

quantity of the demand only slightly. Conversely, a nearly horizontal slope will 

mean that a small change in the price will have a large effect on the size of the 
demand. The relative change of price and quantity along the demand curve is 

measured quantitatively by the "elasticity" of the demand. Mathematically 

elasticity is computed by the following equation: 

PdQ 
E, = - 

[2.1] 

QdP, 

  

where E, is the elasticity of the demand, P, and Q are the price and quantity at 

a given point on the demand curve, and dQ/dP. is the derivative of Q with 

respect to P,, which is equal to the inverse of the slope at the point P,Q. When 
EF, is greater than unity, then the demand is termed "elastic"; and when E, is less
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less than unity, then the demand is termed "inelastic". We will now define total 

revenue, or returns (R) as the product of P, and Q. The change in revenue as 

a function of P. and Q can be computed as follows: 

dR P.dQ QdP, 
= + 

d(P,Q) dR dR 

      [2.2] 

Maximum revenue will be obtained when its differential is set to zero. In this 

case the following equations can be derived: 

  

QdP, P.dQ P.dQdP, 

dR dR dP.dR 

Dividing both sides by dP,/dR, and rearranging gives: 

P.dQ 
1=- = E, [2.4] 

QdP, 

That is, revenue will be maximum when E, is equal to unity. A reduction 

in P. will increase total revenue if the demand is elastic, and decrease total 

revenue if the demand is inelastic. 

In most cases the demand curve will be convex, dQ/dP, will vary along the 

curve, and elasticity will be different at different levels of P, and Q. However, 

even if the demand curve is a straight line, elasticity will still be different at 

different points along the curve because the ratio P/Q will be different. Thus 

for a linear demand curve with a negative slope, elasticity will increase with 

increase in P. and decrease in Q. This is intuitively obvious. If the quantity of 

a commodity is very large, milk, for example, a slight absolute change in its 

quantity will affect demand only slightly. Conversely, if the quantity of a 

commodity is small, for example diamonds, a small change in its quantity will 

have a large effect on demand. This point is critical in agriculture. As 

agricultural commodities become more prevalent, due to breeding or other 

means, demand tends to become less elastic, and although prices continue to 

decline, they decline by increasingly smaller margins. 

Elasticity of supply, E,, can be defined in a similar manner to elasticity of 

demand: 

P.dQ 
E, = [2.5] 

QdP, 
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Note that this equation is the same as [2.1], except for the minus sign, and the 
fact that dQ and dP. are now defined relative to the supply curve, rather than the 

demand curve. Elasticity of demand is more useful than elasticity of supply, 

because only the former quantity can be used as an indication of the change in 

total revenue. 

An important principle with respect to supply curves is that elasticity of 
supply tends to increase over the long term. This is because supply curves are 

different from a short- or long-term perspective. This can be illustrated by the 

example of milk production. First, consider the momentary situation. The dairy 

industry at any point in time is geared to produce a curtain quantity of milk. If 

the price of milk were to double tomorrow, the quantity of milk produced would 

hardly increase, since there is no way to significantly increase production so 
rapidly. Thus the "momentary supply curve" is very inelastic. If the price 

remains high over a period of several weeks or months, then production could 

be increased somewhat, by additional feed, more frequent milking, and less 

culling of cows. Of course all these changes will increase the price of 

production so that the "short-term supply curve" is moderately elastic. Over a 

period of several years, milk production could be doubled by increasing the 

number of cows in production. Although this change would take years, the new 

price of production would be only slightly higher than the original price. Thus 

"long-term supply curves" tend to be very elastic. In the same way that we 

defined momentary, short-term, and long-term supply curves, we can define 

momentary, short-term, and long-term equilibrium. 

2.5 Application of supply and demand: "imperfect 

competition", tax, and price control 

The previous section dealt with the case of “perfect competition", where the 

effect of each individual producer or consumer is infinitesimal on the total supply 

or demand. In the real world this is seldom the case. Although the principles 

described above are still true, it is necessary to take account of various factors 

that can affect supply, demand, and the market price of goods and services. 

These can be grouped into factors that are external to the market, and factors that 

are part of the market. We will consider first external factors, the most 

important of which is government. 

The definition of a "government" is a "“tax-levying body," and all 

governments affect price by levying taxes. There are different ways that 

governments tax, and their effects are different. We will describe only the 

situation for a unit tax on a commodity. This case is illustrated in Figure 2.6. 

The tax does not affect the demand curve, but shifts the supply curve to the left. 

A new equilibrium point is set at a higher price, and at a lower quantity. If the 

demand is elastic, then the new equilibrium price will be only slightly higher
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than the previous point, and most of the tax will be born by the producer, who 
will see both the quantity and the price he receives reduced. If the demand is 

inelastic, then most of the tax burden will fall on the consumer. The revenue 

that the producer receives, and the quantity sold, will decrease only slightly. 
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Figure 2.6. Effect of a tax on supply and demand. Dis the demand curve, and 

S is the original supply curve. S’ is the supply curve after imposition of the tax. 
E is the original equilibrium point. E’ is the equilibrium point after imposition of 

the tax. 

In addition to taxation, governments can try to directly affect the quantity 
or price of goods sold by price ceilings, price supports, or rationing, the most 

common method being price ceilings. The effect of a price ceiling on supply and 

demand curves is illustrated in Figure 2.7. Without government intervention, 

production and price would be at point E. By imposing a price ceiling, the price 

is set at some lower level, p’. At this price, the quantity demanded is Q,, while 

the quantity supplied is Q,. Since Q, is greater than Q,, society must have some 
mechanism for allocating the commodity in question. It will generally be either 
be on a first-come-first-served basis, or by rationing. Clearly neither of these 

alternatives is desirable. Another byproduct of price ceilings is black markets, 

where these commodities are sold illegally at prices above the ceiling. Therefore 
it is not surprising that although price ceilings have been imposed many times by
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many different governments, they have rarely achieved the declared goal of 
providing the consumers with the desired goods at reasonable prices. 
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Figure 2.7. Effect of a price ceiling on supply and demand. D is the demand 

curve, and S is the supply curve. Without government intervention, production 

and price would be at point E. By imposing a price ceiling, the price is set at p’. 

At this price, the quantity demanded is O,, while the quantity supplied is Q,. 

Price supports have been generally imposed to help producers, and have 

been more successful in obtaining these goals in the short- and medium-run. As 
described in the previous section, short-term supply curves tend to be very 
inelastic, and this 1s especially true of agricultural commodities. Once the farmer 
has produced his crop, he has virtually no choice but to sell it at the market 

price. If the market price is below the price of production, and demand is 

inelastic, this can lead to a drastic reduction in future production. 

This problem is especially severe in animal production. A farmer can 

decide to plant three times as much wheat next year, but there is no way to 
increase milk production by a similar factor in so short a period of time. The 

justifications for price supports are therefore: 1) to assure adequate supplies of 

desired commodities, and 2) to compensate producers for radical changes in 
market prices due to factors beyond their control. An example of price support 
is illustrated in Figure 2.8. In this case the demand curve is shifted so that
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of decreasing with increased production, it stays parallel to the x-axis. This is 

accomplished by the government buying any quantity offered at the price P,, 

which is above the equilibrium price. Thus the equilibrium price will be P,, 

which is higher than the equilibrium price in the absence of a price support. 

Although price supports do generally solve the problems they are meant to 

address, they raise both government expenditures and the price consumers must 

pay. 
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Figure 2.8. Effect of a price support on supply and demand. D is the demand 

curve, and S is the supply curve. The government will buy any quantity offered 

at the price P,, which is above the equilibrium price at E. E’ is the new 

equilibrium point, with price P,, which is higher than the equilibrium price in the 

absence of a price support. 

Other than governments, large producers or consumers can also affect 

supply and demand curves. We will consider only the effects of large producers, 

and will deal with three common situations: monopolies, oligopolies, and cartels. 

In a monopoly, there is only one producer of a given good or service. This of 

course does not affect the demand curve, but does render the supply curve 

immaterial. The goal of the monopoly will be to maximize profit. Since by 

definition, profit is minimal at the equilibrium price, the monopoly will choose 
to produce less than the equilibrium quantity, because at this quantity, the
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demand price will be higher. Again defining the demand price and quantity as 
P., and Q,, and the equilibrium price as P_, the monopoly will try to fix 

production so as to maximize Q,(P., - P..). 

In an oligopoly there are only a few large producers of a given commodity. 

Thus, contrary to the situation in "perfect competition" a single producer can 

affect the market by a change in the amount of his production, or the price he 
charges. Generally in an oligopoly, a single producer can dramatically increase 

his market share by charging slightly less than his competitors. Since two can 

play this game, the producers in an oligopoly often try to fix price among 

themselves. This was the situation prevalent in the airline industry until the 

1970’s. Of course the rewards for "cheating" are great, and in the absence of 

outside intervention, this will most likely occur. 

In a cartel the producers agree to fix the price, similar to in a monopoly. 

This can only work if the producers also decide to limit production. Again the 

rewards for "cheating", either by increasing production above the agreed quota, 

or selling below the agreed price are great, as has become apparent to the 

members of OPEC. Thus cartels tend to be inherently unstable, unless 

government control is imposed. 

2.6 Increased efficiency of production, and the dynamic 

cobweb; converging, diverging, and persistent oscillations 

Dickerson (1970) maintains that the primary goal of genetic improvement is to 

increase the efficiency of production, 1.e., to produce the same amount at a 

lower price, or produce more at the same price. This will result in a shift of the 

supply curve to the right. Other things being equal, a new equilibrium point will 
be achieved at a lower price and at a higher quantity of production. However, 

over the long-term, societies have tended to become more affluent. This has 

caused demand curves also to shift to the right. The effect of the long-term 

shifting of both supply and demand curves is illustrated in Figure 2.9. If the 

original and new equilibrium points are compared, it is clear that, although the 

quantity produced has increased significantly, the equilibrium price has hardly 
changed. If the supply curve has shifted more than the demand curve, then there 

will be a slight decline in the equilibrium price. This answers a commonly asked 

question, "If production is so much more efficient now, why don’t prices go 

down?" From this figure, it is clear that efficiency and price do not necessary 

go hand-in-hand.
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Figure 2.9. Simultaneous shift of the supply and demand curves. D is the 
original demand curve, S is the original supply curve, and E is the equilibrium 

point. D’ is the new demand curve, S’ is the new supply curve, and E’ is the 

new equilibrium point. 

What happens when equilibrium of price and production is disturbed? 

Consider the situation illustrated in Figure 2.10a. Originally production is at 
level Q,, which is below the level of equilibrium production Q,. At this level of 
production, the market price will be determined by the demand curve, and will 

be equal to P,,. Note that this price is above the equilibrium price, P,,. At this 
price, production will increase to Q,, which is the quantity of production of the 
supply curve for the price P,,. At the new level of production, price will again 
be set by the demand curve, but this time the market price, P,,, will be below 

the equilibrium price. It can readily be seen that by decreasing oscillations, 

production and price will tend toward the equilibrium point. 
Not all markets will tend toward equilibrium. In Figure 2.10a, the demand 

curve was more elastic than the supply curve. Figure 2.10b illustrates an 

example where the supply curve is more elastic than the demand curve. In this 
case, each oscillation will move the market farther from equilibrium. Figure 
2.10c illustrates the situation where the two curves are of equal elasticity. In this 
case, price and production will continue to oscillate at a constant frequency. 

This helps explain why despite the laws of supply and demand, markets are often 

far from the equilibrium point.
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Figure 2.10b; expanding oscillations. The supply curve is more elastic than the 

demand curve. 

Figure 2.10c; constant oscillations. The supply and demand curves have equal 

elasticity. Price and production will continue to oscillate at a constant 
frequency. 

2.7 Economics of agriculture, long-run decline, short-run 

instability, and government aid 

We will now apply the principles described above to the specific case of 

agriculture in the developed countries. Over the last two hundred years, the 

efficiency of agriculture has increased dramatically. This can be illustrated first 
by the diminishing percent of the population engaged in agriculture. If at the 
time of the American Revolution, over two thirds of the population of the US 
was engaged in agriculture, in 1988 only about 5% of the work force was so 

employed, and the percentage is still declining. Similar trends have occurred in
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other developed countries, and the causes for increased efficiency have been both 

agritechnical and genetic. Not only have more people been fed with 

proportionately less labor, they have also been fed a richer diet. Food 

production from animal sources requires greater inputs in energy than food 

production from plants. Nevertheless, consumption of animal products as 

opposed to plants, and consumption of fat and protein as opposed to 

carbohydrates has increased. 

What has happened to farm income? As described in Section 2.6, both 

supply and demand curves tend to shift to the right over time. Although this 

results in greater production at equilibrium, the effect on prices is unpredictable. 
The historic situation in agriculture is illustrated in Figure 2.11. Supply and 

demand curves are drawn for two points in time several decades apart. Both 

curves shift to the right over time, the supply curve because of increased 

efficiency of production, and the demand curve because of increased population 

and affluence. As an example of the effect of increased affluence on agricultural 
consumption, it can be noted that from 1967 to 1987, per capita milk butterfat 

consumption in Israel increased from 4.1 to 6.0 kg (Dror, 1988). However, the 

change was significantly greater for the supply curve. Therefore the equilibrium 

prices of agricultural commodities, adjusted for inflation, tend to decline. 

Another economic disadvantage of agriculture, is that farm incomes have 

tended to fluctuate more than other incomes, despite the fact that farm production 
is much more stable than non-farm production. Although it is generally thought 

that agricultural production is at the mercy of the weather, in fact fluctuations in 

production due to weather conditions are quite minor. Why then do food prices 

fluctuate so markedly over the short-term? The reason is that both the short-term 

supply and demand curves are very inelastic. Thus slight shifts in production 

will have large effects on the price of agricultural commodities. It is therefore 

not surprising that farmers have traditionally looked to government for help. 

Currently most developed countries have large governmental programs to aid 

agriculture. 

Although this book is about economic aspects of animal breeding, economics 

cannot be divorced from politics, and politics has clearly played a significant part 

in agriculture. We will now summarize the major methods governments use to 

aid agriculture, and their effects on price and production. First many 

governments support agricultural research. In Section 2.2 we explained that a 

society must choose between investment and current consumption. The same is 

true of a company or an enterprise, and many high-technology industries invest 

a considerable fraction of total expenditures in research and development. In 

agriculture the cost of research, to a large extent, is born by governments, and 

individual farmers are able to benefit without having to divert their own 

resources in this direction. However, it should now be clear from the discussion 

of the dynamic cobweb in the previous section, and Figure 2.11, that although 

individual farmers, or farmers of a given country may benefit from agricultural 

research over the short-term, farmers do not gain much in the long-term. The
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effect of increased productivity on agriculture has been termed the 

"progress-surplus-bankruptcy cycle" (Moav, 1973), and will be discussed in 

more detail in Chapter 4. 
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Figure 2.11. Traditional downward shift of farm prices. Supply and demand 

curves are drawn for two points in time several decades apart. D is the original 

demand curve, S is the original supply curve, and E is the equilibrium point. D*’ 

is the new demand curve, S’ is the new supply curve, and E’ is the new 

equilibrium point. Both curves shift to the right over time, but the equilibrium 

price at E’ is lower than at E. 

Other methods of governmental aid have chiefly been directed either to 

increase demand or to reduce production. Governments have employed several 

methods to increase demand. We have already discussed the effect of price 

supports, which have been employed extensively in the US. In addition to 

merely buying and storing excess production, governments of developed 

countries have sold agricultural products overseas or to needy local consumers 

at reduced prices. Thus two birds are killed with one stone, in addition to the 

needs of farmers, other governmental needs, such as foreign aid, or internal 

relief are met. The problem with these programs is that over time they tend to 

increase in size and cost. If prices are kept at a constant level by the 

government, while productivity increases, the differential between market
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demand and production will increase, causing the government to buy ever larger 
surpluses. 

Governments have tried to limit production by either direct payments to 

farmers, or by quotas on production. Both of these methods shift the supply 

curve to the left, and thus compensate for the effect of increased efficiency. The 
former method, although extensively employed by the US government until 

1970, has negative moral complications. "Why should rich farmers be paid not 

to plant while people are starving?" has been a common refrain. The problem 

with production quotas is the same problem discussed above with respect to 
cartels and oligopoly. As long as other producers are abiding by their quotas, 
there is a strong incentive for the individual producer to cheat. Thus methods 
are necessary to enforce quotas, with commensurate economic and moral costs. 

The final method is direct governmental payments to farmers in distress. 

This method has little undesirable moral baggage, but is hardly a solution to the 

long-term problem of excess production. We will return to the question of the 
role of government in agricultural in Chapter 4. 

2.8 Marginal utility and marginal cost, fixed and variable costs, 

and long-run break-even conditions 

Until now in our discussion of supply and demand curves, we have not 
considered the factors, other than efficiency of production, that determine the 

relationship between price and production. We will now attempt to explain the 

underlying economic principles that determine these relationships. We will begin 
with the demand curve and the concept of "utility". 

Consumers are willing to pay for goods and services because they supply 

some satisfaction or need, which in economic terms is called "utility". It is a 

general principle that for any particular commodity, although the total utility 

increases with each unit acquired, the increase in utility diminishes. A single 
drop of water is important for a thirsty man, but of no practical importance in 
filling a swimming pool. This leads us to the "Law of diminishing utility." This 

principle is parallel to the law of diminishing returns, but refers to demand, 

rather than production. 

Figure 2.12 illustrates this principle for the case of butter. Total and 
marginal utility, defined as the derivative of total utility, are plotted as a function 
of quantity. It can be seen that total utility increases, while marginal utility 

decreases. If this is the case, one can then ask how much butter, or how much 

of any good, will a consumer buy? Clearly this question is related to the price 
of different goods. For example, one receives more utility from an automobile 
than a kg of butter, but then the automobile costs more. Thus any consumer will 
try to achieve maximum utility for the amount of money spent. This will be 

accomplished only when the marginal utility per unit price of each good
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purchased are equal. 
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Figure 2.12. Marginal and total utility. TU is the total utility curve, and MU is 

the marginal utility curve. 

The principle is called the "Law of marginal utility" and can be described 

by the following equation: 

MU, = MU,/P,, = MU,/P,, = MU,/P, [2.6] 

Where MU, is the equilibrium marginal utility, MU, and MU, are the marginal 

utilities for goods 1 and 2 at prices P,, and P,,, respectively, and MU; is the 

marginal utility for the i" good at price P,,. That is the price of any good will 

be equal to its marginal utility divided by the equilibrium marginal utility. 
From this discussion it is clear that the demand curve will be determined by 

the ratio of marginal utility to price for each consumer. For supply curves, the 

determining factor will be the marginal cost of production. The cost of milk 

production in a dairy herd as a function of total production is plotted in Figure 

2.13. Also plotted is the marginal cost, which is the derivative of total cost. If 

we first study the curve for total production, we note that the curve does not start 

at the origin. In other words a sizable initial investment is necessary before any 

milk is produced. Once this initial investment is made, total cost increases as a
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function of total production, but the slope is not constant, as illustrated by the 
plot of marginal cost. At low production, the slope is negative, while at high 

production, the slope is positive. That is the general case for marginal utility, 

and can be explained as follows. If the farmer has facilities to handle 100 cows, 

but has only 50, he will still have to cover all the costs of building and 
equipment. Thus in this case he can increase production with only a moderate 

increase in his total costs. However, once he reaches the level of 100 cows, 

production can be increased only by better management or more frequent 

milking. Of course there is a limit to how much these factors can increase 

production, and at that point, additional expenditures can increase production 

only slightly. 
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Figure 2.13. Marginal and total costs of milk production. TC is the total costs 

curve, and MC is the marginal costs curve. 

How much will the enterprise produce at equilibrium? If the market price 
is above the marginal cost of production, it pays for the firm to produce more, 

because in this case the return on the additional production will be greater than 

the cost of the additional production. However, if the marginal cost is above the 
market price, then the firm is losing money on each additional unit produced, 
and should therefore reduce production. Thus at equilibrium, price will be equal 
to marginal cost. This does not mean that the total cost of production is not 

important. The practical relationship between total and marginal cost is
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illustrated in Figure 2.14. Three possible demand curves are drawn together 
with the marginal cost curve. At each level of demand, the production of the 
enterprise will be set so that P. = MC. At D, total revenue is above total cost 

of production, and there is a profit. If in this case production is decreased, MC 

will also be lower, but profit, equal to total revenue - total cost of production 

will also decline. At demand D,, total revenue is equal to the total cost of 
production when P. = MU. In this case, profit is equal to zero, and there is no 

incentive for new producers to enter the market. This is the case of market 

equilibrium between supply and demand discussed above. If demand falls to the 

level of D,, the firm will still produce up to the level where P, = MU, but total 

revenue will be less than the total cost of production. This situation is clearly 

unstable over the long-term. If demand falls even lower, then total revenue will 

no longer cover the variable costs of production, that is those costs that depend 

on the amount produced. In this case no production is economically justified. 
This is the shutdown point marked on the MC curve. 
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Figure 2.14. Marginal costs with three levels of demand. MC is marginal cost 

curve. At demand D, total revenue is above total cost of production, and there 

is a profit. At demand D., total revenue is equal to the total cost of production. 

At demand D,, total revenue is less than the total cost of production. E is the 
equilibrium point, and SD is the shutdown point marked on the MC curve.
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Figure 2.15 summarizes the relationship between supply and demand, total 
utility and total cost, and marginal utility and marginal cost. Total utility, total 

cost and marginal cost increase with increased production, while marginal utility 

decreases. The curves for marginal utility and marginal cost are in fact the 

demand and supply curves, and their point of intersection is the equilibrium point 
between supply and demand. 
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Figure 2.15. Marginal and total costs and utility. TC is total costs, TU is total 

utility, MC is marginal costs, and MU is marginal utility. E is the equilibrium 

point at the intersection of marginal costs and utility. 

We have seen above that it is useful to divide costs into two categories, 

fixed and variable. Total costs are defined as the lowest aggregate expense 

needed to produce each level of production. Fixed costs are all costs 

independent of the amount produced, while variable costs are costs dependent on 

the level of production. Thus for a dairy enterprise, buildings and land are fixed 

costs, while feed and labor are variable costs. Average total, fixed and variable 

costs (AC, AFC, and AVC), are defined respectively as total, fixed and variable 

costs divided by total production. 
The relationships between average costs and marginal cost are illustrated in 

Figure 2.16. As explained above, the curve for marginal cost is convex. The 

curve for average fixed costs will have a negative slope, and tend asymptotically
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to zero. This is because as production increases, fixed costs by definition remain 
the same. Since average fixed costs is the ratio between a constant and total 

production which increases, the average fixed costs decline. Average variable 

costs will also tend to be convex, but will have a minimum value. This is 

because a considerable amount of feed and labor will be necessary to produce the 
first kg of milk. After that average variable costs will decline because additional 

production will require only a slight increase in the variable costs. However, as 

production increases, average variable cost will start to increase, due to the law 

of diminishing returns. Average total costs are the sum of average variable and 

fixed costs, and will also be convex with a minimum. Note that the curve of 

marginal costs intersects both the curves of average variable and total costs at 
their minimums. This is because average variable and total costs will be 
declining as long as they are greater than marginal costs, and increasing if they 

are less than the marginal cost. 
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Figure 2.16. Marginal, average fixed and variable costs, and total costs. MC 

is marginal costs, AC is average costs, AVC is average variable costs, AFC is 
average fixed costs. E is the equilibrium point, and SD is the shutdown point. 

The long-term equilibrium point, which is also the break-even point, is the 

point where MC, AC, and the demand curve intersect. If demand is below this 

point then production will decrease, but total revenue will still be less than total
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costs, and the producer will be losing money. If demand is above this point, 

then production will be at the intersection of MC and demand, which will be 

greater than AC. In this case the producer will have a profit, and other producers 

are likely to begin or increase production. The intersection of MC and AVC is 

the short-run shutdown point. If demand falls below this level production will 

cease completely, because the revenue will no longer cover the variable cost of 

production. 
It should now be clear that although all producers will try to maximize their 

profit, profits will nevertheless remain minimal over the long-term due to 

competition. Thus it is the consumer who tends to gain from increased 

efficiency of production over the long-term. The reader may ask how can there 

be a stable equilibrium without any profit for the producer? This consideration 

is usually handled by assuming that a "reasonable" profit is part of the costs of 

production. 

2.9 Interest, discount rates, inflation and profit horizon 

We have discussed above that a society must choose between current 

consumption and investment. Likewise an enterprise must choose between 

current production and investment in research and development. Why is 

investment desirable? Because there are indirect processes, which take time to 

get started, but are more productive than direct processes in the long-term. 

Breeding programs are a good example of this principle. All breeding programs 

cost money, but yield returns only in the future. The main cost elements of 

breeding programs are: data collection, keeping of non-productive animals for 

future breeding, test matings, and statistical analysis. Rather than keep live 

animals it is possible to keep breeding stock in the form of frozen semen or 

embryos. This saves the costs involved in keeping non-productive animals, but 

entails additional costs for the production and preservation of the "seed." Recent 

biotechnology advances have raised the possibility of new techniques that could 

increase the rate of genetic advance, but would also increase the costs of 

breeding programs. These techniques will be considered in detail in Chapter 12. 

Thus capital has a net productivity which can be measured as a "real" 

interest rate. (By "real" interest rate, we mean interest rate corrected for 

inflation, which will be discussed below.) If investment is so good why do 

societies not invest more? As described above, the amount a consumer or a 

society is willing to spend on each commodity is determined by marginal utility. 

Thus a society will invest to the level that the marginal utility of investment is 

equal to the marginal utility derived from other commodities. This is determined 

by the concept of "minimum attractive rate of return" (MARR). This concept 

can be explained as follows: money now is worth more than money received in 

the future. Therefore in order to invest money now, future return should be
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greater than the amount invested. The difference per annum is called the 
minimum attractive rate of return. Using this principle we can define the 

discounted value of a current investment as follows: 

N 
DV = ——— [2.7] 

(1 +d)! 

where DV is the discounted value of N current dollars, d is the minimum rate 

of return (MARR), and t is the time in years between investment and realization 

of the return. Thus for N = $100 and d, = 10%, an investment that matures 
in one year will be attractive only if the return is at least $110. Another way of 

considering the problem is to say that those investments which will realize the 

highest rate of interest will be chosen first. All investments with interest rates 

greater than d, will be chosen, but not those with interest rates below d;. 

There are many ways to invest money, and to receive returns, generally 

both will occur over extended periods of time. A common situation is when a 

certain sum is invested now, and a constant sum is paid back each year in 

perpetuity. Assuming that N dollars are invested, and that MARR = d,, the 

minimum acceptable annual return, V, can be computed as follows: 

Nd, = V [2.8] 

Thus if in the previous example, N = $100, and d, = 10%, V = $10. That is, 
if my MARR is 10%, an investment of $100 now under the conditions just 
described is justified only if annual return is at least $10 each year. Investment 

situations in breeding programs are generally more complicated than the two 

situations described, and will be described in more detail in Chapter 8. 

Nearly all modern societies suffer from some level of inflation, thus nominal 

interest rates will be higher than "real" interest rates. Assume that $100 today 

buys 400 kg milk. $100 next year with inflation will be worth less a) because 

I would rather have the milk now, and b) $100 will buy less milk in a year from 

now. With an inflation rate of d,, the discounted value of current investment can 

be computed as follows: 

N 
DV = [2.9] 

(i + dja + dy 
  

Where d, is the "real" interest rate, corrected for inflation. Although nominal 

interest rates and inflation rates have varied dramatically in many societies, 

long-term real interest rates have remained remarkably constant in the range of 

3 to 5 percent (Smith, 1978). For animal breeding the nominal interest rate will 

have no significance, since future investment is returned in commodities - not in
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currency. Thus investments in breeding programs have continued even in 

societies with very high inflation rates. 

Two important differences between breeding programs and nearly all other 

investment are that all gains in breeding programs are cumulative, and for 

perpetuity. This important point can be illustrated by the following example. 
Recent studies have shown that injection of cattle with bovine somatotropin 

(growth hormone) will increase milk production by 10 to 20 percent (Leitch, 

Burnside, and McBride, 1990). Clearly this is quite impressive, especially if the 

cost of the treatment is low. However, the improvement will be realized only as 

long as cows continue to be injected. If, on the other hand, milk production is 

increased by breeding, this differential will be maintained for eternity without 

further treatment. Furthermore, any additional genetic improvement will yield 

a cumulative result to previous breeding. 

Since breeding is generally a long-term proposition, and gains are perpetual 

and cumulative, the question of how far into the future one should consider 

returns is important. Beyond considerations of a minimum attractive rate of 
return, it can be argued that returns too far in the future have a present value of 

zero. Thus long-term breeding programs are generally considered in terms of 

a “profit horizon". That is all returns occurring after the profit horizon, are 

considered to have no value. Breeding programs are generally analyzed in terms 

of a ten to twenty year profit horizon. 

2.10 Summary 

This chapter described the main economic concepts applicable to animal 

breeding. We showed the necessity of choosing between alternative economic 

goods, and explained the law of diminishing returns. Graphic display of demand 

and supply was used to illustrate the conditions for equilibrium, how changes in 

price and production were affected by elasticity of supply and demand, and the 

effects of government intervention and increased efficiency of production. The 

concepts of utility, and marginal, fixed and variable costs were introduced to 

explain demand and supply curves. We showed that the amount of investment 

will be determined by the minimum attractive rate of return, and the profit 

horizon. The recent economic trends in agriculture in developed countries were 

summarized.



Chapter Three 

Principles of Matrix Algebra and Selection 
Index 

3.1 Introduction 

Hazel in 1943 formulated the principles of economic selection index. He asked 

the following question: Assume that there are n traits for which breeding values 
can be estimated, and m traits with economic values. Assume further that the 

economic values of the m traits are linear functions of the trait values. Some, but 

not all of the traits included in n may be included in m, and vice versa. What 
linear index of the n measured traits should be used to select individuals so as 
to maximize genetic progress on the economic scale? Hazel formulated his 

principles without the benefit of matrix algebra, which was not then used 

commonly by geneticists. It later became clear that the principles of selection 

index could be expressed more succinctly and generally through this important 

mathematical tool. Since matrix algebra will also be of major importance for 
much of the remainder of this book, Section 3.2 reviews the principles of matrix 
algebra, for those readers who are unfamiliar with the topic. Matrix Algebra 

Useful in Statistics (Searle, 1982) is recommended for a more extensive study of 
this topic. In Section 3.3 we will discuss the concepts of genetic and 

environmental correlations, and demonstrate how selection on one trait will lead 

to correlated responses on other traits. In the remaining sections of this chapter 
we will derive the selection index equations, describe its properties, and give 
some examples of the practical use of selection index. 

Although we have no desire to belittle Hazel’s accomplishment, the 

limitations of the method should also be noted. Especially since there has been 
a tendency in the literature to assume that selection index is the complete answer 

to the topic of this book. It should first be noted that selection index, as 

formulated by Hazel, only solves the case where the economic values are linear 

functions of the trait values. In Part 2, it will be shown that this is generally not 

the case. Second, selection index assumes that the economic values are known 

a priori. Not only is this seldom true, economic values tend to change over time 

and place. Finally, selection index only provides relative weights between traits, 

it does not answer the question of whether breeding is economically justified.
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3.2 Principles of matrix algebra 

We will first introduce the concept of a vector, which is essentially just a 

series of numbers. A vector can be displayed either as a horizontal or vertical 

series of numbers. A horizontal series will be called a "row vector", and a 

vertical series will be called a "column vector". A matrix is a two dimensional 

array of numbers, and can be represented as follows: 

7 3 #-5 

8 4.2 0 

This matrix has two rows and three columns. A matrix with only one row 

can be considered a row vector, while a matrix with only one column can also 

be termed a column vector. A matrix with only one row and column, i.e. a 
single number, is termed a "scalar". The individual numbers in a matrix are 

called the "elements" of the matrix, and are denoted by subscripts. Generally 

matrices will be denoted by bold uppercase letters, vectors by bold lowercase 

letters, and scalars and matrix elements by regular face letters. For example, if 

the matrix above is denoted as "A", a specific element of the matrix can be 

denoted as a;, where the first index refers to the row number, and the second 

index to the column number. Thus a,, = 3. 

A few more useful definitions will now be presented. The transpose of a 

matrix is a matrix in which the elements of the columns are replaced by the 

corresponding row elements. Thus the transpose of the previous matrix is: 

A matrix with equal number of rows and columns is called a "square 
matrix". The diagonal of a square matrix from the upper left to lower right 
corners is called the "diagonal" of the matrix. The other diagonal is called the 

"secondary diagonal". The sum of the elements of the diagonal is called the 

"trace" of the matrix. A square matrix in which the elements above the main 

diagonal are a "mirror image" of the elements below the diagonal is called a 
"symmetrical matrix". The following is an example of a symmetrical matrix:
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7 2 -5 

2 3 4.2 

—-5 4.2 0 

The transpose of a symmetrical matrix will be equal to the original matrix. 

Mathematical operations can be performed with matrices that parallel the 
scalar mathematical operations of addition, subtraction, and multiplication. The 

matrix operation parallel to division is called "matrix inversion". We will briefly 
describe these operations. In matrix addition each element of one matrix is 
added to the corresponding element of the second matrix. Similarly, in matrix 

subtraction the elements of one matrix are subtracted from the corresponding 
elements of the second matrix. It is possible to perform matrix addition or 
subtraction only on two matrices with the same number of columns and rows. 

Matrix multiplication is slightly more complicated. We will therefore start 
first with the example of multiplication of a row vector by a column vector, both 

with the same number of elements. In this case each element of the row vector 

is multiplied by the corresponding element of the column vector, and these 

products are summed. The matrix product is then a single number, i.e. a scalar. 

In the opposite case, that is multiplication of a column vector by a row vector 

of equal number of elements, the product will be a square matrix. Each element 

will be the product of the corresponding elements of the row and column vectors. 

For example, the element for row 2 and column 3 will be the product of element 
2 of the row vector, and element 3 of the column vector. For the general case 

of multiplication of two matrices, the element for the i* row and j" column will 
be the sum of the products of the elements of the i* row of the first matrix, 

multiplied by the elements of the j" column of the second matrix. Thus it is 
possible to multiply two matrices only if the number of columns of the first 
matrix is equal to the number of rows of the second matrix. The resultant matrix 
will have as many rows as the first matrix, and as many columns as the second 

matrix. For example the product of a matrix times a column vector will be a 

column vector, while the product of a row vector by a matrix will be a row 

vector. Multiplication in the opposite order, for example a column vector times 

a matrix, is not defined. 

Before discussing the final operation, matrix inversion, we will first define 

a special matrix called the "identity matrix". This is a square, symmetrical, 
matrix with ones on the diagonal, and zero for all non-diagonal elements. 
Identity matrices are denoted by "I". It can readily be shown that multiplication 
of any matrix by an identity matrix will result in a product equal to the first 
matrix. The parallel in scalar arithmetic is multiplication by unity. 

We will now define the inverse of a matrix through an example. Assume a 

matrix A. The inverse of A is the matrix that when multiplied by A yields an
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identity matrix. The inverse of a matrix is generally denoted by the negative 

first power. Thus algebraically: 

A*A' =I [3.1] 

We will use the star to define matrix multiplication. This is of course parallel 

to scalar division, in which the product of a number and its inverse is equal to 

unity. Only square matrices have a unique inverse, but not all square matrices 

can be inverted. A square matrix with a unique inverse is called a "nonsingular 

matrix", while a matrix without a unique inverse is called a "singular matrix." 

For singular matrices a matrix called a "generalized inverse" can be computed 

which has some of the important properties of a "true" inverse. 

Unlike matrix addition, subtraction, and multiplication, there are no simple 

algorithms for matrix inversion. Rather complicated algorithms have been 

developed that can be used to invert all nonsingular matrices. However the 

amount of computer time required increases exponentially with the number of 

row (or columns) in the matrix. Thus even with modern computers, it is quite 

time consuming to invert very large matrices. However, for certain important 

matrices short-cut algorithms have been found (Henderson, 1976). 

The main use of matrix algebra is to solve systems of linear equations. We 

will illustrate this with the following example: 

5x, + 3x, — 4.2x, = 21 

3x, — 8x, + 5x, = 10 | | 

8x, + 10x, — 3x, = —5 

It should generally be possible to solve the following system of three 

equations for the three unknowns of x,, Xx, and x,. Using matrix algebra this 

system of equations can be written as follows: 

5 3 -42 x, 21 

3-8 5 x = 10 [3.3] 

Let us call the first matrix the coefficient matrix, and denote it A. The 

two vectors will be called the “solution vector" and the "right-hand-side 

vector", and will be denoted x and y, respectively. These equations can then be 

denoted as follows:
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A*x=y [3.4] 

In order to solve for x we multiply both sides by the inverse of A. Algebraically: 

A'*A*x = Al*y [3.5] 

Since a matrix times its inverse is equal to the identity matrix, and the product 
of any matrix and the identity matrix is the original matrix, we have: 

x=A'*y [3.6] 

Thus using matrix algebra we are able to solve any system of linear equations 
for which the inverse of the coefficient matrix can be computed. 

Similar to scalars, calculus operations can also be performed on matrices. 
For example, the differentials of x’*A and x’*A’*A*x with respect to x will be 
A and 2A’*A*x, respectively. 

We will finish this section with a brief summary of the least squares 
equations. (From this point on we will delete the star to signify multiplication 
as is generally done.) Assume that there exists a system of equations such as 
that given in equation [3.4] for which no solution exists. This can be either 
because there are more equations than unknowns (in this case A will not be a 
Square matrix), or because there is a linear dependence between the equations. 
This system of equations can be phrased as follows: 

y = Ax+e [3.7] 

where y is a known vector, A is a known matrix, and x and e are unknown 
vectors. x 1s termed the vector of "solutions", and e is termed the vector of 
"residuals". For example, y can be a vector of measurements made on a sample 
of animals: weight, height, milk production, etc., with A, a matrix of known 
"treatments" applied to these animals. x will then be the vector of the effects of 
these treatments on this sample of animals. We wish to solve for the values of 
x that minimize the sum of squared residuals. This sum of squares will be equal 
to the squared difference between Ax and Y. That is we wish to minimize the 
following quantity: 

e’e = (y — Ax)’(y — Ax) = x’A’Ax — 2x’A’y + y’y [3.8] 

Differentiating with respect to x and setting equal to zero we obtain: 

2A’Ax = 2A’y [3.9] 

and finally:
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x = (A’A)'A’y [3.10] 

Equations [3.10] are termed the "normal equations", and are used to derive the 

least squares solutions for x. If the matrix A is singular, then a generalized 

inverse of A’A can be substituted for the true inverse. In this case, there is no 

unique solution to the normal equations, but it is possible to obtain a specific 

solution, by adding a constraint to the system of equations, for example the 

constraint that all levels of an effect should sum to a given value. This is 

achieved by solving the following system of equations: 

AVA C¢ x A’y 
= [3.11] 

ec Oo T n 

Where c is a vector of 1’s, 7 is a "Lagrange multiplier" and n is the desired sum 

of all levels of the effect. Thus, it is necessary to solve the equation c’x = n, 

in addition to the normal equations. The additional equation in this system 

"breaks" the dependency in A’A. 

3.3 Genetic and phenotypic variance-covariance matrices and 

correlated response to selection 

In the first chapter we showed how response to selection on a single trait will be 

dependent on the ratio of genetic to phenotypic variance for that trait. We will 

now discuss the situation of more than a single trait in the context of scalar and 

matrix algebra. When several traits are measured on each individual, it is 

possible to compute phenotypic covariances among the traits. A matrix can then 

be constructed called the phenotypic variance-covariance matrix with trait 

variances on the diagonal and covariances on the off diagonals. For example, 

assume that two traits are measured on dairy cows, milk production and fat 

percent. Assume further that the phenotypic variances for milk and fat 

percentage are 2,000,000 kg? and 0.12%’, respectively, and that the 

covariance is -294 kg-%. The phenotypic variance-covariance matrix will then 

be: 

2,000,000 -—294 

—294 0.12 

Note that a variance-covariance matrix is always a square symmetrical
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matrix. We can similarly construct the genetic variance-covariance matrix, with 

the genetic variances on the diagonals and the genetic covariance on the off 

diagonal. The genetic covariance will be equal to the fraction of the total 

covariance determined by additive genetic factors. In this example we will 

assume the following genetic variance-covariance matrix: 

500,000 —86.6 

—86.6 0.06 

In this example the heritability of milk production is: 

500,000/2,000,000 = 0.25. The heritability of fat percent is: 0.06/0.12 = 0.5. 

The phenotypic correlation is computed as the phenotypic covariance divided by 

the square root of the product of the phenotypic variances, and the genetic 

correlation is computed as the genetic covariance divided by the square root of 

the product of the genetic variances. In this case the genetic correlation, 1, is 

computed as follows: 

—86.6 
r, = [3.12] 

V(500,000)(0.06) 
  

If two traits have a non-zero genetic correlation, then selection on one 

will lead to a genetic change on the other. This change is called the "correlated 

response", and can be estimated as follows: Assume that we select directly for 

trait X. The response for this trait will be equal to the difference of mean 

breeding value of the selected individuals from the population mean. (As 

previously we will assume that the population mean is equal to zero. If trait Y 

is genetically correlated to X, then the change in Y will be the regression of the 

breeding value of Y on X, biyyx, which can be computed as follows: 

buayyx = Saxy/O ax = te(Cay)/Oax [3.13] 

where d,xy is the genetic covariance between the traits; O’,x is the genetic 

variance for x; and o,y and oy are the genetic standard deviations for x and y, 

respectively. The correlated response will then be equal to this regression times 

the direct response on X. Thus: 

dyx = Drayyx?x [3.14] 

where $y, is the correlated response of y to selection on x, and ¢x is the direct 

response of X. From Chapter 1, equation [1.24], we have:
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dy = ithyday [3.15] 

Therefore: 

yx = thyr,oay [3.16] 

Thus the correlated response can be computed as a function of the selection 

intensity on trait x, and the variance components of x and y. 

3.4 Derivation of the selection index 

Although Hazel did not phrase his derivation of selection index in matrix terms, 

we will do so because it greatly facilitates explanation. We have already shown 

that, for selection on a single trait, the rate of genetic improvement will be a 

function of the intensity of selection, the accuracy of the evaluation, and the 

genetic variance. We have also shown that selection on a single trait can cause 

a correlated response on other traits. Generally several traits have economic 

value in a species under selection. How then should selection be performed so 

as to economically maximize genetic improvement? 

We will start by assuming that for each individual there is a vector y, of 

length m, consisting of the individual’s breeding values for traits of economic 

importance and a vector x of n measured traits to be included in the selection 

index. Although x and y may include the same traits, this does not have to be 

the case. Assume further that the “economic values" associated with y are linear 

functions of the trait values. (Methods to derive the economic values are 

discussed in Part II.) We can then define a vector a, also of length m, consisting 

of the economic values of the traits in y. The aggregate economic breeding 

value, H, can then be computed as a’y. The units y are trait units, and the units 

of a are monetary units/trait units, for example dollars/kg milk. Thus H is a 

scalar in monetary units. H is the "optimum" selection index. By this we mean 
that for a given selection intensity, the response to selection will be greatest, in 
monetary units, if candidates for selection are ranked by H. Since the elements 
of y are generally unknown, the goal is to derive the linear index, I,, of x, that 
is most similar to H. By "most similar" we mean either to maximize the 
correlation, or to minimize the mean squared deviation between I, and H. 
Specifically, if b is defined as a vector of index coefficients, then I, = b’x, and 
the objective is to solve for b that maximizes the correlation between b’x and 
a’y. Of course, like H, I, will be a scalar in monetary units. 

To derive I, we will define three additional matrices, P, the n x n 
phenotypic variance matrix of the traits in x; (C, the n x m genetic covariance 
matrix between the measured traits in x and the breeding values in y; and G, the 
m X m genetic variance matrix for the traits in y. The selection index
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coefficients are then derived from the following equation: 

b= P''Ca [3.17] 

Brascamp (1984) presents several methods to derive this equation. We will 

present only one method, based on minimizing the squared difference between 
I, and H. This is also equivalent to maximizing the correlation between I, and 

H, and maximizing the expected mean breeding value of individuals selected 

based on I,. The derivation is simplified by assuming that both x and y are 

measured relative to their means. It is then necessary to minimize the following 

function: 

(I, — HY = (b’x — a’y)’ [3.18] 

The expectation of the left-hand side of equation [3.18] can be computed as 

follows: 

E(b’x — a’y)? = E(b’xx’b — 2b’xy’a + a’yy’a) [3.19] 

since x and y are scored relative to their means, xx’ and yy’ will be the variance 

matrices for x and y, and xy’ will be the covariance matrix between them. 

Thus: 

E(b’x — a’y)? = b’Pb — 2b’Ca + a’Ga [3.20] 

with all terms as defined above. Differentiating with respect to b and equating 

to zero we obtain: 

2Pb — 2Ca = 0 [3.21] 

Pb = Ca [3.22] 

Solving for b we obtain equation [3.17]. If all traits included in the aggregate 

genotype are also included in the index, then G = C, and: 

b = P"'Ga [3.23] 

This is the selection index equation most commonly presented.
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3.5 Properties of the selection index 

We have already noted that, of all possible linear indices of x, the selection index 

will have the highest correlation with H, and the lowest squared deviation. In 

addition, selection of individuals on I, will result in maximum expected mean 

value for H of the selected individuals, and genetic response to selection on |, 

will be greater than for selection on any other linear index of x. These and a 

few other properties of the selection index are summarized by Henderson (1973). 

We will now describe some additional useful properties of selection index, based 

on Cunningham (1969), James (1982), and Lin (1978). 

From the above derivation, it should already be clear that the variance of 

the selection index can be computed as follows: 

0, = b’Pb = a’C’P''Ca [3.24] 

The variance of the aggregate breeding value will be a’Ga. The covariance 
between I and H can be computed as follows: 

Oui, = a’yx’b = a’Cb = a’CP'Ca = o, [3.25] 

That is the variance of the index is also equal to the covariance between I, and 
H. Since this is the case, the correlation between H and I, r,, will be equal to 
[o,,7)/o,’]°°. This correlation for the selection index is parallel to the "accuracy" 
of single-trait genetic evaluation described in Chapter 1. Thus the response to 

selection on the index, ¢,, can be computed as follows: 

d = ity Oy = io, = ioy),/0;,7 [3.26] 

where i is the selection intensity, o,, and o,, are the standard deviations of H and 

I,, respectively, and o,,,, is the covariance between H and I,. ¢, will also be 

measured in monetary units. Thus the response to selection will be a direct 
function of the selection intensity and the standard deviation of the index. 

As we will see in the following chapters, one of the major obstacles to the 

implementation of selection index is that the economic weights are not known, 

or change over region and time. We will deal now with the case of two 

alternative vectors of economic weights, a, and a,. Using these two vectors, two 

different aggregate genotypes can be defined, H, and H,. The similarity of these 
two breeding objectives can be measured by their genetic correlation, tyjyo, 

which is computed as follows: 

a,’Ga, 

Tyi,H2 = [3.27] 

V (a,’Ga,)(a,’Ga,) 
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A question of major importance is the relative efficiency of selection on one 
index for improvement in another index. Because of the difficulty in the correct 

determination of economic values, it is important to estimate the consequence of 

selection on an index based on imprecise estimates of the true values. Using the 

previous notation, we will assume that a, is the true vector of economic weights, 

and a, is an alternative vector; and that I, is the optimum economic index, and 

I, is an alternative index, computed from the values in a,. We can now ask what 

will be the efficiency of selection on I, to improve I,? I, and I, can be 

considered two correlated traits. We showed above that the correlated response 

of one trait to selection on another can be computed from the regression of the 

breeding value of one trait on the breeding value of the other. In this case, the 

relative selection efficiency, RSE, will be the regression of the alternative index 
on the optimum index, which will be equal to the correlation between the two 

indices, which can be computed as follows: 

b,’Pb, 

RSE = [3.28] 

V[(b,’Pb,)(b,’Pb,)] 

  

where b, and b, are the vectors of index coefficients derived from a,, and a, 

respectively. 

Optimum genetic response will be obtained when all traits with genetic 

correlations with the traits in the aggregate genotype are included in the index. 

If the i® trait of the aggregate genotype is deleted from the index, then the 

variance of the selection index will be reduced by b,/w,, where b,” is the index 
coefficient for the i" trait, and w, is the diagonal element for the i™ trait in G™* 
(Cunningham, 1969). From equation [3.26] we have that the response to 

selection is proportional to the standard deviation of the index. Thus the relative 

selection efficiency of the reduced index is computed as the ratio of the standard 

deviations of the reduced and complete indices, as follows: 

1/2 
b,’Pb, _ b/w, 

RSE = [3.29] 
b,’Pb, 
  

If several traits are deleted from the selection index, say traits i to j, then the 

efficiency of selection of the reduced index can be computed by replacing b’/w, 

with b,,,’W,,, 'b,.,; where b, , is the vector of index coefficients for the deleted 

traits, and W,_, is the appropriate submatrix of G~' for the deleted traits. 

Finally it is often of interest to compute the expected responses of the 
component traits to selection on the index. The genetic change for the i trait 

due to selection on the index, ¢,, is computed as follows:
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>; = 1b,i19}, = i[Cov(g;,I,)/ 1, 15,, = i[Cov(g;,I,)]/o,, [3.30] 

where b,,; is the genetic regression of the i" trait on the index, Cov(g,,I,) is the 

covariance between the genetic value of the i trait and the index. Cov(g;,I,) = 

Cov(g,,p’b) = [Cov(g,,p’)]b, where Cov(g,,p’) is the i column of C. Thus the 

vector of correlated responses for all traits, ¢, is computed as follows: 

= iCb/o, [3.31] 

If all traits included in H are included in the index, then C can be replaced with 

G. 

3.6 Example calculations 

We will now return to the example of milk production and fat percent to illustrate 
an actual derivation of selection index. In this example we will assume that only 

these two traits have economic values and are to be included in the index. In this 

case the G and C matrices will be equivalent. The G and P matrices for this 

example are given above in Section 3.2. We will further assume that the 

economic value of a kg increase in milk product = $0.3, and that the economic 
value of a one percent fat increase = $1000. The index coefficients are then 

derived from equation [3.17] as follows: 

2,000,000 —294 781-1077 1.9-:1073 
Pp = = [3.32] 

~294 0.12 19-107? 13.02 

7.81:1077 1.9:1073 500,000 —86.6 0.3 
b = [3.33] 

1.9:10-3 13.02 ~86.6 0.06 1000 

0.1145 
b = [3.34] 
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Note that the ratio of the index coefficients is 1/4926, while the ratio of the 

economic weights is 1/3333. Fat percent is given greater weight in the selection 

index because its heritability is greater than milk production. 

The variance of the index is derived from equation [3.24], and is equal to
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26,422 dollars squared. Thus the standard deviation of the index is $162.5. The 
variance of the aggregate genotype, a’Ga is equal to 53,040 dollars squared. Its 

standard deviation is $230.3. The standard deviation of the index will always be 

less than or equal to that of the aggregate genotype. The correlation between the 

index and the aggregate genotype will be equal to the ratio of their standard 

deviations, which is equal to 0.706. Response to selection is computed as in 
equation [3.26], and will be equal to the selection intensity times $162.5. The 
responses of the individual traits are computed from equation [3.31], as follows: 

iGb iGb 
o = = —— [3.35] 

S,. 162.5 
  

The elements of Gb are 8407.6 and 23.92. Thus the correlated responses per unit 
selection intensity are 51.73 kg milk and 0.1472% fat, respectively. Multiplying 
these values by the economic weights we obtain $15.5 for milk and $147.2 for 

fat percent, which sum to the value of $162.7 for the complete index. T h e 

relative efficiency of this index as compared to an alternative index can be 

computed from equation [3.28]. Assume an alternative index consisting of 
selection only on milk yield. In this case the economic value for fat percent will 

be zero, we will assume the same value of $0.3/kg milk. The correlation between 

this index and the optimum index, as derived from equation [3.27] will be 0.275. 

Thus the correlated response of the index to selection on milk alone will be equal 

to (0.275)($162.5) = $44.7 times the selection intensity. | 
Alternatively this result can be derived by computing the expected response 

to direct selection on milk, and the correlated response of fat percent. The 
response to selection on milk, as derived from equation [3.15] will be 353.5 kg 

milk, or $106 times the selection intensity. The correlated response of fat 

percent, as derived from equation [3.16] will be —0.0612 percent, or —$61.2. 

Thus the total response will be $106 — $61.2 = $44.8, which is nearly the same 
result derived above. (The discrepancy of $0.1 is due to rounding errors.) For 
comparison we note that the correlation between the optimum index and direct 

selection on fat percent is 0.603, and the expected economic response of selection 

on fat percent will be (0.603)($162.5) = $98. Therefore selection on fat percent 

is preferable to selection on kg milk, but both alternatives are much less effective 

than selection on the optimum index. 

3.7 Summary 

In this chapter we briefly reviewed the basic concepts of matrix algebra that 
are applicable to quantitative genetics. | Matrix addition, subtraction, 
multiplication, and the inverse of a matrix were defined. Through matrix algebra
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it is possible to briefly denote and solve large systems of simultaneous equations. 

Phenotypic and genetic variance-covariance matrices were defined, and methods 

were developed to estimate the correlated response of a trait to direct selection 

on another trait. 

The aggregate genotype is derived by multiplying the vector of each 

individual’s breeding value for the traits under consideration by the vector of 

economic weights. The optimum linear selection index is defined as the linear 
index of trait values that maximizes the correlation between the index and the 

aggregate genotype. This index was derived for the situation in which the 

economic values are linear functions of the trait values. Basic properties of the 

selection index were derived, including expected response to selection. 

Equations were also derived for the genetic correlation between alternative 

indices, and the correlated response of the aggregate genotype to selection on an 

alternative index. These equations were illustrated through an example of 

selection for kg milk and fat percent in dairy cattle.



Chapter Four 

Introduction to Systems Analysis 

4.1 Introduction 

In the first three chapters we discussed the relevant principles of quantitative 

genetics and economics, and showed how they can be combined with the aid of 

matrix algebra to obtain the optimum selection index. As stated previously, the 
main obstacle to application of selection index has been correct determination of 

the economic values of different traits. Although it may be relatively easy to 

compare the economic value of two products, such as wool and meat from sheep, 

it is not a priori clear how to determine the economic value of traits that affect 

the quantity of product, vs. traits that affect the cost of production. Production 
systems analysis provides a general framework for determination of breeding 

objectives. It requires that the objective be clearly specified, something that is 

generally not done in practice. Finally it provides a mechanism for decision 

making in relationship to the economics of the complete production scheme. In 

practice very little use has been made of systems analysis in animal breeding. 

Successful use of systems analysis requires that three steps be completed: 

1) the goals of the system have to be clearly defined, 2) the actual system has to 

be accurately represented by a model, and 3) changes in production programs 

must be implemented on the basis of the results of the analysis. 

In this chapter we will discuss the role of systems analysis in animal 

breeding, describe the use of models, and the different methods used to derive 

solutions. This will be based mostly on Cartwright (1979), Dalton (1975), and 

Wilton (1979). Finally we will discuss some specific applications of systems 

analysis to animal breeding. 

4.2 Defining goals for animal breeding 

There are three main applications of systems analysis to animal breeding. In the 

previous chapter we defined the aggregate genotype as H = y’a. The first 
application will be to determine the values in a. That is to determine the 

objective of genetic selection, H, as opposed to the selection criteria, I. In the 

previous chapter, we defined a as the vector of economic values, and in the
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remainder of the book, we will generally assume that a is measured in monetary 
units per trait units. In the broadest sense, a is a vector of selection goals, 

which may be specified in monetary or energy terms or some other form of 

utility, as we discussed in Chapter 2. We showed how the optimum selection 

index, I = x’b, can be derived by maximizing the correlation between H and I. 

The vector b will be a vector of selection criteria, and will be a direct function 

of a and the genetic parameters. For example most breeding of dairy cattle has 

been directed to increasing 305-day mature equivalent milk production. As a 

selection criterion this trait is quite useful, since it is relatively easy to measure, 

and has significant heritability. However increasing this trait per se is clearly not 

the goal of selection, which could more appropriately be defined as maximizing 

lifetime profitability. 

The second main application of system analysis will be the choice of 

breeding stock. This question can be considered either within a breed, or 

between breeds. The study of Sivaraysingan et al. (1984) is an example of the 

second type of decision. They used system analysis to optimize the semen 
selection of an individual dairy farmer under US conditions. System analysis can 

also be used to select the breed or breeds that best meet the goal of the system, 

and to decide whether these goals can best be achieved by selection within a 

breed or by crossbreeding. Finally, system analysis can be used to determine the 
optimum level of investment in breeding programs. To the best of our 
knowledge, no studies have as yet applied a systems analysis approach to this 

question. 

4.3 The use of system analysis models and optimization 

techniques 

Once the goals of the analysis have been defined, it is necessary to construct a 

model that accurately represents the system. Studies of systems can be carried 

out at various levels. Spedding (1975) lists four levels of understanding as: 
operation, repair, improvement, and construction. In animal breeding we will 

generally be interested with the last two levels, that is improvement of currently 

running systems, or construction of new ones. The desired properties of models 

are realism, precision, generality and resolution. In practice these properties 

conflict, and the system analyst must compromise, depending on the goals of the 

analysis. For example, as a model becomes more realistic and precise, it is 

likely to be less generally applicable. It is also possible to derive models with 

high generality and resolution, but either realism or precision must be sacrificed. 

After the goals have been determined, and a model has been constructed, 

the appropriate systems analysis technique must be implemented. We will limit 

this discussion to optimization techniques. These techniques can be classified by 
three criteria: 1) linear vs. nonlinear, 2) static vs. dynamic, and 3) deterministic
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vs. stochastic. We will first discuss the simplest case of linear, static, 

deterministic programming, and then compare this to the other alternatives. 

In linear programming (LP) the objective is to maximize an objective 

function subject to constraints. Both the constraints and the objective function 

are linear functions of possible "activities." Algebraically this problem can be 

phrased as follows: 

Maximize: z= c’x [4.1] 

subject to: Ax < k, [4.2] 

x > 0 [4.3] 

where z is the objective function, c is a vector of prices and costs, x is a vector 

of units of activities, k is a vector of level of resources, and A is a matrix of 

technical coefficients, such as estimated yields, feed requirements, etc. A, b, 

and c are fixed by the model, while x is variable. For example US dairy 
farmers can purchase semen from a large number of sires, each with a specific 

price and estimated transmitting ability. Sivaraysingan et al. (1984) used LP to 

economically rank semen of different sires. The objective function was profit, 

the units of activities were which cows would be inseminated by which sires, and 

the constraints were the level of resources, such as land, labor, and number of 

cows on a farm. 

In the example given above, z is a linear function of x. If the objective 

function is a higher order function of the variable vector, then LP is no longer 

sufficient. We will use the example of Itoh and Yamada (1988) to illustrate an 

example of quadratic programming. Their problem was to find a vector of 

selection index weights, b, that would result in maximum genetic change for the 
index under the constraint of desired relative genetic gains not less than or not 

greater than certain levels for specific traits. Partitioning the traits into two 

groups, they required that the genetic change for the first group of traits be equal 

to k, and that the genetic change for the second group of traits be equal to or 

greater than k,. These conditions are then met by the following set of equations: 

C/b =k, [4.4] 

C,’b > k, [4.5] 

b’Pb minimum 

where C, and C, are the covariance matrices between the phenotypic and genetic 
effects for the first and second group of traits, respectively, and P is the 
phenotypic variance matrix. Since the function to be minimized is a quadratic
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function of b, this is a quadratic programming problem. Theoretically the 

objective function could be some higher order function of the vector of variable 

activities, but in practice nearly all problems of static, deterministic optimization 

can be approximated with either a linear or quadratic function. 

In the examples given above, all levels of activities were set at the same 

time, and the objective function is a direct function of these levels. Often we are 

interested with optimization of processes that change over time. Smith (1971) 

attempted to economically optimize the decisions involved in cow replacement 

in a dairy herd. Since decisions made in an earlier time will impact on the 

possible alternatives at a later time, the techniques of static programming 

described above are not applicable to this problem. 

This problem was solved by a dynamic programming algorithm. In general 

terms, dynamic programming is a recursive methodology that begins at the final 

stage in the planning horizon and proceeds backward in time, stage by stage, 

until the present is reached. In the example given above, the final stage will be 
the composition of the herd at the end of the time period considered. The 
alternative decisions required to reach this state are then applied in reverse until 

the original herd composition is reached. If there is just one stage left in the 

process, returns will be realized during that stage, and possibly at the end of that 

stage in the form of salvage values. The goal is to optimize the possible 

activities so as to maximize the sum of these two sources of returns. 
Generally dynamic programming problems will also be stochastic. That is, 

there is a possibility that different events will occur with differing probabilities. 

In the example of cow replacement, a cow at a given stage in her herdlife may 

either remain in the herd, or be culled for one of several reasons. Each of these 

events will have a given probability. This is of course different from the 

previous examples of deterministic programming where each vector of possible 

activities resulted in a single result for the objective function. 

One important byproduct of system analysis modelling is identification of 

those parts of the system about which more information is required. That is, if 

small changes in certain elements included in the vector of activities result in 

major changes in the objective function, then it is likely that a key element of the 

model has not been sufficiently defined. 

4.4 Definition of selection criteria 

Very little has been written on the choice of selection criteria, as opposed to 

selection goals. This question is not considered within the context of selection 

index methodology, which assumes that the selection criteria, the vector of 

measured traits included in x, have been determined a priori. In fact the 

question of which traits to measure, and how these traits should be defined, is 

also a breeding decision. For example, in dairy cattle the main trait under
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selection has traditionally been total milk production from parturition through 305 

days. Since production generally increases as the cow matures, production from 

younger cows is adjusted to expected mature production. Thus production past 

305 days in milk is disregarded. Numerous studies have found that pregnancy 

has a negative effect on milk production. Thus several studies have suggested 

alternate selection criteria, such as annualized production (total lactation 

production divided by days between calvings) and days-open adjusted production. 

"Days open" is defined as the number of days between parturition and the 

following conception. Thompson, Freeman, and Berger (1982) compared days- 

open adjusted, annualized, and fat-corrected milk production records as 
alternatives to 305-day mature-equivalent first parity production. Although 

various comparisons were made between the different record types considered, 

the authors’ choice as to the appropriate basis for comparison is not clearly 

stated. 

A major dilemma in the determination of selection criteria is whether traits 

should be combined before or after genetic evaluation. To illustrate this 

problem, we will pursue the example of milk production. Assume that the 

objective of the selection is to maximize mean fat-corrected daily milk production 

over the cow’s lifetime. Rather than select on first parity production, an 

alternative criterion, such as mean dairy production up to culling or date of 
evaluation, could be used. At the other extreme, we note that milk production 

is generally measured once monthly. Thus instead of combining the ten monthly 

scores into a single lactation record, each monthly test can be analyzed as a 

separate trait. The additional question of breeding for fat content in the milk was 

introduced in the previous chapter, in which we considered the optimal index for 

the two traits of milk production and fat percent. Rather than consider fat 

percent, we could have considered kg fat production. Breeding for the two traits 

of milk and fat production, it is still possible to increase fat concentration by 

giving milk production a negative economic value. 

We will now try to elucidate the principles to determine the choice of 

selection criteria. First, optimally all traits measured with genetic correlations 

to the traits included in the selection objectives should be included in the 

selection criteria. In many commercial breeding programs traits that meet this 

condition are not included in the selection index. The usual justifications are that 

either these traits have low heritability or low economic value. Although it may 

turn out that once the optimal selection index is constructed, the index weights 

for certain traits may be negligible, it is difficult to predict this a priori. A 

number of studies have shown that including additional selection criteria with 

genetic correlations to traits in y will increase the rate of gain for the aggregate 

genotype (Hermas, Young, and Rust, 1987; Weller, 1989). 

Second, it is generally advantageous to compute genetic evaluations on 

separate traits. An exception will be when the individual traits have nearly equal 

genetic parameters and economic value. Thus, combining the monthly milk 

production records into a single lactation record is probably justifiable, while
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combining lactation records is not. This will be explained by the latter example. 

Assume that first and second parity milk production have equal heritability, but 

unequal economic value; because first parity milk production occurs prior to 

second parity, and with a higher frequency. Thus by the theory of selection 

index, genetic gain is maximized by putting more emphasis on first parity. 

However, if the two traits are combined prior to evaluation, the relative emphasis 

becomes a function of the genetic and environmental parameters, rather than the 

economic weights. 

The final principle we want to consider is the inadvisability of using ratios 

for selection criteria. Sokal and Rohlf (1969) present three disadvantages in the 
use of ratios. First, ratios tend to be less accurate than measurements on the 

component variables. Second, the distributions of ratios are often unusual, and 
may depart significantly from normality. Finally ratios do not provide 

information on possible relationships between the component traits. For 

example, assume that the goals of a beef breeding program are to increase unit 

calf weaned per unit weight of dam. Selection on this ratio might result in a 
genetic reduction in both variables. This result is probably not desirable, and 
can be avoided if selection is performed for a linear index of calf and dam 

weight, with a negative economic value for the latter trait. 

4.5 Implementation of the results of the analysis 

The decision maker must be recognized by the system analyst. If the decision 
maker cannot obtain results of the analysis readily, or does not accept the results 
of the analysis, implementation will not occur. Various entities are affected by 

animal breeding, and their goals will not be identical. This complicates 

definition of both breeding goals and the system to be analyzed. The major 

entities that must be considered are breeders, who may be either commercial or 
farmer cooperatives, farmers, food processors, merchants, consumers, and 

governments. 

From this it is also clear that it is necessary to determine the level of the 

system being modeled, which in animal breeding can vary from a single animal 

to a national industry, and the time period to be considered. In an analysis on 

the national level the goal may be to increase the efficiency of production, while 
the goal of an analysis on the level of the individual farm may be to increase the 
farmer’s profit. Even on the level of a regional breeding program, goals will be 

different if the breeding enterprise is commercial or cooperative. It should be 
emphasized that nearly all analyses of the effect of genetic improvement have 

been done either on the level of an individual animal, or on the level of an 

individual farm. 
This anomaly was noted by Moav (1973), who discussed the question of 

who actually benefits from genetic improvement. He defined what he called the
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"Progress-Surplus-Bankruptcy Cycle", which we first mentioned in Chapter 2. 
This cycle is illustrated in Figure 4.1. If higher productivity is confined to a 

small group of farmers, then higher productivity will not affect the supply curve, 

and profits of these farmers will increase. Most analyses of the effect of genetic 

improvement have assumed this to be the case. However in most cases, many 

producers will take advantage of genetic improvement. This was also illustrated 
in terms of supply and demand curves in Figure 2.11. Increased production will 

shift the supply curve to the left, creating disequilibrium between supply and 

demand. The demand curve will also shift to the left, due to rising affluence, 

but much less than the demand curve. Thus a new equilibrium point will be 
reached with a greater quantity being produced, but sold at a lower price. In a 

free market this is achieved via the "dynamic cobweb" described in Chapter 2, 
with the least efficient producers ceasing production. The remaining producers 

will then be able each to produce more, and presumably increase their profit 

somewhat. It would clearly be desirable to eliminate the left-hand side of the 

cycle of Figure 4.1. This may be done by government regulation. 
Unfortunately, in practice the effects of government intervention are often not as 
intended. 
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64 Economic Aspects of Animal Breeding 

From the above discussion it is clear that the farmer generally does not 

benefit from genetic improvement. Thus defining breeding goals in terms of 

increasing the profit of the farmer may be unrealistic. It is then logical to ask 

who is the main beneficiary of genetic improvement? The answer is definitely 

not the breeder. Figure 4.2 illustrates this point. The line NE denotes the total 

gain from breeding to the national economy. If there is no competition among 

breeders then most of the gain from breeding may accrue to the breeder, and 

their mean profit will be a nearly linear function of the rate of genetic 

improvement. This situation is denoted by the B-C line. This of course is 

hardly ever the case, and competition will depreciate the value of breeding stock, 

so that the mean profit of breeders will tend to zero, as denoted by the B+C 

line. Thus semen from today’s prize bulls can be purchased in a few years at 

a fraction of the current price. Generally consumers, rather than either the 

farmer or the commercial breeders are the main beneficiaries of genetic 

improvement. 

  26 

207 
cece nernesere 

eee ad 

eoeeee 
ote? 

oe oe 

— 7? oe 
Pa 

a7? 

7? _ 
— — 

—~ 

Pr
of
it
 ” ” - 

10 ~ “ ~ 
” 

: 

“ B+O 
      
  

-5 L L 

0 5 10 15 20 25 

Time (years) 

Figure 4.2. Depreciation of genetic gains due to competition. NE is the total 

gain from breeding to the national economy. B-C is the profit of breeders 

without competition. B+C is the profit of breeders with competition. 

This clearly poses a problem for defining the goals of animal breeding, 

since the consumer does not make the major decisions that affect breeding
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programs. As a solution to this problem, analysis of breeding systems from the 

point of view of the national economy has been suggested. In this case it can be 

argued that the primary goal of animal breeding is to increase economic 

efficiency, defined as follows (Dickerson, 1970): 

E=RI/C [4.6] 

where E is economic efficiency, R is returns from unit production, and C is the 

cost of unit production. This can be compared to profit, P, defined as follows: 

P=R-C [4.7] 

The difficulty with this approach is that even without genetic improvement, 

economic efficiency changes due to changes in the unit value of both income and 

expenses. Thus as an alternative, Maijala (1976) suggested biological efficiency. 

In this case the common denominator is biological energy. Biological efficiency 

is defined as the product, as measured in biological energy units, divided by cost 

of production in the same units. It is not clear though, how costs such as labor 

or rent could be factored into this calculation. Furthermore, from the point of 

view of system analysis, it does not appear that the relevant decision makers 
would desire to make decisions affecting breeding based on biological efficiency. 

A further goal which should be considered is risk reduction. For example, 

even though maximization of E is desirable, a significant probability that income 

may fall below a certain level is intolerable. Thus a farmer may choose to use 

breeding stock with a lower estimated breeding value, but with a higher 

repeatability, if both are available at similar prices. In any case, if the purpose 

of the analysis is to aid the farmer or the breeder make optimum decisions from 

their point of view, clearly the goal must be to increase profit rather than 

efficiency. In later chapters we will try to resolve this problem somewhat. 

The time period considered will also have a major impact on the results of 

the system analysis. As stated in Chapter 2, animal breeding is by its nature a 

long-term process, with most resources invested at the beginning of the program, 

while returns will keep accruing to infinity. It will also be shown in Chapter 6 
and Part III that the effect of trait changes on both profit and economic efficiency 

will often be a function of the original trait values. Thus the optimum direction 

of selection will also be a function of the planning horizon. 

4.6 Summary 

Although in practice it has rarely been done, we believe that systems analysis 

should be used to determine breeding objectives. This should result in more 

realistic breeding goals rather than the commonly accepted goals of maximizing
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production, or profit for the individual farmer. Because of the different entities 

that interact with breeding decisions, neither of these goals is realistic in the long 

run for most practical breeding situations. The concepts of "vector of activities" 

and the “objective function" were explained, and the specific techniques used for 

optimization of the objective function were briefly described. Systems analysis 

first requires that the objectives be clearly defined. Second it provides a 
framework for consideration of breeding decisions within the total production 

framework. Third it puts breeding decisions into perspective with other 

management decisions.



PART II 

ECONOMIC EVALUATION OF 
GENETIC DIFFERENCES 

In Part I we discussed the basic concepts necessary for the economic evaluation 

of animal breeding. In Part II we will discuss the methodologies that have been 
presented for the economic evaluation of genetic differences. In Chapter 5, we 
will discuss the main elements of costs and returns in economic evaluation of 
animal production. In the following chapter we will describe how genetic 

differences can be economically evaluated based on maximization of profit. We 

have already considered some of the deficiencies of profit as a criterion for 
genetic evaluation. In Chapter 7 we will discuss alternate methods of economic 
evaluation, including economic efficiency, biological efficiency, and return on 
investment, and will explain the conditions for equality of economic values by 

various criteria. Finally, in Chapter 8 we will consider long-term considerations 

of genetic improvement, a topic which must be considered for large animal 
breeding programs.



Chapter Five 

The Main Elements of Returns and Costs 

5.1 Introduction 

Any economic evaluation should begin by considering two classes of variables, 

returns and costs. Often the concepts of returns and products have been 

confused in the economic evaluation of animal production. In a multi-enterprise 
production system, the returns of one enterprise may be quite different from the 

products that the consumer buys. For example in the production of poultry 

broilers, one enterprise might produce breeding stock, which is sold to a second 

enterprise in the form of chicks. These chicks are raised at the second enterprise 

which might sell the progeny as either eggs or chicks to a third enterprise that 

actually raises the broilers which are sold to the public. The same situation is 

common in beef production where one enterprise raises calves until weaning 

under range conditions, and a second fattens the calves under feedlot conditions. 

Of course the costs will also be different for the different enterprises. 

Dickerson (1970) noted that the main costs of animal production for most species 

will be dependent on three main functions: 1) female production, 2) 

reproduction, and 3) growth of young. He excluded the costs related to male 

production, because for nearly all economically important species, this cost will 

be negligible, compared to the factors listed above. Thus economic efficiency, 

E, can be expressed by the following general equation for most production 

systems: 

R R, + R, 
BE=e_—e= [5.1] 

C EF, + I, + EF, + I, 
  

where R, 1s return from female production, R, is return from offspring 

production, EF, and I, are feed and non-feed costs per dam, respectively; EF, 

and I, are feed and non-feed costs of her progeny; and the other terms are as 

defined previously. Calculations will generally be made on an annual basis for 

all terms. Various studies have preferred to estimate economic trait values based 

on the inverse of economic efficiency, which we will define as E.. The reasons 

for this will be discussed in Chapter 7. If E, is selected as the criterion for
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economic evaluation, then the goal will be to minimize E,, as opposed to 

maximizing profit or E. 

Generally speaking economic objectives will consist either of increasing 

returns or decreasing the costs of production. In this chapter we will consider 
the main elements of costs and returns that can be affected by breeding. 

5.2 Elements of female production 

The main animal products consumed are meat, milk, eggs and wool. It is 
possible that in the future, through genetic engineering, other products such as 
pharmaceuticals may become important, but in this discussion we will 

concentrate on the more traditional products listed above. Although the general 

equations presented for economic efficiency were derived by Dickerson (1970), 

we will use the notation of Moav (1973) with slight modifications, in the interest 

of consistency with the following chapters. In general, economic constants will 
be denoted with uppercase subscripted letters, and biological variables with 

subscripted x’s, and other variables with other lowercase subscripted letters. The 

value of female production can be expressed with the following equation. 

Ry = mXpAy [5.2] 

where R, is the yearly return per enterprise, due to female production, m, is the 

number of females per enterprise, xp is yearly volume of product/female and A, 

is the value of product per unit volume. For example, assume a herd of 100 

milk cows, each producing 8,000 kg milk/year, with a value of $0.25/kg. R, 

will be equal to (100)(8,000)(0.25) = $200,000. Generally speaking, breeding 

has attempted to increase return by increasing xp, although from the point of 

view of the producer, R, could also be increased by increasing m, or Aj. 

However, increasing m, merely means increasing the size of the enterprise, and 

therefore is not relevant to breeding. A, can be affected by changing the quality 

of the product. This is clearly important for most agricultural products, but in 

practice, much more emphasis has been put on increasing quantity, rather than 

quality of produce. There are two main reasons for this. First, measuring 

quality of a product is generally more difficult than measuring quantity. For 

example, quantity of milk produced can be scored by a simple scale, while 

measuring protein concentration requires at least a spectrophotometer. Second, 

there will generally be an antagonistic genetic correlation between quantity and 

quality of product. Continuing the previous example, both fat and protein 

concentration have negative genetic correlations with milk production. 

Although most economic evaluations of breeding objectives have been done 

based on equation [5.2], it is inadequate for many situations. How does one 

compare milk production by goats and cows, or even compare milk production
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by different breeds which may differ markedly in size? To account for this 

factor it is sometimes useful to rewrite this equation as follows: 

Ra = MgXsaXoAg [5.3] 

where x,, is the mean weight of females and x,, is production per unit female 

weight. It is now possible to consider whether the total enterprise is produced 

by a few big animals or many small ones. It should also be noted that total 

production, as computed in this equation can be increased by increasing either 

My, Xoq Of Xz. Various researchers have suggested that metabolic body size 

should be used rather than body weight. Metabolic body size is generally 

estimated as x,°”°. This value has been shown to be accurate over a large range 

of species. 

Just as increasing the number of animals per enterprise is irrelevant to 
breeding, increasing the size of the production unit (animal) may not in fact 
increase either profit or economic efficiency. Unfortunately this point has been 
ignored by many studies that computed economic evaluations based on profit per 

animal. 

5.3 Evaluation of female reproduction rate 

Female reproduction rates differ markedly among domestic animals. This is 

illustrated by the examples in Table 5.1, from Moav (1973). Weight of dam, 

number of marketable offspring/yr, market weight per offspring, and 
reproduction ratio are listed for six species of domestic vertebrates. 
Reproduction ratio is defined as the ratio of total market weight of offspring per 

weight of dam. At one extreme are large mammals such as horses and cows 

with one progeny per year, and at the other extreme are fish and crustaceans 

with thousands of offspring per year. 
Return from female reproduction can be evaluated by the following 

equation: 

R, = XoXo [5 4] 

where R, is the return from offspring/year, x,, is the number of offspring 
marketed/female/year, x,, is the weight of offspring product, and A, is the value 

per unit offspring product.
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Table 5.1. Dam weight, number of marketable offspring/year, marker weight 
of offspring, and reproduction ratio for different domestic species. 

  

Species Weight No. of marketable Market weight Reproduction 

  

of dam (kg) offspring/year per offspring ratio 

Cattle 600 1 500 0.8 
Sheep 60 2 40 1.3 
Swine 200 15 100 7.5 
Poultry 3 70 1.5 35 
Turkeys 7 40 9 51.4 
Carp (fish) 5 100,000 1 20,000 
  

Breeding can increase R, by increasing x,,, X,,, or A. Although we have 
designated A, as an economic constant, there is generally some differential 
pricing based on the quality of product, which can be affected by breeding. 
Generally, the effect of breeding on R, will be greatest by selecting for x,,, 
rather than x,, or A,. The reasons for this are as follows. x,, will generally be 
dependent on growth rate, which usually has high heritability and variance; 
while x,, generally has low heritability, and A, has low phenotypic variance, is — 
generally difficult to measure, and as stated above, will be negatively correlated 
with x,,. The number of offspring marketed is determined by several different 
genetically unrelated traits, such as interval between litters, number of offspring 
per litter, and juvenile mortality rates. Since these traits are related to natural 
fitness, they generally have low heritabilities. Furthermore selection for an index 
of several unrelated traits is inherently less efficient than selection for a single 
trait. In addition, as will be shown in Chapter 6, the economic importance of 
changes in x,, decreases as the mean value of x,, increases. Thus for animals 
with low reproduction rates, slight changes in x,, will be of major economic 
importance, while for high fertility species, the economic importance of changes 
in this variable will be negligible. It should further be noted that for most 
domestic species, the coefficient of variation for x,, increases with mean Xo 
Thus those species with the lowest reproductive rates, and therefore the highest 
economic value for this variable, have the lowest relative variance for this trait. 

Despite these considerations, significant emphasis in selection has been 
devoted to increasing reproductive rate in most species. Moav and Hill (1966) 
give two reasons for this. In most cases one enterprise (which we will denote 
the breeder) produces juveniles or eggs, which are then sold to a second 
enterprise (which we will denote the rearer) that raises the animals for slaughter. 
The rearer will generally purchase young animals or eggs on a per unit basis. 
Thus the breeder will be primarily interested in the reproduction rate of his 
females. Although in theory the rearer should be willing to pay a premium price
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for a superior product, i.e. animals with a higher growth rate, in practice it is 

often difficult for him to evaluate the animals bought. Thus while a feedlot 

manager may be willing to pay a higher price for a Simmental calf than a 

Holstein, one day old chick looks just like any other. 

The second reason has to do with the difference of estimation of profit for 

a constant vs. an expanding market, and will be explained in the next chapter. 

5.4 Evaluation of feed costs 

Feed costs can be divided into feed for the breeding female, and feed for the 

offspring. For each individual, feed costs can further be divided into feed for 

maintenance and for production. In the case of the breeding female, feed for 

production consists of the feed needed to produce offspring. Thus total feed 

costs of an integrated enterprise can be expressed by the following equation: 

F, = CamplXsaFoa + X1o(Fpa + XsoF MoD + FpoX20)] [5.5] 

Where F, is the annual feed costs of the enterprise, C, is the unit feed costs, Xj, 

is the metabolic body weight of the breeding female, Fy, is the maintenance feed 

required per unit metabolic body weight of the dam, F,, is the feed required by 

the dam per offspring produced, x,, is the mean metabolic body weight of the 

offspring, F,,, is the maintenance feed required/x,,/day, D is the number of days 

from weaning to slaughter for the offspring, Fp, is the feed required per unit 

product, and the other terms are as defined previously. In this equation, x,, is 

considered a biological variable, and D is considered a constant. This will be 

true for animals that are slaughtered at a constant age. However, if animals are 

slaughtered at a constant weight, then D will be a biological variable, and x,, 

will be the economic constant. 

Assuming slaughter at a constant age, the only terms in equation [5.5] that 

can be significantly affected by breeding are X44, X,,, X3, and X,,, and increasing 

any of them will have a positive effect on F,. Increasing m, will have a 

proportional effect on both costs and returns. That is by changing m, we merely 

change the size of the enterprise. The effect of changing x,, will depend mainly 

on X,, as illustrated above in Table 5.1. For large domestic animals, X,, 1S 

relatively small, and changes in x,, can have a significant effect on total feed 

costs. However for more prolific species feed for dams is negligible as 

compared to feed for progeny. The effect of changing x,, will also depend on 

the mean of x,,, as will be seen in the following chapter. Although from this 

equation, it would appear that breeding for reduction in mean offspring weight 

is a desirable goal, this is hardly ever done in practice. This is because there is 

generally a strong positive genetic correlation between xX,, and X,,. This is of 

course evident when the main offspring product is meat, but will also be true for
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most other important products, such as milk, or wool. Finally feed costs can be 
reduced by decreasing x,,. However, since x,, is directly proportional to returns, 

unless profit is negative, it will be in the interest of the enterprise to increase x,,. 

5.5 The relationship between growth rate and feed efficiency 

For most domestic animals raised for slaughter, the main trait under selection is 

growth rate. This is because growth rate is usually highly correlated with feed 

efficiency. This will be illustrated by considering two cases, rearing to a 

constant slaughter weight, and rearing to a constant age. Assume that body 

weight increases linearly over time. This is approximately true for most 
domestic animals (Dickerson, 1970; Moav, 1973). Then x,, will be equal to the 

mean of initial and final body weight. Since differences in initial body weight 

are minimal, x,, will be equal to 1/2 final body weight, plus a constant. Rearing 

to a constant slaughter weight is illustrated in Figure 5.1. Body weight as a 

function of age is plotted for two growth weights. The integral of this curve will 

be equal to the product of x,, and D. In this case, increasing growth rate 

decreases D, but does not affect either x,, or x,,. Thus x,,D is decreased, and 

feed efficiency is increased. This is the common situation for poultry 

production. 
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Figure 5.1. Effect of growth rate for slaughter at a constant weight. SW is 

slaughter weight. L1 and L2 are growth curves for two poultry strains.
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Figure 5.2 illustrates the situation of slaughter at a constant age for two 

different growth rates. In this case, D is constant, but both x,, and x,, increase 

with increase in growth rate. Assuming that the initial weight is negligible 

compared to the final weight, we have the relationship that feed for maintenance 

is proportional to 1/2 final weight, while x,, is proportional to final body weight. 

The importance of this relationship can be illustrated as follows: If the number 

of offspring is doubled, with all other factors constant, then both maintenance 

feed and the quantity of meat produced will be doubled. However if growth rate 

is doubled, and all other factors remain constant, then x,, is still doubled, but 

maintenance feed increases only by 50%. Beef cattle are generally slaughtered 

at a constant age. 
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Figure 5.2. Effect of growth rate for slaughter at a constant age. SA is 

slaughter age. L1 and L2 are growth curves for two cattle strains. 

From this discussion, it becomes apparent that, other factors being equal, 
there is an optimum slaughter age for all animals. Growth rates for most 

domestic animals are roughly linear until a given age, and then decline. Thus 

the optimum slaughter age can be found by expanding equation [5.1] as follows:
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Ry + MX1,X,A, 

E = [5.6] 

Ty + 1, + CamylXsaFua + X10(Fea + Xa uoD + Fp,X2,)] 

  

We will now define the following approximate equalities: 

X,, = X,,/2 [5.7] 

X4o = X,,/D [5.8] 

K, = d, + I)/my + Cy(XsgF ua) [5.9] 

K, = C.Fp, [5.10] 

K, = CiFuo (5.11] 

K, = C.F,, [5.12] 

where x,, is growth rate, K, is costs independent of progeny weight, K, is 
additional dam feed costs per progeny, K, is maintenance costs per kg progeny, 
K, is cost of production of kg progeny, and the other terms are as defined 
previously. Substituting these terms into equation [5.6], we obtain: 

XzgXogAg + X,A,X4o 
E = [5.13] 

K, + K)x,, + (K5X,,X4,D7)/2 + K,x,,X..D 

  

Assuming that return per dam is negligible as compared to return from progeny 
and that additional dam feed costs are negligible as compared to other feed costs, 
simplifying and inverting we obtain the following equation: 

K,/x,, + (K3x,,D?)/2 + K,x,,D 
VE = [5.14] 

A,X4. 

  

Differentiating with respect to D and equating to zero gives: 

Dyrax = [2K,/(x,,K3x,,)]"° [5. 15] 

where D,,,, is optimum slaughter age. Thus D_,,, will increase as a function of 
costs independent of progeny weight, and decrease as a function of number of 
progeny per dam, growth rate, and maintenance costs per kg progeny. 

Equation [5.15] will be applicable only if D,,,, falls within the linear growth 
phase. This will be the case for poultry broiler production, but not for beef



76 Economic Aspects of Animal Breeding 

production. As animals approach maturity, growth rates decline, and fat 

production, which requires more energy for production than muscle, also 

increases. Thus the optimum slaughter time for beef calves is near the onset of 

sexual maturity. The economical efficiency of beef production can therefore be 

increased by extending the linear growth phase. This is the main difference 

between large and small beef cattle breeds. 

There is probably economically important genetic variance for feed 

efficiency between individual animals after correction for differential growth 

rates. Although individual feed consumption has a high genetic correlation with 

growth rate, it is still less than unity. This relationship has been shown both for 

poultry and beef cattle (Pym and Nicholls, 1979; Weller, Quaas, and Brinks, 

1990). Furthermore both traits have high heritability. However, selection for 

increased feed efficiency independent of growth rate requires that individual feed 

intake be measured, and this is prohibitively expensive under commercial growth 

conditions for all domestic species. 

5.6 Non-feed costs of production 

Although the major production costs will be feed-related, there will also be 

significant non-feed costs. These can be divided into fixed costs per enterprise, 

per breeding female, and per progeny. The major non-feed fixed costs will be 

labor, rent, interest, buildings, veterinary costs, and replacement breeding 

females. The only element of these costs that can be directly affected by 

breeding is veterinary costs. Even though disease-related costs are significant, 

relatively little emphasis has been devoted to breeding animals for disease 

resistance, because of poor recording and generally low heritabilities. Although 

the other elements of non-feed costs can generally not be affected by breeding, 

we will see in the following chapters that they will affect the calculation of the 

economic evaluation of genetic differences. As is the case for feed costs, non- 

feed costs that are a function of the number of breeding females will be relatively 

more important for low fertility species. 

5.7 Summary 

In this chapter we discussed the main elements of costs and returns in animal 

production. Efficiency of production or profit can be increased either by 

decreasing costs or increasing returns. The main elements that can be affected 

by breeding are the number of offspring per breeding female, the quantity of 

product per offspring, the quality of the product, the body weight of the breeding 

female, and the growth rate of her offspring. Except for the body weight of the 

dam, increasing the other factors will affect both costs and returns. Most of the
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emphasis in selection has gone into increasing quantity of product per offspring, 
including growth rate and number of progeny per breeding female.



Chapter Six 

Evaluation of Genetic Differences from 

Profit Equations 

6.1 Introduction 

In Chapter 3 we defined the economically optimum selection index as the index 

that maximizes the economic gain from selection. We showed how the principles 

of selection index can be used to derive the economically optimum index, 

provided that the genetic parameters and the economic values of the different 

traits are known. In the previous chapter we discussed the main elements of 

costs and returns of animal products, within the context of economic efficiency, 

but did not elaborate on the actual criteria for determining the economic value 

of a unit change in each trait. 

In Chapter 4 we discussed the three main criteria that have been suggested 

to evaluate genetic differences: profit, economic efficiency, and biological 

efficiency, and the advantages and disadvantages of each. In this chapter we will 

explain how to evaluate differences between individuals or strains for traits of 

economic importance based on profit. In general terms this is accomplished by 

expressing profit as a function of the component traits. The economic values of 

the traits are then computed as the partial differentials of these traits with respect 

to profit. The notation and most of the examples will be based on Moav (1973). 

We will show that the estimation of marginal profit can be quite complex under 

certain circumstances, and will depend both on the characteristics of the traits 

under selection and the market constraints. Alternative criteria for evaluating 

genetic differences will be discussed in Chapter 7. 

6.2 The basis for evaluation of trait differences 

In order to construct profit equations, it is necessary to first consider the unit of 

comparison. For example, we can consider profit per unit product, per 

production unit (animal), per unit animal weight, per enterprise (farm), or for 

the entire national economy. At first glance, this question may not seem 

important. The reader may consider this analogous to asking whether a trait is 

measured in grams or pounds. In fact it will be demonstrated that radically
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different results can be obtained, depending on the unit selected as the basis of 
evaluation. 

We will start with the example of egg production in poultry. Assume that 
the objective is to compute the economic value of a unit change in the number 
of eggs laid per hen. At the beginning we will assume that all costs and returns 
of the layer mother are negligible compared to the costs and returns of the layer. 
Profit per unit of product, in this case profit per egg produced, is computed as 
follows: 

P,= A, — F, — Vx) =K —- V(x,) [6.1] 

Where P, is profit/egg, A, is income/egg, F, is fixed costs/egg, x, is the number 
of eggs/hen, and V(x,) is the variable costs of egg production. F, and V(x,) will 
include both feed and non-feed costs. V(x,) denotes that the variable costs of 
egg production are some function of x,. Since both A, and F, are independent 
of x,, they can be combined into a single constant denoted K in the right-hand- 
term of equation [6.1]. (Note that this definition of fixed and variable costs is 
different from the definition in Chapter 2. In that chapter fixed costs were 
defined as costs independent of the amount produced, while variable costs were 
defined as all other costs.) 

In the previous chapter we explained that it is convenient to divide costs into 
feed and other costs. In equation [6.1] feed costs included in F, will be the feed 
required to produce eggs, while other feed costs will be included in V(x,). 
Similarly non-feed costs that are a direct function of the number of eggs 
produced, such as egg handling labor, will be included in F,; while other non- 
feed costs will be included in V(x,). 

In order to obtain a simple algebraic expression for V(x,), we will assume 
that all costs not included in F, are a direct function of the number of layers. 
Then equation [6.1] can be rewritten as follows: 

P, = A, — F, — F/x, = K — F,x, [6.2] 

Where F, is the fixed costs per hen, and the other terms are as defined above. 
In this equation profit is now expressed as an inverse function X,. Increasing x, 
increases profit/egg by distributing the fixed costs per hen over a greater number 
of eggs. 

The marginal change in profit/egg/hen (the a-value of the selection index) 
is computed by differentiating equation [6.2] with respect to x, as follows: 

d(P,) F, 
= [6.3] 

d(x,) (x,)° 

Equation [6.3] is possibly the most important equation in this book so far. We 
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note first that as long as x, is positive, the change in profit, per added egg/hen 

will be positive. However, the marginal increase in profit is not a constant, but 

rather a nonlinear function of x,. In fact, as the number of eggs/hen increases, 

that additional profit/egg decreases. This equation points out one of the main 

difficulties in application of selection index; namely, that the economical values 

of the traits under selection are often functions of the phenotypic trait values. 

We will now rewrite equation [6.2] to evaluate profit per hen. This can be 

done by multiplying both sides of equation [6.2] by x, 

P, = x,(P,) = K(x) — F, [6.4] 

Where P, is profit per hen, and the other terms are as described above. 

Differentiating this equation with respect to x, yields: 

d(P,) 
- K [6.5] 

  

d(x,) 

That is profit/hen is a linear function of X,, and the marginal change in profit 

(the a-value of the selection index) is now a constant. Thus the economic value 

of a unit change in the number of eggs per hen will be different if profit is 

computed per hen, or per egg. Furthermore, in the former case, the economic 

value will be a constant, while in the later case it will be an inverse function of 

x,. We will consider other bases for profit calculation in the later sections of 

this chapter. 

6.3 Multiple-trait economic evaluation 

We will now consider the case of simultaneous economic evaluation of several 

traits. In the example given above, in addition to number of eggs/hen, mean 

weight of eggs and hen body weight will be important economic traits. 

Following the notation of Moav (1973) these two additional traits will be denoted 

x, and x, respectively. We will first assume that x, is constant and compute the 

economic value of the two remaining traits on profit. The fixed costs per hen 

can now be computed as follows: 

F, = (K, + K3x;) [6.6] 

where K, is the fixed cost per hen, K, is the fixed cost per unit weight of hen, 

and the other terms are as defined previously. Substituting equation [6.6] into 

equation [6.4], profit per hen can now be expressed by the following equation: 

P, = x,[K — (K, + K,x;)/x,] [6.7]
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with all terms as defined above. Substituting equation [6.6] into equation [6.2], 

profit per egg can be computed as follows: 

P, = P,/x, = K — (K, + K;,x,)/x, 7 [6.8] 

Finally we can also compute profit per gram hen, P,, by dividing equation [6.7] 
by x, as follows: 

P, = P,/x, = (x,K)/x, — K,/x, + K, [6.9] 

with all terms as defined above. The economic values of x, and x, are the partial 
differentials of these variables with respect to profit. These values are 
summarized in Table 6.1 for the three profit criteria in equations [6.7] through 

[6.9]. 

Table 6.1. Partial differentials of profit with respect to eggs/hen (x,) and hen 

body weight (x,). 

  

  

  

Profit criteria Partial derivatives 
x, X3 

Per egg (P,) [Ky + K4x3]/x,? —K,/x, 

Per hen (P.) K —K, 

Per gram hen (P3) K/x. [Ky — Kx,]/x,? 
  

We first note that the economic values for both traits will be different for 
each of the three profit criteria. Under the assumptions that K, K, and K, are 

all positive, and that x, and x, are greater than unity, then the economic value 

of x, will be greater if profit is computed per hen than if profit is computed per 

gram hen. Likewise the absolute economic value of x, will be greater if profit 

is computed per hen, as opposed to per egg. We further note that the economic 

values are equal to constants only in the case of profit per hen. Thus linear 

selection index cannot be directly applied for either of the other two profit 

criteria.
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6.4 Choice of the appropriate profit criteria 

Most studies that have attempted to evaluate genetic differences, have done so 
by the criterion of profit per animal. This criterion is probably justifiable only 
under a very short-term profit horizon. For example it may be difficult for a 
dairy farmer to significantly change the number of cows in his herd within a 

week, but there is no reason that he cannot appreciably change this number over 

a space of several months or years. Two alternative constraints which will apply 

both in the short- and long-term are constraints on production or constraints on 
investment. We will first consider the case of constraints on production. 

In order that production should not exceed demand, most developed 

countries have imposed production quotas on many agricultural products. If each 

enterprise has a production quota, then production will be a fixed quantity for 

both the enterprise and the national economy. We will now compute profit per 

enterprise, P,, as profit per animal, times m, the number of animals raised: 

P, = mP, = mx,P,; = Q(P)) [6.10] 

where Q, the quantity of the demand, is equal to m times x,, and the other terms 

are as defined above. At equilibrium, then Q will also equal the quantity of the 

supply, as shown in Chapter 2. (We have designated the product of m and x, 
as "demand" rather than supply because it is demand that we assume to be 

fixed.) 
With fixed Q, an increase in x, will cause a reduction in m. Thus m can 

be computed as a function of x, and Q as follows: 

m = Q/x, = (mXj0)/X, [6.11] 

where m, and x,, are the original values for m and x, prior to the change in X,. 

Profit for fixed demand, P, can then be expressed as follows: 

Po = MoXjoP; = MpXilK — (Ky + K3x,)/x,] [6.12] 

Note that the only variables in this equation are x, and x,. Therefore, since 

M Xj) is a constant, the profit equation in [6.12] is proportional to profit per egg 

in equation [6.8]. Thus the partial derivatives of this equation will be equal to 
the partial derivatives of equation [6.8], multiplied by the constant, mpXjo. 

We will now consider the other two possibilities of profit for a fixed number 

of animals (production units) and profit for a fixed total weight of animals. The 

latter alternative can be considered approximately equal to profit for fixed 

investment. Profit for a fixed number of animals, P,,, is computed as follows: 

Py = MP, = mpx,[K — (K, + K;x,)/x,] [6.13]
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with all terms as defined previously. This is of course profit per hen, multiplied 

by the constant, mp. 

For the case of fixed investment, we will require that the total weight of 

hens should be fixed. That is: 

W = MX, = MpX4 [6.14] 

where W is total weight of hens (investment), X,) is the initial hen weight, and 

the other terms are as defined previously. From this equation we see that with 

fixed weight of hens, x, will be an inverse function of m. Profit with fixed 

investment, P\,, is computed as follows: 

Py = mx5P, = MoX3oX,P)/X3 = MpXzol(X,K)/x; — K,/x,; — Ks] [6.15] 

With all terms as previously defined. As in the previous cases, Py is equal to 

P, times moX39, which is a constant. 

Since the objective of breeding is to increase profit, we need consider 

chiefly those situations that result in increased profit relative to the original 

situation, specifically x, > X,), and x, < X4. Within this parameter space we 

can then deduce the following inequality: 

Py > Py > Py [6.16] 

This relationship can be explained as follows: For Pg profit can be increased 

only by decreasing costs per unit product, for P,, profit can also be increased 

by increased production, and for Py, it is possible to further increase profit by 

decreasing the production unit with fixed investment. The partial differentials 

for these three profit criteria are listed in Table 6.2. As should be clear from 

the previous discussion, the values for each row in Table 6.2 are proportional to 

the corresponding row in Table 6.1. 

In Chapter 3 we showed that multiplication of the vector of economic values 

by a scalar will have the same effect on the index weights. This is equivalent 

to changing the scale of measurement for the economic values. For example, if 

the economic values and index coefficients are measured in dollars/kg, 

multiplication of the index coefficients by 2.2 changes the scale to dollars/Ib, but 

does not change the ratios among the economic values. Thus the ratios among 

the economic weights are more important than their actual values. We have 

therefore also included the ratio of the partial derivatives in this table. These 

ratios are also different for the three profit criteria, and except for Py they are 

also functions of the trait values. In conclusion we see that the profit criteria can 

have a marked effect on the economic values of the traits included in a selection 

index.
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Table 6.2. Partial differentials of profit with respect to eggs/hen (x,) and hen 

body weight (x,) by three different enterprise criteria. 

  

    

  

    

Profit criteria Partial derivatives 

x, X3 ratio x,:X, 

X,? x, xk, 
Fixed number of 

production units (P,,) mK —MK; —K/K, 

Fixed investment (Py) MoXa0K MoXsolK,_— Kx,] —Kx, 

X3 X37 Kx, — K, 

  

6.5 Differential production quotas 

We will now consider an example of profit computed as a function of three 

traits. In addition to the two previous traits of eggs/hen and hen weight, we will 
add a third trait of egg weight, x,. If eggs are priced by weight, then this 
variable will affect both income and costs. Profit per hen can now be expressed 
as follows: 

P, = K,x,x, — Kx, — Kx; — K, [6.17] 

where K, is income per gram egg less fixed costs per gram egg, K, is fixed 

costs/egg, and the other terms are as defined previously. As in the previous 

discussion, profit per egg can be computed by dividing equation [6.17] by x,, 

while profit per gram hen can be computed by dividing this equation by x,. In 

addition it is now possible to define a fourth profit criterion, namely profit per 

gram egg, which can be computed by dividing equation [6.17] by x,x,. The 

coefficients of the four constants K, — K, are summarized in Table 6.3. 

As in the previous example, the economic values of the three traits can be 
computed as the partial derivatives of each profit criterion with respect to each 
trait. These values are given in Table 6.4. As in the two-trait case, the partial 
differentials are quite different, depending on the profit criteria. Since the partial 

differentials for profit per egg and profit per gram egg are also different, which 
criteria are appropriate for conditions of fixed demand? The answer will depend 

on how fixed demand is determined. For example, if each producer has a 
production quota computed in number of eggs, but is paid by egg weight, then 

the proper criterion would be profit per egg. Note that in this case the economic 

value of egg weight is K,. That is with respect to weight of eggs, the producer
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is effectively in an unconstrained market, and it will be to his advantage to put 
most of the emphasis of selection on increasing egg weight. However, if each 
farmer receives a quota in weight of eggs produced, or one considers the 
viewpoint of the national economy, then the proper criterion will be profit per 
weight of eggs produced. 

Table 6.3. Coefficients of the economic constants with four different profit 
criteria. 

  

  

  

Profit criteria Coefficients 

K, K, K, K, 

Per egg (P,) X> 1 X_/X, 1/x, 

Per hen (P.) X4X> X, X3 1 

Per gram hen (P3) =x, x./x3 X,/X, 1 1/xX, 

Per gram egg (P,) ‘1 1/x, X3/(X,X>) 1/(x,x>) 

  

Another example of this problem is calculating the economic weights for 

components of milk production. The economically important components of 

whole milk are butterfat, protein, and lactose. Both total milk produced and 

component concentration can be affected by both breeding and management. 

Currently most developed countries pay a price differential based on protein and 

fat concentration. In addition, the energy requirements to produce these 

components are not equal. It requires more energy, and therefore costs more, 
to produce a gram of fat than a gram of protein, and production of a gram of 

protein costs more than an equal weight of lactose. If production quotas are in 

kg fluid milk, while a price differential is paid for protein and fat production, 

then the added profit for additional production of these components may be much 

greater than from additional milk production.
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Table 6.4. Partial differentials of profit with respect to eggs/hen (x,), egg 
weight (x,) and hen body weight (x,). 

  

  

Profit criteria Partial derivatives 

X, X> X3 

Per egg (P,) Kx, + K, K, —K, 
2 x, x, 

Per hen (P.) K,X, —_ K, K,x, —K, 

Per gram hen (P3) K,x, — K, Kix K2x,_+ Ky = Kix 1X2 
X3 X3 oe 

Per gram egg (P,) Kx, + K, K, + Kx, + K, =K,_ 
X,°X>5 X9” X,X5" X1X>5 

  

6.6 Graphical representation of profit: reproductivity vs. 

productivity 

The relationships described above can also be represented graphically by plotting 

one trait as a function of a second trait for a given profit level. If this function 

is plotted for a number of different profit levels, then the figure is denoted a 

"profit map", and the curves for the individual profit levels are denoted "profit 
contours". For example, x, in equations [6.12] or [6.15], can be plotted as a 
function of egg number and profit for fixed number of eggs (demand) or fixed 

weight of hens (investment). Solving for x, from these equations we obtain: 

    

  

1 X,(MpX;9K — Pg) 
xX, = — K, [6.18] 

K, MpX jo 

MpX39(Kx, — K,) 
xX, = [6.19] 

Pw + moXioK, 

Since the other terms are constants, x, is now expressed as a function of x, and 

profit. 
The profit maps derived from equations [6.18] and [6.19] are plotted in
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Figure 6.1 for the constant values of Moav (1973). The solid lines represent the 

profit contours for fixed demand (fixed number of eggs), and the broken lines 

represent the profit contours for a fixed number of hens. Since profit is an 

inverse function of body weight, the scale of body weight is inverted. Thus on 
this graph profit is maximum at the upper right-hand corner, and minimum at the 
lower left-hand corner. This convention will be followed throughout. By both 

criteria, X, is a linear function of x,. Thus the profit contours are straight lines 

by both profit criteria. However the profit contours are not parallel. 

Furthermore, only the zero profit contour is congruent by both criteria. Thus 
if individuals are ranked for selection based on their expected profit, the ranking 

will be different for different criteria. 
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Figure 6.1. Profit map for laying hens. Body weight is a function of number of 

eggs per hen for the constant values of Moav (1973). The solid lines are the 

profit contours for fixed demand (fixed number of eggs), and the broken lines 

are the profit contours for a fixed number of hens. Since profit is an inverse 
function of body weight, the scale of body weight is inverted. Profit contour 

units are IL 10* per enterprise. 

Other things being equal, profit will be maximized by moving at right angles 
to the current profit contour. Since the profit contours for a given criterion are 

not parallel, the direction of maximum profit will change as profit increases. 
Furthermore, since the profit contours computed by the two criteria are also not 
parallel, except at zero profit, the direction of change for maximum profit at a
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given profit level will also depend on the profit criterion. 

In the previous chapter we explained that for most species, cost can be 

partitioned into costs of production, and costs of female reproduction. Until now 

we have only considered the first element. In addition to the cost involved in 

keeping the laying hens, there will also be costs of keeping the mother hens that 

produce the laying hens. For an integrated enterprise that raises both mother 

hens and layers, profit can be expressed by the following equation: 

P=K-V,-V, [6.20] 

where V, represents the variable costs of production, V, represents the variable 

costs of reproduction, and K is return per unit production less fixed costs per 

unit production. We will now expand this equation following Moav (1973), for 

the specific example of pig production in an integrated enterprise that raises both 

sows and pigs for slaughter. 

P, = K, —_— K,x, — K,/x, [6.21] 

where P, is profit per pig marketed, x, is number of pigs weaned per sow per 

year, x, is age to a fixed market weight, K, is income less costs independent of 

x, and x,, K, is costs dependant on x,, and K, are fixed costs (feed and non-feed) 

per sow. xX, can also be defined as the food conversion ratio growth rate. In 

several previous equations, profit was also an inverse function of x,. Note, 

however, the difference between this equation and equation [6.8]. The 

importance of this difference will become apparent shortly. 

In the previous chapter we explained how increasing growth rate will also 

increase feed efficiency. In equation [6.21] we assume that pigs are marketed 

at a constant weight. Thus increasing growth rate reduces expenses by 

decreasing the number of days that the pig must be fed prior to slaughter. For 

simplicity this function is assumed to be linear. Similar to the previous 

examples, we will now consider profit per fixed demand (pigs marketed), Pp; 

and fixed number of production units (sows), Py. These equations are derived 

in a parallel manner to equations [6.12] and [6.13]: 

Pg = mMpXioP) = MoXio(K, — Kx, — K;/X,) [6.22] 

Py = mpxX,P, = mo(KixX, — KxX,X. — Ks) [6.23] 

where m, is the number of sows/enterprise, X;) is the original number of 

pigs/sow, and the other terms are as defined previously. The profit contours can 

then be computed by solving for x, as a function of profit and x,, as follows:
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1 K, Po 
X, = K, - - [6.24] 

K, X; MX jo 

1 K, Py 
xX, = K, - —- —— [6.25] 

K, Xy MX; 

with all terms as defined previously. The profit contours for these functions are 

given in Figure 6.2 for the constant values of Moav (1973) for a swine 

enterprise. 
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X; = number of weaned pigs per sow 

Figure 6.2. Profit map for a swine enterprise for the constant values of Moav 

(1973). x, is plotted on a reverse scale, because of the negative relationship 

between x, and profit. Profit contours for fixed demand and fixed number of 

sows are denoted with solid and broken lines, respectively. Profit contour units 

are IL 10° per enterprise. Vertical line is the initial value for x,. 

As in Figure 6.1, x, is plotted on a reverse scale, because of the negative 

relationship between x, and profit. Profit contours for fixed demand and fixed 

number of sows are denoted with solid and broken lines, respectively. Note first 

that in both equations, x, is an inverse function of x,. Therefore the profit
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contours are nonlinear functions. As in Figure 6.1, the profit contours are 

congruent only when Py = Py = 0. The profit contours with Py, = Pg cross at 

X, = Xo. That is, if the number of pigs per sow remains constant, then profit 

by both criteria will be equal for any value of x,. As in the previous example, 

animals will be ranked differently by these two profit criteria. 

The significance of the nonlinearity will be two-fold. First we will consider 

the effect of changes in x, as a function of x,. At any combination of values for 

x, and x,, the effect on profit of a unit change in x, will be equal. However, for 

P, and a constant value for x,, a unit change in x, will have a greater effect on 
profit at a low number of pigs than at high number. This relationship is of 
course evident from the partial derivatives of equation [6.22]. Second, as stated 

above, profit is increased most rapidly by progressing at right-angles to the profit 

contours. In the example in Figure 6.1 the direction of maximum increase in 

profit will be parallel for all points along a profit contour. In Figure 6.2, for 

points with equal profit, the direction of maximum increase in profit will be 

different. We will return to these points when we consider nonlinear selection 
indices in Chapter 9, and evaluation of crossbreeds in Part V. 

6.7 Summary 

In this chapter we showed how the economic values of traits can be computed 

as the partial derivatives of profit equations. These equations point out two 

major difficulties in the practical application of selection index. First, the 

economic values are often functions of the current trait values; and second, the 

economic values will depend on the criteria used to compute profit. In general 

terms, the profit criteria considered were profit per fixed number of production 

units (animals), fixed demand, and fixed investment (weight of animals). We 

showed how profit contours can be used to display these relationships graphically 

for two traits. Profit contours will be linear if two production traits are 

compared, but nonlinear if a productive and reproductive trait are compared. 

Consequences of these relationships will be explored in Chapter 9 and Part V.



Chapter Seven 

Evaluation of Genetic Differences by 
Alternate Methods 

7.1 Introduction 

In Chapter 3 we explained the principles of selection index, and showed how 

genetic progress can be maximized economically if the economic values of the 

traits under selection are known. In the previous chapters we considered the main 

elements of costs and returns, and showed how unit changes in specific traits of 

economic importance can be evaluated economically based on maximization of 

profit: In Chapter 4, we discussed some of the disadvantages of using 

maximization of profit as the criterion for economic evaluation, and other 

disadvantages became apparent in the previous chapter. Therefore other criteria 

for economic evaluation have been suggested in the literature. The main 

alternatives to profit are economic efficiency, biological efficiency, and return on 

investment. 
In this chapter we will discuss the advantages and disadvantages of these 

methods, as compared to profit, and will explain in detail the conditions for 

equality between different profit criteria and economic efficiency. It will be seen 

that these conditions are general enough that the problem of differing economic 

values for different profit criteria is less serious than thought originally. Finally 

we will consider empirical methods for estimating economic values, based on 

actual prices and field data. 

7.2 Economical and biological efficiency and return on 

investment as alternative criteria to profit for economic 

evaluation of trait unit changes 

In Chapter 4 we defined profit (net income) and economic efficiency as follows: 

P=R-C [7.1] 

E=R/C [7.2]
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where P is profit, E is economic efficiency, R and C are returns and costs, per 

unit production. As stated previously, some studies have also used the inverse of 

economic efficiency to estimate economic values. The reasons for this will be 

explained below. One advantage of economic efficiency, as compared to profit, 
that should already be apparent is that economic efficiency is independent of the 

units used to compute R and C. If in the previous chapter we showed that profit 
will be different if computed per unit product, per animal or per enterprise; this 

will not be the case for economic efficiency. Since the units of R and C will be 

the same, E is a unitless number. Thus on the basis of economic efficiency it is 

also possible to compare different species and production systems. Furthermore, 
since R and C will generally be approximately equal, E will generally be close 
to unity. | 

One important disadvantage of both these criteria is that both R and C will 

tend to vary over time, as discussed in Chapters 2 and 4. Thus "biological 

efficiency" (Dickerson, 1982) has been suggested as an alternative to economic 

efficiency. Biological efficiency is defined as unit output per unit feed energy 
input. Following the notation of Chapter 5, and assuming all quantities are 

measured on an enterprise basis, we can construct the following equations: 

R = A,(X) [7.3] 

C=C,+C,F [7.4] 

Ey = X,/F = [CgR]/[A\(C — C,)] [7.5] 

Where A, is the price of a unit product, x, is quantity of product produced per 
enterprise, C, are non-feed costs of the enterprise, C, is the cost of a unit feed, 
F is the quantity of feed given, E, is biological efficiency, and the other terms 
are as defined above. Note that the middle term of equation [7.5] is in terms of 

biological inputs and outputs, while the right-hand term is in terms of economic 

units. Since in many production systems, the main economic component of both 

feed and product is protein, biological efficiency can alternatively be defined in 
terms of input and output of protein, rather than gross feed energy and product. 
Although biological efficiency will be more constant over the long-term than 
either profit or economic efficiency, it is not a very useful criterion for economic 

evaluation. As pointed out by Dickerson (1982) it ignores the differing costs of 
feed for different species, and the differing value of products (e.g. protein vs. 
milk fat, or meat of old vs. young animals). In addition it is possible to increase 
economic efficiency without changing biological efficiency. For example 

breeding for disease resistance or calving ease may reduce non-feed costs and 

therefore economic efficiency without affecting biological efficiency. 

A fourth criterion that can be considered is return on investment, I, defined 
as follows:
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Iy = P/Cy =(R — C)/Cy [7.6] 

where C,, is investment, and the other terms are as defined previously. Similar 
to efficiency, I,, will be a pure number. If all costs are included in C,, then I, 
will be equal to E — 1. Moav (1973) suggested that costs that are a function of 

the quantity of production, but independent of weight and number of animals 

raised should not be included in Cy, specifically the feed required to produce the 

product. This is because decisions on the quantity of investment are taken before 
the product is produced. Thus Moav (1973) defined I, as costs per unit weight 
of animal. This criterion is probably only of interest to a potential new investor, 
or an investor who is contemplating expansion. Similar to other profit-based 
criteria, I,, will be correct only for a given situation. Since the results of nearly 

all breeding decisions will be long-term, it is difficult to justify this criterion for 

economic evaluation of trait changes. 

7.3 Economic evaluation of trait differences by economic 

efficiency 

In the previous chapter, the economic values of unit changes in trait values were 
computed by taking the partial differentials of profit equations with respect to 
each trait. This method can also be applied to economic efficiency. This will be 
illustrated using the example of egg production given in equation [6.17]. Profit 

per hen, P, was computed as follows: 

P, = (A, — F,)xiX, — Kx, — K3x; — K, [7.7] 

where A, is income per gram egg; F, is fixed costs per gram egg; x, is number 

of eggs, x, is egg weight, x, is hen weight; and K,, K,, and K, are fixed costs 
per gram egg, per egg and per hen, respectively. In order to differentiate between 

costs and returns, K, was replaced by A, — F,. The inverse of economic 
efficiency is now computed as follows: 

F,X,X, + Kx, + K,x, + K, 

E. = [7.8] 

A)XX2 

  

The economic values of x,, x, and x, can now be computed by taking the partial 

differentials of E, with respect to these three traits. One reason that E, has been 

preferred is that calculation of partial differentials will generally be easier for this 
function. These partial differentials will be equal to the partial differentials 
presented in the last row of Table 6.4, divided by A,, which is a constant. 
Since, as explained in Chapters 3 and 6, multiplying the economic values by a
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constant will not affect the rate of genetic progress, we can conclude that, at least 

in this example, economic values by the criterion of economic efficiency, and by 

profit per unit product will be the same. This result is generally true and will 

now be explained in more detail. 

7.4 Conditions for equality of economic values as computed for 

different profit criteria and economic efficiency 

In the previous chapter, we showed that different economic values are obtained 

when profit is computed by different criteria, such as per dam, per progeny, or 

per unit product. Brascamp, Smith, and Guy (1985) and Smith, James, and 

Brascamp (1986) derived three conditions for equality of economic weights as 

computed by different profit criteria and by economic efficiency: 1) zero profit, 

2) disregarding increased profit that can be achieved by rescaling of the 

enterprise, and 3) disregarding increased profit that can be obtained by correcting 

inefficiencies in the production system. Following their explanation, we will first 

use illustrative examples, and then prove the general principles. 

We will start with the example of pig production from Chapter 6, under the 

condition of zero profit. The concept of "zero profit" was introduced in Section 

8 of Chapter 2. We explained that over the long-term, the price for any 

commodity will tend to equal both the marginal and average cost of production. 

Thus if profit is computed as returns minus costs, profit will tend toward zero. 

We further explained that "zero profit" does not mean that the producer receives 

no compensation from production, but rather that a "reasonable profit", necessary 

to make production worthwhile, is included in the "costs" of production. 

In equation [6.21] profit per pig, P,; was computed as follows: 

P, = K, — K,x, _™ K,/x, [7.9] 

where x, is number of pigs weaned per sow, x, is slaughter age, K, is income per 

pig less costs independent of x, and x,, K, is costs dependent on x,, and K; is 

fixed costs per sow. Defining K as income per kg pig less costs per kg pig, and 

X, as slaughter weight we can rewrite this equation as follows: 

P, = Kx, — K,x, — K,/x, [7.10] 

as in the previous chapter we can compute profit per kg pig marketed, P,, by 

dividing equation [7.10] by x, as follows: 

P, =K — K,x,/x,; — K,/(x,x;) [7.11]
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Similarly, profit per sow, P,, can be computed by multiplying equation [7.10] by 
X,: 

P, = Kx,x, — K,x,x, — K, [7.12] 

The partial differentials of these three profit criteria with respect to x,, X,, and x, 
are given in the top three rows of Table 7.1. Under the assumption of P, = P, 
= P, = 0, these partial derivatives can be rewritten in the form appearing in the 

bottom three rows of Table 7.1. 

Table 7.1. Partial differentials of profit with respect to pigs/sow (x,), slaughter 
age(x,) and slaughter weight (x;). 

  

  

  

  

Profit criteria Partial derivatives 
x, Xo X3 

Per pig (P,) K, -K, K 

x,” 

Per SOW (P.) Kx, — KX. —K,x, Kx, 

Per kg pig (P,) _K, -—K, Kx. + K,_ 

X41 X3 X3 X3" X1X3 

Per pig (P, = QO) K —K, K 
X,? 

Per sow (P, = 0) K —K 5x, Kx, 

Xy 

Per kg pig (P; = 0) _K, =K K 
X17X; X3 X3 
  

We see that the partial derivatives by each criterion are now proportional. 

That is, the partial derivatives of P, are equal to the corresponding partial 

derivatives of P,, multiplied by x,, while the partial derivatives of P, are equal 
to the partial derivatives of P,, divided by x,. Since, as shown in Chapters 3 and 
6, it is the ratios of the economic values rather than their absolute values that 

determine the direction of selection, the economic values are now the same by
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all three criteria. 

7.5 Proofs of conditions for equality of profit criteria 

We will now present the general proof of Brascamp, Smith and Guy (1985). x 

will denote a vector of biological traits, and k,, k,, and k, will denote vectors 

of economic constants. Assume that profit is expressed as a function, f(x,k,), 

of x and k,. We now define h(x,k,) as a different profit criterion computed by 

dividing f(x,k,) by a function g(x,k,). Algebraically: 

P = h(x,k,) = f(x,k,)/g(x,ks) [7.13] 

In the example given above, x = [x,, x,, X,], k, = [K, K,, K,], P; = h(x,k,), 

P, = f(x,k,), and g(x,k,) = x,. Computing the partial differentials of h(x,k,) 

with respect to x, we have: 

o[h(x,k,)] f(x,k,)d[g~ '(x,ks)] g”'(x,k,)d[f(x,k,)] 
—____ = + [7.14] 

ox dx bx 

    

If zero profit we have: 

P, = f(x,k,) = 0 [7.15] 

é(h(x,k,)] g '(x,k;)5[f(x,k,)] 
————————_ = [7.16] 

ox ox 

  

Thus if g~'(x,k;) is a constant, the economic values for x will be proportional 

by these two profit criteria. Even if g(x,k,) is a function of x, as in the case 
above, this can still be considered a constant if g(x,k,) is evaluated for the means 

of x. 

Using the same line of reasoning, it can now be explained why economic 

values derived for profit per unit product will be proportional to economic values 

for the inverse of economic efficiency. Assume that profit is computed for some 

criterion other than unit product. This criterion can then be converted to profit 

per unit product by dividing by production in the units of the profit criterion as 

follows: 

Py = (R — ©)/x, = R/x, — Cx, [7.17] 

where P, is profit per unit product, R and C are returns and costs for the
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alternative profit criteria, and x, is production. Note that R/x, is equal to returns 
per unit product, which is a constant. Therefore computing the partial 

differentials of Py with respect to x gives: 

) —6(C/x,) —A,6(C/R) 
es [7.18] 

ox ox ox 

Where A, is price per unit product. Thus the partial differentials for Pg will be 

equal to the partial differentials for the inverse of economic efficiency, times 

—A,, which is a constant. 

The partial differentials for profit per unit cost, or profit per unit 
investment, I, can be computed as follows: 

bly 6{((R — C)/C) 6(R/C) 

—S$S = ———————————_- SSW [7.19] 

ox ox ox 

which are the partial differentials for economic efficiency ("actual" economic 

efficiency, not the inverse of economic efficiency). Thus economic values 

computed for economic efficiency and its inverse will be equal at zero profit, but 

unequal for any other profit value. 

We will now consider the second condition for equivalence, that is 
subtracting any gain in profit that could have been obtained by changing the scale 

of the enterprise. Consider profit per pig in equation [7.10]. Assume that 

slaughter age and number of pigs/sow are equal for all individuals. We can then 

simplify the equation as follows: 

P, = Kx, — K, [7.20] 

where K, = K,x, — K,/x,. For an enterprise of m pigs, profit per enterprise is 

computed as follows: 

P, = m(Kx, — Ky) [7.21] 

If x, is increased by a small amount, denoted Ax, then the change in profit, AP,, 
is computed as follows: 

AP, = mKAx, = (P, + mK,)Ax,/x, [7.22] 

Thus, as was illustrated in Chapter 6, the change in profit will also depend on 

the previous profit level and on the production costs. Original production was 

mx,. An equal change in output could have been obtained by increasing m by 

Am, computed as follows:
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Am/m = Ax,/x, [7.23] 

The change in profit due to rescaling, which we will denote AP; can then be 

computed as follows: 

AP, = P,(Am/m) = P,(Ax,/x;) [7.24] 

Thus the change in profit due to increase in x, after subtracting the gain in profit 

that could have been obtained by rescaling the enterprise is: 

AP, — AP, = mK,(Ax,/x;) [7.25] 

Note that the right-hand side of equation [7.25] is now independent of P,. Thus 

we see that the same result would be obtained for any original profit level. Since 

we proved above that all profit criteria will give proportional economic weights 

for zero profit, and since equation [7.25] is independent of the profit level, we 
can deduce that economic weights computed after correction for increased 

production will also be independent of the profit criteria. 

In this example breeding increased production. Alternatively breeding could 

change the value of unit product, or reduce the costs of production. If profit is 
not equal to zero in the original state, then part of the change in profit due to 
change in either product value or cost of production could also be matched by 

rescaling the enterprise. It can readily be shown that for these cases as well, the 

economic values of the different traits will be independent of the profit criteria 

if the change in profit that could have been obtained by rescaling is subtracted. 

We will now present the general proof of Smith, James, and Brascamp 
(1986) for this postulate. Assume that for a given profit equation there is a 
scaling factor, a, that produces proportional effects on costs and returns so that: 

1 aR 1 6c 
—— = — — [7.26] 

A small change in a trait will then give a change in profit, AP,, as follows: 

dR 6C 
AP, = AR -— AC = a 

6x dx 

  Ax [7.27] 

Assume now that the enterprise is rescaled by an amount Aq to match the change 

in output obtained by increasing x by Ax. That is:
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dR oR 

— Aa = 

ba ox 

  Ax [7.28] 

The change in profit due to rescaling, AP,, is computed as follows: 

bR dC 
AP, = —_ - —- Aa [7.29] 

da da 

By rearranging equation [7.26]: 

  

6C C dR 
— = — ——_ [7.30] 

da R da 

Substituting equations [7.28] and [7.30] into [7.29] gives: 

dR C dR 
AP, = -—- — Ax [7.31] 

6x R 6x 

Then the net value of the genetic improvement, AP, can be computed as follows: 

C dbR 6C 
_ — — | Ax [7.32] 
R 6x ox 

  AP, = AP, — AP, = 

The differential of profit with respect to x after correction for the change of scale 
is then: 

SP, 6R 5C C5(R/C) CSE 
Cc —R - = 

1 

ox R dx ox Rdx E6x 

  [7.33]       

Where E = R/C. C/E = C’/R, which is a constant for all traits. Thus the 

relative economic weights will be proportional to 5E/6x, which, as shown above, 

is independent of the criteria used to compute profit. The same result will be 

obtained if the enterprise is scaled to equal input or equal profit, the only
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difference being the proportionality constant. For equal input the proportionality 
constant will be C and for equal profit, the proportionality constant will be 

CE — 1). 
This line of reasoning was also extended by Smith, James, and Brascamp 

(1986) to cover the more general case of profit from differing rates of production 
and female reproduction, and can readily be extended to more complicated profit 
equations. 

7.6 Conclusions on the choice of criteria to compute economic 

values 

In Chapter 4 we first considered the question of the appropriate criteria for 

economic evaluation of genetic differences. Although all of the criteria 

suggested have advantages and disadvantages, those considered most appropriate 

were profit and the inverse of economic efficiency. In Chapter 6 we were 
confronted with the anomaly of Moav (1973) that the relative economic values 

of different traits are different for different profit criteria. This means that 

different entities involved in breeding could have different objectives. Accepting 

the conditions for equality presented above, this problem can now be considered 
resolved. 

Before completing this discussion, we should note though, that in practice 

rescaling is often not a viable option. A farm may be organized to handle a set 

number of cows. Thus, even if the enterprise is in a positive profit situation, it 
may not be possible to increase the scale of the operation, even if increasing 

production per cow would increase both returns and profit. However, these 

considerations are generally only short-term considerations for individual 

producers. Thus over all producers, or for the national interest, it would seem 

that economic values should be computed either for economic efficiency, its 

inverse, or a profit criterion which is unaffected by scale, and these criterion will 
result in proportionate economic values for all traits under selection. 

7.7 "Empirical" methods for estimating economic values 

The methods presented above to estimate the economic values of different traits 

assume that the simple equations presented are basically correct and that the 

economic constants in these equations can be accurately estimated. Often in 

practice neither of these assumptions is correct. An alternative method was 

suggested by Dickerson (1982) for economic efficiency, and applied by 

Sivarajasingam et al. (1984) for profit per cow in a dairy herd. 

Sivaragasingam et al. (1984) used Linear Programming (LP) to compute the 

expected profit of a progeny of each of 71 dairy sires, defined as an average
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daughter’s expected returns over variable costs attributable to the sires’ estimated 
transmitting abilities for the traits under consideration. An index of total 

economic merit was computed as the amount by which optimal LP net profit 

would be reduced by mating a cow to a given sire, instead of the most profitable 

sire. These authors state that the "true" economic relationships of the component 

traits are the "partial correlations" of the component traits on the index of total 
economic merit. Partial correlations are defined as the correlation of the 

regressor and the response if all other regressors are held constant. Since the 

goal of selection index is the maximization of genetic progress, the appropriate 

economic values for use in selection index are the partial regressions of each trait 
on the index of economic merit. They also computed the partial regression 

coefficients and the coefficient of determination for the index. 

Dickerson (1982) suggested computing the partial regression coefficients of 

the individual traits on economic efficiency from a simulation model. The 
advantages of these "empirical" methods for computing economic trait values 
are: 1) the economic values will be by definition linear functions of the trait 
values, and 2) it is possible to include factors and relationships that may not be 

readily included in profit equations. The disadvantages are: 1) lack of 

generality, as these methods are applicable only to the sample populations 

measured or simulated, 2) they do not account for changes in relative economic 

values due to selection, which is, in fact, the reason why the economic values of 

some traits are nonlinear, and 3) they can only be applied if an appropriate data 

sample is available, or if the parameter values of the simulation are known. 

Thus, in conclusion, it does not seem that these alternative methods can be 

recommended over the analytical methods described previously. 

7.8 Summary 

In this chapter we concluded the discussion of methods for estimating the 

economic values of the component traits in the selection index. In the previous 

chapter we were presented with the dual dilemmas: 1) the economic values of 

most traits will not be linear functions of the trait values, and 2) different relative 

trait values are obtained depending on the profit criteria. In this chapter we 

considered economic efficiency, biological efficiency, and return on investment 

as alternatives to profit as criteria for computing economic values. Of these 

alternatives, we showed that only economic efficiency is generally applicable. 
We explained how Smith, James, and Brascamp (1986) were able to resolve the 

second dilemma for most actual conditions of interest. Under these conditions, 
the economic values for the component traits computed for profit by any criteria 

and economic efficiency will be proportional. Finally we briefly discussed 
"empirical" methods for computing economic values based on performance 
records or simulated data.



Chapter Eight 

Long-term Considerations 

8.1 Introduction 

Animal breeding is by its nature a long-term process. For example, some results 

of the most important breeding decisions in dairy cattle are only realized after 

ten years. Thus a number of considerations that may not be important for 
relatively short-term processes are of major importance for most animal breeding 
programs. Furthermore, the different costs and returns in animal breeding 

procedures are realized at different times, and with differing probabilities. Thus, 

factors that affect costs and returns over the long-term must be considered in the 

economic evaluations of genetic differences. Long-term considerations will 

affect both the attractiveness of investment in breeding programs, and the relative 

economic values of the individual traits included in the selection index. The 

main long-term considerations of animal breeding programs are the discount rate, 

risk, profit horizon, and reproduction rates. Discount rate and profit horizon 

were discussed in general terms in Chapter 2. In this chapter we will discuss 

these factors in more detail. In the final section of this chapter before the 

summary, we will give concrete examples of computation of economic values 

over the long-term. 

8.2 Discounting of costs and returns 

The first consideration with respect to discounting of costs and returns is which 

discount rate is appropriate. Most studies that have discounted costs and returns 

in animal breeding programs have used rates of 5 to 15%. Smith (1978) lists 
three alternative criteria for setting discount rates in breeding programs. First, 

d,, the social time preference rate. This is the lowest rate and is appropriate for 

minimal risk investments in the national interest, such as building roads, ports, 

or public buildings. Second, the opportunity cost rate, which is the cost of 

borrowing in the financial market. The third alternative is a synthetic rate which 

allows for the returns forgone by diverting capital from the higher return rate to 

the lower d, rate, but discounts the returns forgone and the actual returns by the 

d, rate. The main causes for divergence between the two rates are due to the
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effects of inflation, risk, and taxes on private investment. 
As explained in Section 2.9, "nominal" interest rates are strongly affected 

by the inflation rate. In equation [2.9] we showed how the discounted value of 

current investment is also affected by the inflation rate. The situation presented 

in Chapter 2, an initial investment and equal monetary returns year after year, 
is not typical of breeding programs because inflation will affect the nominal 
values of both costs and returns. Thus for breeding programs it is necessary to 

correct the nominal interest rate, d, by the rate of inflation, d, as follows: 

l+d=(1+d4)(1 +d) [8.1] 

d, = d, — d)/(1 + d) [8.2] 

where d, is the "real" interest rate corrected for inflation. For moderate rates 

of inflation d, can be computed approximately as d; — d. Although nominal 

interest rates have varied greatly over the last century, the real interest rate has 

remained quite stable over the long-term at close to 3% (Smith, 1978). 

In addition to inflation, risk and taxation should also be included in the 

required nominal rate of return. Considering these factors the required nominal 

rate of return, d., can be computed as follows: 

_ d+djd +d -d) -1 d= ad) [8.3] 

where d, is the risk, d, is the tax rate, and the other terms are as defined above. 

Clearly the nominal rate can be considerably higher than d,, even for relatively 

low rates of inflation, risk and taxation. For example, if d, = 0.04, d, = 0.05, 

d, = 0.02, and d, = 0.1; then d, = 0.127, or 12.7%. This rate is similar to 

current nominal interest rates in most developed countries with moderate inflation 

rates, but considerably higher than d,, which should approximate the d, rate 

discussed above. 

8.3 Estimating discounted returns and costs for a single trait 

with discrete generations 

Returns from breeding programs, unlike nearly all other investments, are 

cumulative. This important distinction will be elaborated with an example. A 

company invests in a new piece of machinery, which increases the efficiency of 

production, and therefore the net income of the enterprise. Eventually though 

the machine will either be discarded or replaced. Therefore this investment will 

generate additional income for a finite period. Now we will compare this 

example to the situation in genetic improvement. Assume that milk production 

per cow is increased genetically by 100 kg. Once this genetic gain has been
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achieved in the population, no additional investment is necessary to maintain it, 

and, contrary to the previous example, this gain will never "wear out" or need 

to be "replaced." Unless returns are discounted, the same gain in profit is 

obtained year after year, and the total gain from any amount of genetic 

improvement will tend to infinity. If returns are discounted, the gain of a single 

cycle of genetic improvement extended to infinity can be computed from equation 

[2.8]. This equation gives the minimum acceptable annual return, V, from an 

initial investment of N with a discount rate of d. We will repeat this equation: 

Nd. = V [8.4] 

If V is now taken as the value of one year of genetic improvement, then the 

cumulative return (R), extended to infinity will be: 

R = Vid, [8.5] 

Note that R, return from the breeding program, has replaced N of equation 

[8.4]. Continuing with the example given in Chapter 2, if the annual value of 

a cycle of genetic improvement is $10, and the discount rate is 0.1, than the 

discounted value of this gain, year after year, to infinity is $100. Alternatively, 

equation [8.5] can be derived as follows: The return from a breeding program 

to infinity, will be equal to the sum of a geometric progression of the form 

Vr tert... ¢e+... + 1%), where r = 1/(1 + d), and n is the number 

of years from the beginning of the program. The sum, S, of a standard 

geometric progression of the form Vr from n = 0 ton = T — 1 is computed 

as follows: 

T-1 
=OVr=Vi-ryvi-pn [8.6] 
n=0 

Thus in our case, the net return is computed as S with T = © less V, as 

follows: 

fore) V Vr 

R=LZVr-V= —-V= 

n=0 l-r l-r 

    = Vid, [8.7] 

Generally there will be a lag period of several years until the first realization of 

any gain from genetic improvement. This will require a further discounting of 

returns as follows:
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oo t—1 V vd — r) Vr V 

R=EVr—Ove= — — ——— = — = —— [8.8] 
t=0 t=0 l-r l-—r l-r d(i+d)"! 

where t is the number of years until the first return is realized. 
In Chapter 2 we discussed the concept of "profit horizon". Estimating all 

returns to infinity is not realistic. Certainly no economic enterprise, and not 

even a government, will make decisions now based on returns expected 100 

years in the future. A more realistic alternative is to estimate returns and costs 

for a given time period, say twenty years, under the assumption that all returns 

accruing after the profit horizon have a current value of zero. Cumulative return 
will then be equal to the sum of a geometric progression of the form V(r! + r'*' 

+ ... + r'), where T is the profit horizon in years. The net return is then 

computed as the difference of two progressions, as follows: 

T t-1 Vad - rt Vd — 1) Vrdl — tt) 
R =D VP-LE Ve = ———_ — = ———— 8.9] 

t=0 t=0 l-r l-r l-r 

Substituting r = 1/(1 + d) gives (Smith, 1978): 

V 

R= garage Vd + dt] [8.10] 

As T approaches infinity, the term in square brackets approaches unity, and 

equation [8.10] becomes equal to equation [8.8]. The term in brackets can be 

used to estimate the proportion of the total returns of a cycle of genetic 

improvement for a given discount rate and lag time. For example the "half-life" 

of a cycle of genetic improvement can be calculated by setting this term equal 

to 0.5 and solving for T with known values for y and d;. For example if 

d, = 0.03 and y = S years, then the half-life of a cycle of genetic improvement 

will be 27 years. Thus if the profit horizon is set at 20 years, less than half of 
the total gain will be realized within the profit horizon with this particular 

interest rate. Conversely if d, = 0.1, the half-life will be 13.3 years with the 

same lag period, and the 90% life will be 30 years. For the simple case of 

t = 1 and T = infinity, the ratio of expected gain for two different interest rates 

and equal genetic gain can be computed as follows: 

R/R, = d/d, [8.11] 

where R, and R, are the expected cumulative gains with interest rates of d, and 
d,, respectively. In conclusion, for relatively low discount rates, determination 

of the profit horizon can have a major effect on the expected total gain; while for 

relatively high discount rates, the difference between a finite and infinite profit
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horizon will be minimal. 

We can now extend this equation to consider an ongoing breeding program 

with a genetic gain of V each year. The cumulative discounted return can then 

be computed as the sum of a progression of the form V[r + 2rt! +... + 

(T —t + 1)r']. The sum of this progression is computed as follows (Hill, 

1971): 

r—r't! (T —t + 1)r'*! 
_ [8.12] 

(1—r)? l-r 
    

For a discount rate of 0.08, a profit horizon of 20 years, and first returns after 

5 years, R = 32.58V. For an infinite profit horizon, equation [8.12] reduces to: 

Vr' V 

R= —_—_——-_ = ——_— [8.13] 

ad — ry d*(1 + d)'~? 

Continuing the previous example of a discount rate of 0.08, and y = 5, for an 
infinite profit horizon, R = 124.04V. Thus even with a relatively high discount 

rate, a little bit of genetic improvement goes a long way. 

Until now we have been considering additive genetic improvement, which 

is generally considered to be cumulative. Not all genetic improvement is 

additive, and therefore cumulative. In many domestic species the commercial 

animal is a crossbreed produced by breeding different lines. Since it is necessary 

to reproduce the crossbreed each generation, any gain in efficiency specific to 

the crossbreed will not be additive. Thus for crossbreeding we can set T equal 

to the generation interval. Therefore with low discount rates, it is much more 

profitable to utilize additive genetic variance than heterosis. For example, if t 
= 1 and d, = 0.03 the net present value of one unit of genetic gain extended to 

infinity will be 1/0.03 = 33. To obtain the same discounted value by 
crossbreeding with T = 1, requires that V/1.03 = 33, or a nominal gain of V 

= 34 units. This is, of course, an extreme example, but even with T = 10, and 

d = 0.15, the nominal gain from crossbreeding must be six-fold the nominal 

additive gain, so that the current discounted values extended to the profit horizon 

will be equal. 

We will now briefly consider the net present value of the costs of a breeding 

program, under the assumption of constant costs per year. Unlike genetic gain, 

costs of a breeding program are not cumulative. With an infinite profit horizon, 

equation [8.5] can be used to compute the costs with V replaced with C,, the 

annual costs of the breeding program. For a finite profit horizon, equation [8.9] 

can be used to compute the net present value of the costs, C. With first costs
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in the following year, C is computed as follows (Hill, 1971): 

Cax(1 — 1") 
C= [8.14] 

l-r 

Using the values of T = 20, d = 0.08, and r = 0.926; the net present value 

of the costs of the breeding program will be 9.82C,. Thus for t = 5, net profit 

will be positive if V > 0.31C,. Note that profit can be positive even if yearly 

costs are greater than the revenue from yearly genetic gain. Again, this is due 
to the fact that genetic gains are cumulative, while costs are not. Extended to an 

infinite profit horizon, C = 12.5C,. As computed above for this case 

R = 124V. Thus profit will be positive if V > 0.1C,. Examples will be 

considered in Chapter 12. 

8.4 Dissemination of genetic gain in populations for a single 

trait 

In the previous section we considered the net present value of genetic selection 
on a single trait expressed once per generation with discrete generations. In this 

section we will expand the calculations of the previous section to a situation of 

overlapping generations and multiple trait expressions per individual. The 

multitrait situation will be considered in detail in the following section. In 

Chapter 1 we defined the four paths of genetic inheritance, sire to sire, sire to 

dam, dam to sire, and dam to dam. We showed that annual genetic gain in the 

population can be computed by equation [1.25], that is, the sum of the genetic 
gains per generation by the four paths of inheritance, divided by the sum of the 

four generation intervals. However this equation will be correct only for a 

breeding program at equilibrium. If a new program is started, or if an existing 
program is modified, there will be a lag before any gain is obtained, and then 

genetic gains will fluctuate around the equilibrium value for several generations 
(Owen, 1975). Equations [8.5] through [8.13] are correct, only under the 

assumption that the rates of genetic gain and generation intervals are the same 

along the four paths of inheritance. Generally this is not the case. Fertility 

rates, and therefore possibilities for selection are generally greater for males, 

while many important traits, related to female reproduction, are expressed only 

in females. Due to both biological and breeding considerations, generation 

intervals are also different along the four paths. Finally, the time and frequency 

of trait expression can vary. 
These last considerations will be explained with the example of dairy cattle. 

The main traits under selection are related to milk production. To evaluate the 
net present value of a sire’s semen for milk production, we must first consider
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the probability that an insemination from this sire will result in a milk-producing 

daughter. If a milk-producing daughter results, this cow can have several 

lactations. It is necessary to account both for the probability that a given 

lactation will occur, and the differing time-lag from the initial investment to 

realization. Finally the daughter will have a variable number of offsprings, each 

of which will receive only half of the genetic complement passed to the original 

daughter. 

If we wish to compare the net present value of genetic improvement for 
meat production from the dairy herd, we are faced with an entirely different 
situation. Generally calves will be slaughtered at the age of one year. Thus the 

gain from increased meat production will be realized sooner, but will of course 

be realized only once. Furthermore, no gain will be accrued in future 

generations from these individuals, since they will invariably be slaughtered prior 

to mating. Thus increasing slaughter rate increases the probability of the 

realization of this trait in the short-term, but decreases the rate of genetic 

dissemination in the long-term. 

A number of studies have addressed various aspects of these problems. As 

in the previous chapters we will progress from simpler, more specific cases to 

the more complex, general cases. We will first consider the economic evaluation 

of the genotype of a single individual for a single trait, with a single expression 
per animal, such as meat production (McClintock and Cunningham, 1974). They 
called their method the "discounted gene flow technique". Representations are 

simplified by the use of matrix algebra. Extending the calculations of the 

previous section, the net present value of the unit semen from a given sire, N, 

for a single trait can be computed as follows: 

N = d’u(BV)a [8.15] 

where u is a column vector and d’ is a row vector both of dimension equal to 

the number of years from insemination to profit horizon; BV, a scalar, is the 

sire’s breeding value for the trait in question; and a, also a scalar, is the 

economic value of a unit change in the trait. The elements of u represent the 
expectation of the fraction of the sire’s genotype that will be expressed in his 

progeny in a given year. The elements of u are computed by multiplying the 

probability of the trait expression in a given year by the fraction of the genome 

of the original sire passed to each descendant, and summing over all possible 
descendants that could express the trait in that particular year. The elements of 

d are the appropriate discounting factors for the elements in u. The j" element 

of d’ is computed as follows: 

d= 1/(1 + dik [8.16] 

where k is the time period in years from original investment to mean trait
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expression, and d, is the discount rate. Although there is no general formula for 
computing the elements of u, McClintock and Cunningham (1974) provided 
formulas to compute this vector for the specific situation in their study. In the 
above discussion we have assumed that the trait in question is expressed once 
yearly. If this is not the case, then the dimension of u will be the number of 
different times that the trait can be expressed up to the profit horizon over all 
possible descendants of the original sire, and k must be computed accordingly. 

For a trait that can be expressed several times by each individual, such as 
milk or wool production, equation [8.15] can be expanded as follows 
(McGilliard, 1978): 

N = d@’Um(BV)a [8.17] 

where m is a column vector of length equal to the possible number of 
expressions of the trait (lactations), U is a year-by-parity matrix, and the other 
terms are as defined previously. If all expressions of the trait have equal value 
then m will be a column of ones. If, as in the case of milk production, lactation 
yield increases with parity, then one element of m will have the value of unity, 
and the other elements will have values in proportion to the "standard" trait 
expression. The breeding value will be estimated relative to the "standard" trait 
expression. The elements of U are computed by multiplying the probability of 
the trait expression in a given year-lactation combination, times the fraction of 
the genome of the original sire passed for each descendant, and summing over 
all possible descendants that could express the trait in that particular year-parity 
combination. As in the previous example there is no general formula for 
computing U, but McGilliard (1978) provided an algorithm for computing this 
matrix for the specific example of dairy cattle. 

Equations [8.15] and equations [8.17] can readily be expanded to deal with 
the multitrait situation. If several traits are expressed jointly, for example milk, 
butterfat, and milk protein production, then it is only necessary to replace (BV)a 
with the aggregate genotype, H = y’a, also a scalar, as computed in Section 3.4. 
If the different traits are expressed at different times, and with differing 
probabilities, it will be necessary to compute d’u or d’Um for each trait. We 
are now confronted with the rather undesirable result that, unless all traits are 
expressed jointly, the relative economic values of the different traits will depend 
both on the discount rate and the profit horizon. 

In this section we have removed the restraints of the previous section, but 
have so far only considered the net present genetic value of a single individual. 
We will now extend these calculations to evaluate the net present value of 
selection for a complete population with differing rates of male and female 
selection. General formulas for single-trait selection were derived by Hill 
(1974). As we have already noted in the previous examples, generations for 
most domestic animals overlap. For example both a cow and her daughter may
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be producing milk at the same time. Thus, although both records must be 

discounted equally, the expected genetic gains will be different. We will use 

Hill’s example of pig production to derive the general formula for estimating 

genetic gain in a population with differing rates of male and female selection, 

unequal generation length, and overlapping generations. 

Assume that sows farrow twice, at the age of one and 1.5 years, while 

boars are mated only once, and produce progeny at the age of one year. It will 

then be convenient to measure time in half-year units. The genetic makeup of 

the population can then be described by considering five groups of animals, 

males of age six months (one time unit), males of age one year, and females of 

ages six months, one year and 1.5 years. The passage of genes from one time 

unit to the next can then be described in matrix algebra by the following 

equations: 

y, = Zy-, 
[8.18] 

where y, is vector of the breeding values of these five groups of animals at time 

t and Z is a matrix that describes the passage of genes across these five groups 

of animals from time t — 1 to time t. Each element, Z,, is computed as the 

proportion of genes in animals of sex-age class i at time t coming from animals 

of sex-age class j at time t — 1. For this specific example, Z is computed as 

follows: 

41/4 | 

0 0 —_ 
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o
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Oo 
Oo 

  Z= —_—- [8.19] 

0 1/2 0 1/4 1/4 

0 O 1 0 0   0 O 0 1 0     
with the four blocks of this matrix corresponding to the pathways sires to sires, 

sires to dams, dams to sires, and dams to dams. Thus the genetic composition 

of a population after any number of generations, starting from any original 

population makeup, can be computed by successive applications of equations 

[8.18]. 
The matrix Z includes both the effect of ageing (represented by elements 

equal to unity) and reproduction (represented by positive elements less than 

unity). Only those elements due to reproduction are of interest for estimating 

genetic advancement. To remove the effect of ageing we will define a new
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matrix, Q, that includes changes in the population structure due solely to ageing. 
In the example given above, Q is computed as follows: 

  

  

f 9 oO 000. 

1 0 00 0 

Q = —____. [8.20] 

0 0 000 

0 0 100 

0 0 010     
We can now compute the response to one cycle of selection at time t, r, as: 

r= (Zi -— DYmeGm + Yeo.) [8.21] 

where Z' and Q' are Z and Q to the t™ power, y,,, and y,, are the vectors that 
represent the original genetic makeup of the population for males and females, 

respectively, and G,, and G, are scalars that represent the genetic superiority of 

the males and females selected as parents for the next generation. The dimension 

of the vectors r,, Y,,,. and y,, will be the sum of the number of male and female 

age groups equal to or below mating age. The non-discounted value of the 

response to one cycle of selection at time t, V,, can then be computed as follows: 

V.=ar, [8.22] 

where a is the vector of the economic values of a unit change in the trait for 

each group of animals. Defining v as a vector of the economic values of the 
gains in selection from time 1 to time t, the discounted gain in selection to time 

t, N,, can then be computed as: 

N, = div [8.23] 

where d,’ is a row vector of discount factors as defined above. 

If the same selection procedure is performed on each successive group of 
animals born, then the response at time t from selection at time 1 is equal to 
response at time t — 1 to selection at time 0, and so forth. Then the total 

response to a continuous program of selection, R,, starting from any base 

population structure can be computed as:



112 Economic Aspects of Animal Breeding 

R,=rm+ myst... tr 

=[(1+Z+7+..+27)-d2+Q+Q +... Us [8.24] 

where I is the identity matrix, and s is computed as follows: 

s= YmoCm + YroGr [8.25] 

Replacing r, with R, in equations [8.22] and [8.23] gives the total discounted 

returns from a program of continuous selection up to time t. 
These equations will become quite complex for most realistic population 

structures. It is likely that for most situations a reasonable approximation of the 

true economic values can be obtained by the equations of the previous section, 

which assume a constant rate of genetic gain per year. 

8.5 Index selection for both current and future generation 

gains 

We will now consider construction of the optimum selection index accounting for 
discounting of future gains and a limited profit horizon. We will consider three 

situations. The simplest situation is when all traits that are included in the 

selection index are realized at the same time, and with the same probability, for 

example milk, butterfat, and milk protein production. In this case, the effects 

of discounting future gains and a finite profit horizon will be the same for all 

traits, and the effects of these factors can be ignored in the computation of the 

economic values. 

The second situation is when different traits are realized at different times 

and with possibly differing probabilities, but we are still interested only in the 

rate of genetic gain of the population. For example in swine, the number of 

progeny per dam, and growth rate are expressed at different times. Furthermore 

nearly all animals are slaughtered, but not all animals are used for reproduction. 

In this case the equations of the previous section and Chapter 3 can be used 

to determine the optimum selection index. In Chapter 3 we defined the optimum 

selection index, b’x, as the index with the maximum correlation, or minimum 

mean squared deviation from, the aggregate genotype a’y. The vector of index 

coefficients, b, was derived in equation [3.17] as follows: 

b= P'Ca [8.26] 

Where P is the phenotypic variance matrix, C is the genetic covariance matrix 
between the traits in the selection index and the aggregate genotype, and a is the 

vector of economic values. We will now define the aggregate genotype of
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animals age-sex class j at time t, H,,, as follows: 

H,, = ay’y [8.27] 

where a, is the vector of non-discounted economic values of the traits included 

in the aggregate genotype at time t for the j" class of animals. The aggregate 

genotype over all classes of animals at time t can then be computed by expanding 

a,’ into a matrix A in which each column represents the economic values for the 
j" class of animals at time t, and multiplying A by the proportion of genes in 

animals of each group at time t derived by reproduction from the group selected 

at year zero. This vector can be derived from equation [8.21] of the previous 

section as follows: 

m, = (Z' — Q)m, [8.28] 

where m, now represents the proportion of genes at time t in all age-sex classes 

derived from the original population distribution, m,. The present economic 

value can then be computed by multiplying by the discount factor at time t. To 

account for all time periods from zero to t, the vector, m,, is expanded into a 

matrix, M, in which each column represents a time period from 1 to t, and each 

row represents an age-sex class. This matrix is then multiplied by the vector of 

discount factors, d,. Combining all elements we obtain the following equation: 

b = P-'CAMd, [8.29] 

with all terms as defined above. Note that the vector a of equation [8.26] is now 

replaced with AMd,, which, after the appropriate matrix multiplication, will 

result in a vector of dimension equal to the number of traits in a. 

The third situation we will consider is when the breeder or producer wishes 

to optimize jointly current production, gains in the current generation, and long- 

term genetic gains. This situation was considered by James (1978) for the case 

of meat and wool production from sheep. The producer should optimize jointly 

for current production of meat from culled animals, future wool production of 
ewes kept in the flock, descendants sold prior to mating for meat, and wool and 

meat produced by descendants used as parents for future generations. Of course 

a similar situation will exist for dual purpose, meat and dairy, cattle. This 

situation will also apply for calving traits in dairy cattle, even if meat production 

is of negligible economic value. In many countries dairy sires are evaluated for 

both their fertility and the calving ease of their daughters. Even though data on 

fertility will be collected on the daughters, this trait can be considered a 

phenotypic expression of the sire. Since the genetic correlation between male 

and female fertility is not significant (Ron, Bar-Anan, and Wiggans, 1984), the 

genetic component for male fertility passed to daughters will be expressed only
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if a daughter is used as a bull dam. Similarly, the main goal of selection for 
dystocia will be to reduce calving difficulty in the current generation of a sire’s 
progeny. Since the genetic correlation between dystocia as a trait of the sire, 

and as a trait of the dam is low (Meijering, 1984; Thompson, Freeman, and 

Berger, 1981), selection of "easy calving" sires will not necessarily result in 

"easy calving" daughters. 

The economically optimum selection index for this situation is computed by 
the following equation: 

b = P-'(P.w + P,ASd, + CAMd,) [8.30] 

Where P, is the phenotypic covariance matrix between the traits in the selection 
index and the traits in the economic objective; w is the vector of economic values 

of the index traits for animals in the current generation; P, is the phenotypic 

covariance matrix between the trait values in the subsequent generation and the 

economic objective; S is the matrix, in which each column is the s-vector of 

equation [8.25] for a different t-value; and the other terms are as described 
previously. 

Thus the overall index is made up of three subindices: the first for 

optimizing current returns, the second for optimizing gain in the next generation, 
and the third for optimizing long-term genetic gains. This result is analogous to 

the result of Henderson (1963) that selection index is a weighted sum of 

subindices, each of which would maximize gain in a single trait. If all traits 

included in the economic objective are also included in the index, then P = Py, 

and equation [8.30] can be simplified accordingly. 

8.6 Examples of computations of economic weights including 
discount rate and profit horizon 

In this final section before the summary we will review three studies that have 
attempted to compute long-term economic values of different traits. The first 
example we will consider is Soller and Bar-Anan (1973). They compared the 
economic values of milk and meat production from a commercial dairy 
population. Their calculations were based only on a single generation of 

selection. Thus they considered differential discounting of the two traits, and 
differential probability of trait realization, but did not consider the possibility of 
differential gene flow for the two traits. This would be correct only if all 
animals were selected on the same criteria. In practice however, only bulls will 
be selected on an index based on both traits, while cows will be selected chiefly 
on milk production. They did consider three market situations: subsidized milk 
and meat prices and no production limits, subsidized milk prices and milk 
production quotas, and free market prices for both products. Over these three
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market conditions, the range in the relative economic values of kg live weight 

vs. kg milk production was from 7.2:1 to 8.2:1. Thus the ratio of economic 

values was quite robust to dramatic changes in market conditions. 

Cunningham and Ryan (1975) studied the effect of variation in the discount 

rate and profit horizon for the same traits considered in the previous study, but 

under the assumption that a fraction of the dairy cows are bred to sires of a beef 

strain. They then assume that no progeny from these matings are allowed to 

reproduce. With a discount rate of 0.08, 98% of all economic benefit from an 

insemination will be realized within 15 years. Thus longer profit horizons need 

not be considered. Alternatively, returns computed to infinity will be nearly 

equal to returns computed to a profit horizon of 15 years. These results are 

different from those of Smith (1978), presented above in Section 8.3, who found 

that only 90% of the total net present gain would be realized after 30 years with 

a discount rate of 0.1. The discrepancy is due to the fact that Smith (1978) 

considered the situation of raising the genetic level of the entire population, while 

Cunningham and Ryan (1975) considered the consequence of a single 

insemination. 
Although these authors considered the effect of varying the discount rate on 

the net present value of each trait, they did not consider the effect of the discount 

rate on the ratio of the economic values. Increasing the discount rate lowered 

the net present value of milk production slightly more than the net present value 

of beef, but the exact ratio can not be computed from the results as presented. 

Each 1% increase in the discount rate reduced the net present values by 

approximately 5% for milk and 4% for beef. Thus one can deduce that over the 

range of discount rates studied, 0.08 to 0.16, the ratio of the economic values 

would change only marginally. 

Weller, Norman, and Wiggans (1984a) considered first, second, and third 

parity milk production as three separate traits, and estimated the relative 

economic values of milk production for each parity. This study assumed that 

lactations of parities greater than three would have a higher genetic correlation 

with third parity production, as opposed to first parity production. It should be 
now be clear that increasing the discount rate and reducing the profit horizon will 

increase the relative economic value of first, as opposed to third parity. As the 

profit horizon increased from 7 to 10 years, the relative economic values of first 

and third parity changed from approximately 2:1 to 1:2. However, after 10 

years, the effect of further increases in the profit horizon was minimal. As the 
discount rate increased from 0.05 to 0.15 this ratio increased from 0.8:1 to 1:1. 
Varying the survival rate from parity to parity over the range of 0.7 to 0.9 had 

a greater effect on the relative economic values than did varying the discount 

rate. 

In conclusion, all of these studies indicate that, in general, the relative 

economic values of traits are robust to realistic changes in the profit horizon, the 

discount rate, and the probability of income realization.
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8.7 Summary 

Since the different costs and returns in animal breeding procedures are realized 

at different times, and with differing probabilities, factors that affect costs and 
returns over the long-term must be considered in the economic evaluations of 

genetic differences. The main long-term considerations of animal breeding 

programs are the discount rate, risk, profit horizon, gene flow and commercial 

population size. Formulas were presented to account for the effects of these 

factors on the net present value of genetic selection. A major problem in 

including these factors in the computation of economic values is that they are 

often unknown or subjective. Most studies that have included discounting factors 

in the computation of economic trait values have shown that these factors can 

have major effects on the absolute economic values, but they will tend to have 

only minimal effects on the relative economic values of the traits considered. 

Thus, although the discount rate and profit horizon will have a major effect on 
the attractiveness of investment in breeding programs as compared to other 
investment alternatives, selection index coefficients will be robust to "reasonable" 

variation in these factors.



  

PART III 

CONSTRUCTION, USES AND 
PROBLEMS OF MULTITRAIT 

SELECTION INDICES 

In Parts I and II we covered the basic concepts necessary to study the economic 

aspects of animal breeding, and the methods for economic evaluation of genetic 

differences. Linear selection index was introduced in Chapter 3, and its basic 

properties were discussed. Application of selection index requires that the 

genetic parameters of the economic traits, and their economic values be known. 

Although it is relatively easy to derive reliable estimates of heritability, it is 

much more difficult to derive reliable estimates for genetic and environmental 

correlations. In fact many published reports have presented estimates of 

covariance components outside the parameter space. (Methods for estimation of 

genetic parameters have been dealt with very extensively in the literature and are 

not considered within the scope of this book. Although a great many references 

could be presented, we will mention only Henderson (1984), which is to date the 

most complete discussion of this topic.) 

Even if good estimates of the genetic parameters have been derived, linear 

selection index can only be applied if the economic values of the different traits 

are linear functions of the trait values. In Part 2 we demonstrated that this is 

rarely the case. Not only are the economic values not linear functions of the 

trait values, they can also be different by different economic criteria (profit vs. 

economic efficiency), and will depend on extraneous factors, some of which are 

subjective, such as the profit horizon, or acceptable rate of risk. 

The difficulties with the direct application of linear selection index have led 

to the development of alternative selection criteria. These alternatives will be 

considered in Chapter 9. In Chapter 10 we will use theoretical and simulation 

studies to compare linear and nonlinear selection indices.



Chapter Nine 

Selection Indices for Nonlinear 

Profit Functions 

9.1 Introduction 

Although several alternatives to linear selection index have been considered, none 
is a complete solution to the difficulties encountered with linear selection index. 

The three main alternatives that have been suggested are nonlinear (quadratic, 

cubic, etc.) selection index, restricted selection indices, and linear indices derived 

by graphic methods. In this chapter we present the mathematical derivations of 
each index using matrix algebra, and then consider the advantages and 
disadvantages of each method. Where applicable, we will also present examples 

from the literature. 

9.2 Quadratic models for the aggregate genotype 

The concept behind quadratic aggregate genotype can be understood by the 

parallel to linear models. In a simple linear model, the dependent variable is 

assumed to be a linear function of the independent variables. If the linear model 
does not satisfactorily "fit" the data, it can be improved by assuming higher order 
relationships between the dependent and independent variables. For example 
assume the following linear model: 

Y =a,X, +aX,+e [9.1] 

where Y is the dependent variable, X, and X, are independent variables, a, and 

a, are regression coefficients, and e is the residual. If the relationship between 

the dependent and independent variables is not linear, than the explanatory power 

of the model can be improved by inclusion of higher order terms as follows: 

Y =a,X, + aX, + aX,’ + a,X,” + a,X,X, te [9.2] 

Where the a’s are regression coefficients and the other terms are as described 

previously. All possible second order regressions have been included in equation
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[9.2]. If the dependent variable is the economic criterion (profit or economic 
efficiency) and the X’s are the trait values, then linear selection index will be 
appropriate for the model of equation [9.1], but not for the model of equation 

[9.2]. 
In Chapter 6 we demonstrated that the economic values of different traits 

will be functions of the trait values. For example, in Table 6.4, the economic 
value of egg weight, computed on the basis of profit per hen, is a function of 

eggs per hen times egg weight. This is comparable to the fifth term in equation 

[9.2]. Although no examples are presented in Chapter 6, in which the economic 

value is a quadratic function of the trait value, many other functions can be 
approximated by a quadratic equation. 

Wilton, Evans, and Van Vleck (1968) presented the following quadratic 

model of the aggregate genotype: 

H, =a(uty)t+ (ut y)Al + y) [9.3] 

Where H, is the aggregate quadratic genotype of the individual; a is an m x 1 

vector of linear economic weights, as previously; » is m x 1 vector of trait 

means; y is am x 1 vector of breeding values, that is the genetic deviations from 

the trait means for a given animal; and A is the m x m matrix of quadratic 
economic weights. A is computed as follows: 

a,  1/2a,,.... 1/2a,,, 

1/2a,, ay? 9.4] 

1/2a,,, sess a 
mm     

Where a, is the quadratic economic coefficient for the i® trait, and a, is the 
economic coefficient for the combination of the i® and j" traits. Since these 
elements appear in the matrix both above and below the diagonal, they are 

multiplied by one half in the matrix. Thus the aggregate quadratic genotype 

differs from the linear aggregate genotype, both in the inclusion of the second 

term, and in the inclusion of the trait means. (The importance of the latter 

consideration will become clear shortly.) 

9.3. Derivation of optimum linear and quadratic selection 

indices for quadratic models of the aggregate genotype 

Using the quadratic aggregate genotype, we will first derive the optimum /inear 

index, and then derive the optimum quadratic index. The linear index, ||, was
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defined in Section 3.3 as follows: 

I, = b’x [9.5] 

where b is an n x 1 vector of index coefficients, x is an n x 1 vector of trait 

values, expressed as deviations from the mean, and n is the number of traits 

included in the index. The optimum linear selection index will be defined as the 

index that minimizes the expectation of the squared difference between the 

ageregate genotype (which is in this case a quadratic function of the trait values), 

and the index. The deviation of the aggregate genotype from its expectation, 

E(H,) is computed as follows: 

H, — E(H,) =( + y)’at (ut y)A@ ty) — [wat p’Ap + tr(AG)] 

= y’a + 2y’Ap + y’Ay — tr(AG) [9.6] 

Where "tr" denotes the trace of a matrix, and G is the genetic variance matrix 

among the traits. The expectation of the squared difference between the index 

and the aggregate genotype is then computed as follows: 

E{[I, — E()] — (H, — E(H,)}}’ = E[b’x — y’a — 2y’Ap — y’Ay + tr(AG)J’ 

= E[b’xx’b — 2b’xy’a — 4b’xyAp — 2b’xyAy + 2b’x tr(AG) 

+ terms not including b 

= b’Pb — 2’bCa — 4b’CAp + E[terms not involving b] [9.7] 

Where P is the phenotypic variance matrix, and C is the covariance matrix 

between x and y. (The expectation of 2b’xyAy + 2b’x tr(AG) will be equal to 

zero.) Differentiating with respect to b and equating to zero gives: 

2Pb = 2Ca + 4CAn [9.8] 

b = P"'C[a + 2Ap] [9.9] 

Thus the optimum linear index for the quadratic aggregate genotype is: 

I, = {P-'C[a + 2Ap]}’x [9.10] 

Note that the difference between this index and the standard linear index is the 
inclusion of the term 2Ap. Thus the optimum linear index is a function of the 
trait means for the given population. This explains the importance of inclusion



  

Selection Indices for Nonlinear Profit Functions 121 

of the means in the computation of the quadratic aggregate genotype in equation 
[9.3]. Contrary to the standard linear index, the index coefficients for I, will 

therefore be functions of the trait means. (This question will be considered in 

more detail in the next chapter.) 

The optimum quadratic index, I,, is defined as follows: 

I, = b’x + x’ Bx [9.11] 

Where B is an n x n matrix of the form: 

b,, 1/2b,, .... 1/2b,, 

1/2b,, Bag 9.12 

    ; 1/2b,, ee Dp 

Where b,, is the quadratic index coefficient for the i® trait, and b, is the economic 

coefficient for the combination of the i® and j" traits. Similar to the matrix A, 

these elements appear in the matrix both above and below the diagonal, and are 

therefore multiplied by one half in the matrix. 
The same method used above to derive I, will now be used to derive [,, i.e., 

minimization of the expectation of the squared deviation between the aggregate 

genotype and the index, both expressed as deviations from their expectations. 

E{(I, — E(I,)] — [H, — ECH,)}}* = 

= E[b’x + x’Bx — tr (BP) — y’a — 2y’Ap — y’Ay + tr(AG))’ [9.13] 

After several simplifications, and elimination of all terms which either have 

expectation of zero, or do not involve either b or B, this expectation can be 

rewritten as follows: 

E{(I, — Ed,)] — (H, — E(H)}}* = 

= b’Pb — 2b’Ca — 4b’CAp + 2tr(BPBP) — 4tr(BCAC’) [9.14] 

Differentiating with respect to b and B and equating to zero gives: 

Sb/SE(.)? = 2Pb — 2C(a + 2Ap) = 0 [9.15]
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5B/S5E(.) = 4PBP — 4CAC’ = 0 [9.16] 

where E(.)* represents the expectation of the squared deviation between the 

aggregate genotype and the index. Solving for b and B we have: 

b = P"'C(a + 2Ap) [9.17] 

B = P“'CAC’P™! [9.18] 

I, is then computed as follows: 

I, = x’P"'C(a + 2Ap) + x’P"'CAC’P™'x [9.19] 

I, is the maximum likelihood estimate of H,, conditional on x (Wilton, Evans, 

and Van Vleck, 1968). 

9.4 Comparison of linear and quadratic indices for quadratic 

aggregate genotype functions 

Although equation [9.19] is different from equation [9.10], it is of interest to 

determine what advantage will be gained, if any, by selection based on [,, as 

opposed to I. In Section 3.5 we showed that the response to selection for the 

optimum linear index will be proportional to the standard deviation of the index. 
This will also be the case for the quadratic index. Thus the relative efficiency of 
I, to 1, can be computed as the ratio of the standard deviations of the two indices. 
The variances of the two indices are computed as follows: 

Or. = E[], —_ E(I)]’ = b’Pb [9.20] 

Oj, = Efi, — E(1,)]’ = b’Pb + 2tr(BPBP) [9.21] 

Thus the relative selection efficiency (RSE) of the I, is computed as follows: 

RSE = {b’Pb/[b’Pb + 2 tr(BPBP)]}'” = [1 + 2 tr(BP)*/b’Pb]~'” [9.22] 

Application of quadratic indices will now be demonstrated using the example 

of Wilton, Evans, and Van Vleck (1968) for Angus beef cattle. They assume two 

traits with economic value: weaning weight and type score, and the following 

aggregate genotype function: 

H, = $0.11(u, + y,) + (uy, + y,)$0.0049(n, + yo) [9.23]
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where 1, and y, refer to lbs weaning weight, and 1, and y, refer to points type 
score. In this example, the economic value for type score is a function of 
weaning weight, and a linear selection index is not appropriate. The means, 

phenotypic variances, and genetic variances of weaning weight and type score are 

respectively 419 lbs, and 13.35 points, 2649 Ibs”, and 1.75 points’; and 1452 Ibs’ 
and 1.12 points’. The phenotypic and genetic covariances between weaning 
weight and type score are 18.49 and 7.2 Ibs points. Substituting these values into 
equation [9.9] the elements of b are computed as $0.095/Ib and $1.0354/point, 
and the optimum linear index is: 

I, = $0.095x, + 1.0354x, [9.24] 

where x, and x, are the individual’s weaning weight and type score, respectively. 
To compute the optimum quadratic index, it is necessary to compute B from 

equation [9.18]. Substituting the values given above into equations [9.18] and 

[9.19], and simplifying gives the follow result: 

I, = $0.0950x, + $1.0354x, — 0.0000052x,? — 0.0058551x,” 

+ 0.0018302x,x, [9.25] 

Using equation [9.22] the relative efficiency of the linear index to the quadratic 
index is computed as 0.9997. This result is not surprising in view of the small 
index coefficients for the quadratic terms in equation [9.25]. It should be noted 

that, in general, the relative efficiency of I, will be very close to I, for most 
practical situations. Wilton, Evans and Van Vleck (1968) noted that the quadratic 
index has an advantage in utility "because in the equivalent maximum likelihood 

development the estimates of genetic value for each trait can be made, and the 
economic values and the means can be changed, depending on the situation." This 
conclusion will be considered in more detail in the following chapter. 

9.5 Restricted selection indices, theory 

Because of the difficulties involved in accurately estimating the relative economic 
values of different traits, Kempthorne and Nordskog (1959) suggested the 
application of restricted selection indices as an alternative to linear selection 
index. The concept behind restricted selection indices can be stated as follows. 
Although we may not know the current economic values of unit changes in all 

traits, we do know that over the long-term certain changes would be very 

undesirable. Thus, the selection index is restricted within the "acceptable" 
parameter space of genetic changes. For example, a number of studies have
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been published on the genetic relationship between milk production and cow 

fertility (e. g. Hansen Freeman, and Berger, 1983; Hermas, Young, and Rust, 

1987; Weller, 1989). Most of these studies have found that the genetic 
correlation between these traits is negative. Thus selection for production should 

produce a genetic reduction in fertility. Clearly this result would be undesirable. 

The linear selection approach would be to compute the optimum index based on 

the relative economic values of the two traits. However in doing this we would 

have to overcome all of the difficulties described above. In the restricted 

selection approach, we could assume a priori that any reduction in fertility is 

unacceptable. Under the restriction of zero genetic change in fertility, we then 

compute the index that maximizes genetic increase in milk production. 
Most applications of restricted selection index have dealt with restrictions of 

this type, i.e. the index that gives maximum change in some traits under the 

restriction of zero change in other traits. Two other types of restricted indices 

have been proposed: fixed proportional change among traits (Pesek and Baker, 

1969; Yamada, Yokouchi, and Nishida, 1974; Brascamp, 1984; Essl, 1981), and 

fixed absolute change among traits (Harville, 1975). In either case it is possible 

to restrict only some of the traits, and include the objective of maximum genetic 

change for the unrestricted traits. As an example of the applicability of this type 

of restriction, we can consider fat and protein content of milk. The ratio of fat 

to protein production of different dairy strains and countries ranges from 1 to 1.6, 
and this ratio can be affected by breeding (Gibson, 1987, 1989). The optimum 

selection index for these two traits can be readily computed based on the net 

economic value of each component. However, application of the optimum linear 

index may result in a change in the ratio of fat to protein production. Clearly it 

is desirable that the ratio of production should approximate the demand for any 
given country. Thus an index that maximizes production of both components, but 
restricts the change in ratio may be desirable. To derive the formula for optimum 

restricted indices, we will first review the derivation of the optimum unrestricted 

linear index. 

9.6 Derivation of the optimum unrestricted selection index 

In Chapter 3 we derived the optimum selection index coefficients by minimizing 

the squared difference between I and H. Brascamp (1984) presents two 
additional methods to derive this index. They are: 1) to maximize the average 
expected breeding values of the selected individuals, and 2) to maximize the 

correlation between I and H. One of the major strengths of linear selection index 

is that the same solution for b is obtained by all three methods. 

We will now consider the method of maximization of expected breeding 

value in some detail for unrestricted index, before proceeding to the derivation 

of the restricted index. As shown in equation [3.26], the response to selection
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on a linear index, 6,, is computed as follows: 

b, = Iy7Oy = 10,,/0; [9.26] 

Where 6, is the standard deviation of the index. (The additional subscript "s" in 

equation [3.26] is now deleted.) The selection intensity, i, is a constant, and can 
therefore be assumed to equal unity. From equations [3.24] and [3.25] we have: 

o? = b’Pb [9.27] 

6,, = b’Ca [9.28] 

The optimum values for b can then be computed by differentiating $, with respect 

to b, and equating to zero as follows: 

do,/db = Ca/o, — Pbo,,/(c,) = 0 [9.29] 

[,,(c,)"]b = PCa [9.30] 

Since we are interested only in the relative values of the elements of b, b can 
be scaled so that 6,,/(o,)* = b,, = 1. In this case we derive the result of equation 
[3.17]: b =P 'Ga. Alternatively we can set: 6,’ = b’Pb = 1. In this case the 

solution for b is found by maximizing b’Ca — t(b’Pb — 1) where Tt is a 

"Lagrange multiplier". b’Ca does not have a unique maximum. However, b’Ca 

— t(b’Pb — 1) will be maximum only when b’Pb = 1. The values of b are 

found by differentiating with respect to b, and equating to zero, and then solving 
for the Lagrange multiplier. This of course gives the same result for b as the 

previous methods, but has the useful property that the correlated response of an 

individual trait due to selection on the index will reduce to [Cov(g,,p’)]b where 

Cov(g,,p’) is the i" column of G. If G = C, that is if all traits included in the 
genetic variance matrix are also included in the index, then the equation for the 
correlated responses for the individual traits given in [3.31] reduces to @¢ = b’G 
per unit selection intensity. 

9.7 Derivation of optimum restricted selection indices 

We will divide the traits included in the index into two groups, g, and g,, and 

assume that all traits included in the aggregate genotype are included in the index 

so that C = G. Consider the general case in which maximum gain is desired for 

g. traits, while the relative genetic gain for the remaining g, traits is restricted. 
We will partition G as follows: G = (G,:G,), and assume that o, = 1. The 
correlated response of g, will then be G,’b, and the correlated response of g, will
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be G,’b. The restriction can then be defined as follows: 

¢=a 6 [9.31] 

@ = G,’b [9.32] 

where ¢ is a vector of absolute changes for the traits in g,, a is a proportionality 

constant, and 6 is vector of the proportional changes for the traits in g). 

The optimum restricted index can then be computed in terms of ¢ (fixed absolute 
trait changes) or 6 (fixed relative trait changes). We will first solve in terms of 
@ and then substitute to solve for 6. Defining a, as the economic value of the 
traits in g,, the optimum restricted index is then computed by maximizing b’G,a,, 

under the conditions that G,’b = ¢, and o, = 1. In this case, the function to be 

differentiated is: b’>G,a, — I'’(G,’b — ¢) — t(b’Pb — 1). Where I is a vector 

of Lagrange multipliers and t is a scalar Lagrange multiplier. Differentiating and 

equating to zero gives: 

Ga, — G.I — 21Pb = 0 [9.33] 

It is then necessary to solve for I and t in terms of the other variables. The 

matrix algebra for this is quite complex and is given in Brascamp (1984). We 

will only present the final solution for b: 

(1 — 6(G’P'G,)""4)"” 
  b= RG, a, + P"'G,(G,’P'G,)""¢ [9.34] 

(a,’G,RG,a,)"” 
where: 

R =P" — G(G,’P'G,)'G,’P™' [9.35] 

A solution will exist only if 1 — ¢’°(G,’P~'G,)""@ > 0. If this term is equal to 
zero, then the change in g, will be maximum, and the change in g, will be zero. 

We will now solve for @ in terms of 5, with the aid of the following 

equation: 

Prax = Umax 4 [9.36] 

where @,,,, is the maximum possible value for @, and «,,,, is a proportionality 

constant. Substituting into equation [9.34] and simplifying gives: 

a - o/o2.,,.)!” 

b = RG,a, + aP'G,(G,’P'G,)715 [9.37] 
(a,’G,RG,a,)'” 
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This equation no longer contains @. The optimum restricted index is now 
computed as a function of 6, which is assumed to be known, a,,,,, which can be 
computed from equation [9.36], and a. Although o is not known, it can be 
chosen so that 0 <a < q,,,,. 

We will now develop the equations for two specific types of restricted 
indices; indices with the change in some traits restricted to zero, and selection 

indices with all traits restricted to specified changes. For restriction of some 

traits to zero, a = 0 and 6 = @ = 0. In this case, equation [9.34] reduces to: 

b = (a,’G,RG,a,)~'7RG,a, [9.38] 

Since (a,°G,RG,a,)' is a scalar, a new vector, B can be defined proportional 

to b and equal to: 

B = RG,a, [9.39] 

Cunningham, Moen, and Gjedrem (1970) solved for 8 using the following normal 

equations: 

P G, 8 G,a 
= [9.40] 

G, 0 r 0 

Where I is a vector of Lagrange multipliers, that solve the equations G,’B = 0. 

Cunningham, Moen, and Gjedrem (1970) also noted that there exists a vector of 

economic weights, a,, that would have resulted in zero changes for the traits in 

g, with the optimum unrestricted index. The solution for a, is —F’. Thus as a 
check on the validity of this index, these "pseudo" economic weights can be 
computed, and their values compared to the best available estimates for a,. 
Restricted indices of this type were developed for dairy cattle by Niebel and Van 
Vleck (1982, 1983), in which the genetic change in calving difficulty was 

restricted to zero. 
The optimum selection index for desired changes is merely the specific case 

where all traits are included in g,. In this case, equation [9.34] reduces to: 

b= P'G(G,’P"'G,)"'o = a,,,P'G,(G,’P'G,)"'5 [9.41] 

Since all traits are restricted, it is necessary only to compute the relative index 

weights of the traits. Therefore, o.,,,,, Which is now a proportionality constant, 

can be dropped. For selection on individual performance, and the same traits in 
I and H, that is C, = G,, equation [9.41] then simplifies as follows (Pesek and 

Baker, 1969):
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b=G,7'5 =C,7'5 [9.42] 

We can compute, as in the previous case, the values for a, that would give the 

same unrestricted selection index. From equation [9.32] we have @ = G,’b, and 

for linear selection index b = P~'G,a,. Substituting for b gives: 

¢ =G,P'G,a, [9.43] 

a, = (G,’P~'G,)~'¢ [9.44] 

Again these "pseudo" economic values can be checked against the best guess 
available as to the true economic values. Finally we should note that although 
restricted indices are linear, they will be less efficient than the optimum linear 

index, assuming the economic weights are known, and that they are linear 

functions of the trait values. 

We will illustrate restricted indices with the following example from milk 
production. As stated previously, the genetic correlations between milk 

production and fat and protein percent are negative. Furthermore although in 
many countries, protein is more valuable than fat, the standard deviation and 

heritability of protein are lower. Assume that the breeding objective is to 

maximize protein and fat production, under the constraints that genetic gain in 

both traits will be equal, and that the mean percent of protein and fat will not 

change from the current value of 3.3%. That is: 

Om = (O, + ,)/0.066 [9.45] 

where 9,,, 9, and @; are the genetic gains in milk, fat and protein, respectively. 

We will further assume that the selection index will consist only of these three 

traits, and that their genetic and phenotypic variance matrices are known to be as 

follows: 

527,148 6756 9973 

G = 6756 502 249 [9.46] 

9973 249 306 

1,469,190 32,883 37,943 

P = 32,883 1557 1023 [9.47] 

37,943 1023 1220
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The elements of 6 will then be 1/0.033, 1, 1. Assuming selection on individual 

performance, equation [9.42] can be used to solve for b. G™' will be: 

5.10 23.17 —185.19 

G'= 23.17 3445.42 —3558.2 | (107%) [9.48] 

~185.19 —3558.2  12199.4 

The elements of b are then computed as G~"6, and are equal to (— 0.0071, 0.59, 

and 3.03) x 10~*. The vector a can then be computed from equation [9.44], and 

its values are (—0.027, 1.56, 12.7) x 107°. Scaling these values so that the 

economic value from a kg of milk with mean protein and fat content should equal 

unity, gives: a’ = (—0.07, 5.7, 29.2). 

A first glance, this result is somewhat surprising. Even though fat and 
protein production have similar heritabilities and means, and the goal was equal 
increase in the two components, the "pseudo" economic value of protein to 

achieve this objective is five —fold the economic value of fat. Furthermore, even 

though all three traits are positively correlated, and the objective is to increase 

milk production, the economic value of milk is negative. These results can be 
understood in the light of the genetic variance and covariances. The genetic 

variance for fat is greater than for protein and the genetic correlation between 

these traits is 0.54. Likewise the genetic correlation between protein and milk 

production is 0.78. Thus direct selection on protein will increase fat production 

nearly as much as protein, and will increase milk production slightly more than 

the desired objective. Thus the optimum index will consist chiefly of selection 

for protein, with a small positive coefficient for fat, and a small negative 
coefficient for milk. 

We can compare these results to the linear selection index obtained under the 
assumption of zero economic weight for milk, and equal economic weight for fat 

and protein. In this case, a’ =[0 1 1], and b’ =[—0.0033 0.40 0.22]. The 

vector of correlated responses with i = 2 will be @’ = [340.8 24.4 14.14]. 6 

times 14.14 gives: [428 14.14 14.14]. Thus the vectors of correlated responses 

were much more similar than the vectors of economic weights. This result will 

be generally true, and will be considered in more detail in Chapter 10. 

9.8 Selection indices by graphic methods, basic concepts 

The graphic method was developed by Moav and Hill (1966) for the case of two 

traits, and both linear and nonlinear profit functions. Although graphs were used 
extensively by Moav and Hill (1966) to illustrate the method, it can also be 

phrased algebraically using principles of analytical geometry. We will first
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assume that profit is a linear function of two uncorrelated traits, x and y. After 

the explanation for this case, the method will then be generalized step-by-step. 

The index coefficients for any possible index, I, are denoted b, and b,, so 

that: 

I = b,x + by [9.49] 

The variance for a selection index was given as b’Pb in equation [3.24]. For two 

uncorrelated traits, this reduces to: 

(6, = (b,9,)° + (byo,)’ [9.50] 

The response to selection of either trait, due to selection on the index can be 

computed from equation [3.16], for the correlated response. That is: 

o, = ihyr,Oax [9.51] 

where 9, is the response of x, h, is the accuracy of the index, r, is the genetic 

correlation between the index and x, and o,, is the additive genetic variance of 

x. h, = 6,,/6, where o,, is the additive genetic standard deviation of the index. 

The genetic covariance between x and the index will be b,(o,x)’ = b,(h,o,)’. 

Thus the correlated responses of x and y can be computed as follows: 

b, = ib,(h,o,)”/ Oo; 
[9.52] 

by = ib,(h,o,)’/ 0; 
[9.53] 

Equation [9.50] can be then be rewritten as follows: 

  

ibh’o,? |? of ib,h,o,” 2 of 
(o, ?= | —— —_— . | See : ~ [9.54] 

0; (ih, 6,) 0; (ih, Gy) 

Substituting equations [9.52] and [9.53] into equation [9.54] and dividing both 

sides by 6,’ gives: 

(6,)° (o,)° 
}= — + ——— [9.55] 

(ih,?0,) (ih,’o,)’ 

All terms in equation [9.55] are constants, except ,, >,, and i. Thus for a given 

selection intensity, equation [9.55] describes an ellipse in the variables 9,



Selection Indices for Nonlinear Profit Functions 131 

and ,, and is termed the "response ellipse" (Moav and Hill, 1966). 
In Section 6.6 we demonstrated how profit can be represented graphically 

by a profit map. A simple profit map has been plotted in Figure 9.1, in which 

the change in profit, $,, is a linear function of two traits. That is: 

bp = a0, + ad, [9.56] 

ob, = bp/a, — $,a,/a, [9.57] 
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Figure 9.1. Profit map and response ellipse for laying hens. Vertical and 

horizontal arrows are response to direct selection on x, and x,, respectively. 
P..ax is the point of maximum gain in profit due to selection. 

where a, and a, are the economic values for x and y. The slope of the profit 
contours will be —a,/a,. The response ellipse is also illustrated in this figure. 

The axes of this ellipse will be equal to ih,’o, and ih,’o,, and will be parallel to 
the x and y axes. As illustrated in Figure 9.1, a number of profit contours cut the 
response ellipse. All values for >, that meet the response ellipse can be obtained 
by a given combination of b, and b,. Note that the profit contours are tangent to 
the response ellipse at only two points. These will be the points of maximum 
positive and negative $, obtainable by selection on I. At these points the 
direction of response will be perpendicular to the response contours. Of course, 

only the point of maximum positive profit is of interest. This point is found by 
equating the slope of the profit contour, —a,/a,, to the slope of the
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ellipse for a given value of x and y. The slope of the ellipse is computed as: 
5d/5x = —6,h,‘o,7/(b,h,*o,”). Thus, the values for maximum genetic gain are 
computed as follows: 

a, hy “oy” 
—_ = ——— [9.58] 

a, ,h,"o,” 

Substituting for >, and $, in equations [9.52] and [9.53] and simplifying gives: 

b ah,’ 

[9.59] 

The selection index coefficients for an index of two uncorrelated traits will be 

a,h,? and a,h,?. Thus, for the case of a linear profit function, the graphic method 

gives the same result as standard selection methodology. In summation the 

graphic method computes the optimum selection index by equating the tangent 

of the response ellipse to the profit function, and solving for the elements of b 

in terms of the other parameters. 
Further calculations are simplified somewhat if the trait units are converted 

into standardized response units as follows: 

b, = o,/(h,7o,), 6, = o,/(h,’o,) [9.60] 

where ,” and b, are the responses of x and y to selection in standardized 

response units. Equation [9.55] can then be rewritten as follows: 

(o,) + Oy =¥ [9.61] 

Equation [9.61] defines a circle that Moav and Hill (1966) termed the response 

circle. The economic values of $,° and b, will be defined as follows: 

a"b, = Ade ay dy = aby [9.62] 

Then substituting from equations [9.60] gives: 

a, =a,ho,, a, = a,h,o, [9.63] 

The index for maximum profit is again computed by equating the tangent of the 

profit contours and the response circle, both in standardized units: 

o,/, = a, /a,’ [9.64]
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Substituting equations [9.63] into [9.64] gives: 

6, /o,” = ayh,7o,/a,h,7o, [9.65] 

Finally substituting equations [9.52] and [9.53] into equation [9.65] gives: 

b,/b, = $, 5,/,"6, [9.66] 

which is, of course, the selection index result for the transformed traits. 

9.9 Selection indices by graphic methods for two correlated 
traits and nonlinear profit functions 

Moav and Hill (1966) extended the graphic method to cover the case of two 
correlated traits and a nonlinear profit function. Again we will assume that all 
traits in the aggregate genotype are included in the selection index, so that G 
= C. (This restriction will be removed below.) The vector of correlated 
responses, , is then computed as in equation [3.31]: 

@ = iGb/o, [9.67] 

From equation [3.24] we have: 

6, = b’Pb = b’°GG"'PG"'Gb [9.68] 

Substituting equation [9.67] into equation [9.68] gives the following result: 

¢’G 'PG"'¢/i? = 1 [9.69] 

For two traits, this function defined a response ellipse that differs from the ellipse 
of equation [9.55] in that in addition to the two terms that include ,? and o,’, 
there will be a third term that includes $,$,. Thus the axes of this ellipse will not 
be parallel to the coordinate axes. For more than two traits, equation [9.69] 
defines an n-dimensional ellipse, where n is the number of traits in the index. 
The optimum index can be derived as in the previous case by equating the slope 
of the response ellipse and the profit function. 

The response ellipse of equation [9.69] can be converted into a circle by the 
following transformation: Define a matrix J so that J’) = P. Then equation 
[9.69] can be rewritten as follows: 

?’G'DIG'¢ =i? = 6"¢" [9.70]
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where @ = JG™'d. Equation [9.70] now defines a response circle for the case 

of two traits, or a multidimensional response circle for the multitrait case. 

Parallel to the previous case we will define a’ = J’"'Ga. For a matrix of two 

traits: 

6, cos 9 o, sin 0 

J = [9.71] 

o, sin 8 G, cos 8 

Where r,, = sin 20. To derive this matrix, we remind the reader that: 

sin 20 = 2 sin 9 cos 8 [9.72] 

sin’6 = 1/2 — (1/2)cos 20 [9.73] 

cos’?@ = 1/2 + (1/2)cos 20 [9.74] 

We will now consider the case of a nonlinear profit function, first with 

uncorrelated traits, and then with correlated traits. In equation [6.21] and [7.9] 

we presented the following profit function: 

P, =K, — Kx, — K/x, [9.75] 

where P, is profit per pig marketed, x, is number of pigs weaned per sow per 

year, X, is age to a fixed market weight, K, is income less costs independent of 

x, and x,, K, is costs dependent on x,, and K, is fixed costs (feed and non-feed) 

per sow. In this equation profit is an inverse function of x,. Thus none of the 

methods presented previously can be used to compute the optimum selection 

index. Setting x, = x and x, = y, the partial differentials of P, are K,/x’ and —K, 

for x and y, respectively. Assuming that these traits are uncorrelated, equation 

[9.59] can be used to compute the optimum index, with a,/a, replaced by 

—x’K,/K,, as follows: 

b, —x’K,h,’ 
—_- = — [9.76] 

b, Kh,’ 

Thus the optimum index for a nonlinear profit function is the same as the 

optimum linear index with the linear economic values replaced by the 

differentials of the profit function. For two correlated traits, the optimum index 

can be also be derived by equating tangents for the response circle and the 

economic values for the standardized trait units, that is a* = (J’)"'Ga. After
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re-arranging, we derive: 

o,[1 + (1 — r)%]o,” — rd,” by 

— = [9.77] 
b, o,f1 + (1 — 1°)*16,” — ro," 

  

which reduces to equation [9.66] for r = 0. 

9.10 Selection indices by graphic methods for more than two 
traits 

Pasternak and Weller (1993) extended the method of Moav and Hill ( 1966) to 
cover any number of correlated traits, and also situations where some traits in the 
profit function are not included in the selection index, and vice versa. We will 
first consider the case in which all traits in the profit function are included in the 
selection index. Phrased in terms of nonlinear programming the problem can be 
stated as follows: 

Maximize: f(X + @) [9.78] 

Subject to: ¢’G"'PG"'¢ < i? [9.79] 

Where f(X + @) is the profit function of the vector of economic traits after 
selection, X is the vector of trait means prior to selection, and the other terms are 
as defined above. It is assumed that f(X + @) is twice continuously differentiable 
and concave with respect to @, and that P is real, symmetric and positive definite. 
Under these assumptions, the matrix of second differentials of f{(X + ¢) is 
negative definite (Graybill, 1969), and G~'PG™' will be positive definite 
(Schmidt, 1982), and convex in @ (Jacoby, Kowalik, and Pizzo, 1972). (This 
means that the matrix of second differentials for i? with respect to @ is positive 
definitive.) Since inequality [9.79] is a less than or equal constraint, the 
"feasible" parameter space will be convex (Peressini, Sullivan, and Uhl, 1988). 
Hence, the Kuhn-Tucker conditions are necessary and sufficient conditions for 
maximization of the objective function (Nemhauser, Rinnooy Kan, and Todd, 
1989). Applying the Kuhn-Tucker conditions to the objective and constraint 
function yields the following equations: 

{S[f(X + 6*)]/5¢}’ = 20 6*’G'PG"! [9.80] 

Where d[f(X + $*)]/5@ is the vector of partial derivatives of f{(X + o*) with 
respect to $; o* are the values for @ that maximize f(X + 9), subject to 
inequality [9.79]; and I is a scalar, and equal to: 5[f(X + o*)]/5i°. That is, the
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objective function will be maximized over the feasible parameter space if the 

vector of the partial derivatives of the objective function with respect to @ is 

equal to the derivative of the profit function with respect to i’, times the vector 

of the partial derivatives of the constraint function, also with respect to @. 

Solving equations [9.80] for $* gives: 

o* = (1/2)GP'G{S[f(X + $*)/50} [9.81] 

All terms on the right-hand side of equations [9.81] are known, except for @* and 

[. The constraint given in inequality [9.79] will be used to solve for I. 

Goddard (1983) considered two situations with respect to the location of the 

maximum for f(X + @) on the multitrait parameter space. If * is on the 

multidimensional response ellipse surface, then under the constraint given above, 

profit will be maximized by a linear selection index and maximum selection 

intensity. In this case equation [9.69] can be modified to solve for * as follows: 

6G PG" '6* =? [9.82] 

Although the Kuhn-Tucker conditions hold for inequality [9.79], it is easier to 

derive solutions for an equality. Using equation [9.81] to solve for ¢* in 

equation [9.82], and re-arranging gives the following: 

({8[f(X + o*)/5o}’GP7'G {S[f(X + 6*)V/5})"” 

me 
[9.83] 

2i 
  

Substituting this value for I in equations [9.81] and rearranging gives: 

GP'G{5[f(X + o*)/5G}i 

oe 
[9.84] 

({8[f(X + $*)V/5o}’ GPG {3[f(X + 6*)V/5o})"” 
  

Equations [9.84] no longer contain I’, but @* appears on both sides of the 

equations. Thus these equations must be solved iteratively. Note also that $* is 

a function of i. The selection intensity did not appear in the equations of Moav 

and Hill (1966) for the optimum index for nonlinear profit functions and two 

traits. However, even for two traits, the index coefficients were dependent on ¢*, 

which is a function of 1. 

o* can be solved by iteration on the following equations, derived from 

equations [9.84]:
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GP"'G{8[f(X + o*)]/S¢}i 

“ 
[9.85] 

({5[fCX + o")]/50}’GP7'G {5[f(X + 6*)]/5o})'” 
  

Where ¢* is the value of @ at the k" iteration, and o*"' is the value of @ after the 
i* iteration. Finally from equation [9.67], we have: 

b = (6/i)G"'¢* [9.86] 

Since only the relative values of the index coefficients are important (Moav and 
Hill, 1966), o,/i can be considered a proportionality constant, and G~'@* can be 
scaled to any convenient value. 

If f(X + @) is a linear function of the trait values, then 5[f(X + $*)]/5¢ = 

a, where a is a vector of constants. Equations [9.84] then reduce to: 

o* = GP7'Gai(a’GP~'Ga)""” [9.87] 

Solving for @* from equation [9.86] gives: 

iGb/o, = GP~'Gai(a’GP~'Ga)~'” [9.88] 

b = P~'Gao,/(a’GP7'Ga)'” [9.89] 

Thus b = P~'Ga times a proportionality constant, o,/(a’GP~'Ga)'”. Since 6, 
= b’Pb, this constant will be equal to unity for b = P~'Ga. Thus for profit 
functions linear in the trait values, the general selection index reduces to the 
standard linear selection index equations. 

9.11 Some traits in the profit function are not included in the 
selection index, and vice versa 

The situation in which some traits included in the selection index have no direct 
economic value can be readily handled by setting 5[f(X + “)]/5@ in equations 
[9.85] to zero for those traits. If some traits in the profit function are not 
included in the selection index, then inequality [9.79] must be modified as 
follows: 

¢’G,'P,G,"¢ <i? [9.90] 

Where G, and P, are the genetic and phenotypic variance matrices for those traits 
that are included in the selection index. The genetic gains for the optimum index 
can then be found by solving equations [9.84], modified as follows:
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G,P,7'G, {8[f(X + 6,*))/5¢,}1 

or" 
[9.91] 

({S[f(X + $,*)V/5¢,}’G,P,-'G, {8[fCX + ,*)1/5e,})" 
  

Where ¢, is the vector of genetic gains for those traits included in the index. The 

genetic gains of the traits included in f(X + @) that are not included in the index 

can be computed as functions of the genetic gains for the traits included in the 

index as follows: First the selection index for the traits in $,, b,, can be 

computed from equation [9.86], modified as follows: 

b, = (o/i)G,“"¢, [9.92] 

From equation [9.86], the vector of genetic gains for the traits not included in the 

index, @,, can then be computed as: 

$, = (1/0,)G,b, [9.93] 

Where G, is a matrix consisting of the rows of G for those traits not included in 

the index, but with the columns corresponding to these traits deleted. Thus G, 

can be multiplied by b,. Substituting for the value for b, from equation [9.92] 

in equation [9.93] gives: ¢, = G,G,~'¢,. Thus, f() = f(¢,,¢,) = f(o,,G,G,~‘¢,) 

= f(,), it is not necessary to solve for o,, and @, is a linear function of ¢,. The 

derivatives of the objective function can then be computed accordingly. 

9.12 A numerical example with three correlated traits and a 

nonlinear profit function 

The method will be illustrated using the example of Pasternak and Weller (1993) 

for the Israeli dairy industry. Profit as a function of milk (carrier), fat, and 

protein production was computed with the following equation: 

F(X + @) = 

(Ry — Cu)(Xm + On) + (Re — COX + O) + (RR, — CX + O)) — Ce 

X, + o, + X, + O, [9.94] 

  

where R,,, R, and R, are returns for kg milk, fat, and protein; C,, C, 

and C, are costs proportional to the quantity produced of each component, X,,, 

X,, and X, are the mean production of kg milk, fat, and protein per cow per year, 

dn» dp and >, are the expected genetic gains, and C, are fixed costs per cow not
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dependent on production. Following Moav (1973), F(X + @) is computed as 
profit per kg fat + protein, under the assumption that the future quota system will 
be based on this criterion. Thus, for the producer, the profit criterion of interest 

is profit per kg fat + protein. Inserting values appropriate for the Israeli dairy 

industry in 1991 (Weller and Ezra, 1991) gives: 

F(X + ¢) = 

—0.18(9244 + o,) + 4.2(290 + o,) + 22.9(285 + ,) — 5000 

= [9.95] 
290 + , + 285 + 4, 
  

These values are based on an assumed price of 1 Israeli Shekel (IS) = $0.40 for 
a "standard" kg milk, with mean fat and protein concentration. C, was set at 
5000 IS so that profit for a cow with mean production after selection would be 
positive. This was done to avoid the situation considered by Brascamp, Smith, 
and Guy (1985) of zero net profit. 

The partial differentials of equation [9.95] with respect to @ are: 

    

  

  

dé[F(X + ¢)] —0.18 

= [9.96] 

50,, 290 + , + 285 + b, 

S[F(X + ¢)] 4.2[290 + , + 285 + o>] —Q 

= [9.97] 

56, [290 + o, + 285 + o,)° 

S[F(X + ¢)] 22.9[290 + , + 285 + 6,1 —Q4 

—_———_——_ = [9.98] 

5, [290 + o, + 285 + o,]° 

Where: 

Q = —0.18(9244 + o,) + 4.2(290 + o,) + 22.9(285 + 6,) — 5000 [9.99] 

Note that equations [9.96], [9.97], and [9.98] are nonlinear with respect to , and 

,. GP’G was computed as follows: 

242,407 529 =. 2760 

GP"'G = 529 179 57 [9.100] 

2760 57 79
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These values were then used to iterate on equations [9.85] for two values of 

i: i= 1, and i= 4. @! was set equal to a vector of zeros. Iteration was 

continued until all elements of ¢ = '¢**' — *! were less than the critical value, 

set at */1000 for all elements of ¢*. Results are given in Table 9.1. 

Convergence was obtained after three iterations for i = 1, and after four iterations 

for i= 4. Equation [9.86] was then used to compute the optimum indices for 

each value of i. Index coefficients standardized to kg fat are given in Table 9.2. 

Also given are the expected genetic gains relative to the gain in fat. Although 

the relative genetic gains are very similar for both selection intensities, the index 

coefficients to achieve these gains are not. This will be true if the deviation from 

linearity is not extreme over the range of possible genetic progress, and 

corresponds to the results of previous studies, that relatively large changes in the 

index coefficients result in only minor changes in the efficiency of selection 

(Smith, 1983; Wilton, Evans, and Van Vleck, 1968). 

Values for I are also given in Table 9.1 for each iteration. As shown above, 

T is the derivative of the profit function with respect to i’. This quantity can also 

be estimated by numerically evaluating d[f(X + o*)]|/5i°._ This was done by 

computing f(X + @*) for i? = 16.1. For this value of i?, f(X + 6*) = 2.944026, 

and 5[f(X + @*))/8i? = (2.944026 — 2.941090)/(16.1 — 16) = 0.02936, which is 

nearly equal to the value for I obtained with i* = 16. 

If some cows have records for milk and fat, but not protein, equations [9.92] 

and [9.93] can then be used to solve for the genetic gain in protein due to 

selection on milk and fat. G, will be equal to the upper-left-hand submatrix of 

G for milk and fat, and G, will be the two first elements of the bottom row of 

G. The expected genetic gain for protein due to selection on milk and fat is then 

computed as: 

, = 0.015179, + 0.28730, [9.101] 

The partial differentials for milk and fat are then computed as follows: 

S[F(X + 9)] 

50: 

(22.9*0.01517 —0.18)(290+$,+285+0.015176,,+0.28736,) —0.01517S 
  

(290 + 6, + 285 + 0.015176, + 0.28736, [9.102]
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Table 9.1. Computation of vector of genetic gains for the optimum selection 
indices for dairy cattle production traits at two selection intensity levels. 

  

  

Selection Iteration _ Genetic gains (kg)? Partial derivatives” Objective 
intensity number milk fat protein milk fat protein function® re 

1 1 O 0 0 —0.31 4.04 36.58 1.893 0.1451 
2 92.52 9.05 7.78 -—0.30 3.44 35.06 2.177 0.1378 
3 89.51 890 7.77 -—0.30 3.45 35.07 2.177. 0.1379 

4 1 O 0 0 -0.31 4.04 36.58 1.893 0.0365 
2 370.13 36.19 31.11 —0.28 1.99 31.11 2.939 0.0293 
3 321.26 33.79 30.88 -—0.28 1.99 31.24 2.941 0.0294. 
4 321.16 33.79 30.33 -—0.28 1.99 31.24 2.941 0.0294. 
  

° Iteration was on equations [9.85] in the text. Values for genetic gains 
computed at each iteration were used as initial values for the following iteration. 
Genetic gains after the last iteration are equal to the initial values for the last 
iteration. 

> In Israeli Shekels x 1073 per kg genetic gain. 

“Profit as estimated from equation [9.93] in Israeli Shekels per kg fat + protein. 

‘T = derivative of the objective function with respect to the selection intensity 
squared. 

Table 9.2. Index coefficients for optimum selection indices. 

  

Genetic gains 

    

  

  

Selection Absolute Relative Index coefficients 
intensity milk fat protein’ milk fat protein milk fat protein 

1 89.51 8.90 7.77 10.05 1 0.87 -0.141 1 8.37 
4 321.16 33.79 30.33 9.50 1 0.90 -—0.208 1 12.35 
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d[F(X + 9)] 

bd; 

(4.2+22.9*0.2873)(290 +$,+285 +0.015 17¢,, +0.2873¢,) — 1.2873S 

  
[9.103] 

(290 + ¢, + 285 + 0.015174, + 0.2873¢,)” 

Where: 

S = —0.18(9244 + ¢,) + 4.2(290 + ,) + 22.9(285 + 0.015179, + 

0.2873¢,) — 5000 [9.104] 

These values were then used to iterate on equations [9.91]. For i = 4, 

convergence was obtained after three iterations. Genetic gains at optimum were 

1029.57 kg milk, 46.47 kg fat, and 28.97 kg protein. The value of the objective 

function at the optimum was 2.6964, which is lower than that obtained with the 

optimum index if all three traits are recorded. At convergence, the partial 

derivatives were 0.000194 and 0.01124 for milk and fat, and I’ = 0.0226, which 

is also lower than for the optimum three-trait index. The index coefficients are 

0.0113 and 1 for milk and fat, respectively. This index is only slightly different 

from direct selection on fat. 

9.13 Summary 

In this chapter we explained methods used to compute selection indices for 

nonlinear profit functions. Of the three basic alternatives considered, nonlinear 

selection indices, restricted indices, and the "graphic method", all have advantages 

and disadvantages, and none can be considered uniformly "best". Nonlinear 

indices have been computed only for quadratic and cubic profit functions, and 

thus are not directly applicable to other profit functions. Furthermore, although 

these indices select the individuals with the highest breeding values and minimize 

the mean squared deviation between the index and the aggregate genotype, they 

do not maximize long-term genetic gain. This problem will be discussed in more 

detail in the next chapter. Restricted indices, and indices for desired change 

assume that the long-term objective is known, even if the profit function is 

nonlinear. This is rarely the case. For more that two traits, index coefficients for 

the graphic method can only be derived iteratively. Furthermore, by this method, 

the optimum linear index is dependent on the selection intensity.



Chapter Ten 

Comparison of Different Selection Indices 

10.1 Introduction 

In the previous chapter we considered various alternative selection indices for 
unknown or nonlinear profit functions. In this chapter we will compare these 
alternatives, first by theoretical considerations, and then empirically. Wilton, 
Evans, and Van Vleck (1968) and Ronningen (1971) computed the nonlinear 
indices that select those individuals with the highest estimated aggregate breeding 
value. Although a priori it would seem that this approach should be optimum, 
we will demonstrate, following Goddard (1983), that this is generally not the 
case. 

10.2 Linear selection indices for nonlinear profit functions 

In the previous chapter we considered cases in which the economic values were 
functions of the trait values. However different animals in the population under 
selection will have different trait values. Thus, theoretically the optimum 
selection index could be different for each animal. To overcome this problem, 
Wilton, Evans, and Van Vleck (1968) computed economic weights for the 
population mean for the different traits. This is equivalent to computing profit, 
P, as the following linear function: 

é6P 6P dP 
P= xX, + X, +... + — [10.1] 

6x, 6x, Ox, 

    

Where 6P/dx,, ..., 5P/5x, are the partial differentials of profit with respect to 
these n traits computed at the population means of each trait. If the deviation 
from linearity of the profit function is large relative to the changes in the trait 
values due to selection, then equation [10.1] will not accurately estimate the 
change in profit due to selection. This point will be illustrated by the example 
of Goddard (1983) for the profit function P = 1/x. In this example, 6P/5x = 
—1/x’. Assume that prior to selection x = 1, and after selection x = 1/2.



144 Economic Aspects of Animal Breeding 

From equation [10.1] the change in profit due to selection on x should be: 

(SP/5x)Qx, where Ox is the change in x. Estimated at the mean of x prior to 

selection, this value is: (—1)(—1/2) = 1/2. However the true change in mean 

profit will be 1/x, — 1/x,, where x, and x, are the mean trait values after and 

before selection. This value will be 2 — 1 = 1. This anomaly is illustrated in 

Figure 10.1. 

  2.5 
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it
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x = trait value 

Figure 10.1. Response to selection for an inverse profit function. (b) is the 

profit function. A is trait value and profit prior to selection, and B is trait value 

and profit after selection. (a) is the tangent of the profit function at A. 

The advantage of the graphic method of Moav and Hill (1966) explained in 

the previous chapter is that the optimum index is computed as a function of the 

expected response. This, however, does have the rather undesirable result that the 

optimum direction of selection will vary with the selection intensity. This is 

illustrated in Figure 10.2. Two response ellipses are shown for two traits x, and 

x,. The profit contours for the profit function: p = x, + x,’ are also plotted. As 

explained in the previous chapter, the optimum selection indices will be at the 

tangent between the profit contours and the response ellipses. Thus, as shown in 

this figure, the optimum direction of selection will be different at the two 

selection intensities. 

Furthermore, even if the selection intensity is assumed to be known and
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fixed, the optimum direction of selection will change over several generations of 
selection for a nonlinear profit function. In Chapter 8 we considered long-term 
considerations of selection. Although genetic gains are cumulative, future gains 

must be discounted more than current gains. In addition most breeding programs 

will consider only a finite profit horizon. Thus, computation of the economically 

optimum direction of selection for nonlinear profit functions can be quite 
complicated. 
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Figure 10.2. Response to selection for a quadratic profit function. Two 

response ellipses are denoted by solid lines for two traits x, and x,. The profit 

contours for the profit function: p = x, + x,” are denoted by dotted lines. A 

is the point of maximum profit for the small ellipse (P = 0.25), and B is the 

point of maximum profit for the big ellipse (P = 1.12). 

10.3 Linear vs. nonlinear selection indices 

In the previous chapter we computed the optimum quadratic selection index. If 
profit is a quadratic function of the trait values, then this index will select those 
individuals with the highest expected aggregate genotype. However, if the profit
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function is nonlinear, selection of these individuals as parents for the next 
generation will not lead to the greatest possible gain in the expected mean 

ageregate genotype of the next generation. Goddard (1983) gives the following 

example: assume P = x’. If a quadratic index is used, then the individuals with 

the highest and lowest value for x will be selected. Since the mean of these 
individuals will be no higher than the population mean, there will be no genetic 

gain in the next generation with random mating. However, if a linear index is 
used, then either individuals with high or low values will be selected, but not 

both, and there will be an increase in the aggregate genotype in the next 
generation. Thus, in summation, the goal of selection must be to maximize the 

profit of the mean of the trait values of the selected individuals, and not the mean 
profit of the selected individuals. Therefore, over the long-term, a linear selection 

index will always be preferable to a nonlinear selection index. 

This conclusion can also be illustrated graphically. As demonstrated in the 

previous chapter, the possible responses for two traits for a given selection 

intensity will be described by a response ellipse. By a linear transformation of 
the trait units, the response ellipse can be converted into a circle. For a given 

selection intensity, maximum response will be obtained by a linear index. This 

is, of course, the selection index result for a linear profit function. If there exists 

a profit contour outside the response circle greater than all profit contours that 

cross or meet the response circle, then maximum selection intensity (i.e., a linear 
index) should be applied in the direction of increased profit. If a point of 
maximum profit exists within the response circle, it is still possible to reach this 
point by a linear index, but with less than maximum selection intensity. Even in 

this case, the linear index will be optimum, because decreasing selection intensity 

saves costs. If less genetic selection is practiced, other criteria can be used for 
culling of individuals. Furthermore, selection generally requires collecting data 
on individuals that would not be collected otherwise. If less selection is 
practiced, then these costs can be reduced. 

As an example, consider the case where the population mean is already at 

the point of maximum profit. Although individuals will differ in their 
profitability, selection will not increase the mean profitability of the next 
generation, and can therefore not be justified economically. In practice this 
situation will occur for traits in which the main profit objective is uniformity. 

For example the number of days required to hatch eggs, or the time of fruit 

ripening. 

In the previous chapter we considered restricted indices as an alternative to 
direct selection index methodology. Restricted indices are also linear, but unlike 

direct selection index methodology or the graphic method do not require that the 

profit function be known. Under certain circumstances restricted indices can be 

justified theoretically. Assume the following profit function: 

P=x, — x, [10.2]
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For a small selection intensity, profit by the graphic method is maximized by 
increasing x, and either by increasing x, if its value is negative or decreasing x, 
if its value is positive. However, as selection intensity, or the number of 

generations of selection increases, the weight given to x, in the selection increases 
at the expense of x,. This situation is illustrated in Figure 10.3. x, and x, are 
assumed to be positively correlated. Extended to infinity, profit gain is 
maximized by selection on x, under the restriction that x, is kept constant at zero. 
This is congruent to computation of a restricted selection index, with the change 

in x, restricted to zero. Thus, over the long-term, a restricted selection index can 
be justified, even if it does not maximize the gain in profit at each generation. 
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Figure 10.3. Optimum selection index for two response ellipses. Two response 

ellipses are denoted by dotted lines for two positively correlated traits, x, and 

x,. The profit contours for the profit function: p = x, — x,” are denoted by 

dotted lines. A is the point of maximum profit for the small ellipse (P = 0.3), 

and B is the point of maximum profit for the big ellipse (P = 1.0).
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Until now we have assumed that non-additive variation in both the 

component traits, and the profit function can be ignored. If the population mean 

is at the point of maximum profit there may still be considerable non-additive 

variation in profit. The justification for disregarding non-additive variation is 

that it is generally not cumulative, and thus will be of little importance over the 

long-term. Nonlinear indices do have the advantage that they can utilize 

heterosis on the level of the profit function. This will be considered in more 

detail in Part 5. 

10.4 Suboptimal selection indices, general considerations 

We have now discussed at some length the problem of determination of the 

optimum selection index. We can conclude that in most actual breeding 

situations the selection index that will be applied will in fact be an educated 
guess, rather than the theoretically optimum index. The question then naturally 

arises as to what will be the loss in efficiency due to selection on a suboptimal 

index. There are four main reasons why a suboptimal selection index may be 

employed: 

1. Use of incorrect values for the genetic and phenotypic parameters. 
2. Use of incorrect economic trait values. 

3. Exclusion of traits with economic importance from the selection 

objective. 

4. Use of nonlinear selection indices. 

Problems in determination of accurate values for the genetic and phenotypic 

parameters have been dealt with elsewhere at great length, and are beyond the 

scope of this text. We refer the interested reader to Henderson (1984), although 

many other publications have dealt with this question. In general we will note 
that the main difficulty has been to derive accurate estimates for the genetic 
covariances, especially among several traits. As an extreme example we will 

note that the literature abounds with reports of genetic correlations outside the 

parameter space of -1 to 1. Furthermore, if more than two traits are included 

in the selection objective, it is possible to obtain a matrix of genetic correlations 

outside the parameter space, even if all the correlations are within the possible 
range. For a variance matrix to be within the parameter space, all eigenvalues 

must be non-negative, that is the matrix must be semi-positive definite (Searle, 

1982). If at least one of the eigenvalues is negative, then the inverse of the 

matrix will have a negative value on the diagonal. If selection index is then 

applied, it would mean that animals that are related would have less similar 

breeding values than unrelated animals, clearly an insupportable hypothesis. As 

the number of traits increases, the probability of obtaining a "pseudo-variance
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matrix" outside the parameter space increases (Hill and Thompson, 1978), unless 
an estimation method such as multitrait REML (Patterson and Thompson, 1971) 
is employed, which insures estimates within the parameter space. 

We have already dealt at great length in the previous chapters with the 
problems involved in estimation of the economic trait values. It is therefore 
quite common to delete traits of economic importance from the selection 
objective, because their economic values cannot be estimated accurately. This 
is the common procedure in dairy cattle for most non-production traits. In 
Section 3.5 we showed how deleting traits from the selection index affects the 
efficiency of the index (Cunningham, 1969). From equation [3.29] it is clear 
that a "reduced" selection index will always be less efficient than the "complete" 
index, which includes all traits in the aggregate genotype. Furthermore, in some 
cases negative economic responses were obtained (Gjedrem, 1972). 

In the previous chapter we discussed derivation of nonlinear selection 
indices for nonlinear profit function. In the previous section we demonstrated 
that nonlinear indices will always be less efficient than linear indices, even if the 
profit function is nonlinear. Although the quadratic and cubic indices discussed 
in Chapter 9 are relatively rare in practice, another form of nonlinear index is 
quite common; threshold selection. That is for certain traits, an economic value 
of zero is assumed, unless the trait value is below a certain value, in this case 
the animal is culled. This is commonly done for conformation traits, and also 
for disease-related traits. It is also practiced for production traits, although in 
this case it is harder to justify. For example, a cow with fat percent below a 
certain level will not be used as a bull dam regardless of her performance for 
other traits. Threshold selection will be inherently less efficient than linear 
selection; but, as demonstrated in the previous chapter for the case of a quadratic 
index, in most cases the difference will be minor. 

10.5 Effects of incorrect economic weights on the efficiency of 
the selection index 

Of the four reasons for implementation of suboptimal selection indices, incorrect 
economic values is probably the most common. At least two studies have shown 
that relatively small errors in the economic values will have insignificant effects 
on efficiency of the selection index (Pease et al., 1967; Vandepitte and Hazel, 
1977). This is consistent with the result presented in the previous chapter that 
significant changes in the expected genetic changes due to selection imply very 
large changes in the economic trait values. 

Smith (1983) estimated the relative efficiency of linear indices with incorrect 
economic values, as opposed to the optimum index over a wide range of 
possibilities, including economic values up to five-fold the true values and in the 
opposite direction. From equation [3.28], the relative efficiency, R.S.E., of an
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alternative index, b*, as opposed to the optimum index was given as follows: 

b’ Pb* 

RSE = [10.3] 

V(b’ Pb*)(b’Pb*) 

  

In terms of a and a*, an alternative vector of economic weights, equation [10.3] 

can be written as follows: 

a’axa* 

RSE = [10.4] 

V (a? na*)(a’ra*) 

  

Where x = GP'G. This equation is symmetrical in a and a*, so that it is 

necessary to test only half of the possible parameter space. All traits were 

standardized to unit phenotypic variance. (This is different from Section 9.8 in 
which traits were standardized to equal response vectors, following Moav and 

Hill (1966).) For two traits, pairwise combinations of 2, 1, 0, and -1 for a and 

a* were tested, while for more than two traits, all the actual economic values 

were assumed equal to unity. Heritability was varied from 0.1 to 0.5 for two 

traits, and from 0.1 to 0.3 for three or more traits. A range of possible genetic 
correlations, both positive (economically favorable) and negative were tested. 

For two traits, the impact of incorrect economic values for a, was 

determined chiefly by the ratio a,h,”/ajh,”._ Thus if one of the traits dominates 
the index, incorrect estimation of the economic value of the other trait is 

unimportant. In general, doubling the economic value for one of the traits 

decreased selection efficiency by only a few percent. Of course if the sign of the 
economic value was reversed, the efficiency of the index became zero or 

negative, unless the effect of the trait was relatively minor. Losses in efficiency 

are also affected by the genetic and phenotypic correlations, with the genetic 

correlations having the greater effect. 

Similar results were found with more than two traits. That is, if a single 
trait dominates the index, then changes in the economic values of the other traits 

will have relatively little effect on the efficiency. Changes are greater when no 

single trait dominates the index. Loss of efficiency was usually greater with 

negative genetic correlations among the traits, but in this case the total response 

possible is low in any event. 
Smith (1983) concludes that attempts to achieve precise estimates of the 

economic weights are not productive, since the gain in selection efficiency will 

be minimal. This of course is quite important considering the fact that selection 

of large animals is a long-term procedure. He disagrees with the conclusion of 

Gjedrem (1972) that all traits of economic importance should be included in the 

breeding objective. Since the loss in efficiency due to incorrect economic values
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for traits of minor importance is minimal, they can be assumed to have zero 
economic value, and therefore be deleted from the selection objective. 

Decreasing the number of traits for which genetic parameters must be estimated 

should tend to increase both the probability of obtaining estimates within the 

parameter space, and the accuracy of the estimates (Hill and Thompson, 1978). 

10.6 Summary 

If the economic values are nonlinear functions of the traits, then the linear index 

does not select the individuals with the highest expected mean breeding value. 

However, for long-term objectives, linear selection indices will always result in 

greater response to selection than nonlinear indices. If the profit function is 

nonlinear then the optimum direction of selection will change as a function of 
genetic improvement. Thus, it is necessary to balance the short-term gain from 

one generation of selection against the long-term gain of several generations of 

selection. In general though, changes in mean trait values due to selection will 

be relatively low within reasonable profit horizons. Furthermore, linear selection 

index is "robust" to small errors in the economic values. That is, small changes 

in the economic weights will have practically no effect on the efficiency of 

selection. However the obverse of this conclusion is that it is necessary to make 

very large changes in the economic weights to appreciably affect the relative 

correlated responses of the individual traits.



PART IV 

ECONOMIC EVALUATION OF 

BREEDING PROGRAMS 

Compared with the topics of the previous three parts, very little has been written 

on the economic evaluation of breeding programs, and most of what has been 

written has dealt with specific examples, rather than general principles. In fact 

the only paper I have been able to find that deals specifically with this question 

on a theoretical level is "Economic evaluation of genetic differences," Moav 

(1973). We will therefore discuss this paper in some detail in Chapter 11, the 

first chapter of Part IV. 

In Chapter 12 we will review the literature sources that have compared 

alternative breeding programs. Although the literature on this topic is rather 

extensive, it has mostly dealt merely with comparison of rates of expected or 

realized genetic progress. Again only a few studies have also considered the 

relative costs of alternative programs, and we will concentrate on these. In this 

chapter we will also consider the economic impact of new biotechnology on 

breeding programs, including embryo transfer and sexing, cloning and selfing of 

animals, sexed semen, and genetic marker-assisted selection. 

In Chapter 13 we will review the literature on evaluation of existing 

breeding programs. Again this literature has dealt primarily with comparison of 

realized and expected genetic progress, and much less with other economic 

factors. In this chapter we will also consider the factors affecting the pricing of 

breeding stock, and attempt to compare actual pricing systems to theoretical 

considerations.



Chapter Eleven 

Economic Evaluation of Breeding 

Programs, Theory 

11.1 Introduction 

In Chapter 1 we derived equations to estimate expected genetic response to 

selection on a single trait. In Chapter 3 these equations were extended to cover 

multitrait selection. In this chapter we will first consider the main cost elements 

of breeding programs, and then derive equations for the economic evaluation of 

breeding programs. In Part II we discussed in some length the question of 

whether the basis for economic evaluation of traits should be profit, economic 

efficiency, or return on investment. This same question will of course apply to 

breeding programs. General theory has been developed only in terms of profit, 

although the criterion of return on investment was also considered by Hill (1971). 

This question is more acute for the commercial breeder, and will be discussed in 

some detail in this chapter. 

11.2 Major cost elements of breeding programs 

Traditionally costs of breeding programs have generally been minimal when 

compared to the increased income, or efficiency, generated by these programs. 

It should be noted, though, that many costs that traditionally have been considered 

part of breeding programs would have accrued in any event, or else generate 

information which has value beyond the breeding program. For example, the 

main impetus for milk recording of individual cows was to use this information 

in progeny tests. However, this information once available is useful to the 

producer for other farm management decisions. The cost of keeping sires and 

collecting semen is generally considered part of the cost of the breeding program, 

even though it would be necessary to keep a minimum number of sires and 

inseminate females, even if no genetic selection was practiced.



154 Economic Aspects of Animal Breeding 

without loss of fertility. This made large scale artificial insemination (AI) 

economically feasible, and resulted in major increases in the rate of genetic gain 

for large farm animals (Van Vleck, 1981). Although AI has not had a major 

impact on the direct costs of breeding programs, other new technologies will. 

At present multiple ovulation and embryo transplant are becoming economically 

viable options. In addition, embryo sexing and marker-assisted selection are 

technologically possible (Lande and Thompson, 1990; Weller and Fernando, 

1991; Womack, 1987). Other technologies that have been considered, but are 

not within current capabilities are semen sexing, cloning, and selfing (Van 

Vleck, 1981). For the first time, the cost of breeding programs has become a 

major factor in their economic evaluation. We will discuss now the traditional 

cost elements, and consider these new factors in the next chapter. 

In breeding programs for large animals, recording traits is often the major 

cost. Although it is now possible to automatically record milk production of 

each cow, milk samples must be analyzed for component concentration, which 

is still a relatively costly procedure. Although the main objective of most 
recording systems is genetic selection, it should be noted that the information 

recorded also has other uses, such as cow culling, and predicting future 

production. Certain traits are not included in breeding objectives merely because 

recording 1s too expensive. The best example of this is feed consumption for 
large animals. A question of some importance is whether breeding programs 
should rely on data recorded by individual producers. This data tends to be less 

reliable than data collected by professionally trained personnel. Furthermore, the 

producer sometimes has an economic interest in the values recorded for his own 

animals. In this case, the data will tend to be biased. This dilemma will be 

considered in more detail in Chapter 13. 
For most large animals, female fertility is very limited, even though many 

traits of economic importance are only expressed in females. Thus most genetic 

progress is achieved by progeny testing. A similar situation exists in poultry, in 

which most selection is based on family, rather than individual selection. 

Progeny testing can either be performed at regular commercial farms or at 
specific enterprises dedicated to this goal. In the first case, the cost of progeny 
testing will be the possible reduction in breeding value by mating to unproven 

sires, rather than the best sires available, plus an additional factor for risk. It 

is standard procedure in the US for AI institutes to pay farmers to inseminate 

cows with semen from unproven bulls. In other countries, farmers are obligated 

by cooperative agreements to inseminate a fraction of their cows with semen 
from young sires. In poultry, progeny testing is generally performed at special 
stations. The commercial producers then buy breeding stock in the form of eggs 

from the commercial breeder. Often there is an additional stage in which the 

commercial breeder sells breeding stock to a multiplier who then sell eggs to the 

general producers. 
In species in which the traits of economic importance are expressed chiefly 

in females, males are maintained only for breeding or for progeny testing. In
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the absence of genetic selection, it is still necessary to maintain a minimal 
number of males for breeding, but this number is generally much less than the 
total number of males that are progeny tested. In the US only about 1/3 of the 

sires progeny tested are at all returned to service, and the minimum number 

necessary is actually much lower. In Israel, only one in ten progeny tested sires 

are returned to service as proven sires. Rather than maintain the males, it is 

possible in the case of mammals to collect and freeze large quantities of semen 

over a relatively short period, and slaughter the animals. Thus, the cost of 

animal maintenance is reduced, but the cost of semen collection and storage is 

increased. However, since the male may die or become infertile at any time, it 

can be argued that semen collection during the waiting period is desirable in any 

event. This alternative is not possible for poultry with present technology; 

poultry semen loses its fertility after thawing. 

Previously, statistical analysis was a non-negligible cost of most breeding 
programs. However, recent advances in computing equipment have rendered the 
direct costs of data analysis virtually insignificant relative to other costs. The 

cost of writing new programs may still be important, but this cost is rarely borne 

by commercial breeding programs in any event. Over the past several decades 

statistical methods have become consistently more complex without regard to the 
increased cost of analysis, even though gains in the accuracy of evaluations have 

generally been very small (Weller, 1986; Weller, Norman, and Wiggans 1984; 

Weller, Misztal, and Gianola 1988; Wiggans, Misztal, and Van Vleck, 1988). 

11.3 Alternative methods to economically evaluate breeding 

programs 

Similar to the economic evaluation of individual traits, several different methods 

have been considered to economically evaluate breeding programs. The long- 

term profit from a breeding program will be a function of the discount rate and 

profit horizon, in addition to the returns and costs of the breeding program. 

Thus, one alternative is to assume that the discount rate and profit horizon are 

fixed, and to compute aggregate profit until the profit horizon is reached 

(Dekkers and Shook, 1990a; Weller and Ezra, 1989). Alternatively, since gains 

in the distant future will have a negligible economic value with any reasonable 
discount rate, some studies have suggested estimating the cumulative costs and 

returns of one cycle of selection with a fixed discount rate, and the profit horizon 

set at infinity (Petersen et al., 1974). Since new breeding programs generally 
require large initial investments, a third alternative is to fix the profit horizon, 

and estimate the discount rate necessary to achieve a net profit of zero (Hill, 
1971). Finally it is possible to fix the discount rate and compute the number of 
years required to achieve zero net profit (Ferris and Troyer, 1987; Van Vleck, 
1981; Van Vleck, 1982; Weller and Ezra, 1989).
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We will consider the first alternative in more detail in the next section. In 

the following chapters specific examples that have used the other alternatives will 

be discussed. 

11.4 Optimization of investment in breeding programs 

We will first illustrate how investment can be optimized using the relatively 

simple formula of Moav (1973), and progress to more complicated and realistic, 

but less general cases. In equation [4.7] we defined profit, P, as R — C. 

Returns, R, from a breeding program were computed by Moav (1973) as 

follows: 

R = x,MaAG [11.1] 

Where xp is the number of units of produce from each selected animal, M is the 
number of selected individuals, a is the net present value of a unit of genetic 

change, and AG is the genetic change due to selection for each unit of produce. 

Thus if a broiler is defined as the unit of produce, then x, will be the number 

of chicks produced per selected mother, and AG will be measured in terms of 

broiler weight. 

For the simple case of mass selection, we can compute AG in equations 

[1.22] and [1.23] as follows: 

AG = ih’g,/L [11.2] 

where i is the selection intensity, h’ is the heritability, go, is the phenotypic 

standard deviation and L is the generation interval. In equation [1.21], we 

showed that i = z/p, where z is the ordinate of the normal curve at the point of 

truncation, and p is the proportion of individuals selected. Thus return from one 
year of this simple breeding program can be computed as: 

R = xpMaih’o,/L = xpMazh’o,/(pL) [11.3] 

In Section 11.2 we listed the major cost elements of breeding programs. We will 
now assume that the costs of the breeding program can be divided into fixed 
costs, independent of the number of animals tested, and costs that are 
proportional to the number of animals tested. With these restraints, costs can be 
computed as follows: 

C= K, + K,T, [11.4] 

Where K, is the fixed costs of the breeding program, independent of the number



Economic Evaluation of Breeding Programs, Theory 157 

of animals examined, K, is costs per animal examined, and T, is the number of 
individuals examined. In most traditional breeding programs K, will consist 

chiefly of statistical analysis. In a more realistic model, the term K,T,, should 

be decomposed into separate terms for males and females. For females the costs 

will be measuring the economic traits, while for breeding males, costs will 
consist of raising animals in excess of those necessary merely for reproduction. 
Since T, = M/p, profit can be computed as: 

P = xpT,azh’o,/L — Ky — K,T, [11.5] 

Xpah’o,/L is annual income per animal selected and per unit of selection 
intensity. We will define this term as B. Assuming that B is not affected by the 
breeding program, it can therefore be considered a constant. Substituting into 

equation [11.5] gives: 

P = BT.z — K, — K,T 
n 

[11.6] 

Thus profit can be expressed in terms of three constants, and two variables z, 

and T,. z is of course also dependent on T,, but this dependency cannot be 

expressed algebraically. However, the following approximate equality can be 

used to express i as a function of T, and M (Smith, 1969): 

z/p = 1 = 0.8 + 0.41 In (CT, — M)/M] [11.7] 

Substituting equation [11.7] into equation [11.6] gives: 

P = MB{0.8 + 0.41 In (CT, — M)/M]} — K, — K,T, [11.8] 

Equation [11.8] is now a function of the same parameters as equation [11.6], 

with z replaced with a function of T, and M. In general, M, the number of 

individuals selected, will be kept to the minimum required by biological, 

inbreeding, and market considerations. Thus M can also be considered a 

constant, and maximum profit can be obtained by differentiation with respect to 

T., and equating this differential to zero as follows: 

6P/6T, = 0.41BM/(T, — M) — K, = 0 [11.9] 

Thus: 

Tax = M(0.41B + K,)/K, = 0.41Mxpah’o,/(K,L) + M [11.10] 

Where T,,, is the value of T,, for which profit is maximum. Alternatively it is 
possible to solve for p,,,, the proportion selected for which profit is maximum,
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as follows (Hill, 1971): 

Pimax = K,/(0.41B + K,) [11.11] 

We stress again that this equation is a simplification of any true breeding 

program, and to the best of our knowledge neither this equation nor a modified 

form has been applied in practice to determine T,,,.. 

11.5 Accounting for differential discounting of costs and 

returns 

We will recall that, on the one hand, genetic changes are cumulative and 

permanent; but, on the other hand, these changes must be discounted, and gains 

that accrue after the profit horizon have zero value. In equations [8.5], [8.7], 

[8,8], [8.9], [8,10] and [8.12] we developed expressions to compute the net 

present value of a genetic change for successively more complex situations. We 

will assume that all costs and returns are discounted to the beginning of the 

breeding program. In the simple program considered above, there is only one 

product. Thus the cumulative discounted returns can be computed as in equation 

[8.11] 

r — rit! (T —t + 1)r't! 
R= V ee [11.12] 

(di — ry l-r 
  

with all terms as defined in Chapter 8. In addition to the return from the 

breeding program, Hill (1971) noted that there is an additional "return", R,, that 

can be realized by selling possessions belonging to the breeding enterprise at the 

termination of the breeding program. (In practice this return is rarely realized, 
but should be factored into the equation.) Similarly, costs should be divided into 
initial costs, which need not be discounted, and continuing costs, which should 

be discounted as given by equation [8.14]. Thus the net present value of the 

breeding program can be computed as follows: 

ro — rit! (T —t + 1)r'*! Cxr(1 — r°) 
  

(1 — ry l-r l-r 

~C,+Rr [11.13]
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Where C, and C, are the continuous and initial costs, respectively; and the other 
terms are as defined above. Assuming that Rr’ — C, is negligible with respect 

to the first two terms, this equation can be rewritten as: 

P = VD. -— CD. [11.14] 

Where D. and D, are the net present value discounting factors for annual returns 

and cost respectively. Incorporating these factors, equation [11.8] becomes: 

P = DMB{0.8 + 0.41 In [(T,, — M)/M]} — DK, — K,T) [11.15] 

and T,,, can be computed as: 

T.w = M(0.41BD, + D.K,)/D.K, [11.16] 

If the profit horizon, T, is extended to infinity, equation [11.13] simplifies 

as follows: 

P= —— - —— -C = ——_ - — -C¢ [11.17] 
(i — ry? (i -n d(1+ dy? 3d 

As shown in Chapter 8, and noted by Van Vleck (1982), with discount rates 

below 0.1, the profit horizon can have a marked effect on the net profit of the 
breeding program. 

In Section 8.4 we considered the dissemination of genetic improvement over 

a population with overlapping generations, according to the model of Hill (1974). 

Brascamp (1973) also noted that returns from the four paths of selection occur 

after different time intervals. For example returns due to selection on the sire- 

to-dam path occur once the daughter of the selected sire begins milking while 

returns from the sire-of-sire path only occur after the granddaughters of the 

selected sires come into milk. Thus returns from the sire-to-sire path should be 

discounted more heavily, and will have a smaller net present value than returns 

from the sire-to-dam path. General equations have not been worked out to 
account for this in optimization of genetic gain. 

11.6 Commercial breeders vs. the national interest 

Although equation [11.10] will apply both to a commercial breeder and to the 

whole industry, the specific values of the parameters will be different. On the 

national level, M which is a function of the national market will be more-or-less 
fixed. However, a commercial breeder can increase his market share, that is
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increase M, at the expense of other breeders. Thus the commercial breeder 

would also be interested in M,,,,, the maximum profit as a function of M, which 

can be computed by differentiating equation [11.8] with respect to M and 

equating the differential to zero. In addition, depreciation of genetic gains will 

be more rapid for the commercial breeder, who must recoup his investment in 

a relatively short period, as opposed to the national aspect. Furthermore, in a 
competitive market, the economic value of genetic improvement is likely to be 
nonlinear. That is if the breeding stock of a particular breeder is below the 

genetic value of his competitors, it might have close to no economic value, while 

if the breeding stock is above the level of his competitors, it might have an 

economic value well in excess of the expected gain to the producer in either 
profit or economic efficiency. These considerations were considered by Dekkers 

and Shook (1990, 1990a) for the US dairy industry and will be considered in 

detail in the following chapter. 

11.7 Multitrait breeding programs 

As considered in the previous chapter, nearly all breeding programs consider 

more than one trait. Although in general genetic progress will be maximized by 

linear selection index as described in Chapter 3, this does not provide a solution 

as to the economically optimum multitrait breeding program. In addition to the 

individual economic value of each trait, the different traits may vary as to the 

time and probability of expression, in which sex the traits are expressed, and the 

cost of recording for the traits. For example, in dairy cattle milk production is 

expressed only in females, while beef production is expressed in both sexes. In 

addition, the main income from beef will be from yearling male calves. 

Furthermore, milk production is expressed later, but several times during a 

cow’s life, while return for beef production of yearling calves occurs earlier, but 

only once per individual. 
The differential cost of recording various traits is also important. For 

example, pricing for milk is now generally based on an index of carrier, fat, and 

protein. It is less expensive to measure milk production than fat, and more 

expensive to measure protein than either fluid milk or fat. Thus in an optimum 

breeding program, it is possible that only a fraction of those individuals that are 

milk-recorded will also be analyzed for fat, and only part of those with fat 

records will be also assayed for protein. In addition it is possible that in the 

future, many cows will be assayed for individual milk proteins, as these proteins 

have differential values in cheese production. 

It should be possible to modify equation [11.8] to handle a multitrait 

breeding program, although in practice this has not been done. The different 

traits would potentially have different measuring costs, different economic 

values, and different selection intensities. Instead of a single T,, there would be
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a different T, for each trait. The optimum breeding program, as a function of 

the number of individuals scored for each trait could then be determined by 

equating the partial differentials of the profit equation for each trait, and setting 

each differential equal to zero. It would then be necessary to solve this system 

of simultaneous equations. 

11.8 Summary 

In this chapter we considered the major cost elements of traditional breeding 
programs, which are measuring and recording the traits of interest, progeny 

testing, maintaining of breeding stock, and statistical analysis. In addition, the 

development of new biotechnology methods, including multiple ovulation and 

embryo transplant, embryo sexing, and marker-assisted selection have increased 

both the potential gains and costs from breeding programs. We explained that 

different criteria have been used to evaluate breeding programs, and showed how 

profit could be maximized as a function of the number of animals tested for a 

simple breeding program based on mass selection. We noted that the 

considerations leading to the optimal breeding program will be different for 

national breeding programs, and commercial breeders. Finally we considered 

briefly the question of economic optimization for a multitrait breeding program.



Chapter Twelve 

Comparison of Alternative Breeding 
Programs 

12.1 Introduction 

Most of the literature that has compared alternative breeding programs has done 
so from the aspect of expected rates of genetic gain, generally for a single trait. 

Only a few studies have attempted to economically compare alternatives, 

considering both the costs and returns of the different programs, and we will 

concentrate on these studies. In this chapter we will first summarize the 

literature that has attempted to economically compare alternative traditional 

breeding programs. We will then consider the impact of new advances in 

biotechnology on existing breeding programs. Within this context we will 

consider both those technologies that are currently available, including multiple 

ovulation and embryo transplant (MOET), embryo sexing, and genetic marker- 

assisted selection (MAS); and those technologies which have not as yet been 
perfected, but may become practical in the future, such as sexed semen, selfing 

and cloning. 

12.2 Half-sib vs. progeny selection for dairy cattle 

In most developed countries, dairy cattle sires for use in the general population 

are selected based on progeny tests (Johansson and Rendel, 1972). That is, 

young sires are first mated to a limited number of cows to produce between 50 

to 200 daughters. Once the production records of these daughters become 

available, those sires with the highest breeding values are returned for use in the 

general population, while the remaining sires are culled. The main advantage 

of this system is that the majority of cows are mated to superior sires with high 

accuracy evaluations. The major disadvantage is that the generation interval 

along the sire-to-dam path is much longer than necessary by biological 
considerations. Semen is first collected from the young sires at the age of one 

year, but an additional four years will elapse until these sires can be genetically 

evaluated based on their first crop of daughters. 

As an alternative, Owen (1975), suggested a half-sib selection scheme, in
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which sires of cows are selected based on the performance of their sisters, while 
sires of sires are selected based on daughter performance. The advantage of this 

scheme is a major reduction in the generation interval along the sire-to-dam path. 

The disadvantage is that the accuracy of evaluation is only half of that obtained 

by progeny tests based on an equal number of production records. 
Owen (1975) compared these schemes for a cow population of 100,000, but 

did not attempt to economically optimize either scheme. Rather he assumed an 

equal number of 50 sires in use for both schemes. In the progeny test (scheme 

A) these were divided into 20 proven and 30 young sires, while in scheme B, all 

sires were "unproven". At equilibrium, genetic gain was 3% higher by scheme 

A. However, in the first 10 years of the breeding program, cumulative genetic 
progress by scheme B was four-fold the genetic progress by scheme A. 

Virtually no genetic progress is generated by scheme A until year ten, when the 

second crop of daughters from the first group of proven sires are freshened. 

This is unrealistic for two reasons. First, a breeding program is seldom started 
completely from "scratch". Rather than use randomly chosen bulls as bull sires, 

some information is generally available to select better bulls even at the 

beginning. Alternatively, it is possible to import a small amount of semen of 

proven bulls from other populations to produce the first crop of young sires. 

Second, once the first cow records are available, sons of these cows could be 

used immediately as sires, rather than using a random sample of sires until the 

first progeny tests are completed, as assumed in this study. 

Net costs were 8% less by scheme B, although costs were not discounted, 

and some of the cost factors were rather arbitrary, for example, a recording 

incentive of £10 for bull testing per heifer lactation. The main reduction in costs 

was due to a saving in the cost of keeping bulls during the waiting period in 

scheme A. In practice this cost could also be reduced by producing semen from 

these sires during the waiting period, and slaughtering prior to completion of the 

progeny test. 

12.3 Optimization of a dairy cattle breeding program based on 

progeny test 

Ezra and Weller (1989) and Weller and Ezra (1989) optimized a population of 

100,000 cows for selection entirely on milk production. They assumed that 20 
proven sires were used to inseminate cows not mated to young sires and that six 

sires were used each year as bull sires. They varied the service period of proven 

sires, the fraction of cows mated to young sires, and the number of young sires 

tested. Thus the number of daughters/sire was also varied. Optimum genetic 
progress was obtained if 40% of the cows were bred to 160 young sires, and 

proven sires were used for four years. This implies 75 daughters/young sire. 

Assuming an initial breeding program in which 15% of cows are bred to
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young sires, and 40 sires/year were progeny tested, expected genetic gain would 

be 124 kg/year. If the number of sires were increased to 60, genetic gain would 

be increased by 2 kg/year to 126 kg/year. This is only 1 kg/year less than the 

maximum progress obtainable without increasing the fraction of cows bred to 
young sires. With a discount rate of 0.05, an economic value of $0.2/kg milk, 

and a cost of $4,444 per bull stall, it would take 24 years to reach the break- 

even point. By increasing the fraction of the population bred to young sires to 

40%, an additional gain of 7 kg/year could be obtained. These results will be 

considered again in the following chapter. 

12.4 Evaluation of milk and meat production from dual a 
purpose cattle breed 

Hill (1971) considered two breeding schemes for beef production from a dairy 

population. He assumed that prior to introduction of a beef breeding program, 
a dairy breeding program was already in place. In the first scheme, selection is 

for both traits in a single dairy or dual purpose population. In the second 

scheme a separate beef nucleus herd is maintained for crossing with the dairy 

breed, and progeny of these crosses are sold for slaughter. In scheme one, 600 
male calves are first performance tested for growth rate. Of these 150 are then 
selected to progeny test for milk production. Since the two traits are not 

evaluated simultaneously, the genetic gain will be less than that possible with the 

optimum selection index. In scheme two, a nucleus beef herd of 400 cows and 

8 bulls is maintained. Selection in this herd is only for beef production. We 
will consider separately the costs and returns of each program. 

In scheme one there will be an initial investment for the performance testing 
house, which Hill estimated at £50,000. Continuous costs would consist of the 

purchase price of the additional 450 male calves to be performance tested each 

year. In addition there would be testing costs for all 600 male calves, but part 

of these costs would be offset by the slaughter value of the unselected animals. 

Hill (1970) estimated the increase in annual costs as £160,000. In scheme two, 

the initial costs would consist of purchase of a farm for the nucleus herd, a 

testing station for 160 animals/year, and purchase of 16 bulls and 400 cows. 

Initial costs for scheme two were estimated at £235,000. However, of this sum, 

all but the cost of the testing facility, £12,800, could be realized at any time if 

it was decided to terminate the program. The annual costs would consist of 
£40/per animal on test, and other minor costs. Thus the total annual cost was 

set at £7000/year. 

The total dairy population was assumed to consist of 1,000,000 cows. In 

scheme one all cows are mated to sires from the dairy herd. In scheme two, 

75% of the cows are mated to dairy sires, and the remaining 25% are bred to 
bulls from the nucleus beef herd. All male calves, and all crossbred calves are
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finished for beef. In both schemes 500,000 calves are finished each year, of 
which 400,000 are males. In scheme two, 200,000 of these calves, including 
nearly all of the 100,000 females are crossbred progeny. Both breeding 
programs assume a genetic correlation of zero between growth rate and milk 
production. It is further assumed that selection for growth rate of the bull calves 
does not affect the rate of genetic gain for milk production in the dairy 
population. 

The expected response to selection in the general population for both traits, 
and in the nucleus herd for beef production will be a function of selection 
intensity, the accuracy of the evaluations, and the generation interval. In the 
dairy population it is assumed that 1/3 of the sires progeny tested are selected as 
proven sires, and 30% of the cows are mated to young sires. In the nucleus 
herd 16 bulls are selected each year for mating to the dairy population. Eight 
of these bulls are also used to maintain the nucleus herd. These bulls are 
selected from the 160 male calves born each year in the nucleus herd, but the 
proportion selected is only 0.133, due to 25% wastage. Mean generation 
interval is 7 years in the dairy population and 2.5 years in the beef nucleus herd. 

Once equilibrium genetic gain is reached, gain for growth rate will be 1.26 
kg/year in the general population, and 6.08 kg/year in the nucleus herd. Gain 
in milk production will be equal in both schemes, and is therefore not 
considered. The unit value of gain in growth rate is assumed to be £0.15/kg. 
Thus gain from scheme one will be: 

1.26kg/yr(£0. 15/kg)500,000 = £94,500/yr [12.1] 

Genetic gain for scheme two will be: 

1.26kg/yr(£0. 15/kg)300,000 + (6.08 + 1.26)0.15(200,000)0.5 

= £166,800/yr [12.2] 

In scheme two, the gain from crossing to the nucleus herd is equal to the mean 
of the gains obtained in the sire and dam lines. 

Three methods were used to economically compare these schemes: 

1. Computation of the profit horizon required to reach the break-even point 
of zero cumulative profit with a fixed discount rate. 

2. Computation of the cumulative profit with a fixed discount rate and 
profit horizon. 

3. Computation of the discount rate necessary to reach the break-even point 
with a fixed profit horizon. 

With an 8% discount rate, the break-even point is reached after 15 and 10 
years for schemes one and two, respectively. The cumulative profits with a 20
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year profit horizon were £1,051,000 and £2,424,000. The discount rates 

required to achieve a break-even at 20 years were 16% and 27%. These rates 

can then be compared to alternative investment opportunities. Thus by all three 

methods, scheme two was superior to scheme one. Unless the initial investment 

is very substantial as compared to continuous costs and genetic gain, alternative 

schemes should have the same ranking by all three criteria. 

Equation [11.11] was used to compute p,,,, the optimum selection 

proportion, and will be repeated here: 

Prax = K,/(0.41B + K,) [12.3] 

K,, costs per individual tested, can be computed as total discounted costs divided 

by 160, the number of bulls tested per year. Assuming a discount rate of 0.2, 

total discounted costs for the beef scheme. were 4.87(7000) + 235,000 — 

0.03(220,000) = £262,490, where 4.87 and 0.03 are the discounting factors for 

the annual costs and income that can be realized at the end of the program, 

respectively. Thus, K, = £262,490/160 = £1641. B, income per animal 

selected, can be computed as cumulative discounted income divided by the 

selection intensity and the number of bulls selected. Income from crossing to the 

beef nucleus herd will be: 6.08kg(£0. 15)200,000(0.5) = £91,200. Total income 

per unit of selection intensity will be £91,200 times the discounting factor and 

divided by the selection intensity, 1.9. For a discount rate of 0.2, the 

discounting factor is 7.44. Although 8 sires will be selected, a 25% wastage has 

been assumed, and the "nominal" number of individuals selected will be 10.67. 

Thus B = [(7.44)(91,200)]/[(1.9)(10.67)] = £33,470, and: 

Prax = 1641/[1641 + (0.41)33,470] = 0.11 [12.4] 

With a discount rate of 0.08, p,,, = 0.026. That is, with a lower discount rate, 

a larger selection intensity, which will result in greater costs for the breeding 

program, is optimum. 

Petersen et al. (1974) optimized a breeding program similar to scheme one 

of Hill (1971). There were two main differences between the two programs. 

Hill (1971) assumed a finite profit horizon, while Petersen et al. (1974) assumed 

an infinite profit horizon. Hill (1971) assumed that progeny tested sires were 

kept until the daughter records were evaluated, while Petersen et al. (1974) 

assumed that a relatively large quantity of semen was collected from each 

progeny tested sire, and, once this semen was collected, the sire was slaughtered. 

Thus the cost of semen storage and collection replaced the cost of keeping 

progeny tested sires until daughter records become available. Petersen et al. 

(1974) assumed a milk-recorded population of 250,000 cows, and selected for 

kg butterfat production, rather than fluid milk. They varied the number of 

recruited bull calves for the performance test, selection intensity for growth rate,
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the number of progeny test daughters per young sire, and the number of stored 
semen doses per bull. These variables imply that the number of sires progeny 
tested, and the fraction of the population inseminated with semen of young sires, 
were also varied. 

Except for selection intensity for growth rate, maximum profit for the other 
variables was obtained at nearly the same value that gave maximum genetic 
progress for milk production, similar to the results of Ezra and Weller (1989). 
This was not the case for selection on growth rate, because selection for this trait 
decreases the selection intensity for milk production. The number of semen 
doses collected per sire was varied from 10,000 to 50,000, and maximum profit 
and genetic gain for milk were obtained at the latter value. Thus the optimum 
may be even higher, although profit was only 0.3% less with 40,000 doses/sire. 
At optimum, 40% of the cows were inseminated with semen from young sires, 
similar to the results of Ezra and Weller (1989); and 112 sire were progeny 
tested per year, with 240 daughters per sire. Maximum genetic gain for butterfat 
was 1.56% of the mean per year. Seven sires were selected to breed the 
remaining 60% of cows, and four sires were selected as bull sires. The fraction 
of the population inseminated with semen of young sires, and the number of 
daughters per sire are considerably higher than the breeding programs in most 
countries. 

12.5 Economic impact of multiple ovulation and embryo 
transplant (MOET) on breeding programs 

As noted above several times, female fertility for domestic ruminants is very 
low, while male fertility, especially via AI, is virtually unlimited. With the 
advent of MOET in the early 1980’s it became technically possible to 
dramatically increase the rate of female fertility, and thus increase the rate of 
genetic gain. The cost of MOET, although still high with respect to AI, 
continues to decrease while success rates increase. Recently techniques have also 
been developed to determine the sex of embryos prior to transplant (Bondioli et 
al., 1989), although this technique has not yet come into widespread use. Four 
main methods have been presented to include MOET in dairy cattle breeding 
programs: 

1. Breeding of all cows in the population by MOET (Van Vleck, 1981, 1982). 
With this scheme, the cow population in each generation will be the genetic 
progeny of the best cows in the previous generation. 
2. Breeding of bull calves by MOET (Dekkers and Shook, 1990a; Petersen and 
Hansen, 1977; Ruane, 1988; Weller and Ezra, 1989). By this method it is 
possible to increase the selection potential on the dam-to-sire path with only a 
relatively small investment in MOET.
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3. Establishment of a nucleus herd based on MOET of all cows (Dekkers and 

Shook, 1990b; Nicholas and Smith, 1983). Bulls from the nucleus herd are then 

used to inseminate the general population. In this scheme total MOET costs are 

still kept relatively low, while the rate of genetic increase in the nucleus herd 1s 

greater than in scheme 2. 

4. MOET of the best cows in each herd. Cows of inferior genetic merit that 

would not ordinarily be bred, would be used as foster mothers (Ferris and 

Troyer, 1987). They assumed that both the costs and gains of MOET would be 

born by the individual producer, rather than the national or regional breeding 

program. 

All of these studies have considered only breeding for a single trait, usually 

milk or some simple index based on milk components. We will now consider 

these schemes in detail. Scheme 1 gives the greatest genetic increase, but has 

by far the greatest cost. Van Vleck (1982) assumed that the 10% best cows were 

used as embryo donors, all cows and sires were produced by ET, at a cost of 

$300 per live birth via ET, an economic value of $0.15/kg milk, and a zero 

interest rate. Under these conditions, genetic gain was increased by 35 kg/yr, 

but cumulative profit only became positive after 100 years. With embryo sexing, 

only half as many transfers would be necessary, and a positive net profit would 

be obtained after 50 years, assuming that embryo sexing did not increase the cost 

of the procedure. With any realistic discount rate and profit, schemes of this 

type are therefore not economical, unless there is a dramatic reduction in the cost 

of MOET. 
Contrary to the situation with scheme one, all of the studies that have 

considered scheme two have found it to be economically feasible, under certain 

conditions. Weller and Ezra (1989) assumed that with MOET the number of bull 

dams could be decreased by a factor of three. They further assumed a 

population of 100,000 cows, a discount rate of 5%, an economic value of $0.2 

per kg milk, an initial cost of building a MOET facility of $300,000, and an 

annual cost of $150,000 to perform 300 transplants/year, i.e., $500/transplant. 

Genetic gain was increased by 7 kg/year (compared to a base of 124 kg/year 

without MOET). A cumulative zero profit was obtained after 16 years, and after 

20 years cumulative profit was $2,029,000. As shown above in Chapter 8, a 

relatively small genetic gain can have a large effect on returns and profit. 

Dekkers and Shook (1990a) considered the additional revenue that would accrue 

from AI for bull dams in a situation of several competing AI firms, but did not 

consider the costs of MOET. They found that the increase in genetic gain would 

be 0.015 trait standard deviation units. With a standard deviation of about 1000 

kg for milk, this is twice the gain predicted by Weller and Ezra (1989), but they 

assumed a more than six-fold reduction in the number of bull dams selected. 

A MOET nucleus herd was first proposed and discussed in detail by 

Nicholas and Smith (1983), but they only considered the additional genetic 

progress that could be obtained. To date no study has attempted to economically
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evaluate a program of this type, also considering the additional costs. The 

advantage of the nucleus herd scheme is that MOET costs are kept relatively 

low, because they are only performed within the small nucleus population. 

Genetic gain in the nucleus herd is transferred to the general population by 

insemination with bulls produced in the nucleus herd. The disadvantages are as 
follows: 

1. A more-or-less self-contained breeding program must be planned for the 

nucleus herd. Although it will be possible to achieve greater rates of genetic 

progress along the dam-to-dam path via MOET, rates of progress will be less 

along the other three paths of inheritance, due to the small population size. 
2. Intense selection in a small population will lead to significant increases in 

inbreeding, which has a negative effect on most traits of economic importance, 

such as milk production and growth rate (Hudson and Van Vleck, 1983; Weller, 

Quaas, and Brinks, 1990). 

3. When cows in the general population are inseminated with bulls from the 

nucleus herd, only half of the genetic gain obtained in the nucleus herd is 
transferred to the general population (Hill, 1971). 

Nicholas and Smith (1983) considered two selection schemes for the nucleus 

herd; a juvenile and an adult scheme. In the juvenile scheme, male calves are 

selected for breeding, and female calves are selected for MOET at the age of one 

year based on their pedigree. In the adult scheme, cows are selected for MOET 

and bulls are selected for breeding at the age of three, with cow selection based 

chiefly on their own first production record, and bull selection based on the 

records of their dam and sisters. The juvenile scheme has the advantage that 

generation interval is shortened, but the accuracy of the evaluations is lower. 

Rates of genetic gain and inbreeding increase with the number of progeny per 

female donor, and the number of donors per male. Rate of gain is slightly 

greater with the juvenile scheme, but inbreeding levels are significantly higher. 

A genetic gain of 0.129 s.d. units/year was obtained with an adult scheme of 512 

cows, and 1024 embryo transfers/year. This is about 30% greater than can be 

obtained with a traditional progeny testing scheme. However, only half of this 

gain will be transferred to the general population by insemination with bulls from 

the nucleus herd. 

Within a herd, Ferris and Troyer (1987) found that break-even costs for ET 

ranged from $300 to $500 per ET cow entering the herd, with a profit horizon 
of 20 years, provided that the donors were among the 5% best cows in the herd, 

and were mated to superior sires. An economic value of $0.13/kg milk and a 

discount rate of 0.1 were assumed. Increasing the number of ET’s per donor 

dam from 2 to 4 reduced the break-even cost by 20%. The break-even cost 

declined with increase in the selection intensity of donor dams. That is, the less 
ET is performed in a herd, the more economical it becomes. In conclusion, at 

current prices, it may be economically feasible from the point of view of the
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individual farmer, to perform MOET on the one or two best cows in his herd. 

12.6 Economic impact of embryo sexing and splitting, cloning, 

semen sexing, and selfing on breeding programs 

The main impact of embryo sexing would be to decrease the number of embryo 

transfers necessary in a breeding program that includes MOET. For schemes 

that utilize MOET on the dam-to-sire path, the number of transfers could be 

reduced by half, so embryo sexing could be economically viable if the cost of 

sex determination on a single embryo is less than the cost of a single ET. For 

a MOET nucleus herd, in which both males and females are produced by ET, 

the gain would be less, and the number of transfers could be reduced 30%. 

Via embryo splitting it is possible to produce genetically identical individuals 

similar to identical twins. Four identical calves from embryos split twice have 

already been produced (Womack, 1987), although this technique is still in the 

experimental stage. The routine use of embryo splitting in conjunction with 

MOET would result in an increase in the accuracy of genetic evaluation, because 

it would be possible to pool the records of several genetically identical 

individuals. In conjunction with a MOET nucleus breeding scheme, embryo 

splitting could increase the rate of genetic gain by up to 10% (Nicholas and 

Smith, 1983), without increasing the inbreeding level. Further increases in 

genetic gain could be obtained, but would result in an increase in the inbreeding 

level. 

"Cloning" is the production of large numbers of genetically identical 

individuals. Cloning of both embryos and mature individuals has been 

considered, although neither is possible with current technology. To some 

readers cloning of mature individuals may seem far-fetched, but in fact from a 

breeding point of view, this is equivalent to vegetative reproduction, which is 

quite common in many plant species. If cloning of mature individuals becomes 

possible, then animal breeding could become quite similar to plant breeding, in 

which commercial production consists of raising large numbers of genetically 

identical individuals, with genetic breeding programs performed only at special 

institutes on relatively small numbers of individuals. Of course it is not possible 

to economically evaluate a technique beyond current technology. Even cloning 

of embryos would result in a significant increase in the rate of genetic gain above 

that possible with embryo splitting and MOET (Nicholas and Smith, 1983; Van 

Vleck, 1981). 
Although semen sexing has been considered a distinct possibility for at least 

20 years (Foote and Miller, 1971; Soller and Bar-Anan, 1973), and reports of 

successes have been published from time to time, no reliable method has at 

present been developed to separate "X" and "Y" sperm without significant loss 

of fertility. With sexed semen it would be possible to dramatically increase the
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selection intensity along the dam-to-dam path, and marginally increase the 
selection intensity along the dam-to-sire path. Rate of genetic gain would be 
increased by 15 kg/year (Van Vleck, 1981). Assuming that the proportion of 
cows selected as dams of dams is 0.9 under normal circumstances, and 0.45 with 
sexed semen, the expected genetic gain of a daughter of a selected dam will be 
36 kg without sexed semen, and 163 kg with sexed semen. With a discount rate 
of 0.1, a profit horizon of 15 years, and an economic value of $0.11/kg milk, 
the net present value of mating to a selected dam to produce a heifer would be 
$14 in the standard progeny test program, and $63 for a program with sexed 
semen. Van Vleck (1981) assumed that six semen doses are required to produce 
a heifer in a standard breeding program. Thus at $10 per semen dose, the net 
loss incurred in the production of a milking heifer is $60 - $14 = $46. With 
sexed semen, only half the cows selected as cow dams would be mated with 
semen from proven sires. The remaining cows, who would be mated with 
"male" semen could be inseminated with inexpensive semen. Assuming that the 
inexpensive semen is priced at $7/dose, while semen from elite sires is priced 
at $10/dose, the break-even point for the cost of semen sexing would be 
$19/dose. 

Soller and Bar-Anan (1973) noted that sexed semen would reduce the 
economic value of beef traits in the dairy herd, since the designated dams of 
male calves could be bred instead to a beef breed. Instead, selection for calving 
ease would become more important, as breeding dairy cows to large beef breeds 
increases the frequency of dystocia. 

Another breeding technique that is common in plants, but beyond current 
biotechnology for vertebrates is "selfing". That is, producing progeny with the 
same individual as both the male and female parents. This technique could be 
useful to reduce the number of daughters required for a progeny test. For 
example, the records of 12 daughters produced by selfing of young sires would 
give equivalent accuracy of evaluation to 5O normally bred daughters. Selfing 
of sires would of course entail embryo transplant, and this must also be factored 
into the potential cost. A major drawback of selfing is that the progeny are 50% 

inbred. As stated above, even relatively minor levels of inbreeding have a 

significant negative effect on production traits. 

12.7 Genetic marker-assisted selection 

Traditionally animal breeding has been chiefly trait-based selection, without 

regard to the specific Mendelian loci that contribute to the breeding value of the 

selected individuals. A number of studies have shown that individual loci that 

affect quantitative traits can be located with the aid of genetic markers. Until 

recently large numbers of segregating genetic markers were not available in 
domestic animal populations. With the advent of restriction fragment length
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polymorphisms (RFLP), (Soller and Beckmann, 1982) and more recently DNA 

microsatellite polymorphisms (Litt and Luty, 1989), this situation is changing. 

Of all the biotechnology techniques considered, only semen sexing and marker- 

assisted selection (MAS) do not require ET. 

A number of studies have considered the expected genetic gain possible with 

MAS. In conjunction with traditional breeding programs, MAS can be used 

either to decrease the generation interval, or to increase the accuracy of the 

evaluation. For the latter alternative, MAS will be useful chiefly for low 

heritability traits (Smith and Simpson, 1986; Lande and Thompson, 1990). For 

high heritability traits, little is gained if the genotypes of individuals with respect 

to individual quantitative trait loci are known. For sex-linked traits the main 

advantage of MAS could be to shorten generation intervals. Kashi et al. (1986) 

suggested a two stage selection procedure for young sires; screening of male 

calves for QTL genotype, followed by a progeny test of those calves selected in 

the first stage. They estimated that the rate of genetic gain could be increased 

by 25 to 50% of traditional progeny test breeding programs. 

Another potential of MAS is to select for non-additive genetic effects, which 

are generally ignored in traditional breeding programs. Finally, MAS may also 

be more efficient for multitrait selection, especially with negative genetic 

correlations among the traits in the selection objective (Lande and Thompson, 

1990: Weller and Fernando, 1991). Development of a MAS program in dairy 

cattle will probably require genotyping about 10,000 individuals for at least 15 

markers each (Weller, Kashi, and Soller, 1990). Thus, assuming a conservative 

cost of $1 per genotype determination per locus per individual, the total cost of 

genotype determination will be $150,000, which is of a similar magnitude to the 

additional costs required for incorporating MOET of bull dams into a progeny 

selection breeding program. 

12.8 Summary 

Similar to most other economic enterprises, genetic improvement is subject to the 

law of diminishing returns, that is the first investment in breeding produces 

substantial returns, but as investment increases, marginal gains decrease. Only 

a few examples of optimizations of breeding programs are presented in the 

literature, and these tend to be highly simplified. Three different methods have 

been used to economically compare alternative breeding programs; cumulative 

profit, number of years to reach the break-even point, and the interest rate that 

results in zero profit for a fixed profit horizon; but results were generally 

similar. Until the advent of modern biotechnology, costs of nearly all breeding 

programs were relatively low. Thus, for single trait selection, the economically 

optimum breeding program was nearly equal to the breeding program that gave 

optimal genetic progress.
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With the advent of new technologies, based chiefly on MOET, which are 
still relatively expensive, this situation is changing, and the economically optimal 
breeding program may be significantly different from the breeding program that 
gives maximum genetic gain. Economic considerations, such as interest rate and 
profit horizon also become more important. Of course it is not possible to 
economically evaluate options beyond current technology, such as sexed semen, 
or selfing, but similar to the case of MOET, it should be remembered that the 
mere fact that a procedure is technologically possible, does not mean that it is 
economically feasible.



Chapter Thirteen 

Evaluation of Existing Breeding Programs 

13.1 Introduction 

Very little has been directly written on economic evaluation of ongoing breeding 

programs. The literature that does exist deals chiefly with estimation of realized 

rates of genetic gains, and comparison to the theoretical values for optimum 

genetic progress. Realized genetic progress has generally been considerably less 

than the theoretical expectation. We will attempt to explain this result within an 

economic context. In free-market economies, the price of breeding stock is 

usually set by supply and demand. We will review those studies that have 

considered the market price of breeding stock, and compare actual market prices 

to the expected economic value of genetic improvement as developed in Chapters 

6, 7 and 8. Although we have maintained that maximum progress is achieved 

by a linear selection index, we will see that the actual market price of breeding 

stock is in many cases a nonlinear function of the trait breeding values. 

13.2 Comparison of realized and predicted rates of genetic 

progress 

Estimation of genetic trends for most domestic animal species is complicated by 

the fact that management conditions also change over time. Thus genetic trend 

cannot be estimated merely by comparing production levels over time. To obtain 

reliable estimates of genetic trends requires long-term recording with overlapping 

generations, or maintenance of control populations not under selection. For 

many commercial populations neither of these options is available. Most 

estimates of long-term genetic trends in commercial populations have been for 

the major traits under selection, especially milk production in dairy cattle. 

General policy has been to estimate the regression of sire breeding values, 

weighted by the number of daughters per bull, on the birth or freshening date of 

the daughters. Different methods, such as the regression of cow breeding value 

on birth year, tend to give significantly different results. It is much more 

difficult to obtain meaningful genetic trends for other species with less advanced 

recording systems, or for secondary traits in dairy cattle, although a few
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estimates do exist, and will be considered. 
Estimates of genetic trends for milk production in the US, Canada, and New 

Zealand were summarized by Van Vleck (1986). Lee, Freeman, and Johnson 
(1985) found that genetic trends in the US population from 1960-1969 were only 
1.55 and 2.55 kg/year, based on cow and bull evaluations, respectively. During 
the period 1969-1978, genetic trends were 52.55 and 83.73 kg/year, for the cow 
and bull evaluations. Powell and Norman (1985) found similar results for the 
same population. Although the genetic trends during the later period are much 
higher, they are less than the expected value of about 100 kg/year, which is still 
a conservative estimate. A number of studies considered in the previous chapter 
have shown that rates of genetic gain in the range of 0.1 standard deviation units 
are well within the capability of advance progeny testing programs. The 
phenotypic standard deviation for milk production is within the range of 1,200 
to 1,400 kg. 

Weller, Ron, and Bar-Anan (1986) and Weller and Ron (1989) estimated 
annual genetic trends for the Israeli dairy cattle population for both primary and 
secondary trends from 1976 through 1988. Trends for production traits were 
89 kg milk, 2.2 kg fat and —0.008% fat for 1976 through 1983, and 147 kg 
milk, 2.45 kg fat and —0.025% fat for 1978-1988. Genetic trends were 
economically positive for fertility and calf mortality, but negative for dystocia. 
There was very little intended selection for these secondary traits during the 
periods considered. 

13.3 The reasons for genetic trends being less than the 
theoretical maximums 

From the examples given above, it can be concluded that in general, genetic 
trends have been less than the theoretical expectations. From the previous 
chapter, it should be clear that the breeding program that gives maximum genetic 
gain is not necessarily the program that gives maximum net profit. Furthermore, 
even if the goal is to maximize profit, the question is whose profit? In the 
previous chapter, breeding programs were economically evaluated from the 
national or regional aspect. The situation may be quite different when it is 
necessary to evaluate a breeding program separately from the point of view of 
the farmer, the commercial breeder, and the national interest. 

The individual farmer, who is the direct consumer of genetic improvement, 
is not able to independently evaluate the genetic potential of the breeding stock 
that he purchases. This will be especially true for breeding stock of similar 
genetic merit. Moav (1973) defined this problem in terms of a "range of non- 
discrimination." That is, farmers are not able to discriminate between breeding 
stock that differ only slightly in genetic merit. Thus, within the range of non- 
discrimination, it is in the breeders’ interest to decrease breeding costs as much
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as possible. Assuming that this will also lead to a decrease in genetic merit, it 

is possible to obtain a negative correlation between breeders’ profit and genetic 

merit over the range of non-discrimination. Furthermore, for a commercial 

breeder, it may be more worthwhile to invest in advertising, which is visible, than 

in increasing genetic gain, which is not. In most countries the range of non- 

discrimination is kept to a minimum by independent evaluation of competing 

breeding stock, either by government agencies or by universities. In both cases 

the assumption is that the institution that performs the evaluation will not be 

subject to influence by commercial breeders who have a stake in the results of the 

evaluation. 

Another reason for less than optimal genetic progress is that costs that may 

be zero or negligible from the national aspect may be quite substantial from the 

point of view of the commercial breeder. For example, in the US farmers are 

paid to have their cows inseminated with semen from young, unproven sires. 

From the national point of view, insemination of cows with semen of young sires 

does not increase the cost of the breeding program. Inseminating cows with 

semen from young sires requires no extra effort than inseminating cows with 

semen from proven sires. However, this "cost" must be born by the commercial 

breeder, and passed on to his consumers. It also means that a breeder can 

increase his profit by decreasing the number of inseminations from young sires. 

Thus, the breeding program that maximizes the profit of the commercial breeder 

can be radically different from the program that would maximize national genetic 

gain, or even maximize national net profit. 

This will be illustrated with the following example based on the US dairy 

cattle population. Equation [11.8] can be modified to compute the optimum 

selection proportion of young sires and the optimum number of daughters per sire 

as follows: 

P = MB{0.8 + 0.41 In [((T, — M)/M]} — Ky — K,T, [13.1] 

with all terms as defined in Chapter 11. We will first modify the term K, T, to 

include an additional term for fixed costs per daughter sampled. Dividing by M, 

profit per bull selected, Py, is computed as follows: 

P/M = Py, = B{0.8 + 0.41 In [(Ry — 1)} — Ke - K,Ry — Kgn,Ru [13.2] 

where K, is fixed costs per daughter sampled, n, = number of daughters sampled 

per sire, and Ry = 1/p. B, the value of the genetic gain per year per animal 

selected per unit of selection intensity, is computed as follows: 

B = 0.5x,0,A,a [13.3] 

Where x, is the number of semen doses sold per sire, 6, = 600 kg milk is the 

genetic standard deviation, A, is the accuracy of the evaluation, and a = $0.05
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is the net present value of semen from a sire with a breeding value of an 
additional kg of milk. Assuming h’ = 0.25, A, will be approximately equal to 
[n/(n, + 15]? (Van Vleck, 1981). Note that for progeny evaluation h’o, of 

equation [11.5] has been replaced with o,A,. The factor 0.5 is included because 

the daughters receive only half of their genes from their sires. Assuming that n 

= 20,000; substituting equation [13.3] into equation [13.2] gives: 

Py = 

300,000Vn, [0.8 + 0.41 In [Ry — 1)] 
  — Ki — K,Ry — K,nRy [13.4] 

Vn, + 15 

To find the optimum values for R,, and n, it is necessary to differentiate this 

equation with respect to these variables, and equate to zero, as follows: 

    

  

  

5P,, 123,000Vn, 
= —_ Ky, _ Kgn, = 0 [13.5] 

5Ry (Ry —1)Wn, + 15 

123,000Vn, 
Ry = + ] [13.6] 

(K, + Kn, Wn, + 15 

5P,, 2,250,000 
— = [0.8 + 0.41 In [Ry — 1)] — K.Ry = 0 [13.7] 
5n, Vn,(n, + 15)°” 

123,000Vn, 
  0.8 + 0.41 In = 
(K, + K,n,)Wn, + 15 

0.0547K.n,(n, + 15) K¥Yn,(n, + 15)°” 

K, + Ken, 2,250,000 
  

  

Equation [13.8] can be used to solve for n,, and then equation [13.6] can be used 

to solve for R,, for any given values for K, and K,. Note that n, and Ry, are 

independent of K,. We will consider two cases: a cooperative and a commercial 

Al institute. For both cases we will assume that the net present cost of keeping 

a sire until his daughter proofs become available is $10,000. In the first case 

there will be no additional cost per sire progeny tested, and K, = $10,000. In
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the second case we will assume that the stud must pay an additional mean 
purchase price of $10,000 per bull calf, so that for the commercial AI institute, 

K, = $20,000. For the cooperative AI institute we will assume that the cost per 

milk-recorded daughter, Kg, is a nominal $20, while the commercial AI institute 

pays the farmer a total of $100 per milk-recorded daughter. With these values, 

Rix = 10.3 and 5.2 for the cooperative and commercial AI institutes, 

respectively. The corresponding values for n, are 126 and 66 daughters, 
respectively, which correspond to accuracies of 0.94 and 0.90. The values for 

the commercial AI institute for both variables are considerably less than the 

values that give either maximum profit from the national point of view, or 

maximum genetic gain. They are however not very different from the actual 

mean values for the US dairy industry. 
In the US Holstein population, about 1000 young sires are progeny tested 

per year (Miller, 1988), and about 300 are returned to service as proven bulls. 

Although the selection proportion is in fact greater than 0.3, because the better 

proven sires are used more intensively, it is still much less than the optimum 
levels estimated in the previous chapter. Van Tassell and Van Vleck (1987) 

found that the realized selection differential over the last available five year 

period was only 28% of the theoretical possible value. The number of daughters 

per young sire is about 50, thus only 50,000 are bred to young sires. The total 

US cow population is about 10,800,000 cows (Gruebele, 1988). Assuming a 

culling rate of about 25%, this means that 2,500,000 heifers come into milk each 

year. Thus only about 2% of new heifers are milk-recorded progeny of young 

sires. These numbers can be compared to the optimum levels of about 40% 

found by both Ezra and Weller (1989) and Petersen et al. (1974), and the 

realized value of 15% for the Israeli dairy population (Weller, 1988). 

Lower than necessary selection intensities result also from the pricing 

system of semen common in most countries. Generally there is a very large 

price differential between the semen of the most elite sires, and second tier sires, 

and this price differential is greater than the actual economic value of breeding 

to the elite sires (Wilder and Van Vleck, 1988). Farmers are aware of this fact, 

and therefore elect to inseminate most cows with semen from less expensive 

sires. Generally only elite cows with the potential to be bull dams are mated 

with the most expensive semen. The price of the semen of the elite sires is 

reduced when sires with even higher evaluations become available. 

In addition to the factors considered above, Van Vleck (1986) found that 

longer than necessary generation intervals; selection emphasis on non-production 

traits, especially conformation; and biases in genetic evaluations, also reduce the 

actual rate of genetic gain. Van Tassel and Van Vleck (1987) found that the sum 

of generation intervals along the four paths was 30 years, while the required 

minimum, considering biological and breeding limitations, was only 25 years. 
The sire-to-sire and dam-to-sire paths were 3 and 2 years greater than necessary, 

respectively. 

In both the US and Canada, a relatively large emphasis has been put on
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conformation traits in sire selection (Van Vleck, 1987). Standard practice has 
been to set minimum levels for fat percent and conformation traits in the 

selection of bull dams. As shown in Chapter 3, any alternative form of selection 

will be less efficient than selection index. Furthermore, truncation selection of 

this type can result in an unexpectedly large emphasis on the traits selected by 
truncation. This problem was considered in general terms by Moav (1973). He 
noted that the implied economic weights of the farmer may often be different 

from the economic weights in the national interest. His example was for 

production and reproduction in swine. The individual farmer may be more 

interested in litter size, because this increases the number of pigs he can sell. 

However, from the national point of view it may be more important to increase 
growth rate. In a commercial breeding situation, it is the farmer who will 

determine the relative economic value of different traits. We will consider 

emphasis on conformation again in the following section. 

A main problem in genetic evaluation has been preferential treatment of 

potential bull dams. In most developed countries, bull studs will pay large prices 

for male calves of elite cows. This has led farmers to try to make good cows 

seem better than they really are. A number of studies have indicated that the 

actual regressions of the evaluations of AI bulls on their dams are less than the 

predicted values (Van Vleck, 1986). 

It may be of interest that, in the Israeli population, in which emphasis on 

conformation has been less than in the US, the price paid for bull calves is only 

slighter higher than the beef price, and semen of all sires are priced equally; 

realized genetic gain has been close to the theoretical values. 

13.4 Actual pricing of breeding stock vs. theoretical 

considerations 

Wilder and Van Vleck (1988) compared the price of semen of 324 US Holsteins 

to the sire evaluations for production and conformation traits. The effect of 

number of daughters was also included. They analyzed three AI institutes 

separately and 11 institutes jointly. They also repeated the analyses excluding 

sires with semen prices greater than $100/dose. The coefficient of determination 

for the complete data set was only 0.26, and ranged from 0.37 to 0.57 for the 

individual studs. Eliminating the four “outliers" increased R’ to 0.48 for the 

combined analysis, and from 0.44 to 0.70 for the individual studs. Inclusion of 
quadratic effects for evaluations for conformation and production increased R’ 

significantly, especially for the joint analysis. This indicates that farmers tend 

to prefer "balanced" sires with good evaluations for both conformation and 

production, as opposed to sires with superior evaluations for some traits, and low 

evaluations for others. This preference is of course contrary to our conclusion 

in Chapter 10, that a linear selection index will always result in maximum
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genetic progress. Even with quadratic effects, the highest R? for a single stud 

was only 0.75. The availability of semen is also probably a significant factor in 
price determination, but was not included as a factor in the analysis. 

In the US sire summary, sires are ranked chiefly by the total performance 

index, (TPI). Until the late 1980’s, TPI was a linear index of the sires’ 

evaluation for milk, percent fat, and conformation. Wilder and Van Vleck 

(1988) compared the partial regressions of the sire evaluations for these traits on 

semen price to the economic values implied by TPI, again excluding the sires 

with extremely high semen prices. In general the calculated partial regressions 

were similar to the implied economic values, except that slightly more emphasis 

was put on conformation than implied by the TPI. When the outliers were 
included in the regression analysis, emphasis on conformation was even greater. 

The partial regression of milk on semen price was $0.03/kg. This value is 

surprisingly low. Most of the studies considered in the previous chapter have 

assumed a discounted net value in the range of $0.05 to $0.1/kg. Van Vleck 

(1981) assumed a value of $0.055 for a profit horizon of 10 years, while 
McGilliard (1978) found that the net present value of semen was about one 

quarter of the nominal milk price, which in the US has been recently about 

$0.25/kg. This implies an economic value of $0.06/kg, or twice the regression 

found by Wilder and Van Vleck (1988). 

The TPI was constructed so that the economic values for milk, percent fat, 

and conformation, per standard deviation unit would be in the ratio of 3:1:1. If 

the pricing of semen reflects farmer demand, then their emphasis on 

conformation is even greater than the TPI value. This would conform to the 

conclusion of Van Vleck (1986) given above, that emphasis on conformation has 
been a major cause in the lower than expected genetic trends for milk 
production. 

The non-linear nature of farmer demand from the commercial breeder was 

also noted by Shultz (1986) for the case of poultry. He observed that most traits 

will have a minimal acceptable level from the point of view of the farmer or 

consumer. If a breeding stock is below this level, then it will be nearly 
unsalable, while above this break-point, all values will have equal economic 
merit. The commercial breeder will therefore concentrate on those traits in 

which he is weakest, and ignore those traits in which he is above his 

competitors. Selection of this type will also lead to less than optimum genetic 

progress. 

13.5 Summary 

Although classical economic theory assumes that the public interest is generally 

best served by free competition, this is not necessarily the case for genetic 

improvement. In many cases the conflicting interests of breeders, farmers, and
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consumers will lead to suboptimal levels of genetic progress. This will be 
especially true if the suppliers of breeding stock are independent commercial 

enterprises. In this case, costs that might be negligible from the national view, 

can be very significant for the commercial breeder. Since it is nearly impossible 

for the buyer to independently evaluate breeding stock at the time of purchase, 

misrepresentation is a major problem. Although many industries have adopted 
independent evaluation procedures, the possibilities for "beating" the system are 

still great. For these reasons, realized genetic progress has been lower than the 

economically optimal level from the national point of view.



PART V 

CROSSBREEDING AND HETEROSIS 

Until now we have considered economic aspects of genetic improvement within 

a single breed. Although selection within a single breed is the rule for certain 

objectives, especially dairy cattle, many production systems make use of 

crossbreeding between different breeds at some stage of the production process. 

The main justification for crossbreeding strains has been to obtain heterosis, 

although there is considerable confusion as to the exact meaning of this term. 
The term "heterosis" was coined by G. H. Shull in 1914 (Shull, 1948) to include 

hybrid vigor as the manifest effect of a "developmental stimulation resulting from 

the union of [genetically] different gametes." Although heterosis is generally 

defined as superiority of the hybrid over both parents (Strickberger, 1969), 

numerous studies, particularly those involving beef cattle, have estimated 
heterosis as any deviation from the mean of the parental strains. 

The "classical" explanations for heterosis are elimination of inbreeding 

depression, and overdominance at the level of the individual locus. We will see 

that even in the absence of these "true" genetic effects, crossbreeding is often 

more profitable than selection within a single line. Moav (1966) defined five 

types of "economic" heterosis, and these will be explained in Chapter 14. In 
Chapter 15 we will explain criteria to determine the most profitable parental 

combination, and in Chapter 16 we will show how planned matings together with 

line breeding can be economically optimized. Unlike genetic selection, the effect 

of heterosis is not permanent and cumulative. Thus as shown in Section 8.3 the 

net present value of a gain from crossbreeding will be much less than an equal 

"nominal" gain from within-breed selection.



Chapter Fourteen 

Economic Evaluation of Heterosis 

14.1 Introduction 

This chapter will be based chiefly on Moav (1966) and Allaire (1977). The 

remaining chapters in Part V will consider three other papers in this series 
(Moav, 1966a; Moav, 1966b; and Moav and Hill, 1966) in detail. We will 

utilize methodologies developed in Chapter 6 to estimate the economic value of 

traits from profit equations. We will also use the graphic method of Moav 

developed in Chapters 6 and 9, in which genetic values are superimposed on a 

map of profit contours. We will demonstrate how "economic heterosis" can be 

achieved even if the individual traits are additive on the scale of measurement. 

Five different types of economic heterosis will be defined. We will further show 

how planned matings within a breed can increase the mean economic value of the 

offspring, provided that for at least one of the traits the economic value is 

nonlinear on the economic scale. 

14.2 Profit equations with separate sire and dam lines 

In Chapter 6 we first considered the relationship between the effects of 

reproductivity and productivity on profit of poultry and swine production. For 
the example of an integrated enterprise that raises both mother hens and layers, 

profit, P, was expressed by equation [6.20] which we will repeat here: 

P=K-V,-V, [14.1] 

Where K is return per unit production less fixed costs per unit production, V, 

represents the variable costs of production, and V, represents the variable costs 

of reproduction. We also noted in Chapter 6 that profit contours in this case will 

be curved lines. This point will be considered again below. 

Three genotypes directly determine the profit of the enterprise, the genotype 

of the "commercial offspring", its dam, and its sire. Each of these genotypes 

can potentially affect the three terms in equation [14.1] that determine profit. 

Thus from a genetic point of view, profit can be expressed as follows:
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P = S(g,) + D(gs) + O(8,) [14.2] 

Where S, D, and O are the effects of the sire, dam and offspring on profit as a 

function of their genotypes, and g,, g,, and g,, are the three genotypes. Each 

genotype can potentially have a different effect on the components of profit in 

equation [14.1]. In this context we are only considering the direct effects of 
each individual to profitability, not effects due to genetic correlations. This will 

be illustrated with a few examples. 
In dairy cattle the male has a direct effect only on male fertility, while the 

female has a direct effect on female fertility, calving ease and milk production 

traits. However, since the number of males kept for breeding is a minuscule 
fraction of the number of females that are raised for production, only the 

genotypes for female production and female fertility are of major economic 

interest. Thus males are selected based on their breeding values for these traits, 

rather than their phenotypes for male fertility, which can be measured directly. 
For egg production in broilers, the commercial broiler is killed before reaching 

reproductive age, and a single sire services at least ten hens. Since the level of 

egg production does not seem to affect growth rate or meat quality, only the 

contribution of the dam to reproduction costs is important. For egg production 

in laying hens, the reproduction rate of the dam, and her daughter, the 

commercial layer, are both economically significant. Again reproduction costs 

of the sire will be negligible, and other considerations will be used to select the 

optimum sire line. 

The genotype of the offspring can be expressed as '4(g, + g3 + 8.4), where 

g., is the deviation of the genotype of the offspring from the mean of the parents. 
In the absence of heterosis, g,, will consist only of Mendelian sampling, and will 

have an expectation of zero. We will now consider a case in which the direct 

contribution of the sire and dam to production, and the direct contribution of the 

offspring to reproduction are negligible. That is, production will be a function 

of the genotype of the offspring, and reproduction will be a function of the dam. 
Assuming income as constant, profit will then be equal to: 

P = K — (1/2)O(&, + Xog + Xog) — D(Xia) [14.3] 

Where O is the production costs as a function of the offspring’s genotype, D is 

the reproduction costs as a function of the dam’s genotype, and X,,, X,, and X2,q 

are the sire, dam, and sire X dam interaction genotypes for the production trait, 

and x,, is the dam’s genotype for the reproduction trait. 

In Chapter 6, we first considered a case where profit was a linear function 

of the production trait, and an inverse function of the reproductive trait. This 

relationship for the example of pig production was expressed in equations [6.21], 

[7.9] and [9.75], which we will repeat here: 

P, = K, —_ K,x, —_ K,/x, [14.4]



Economic Evaluation of Heterosis 185 

Where P, is profit per pig marketed, x, is number of pigs weaned per sow per 
year, x, is age to a fixed market weight, K, is income less costs independent of 

x, and x,, K, is costs dependent on x,, and K, are fixed costs (feed and non-feed) 

per sow. 
Of course the same general relationship will also hold for broiler production 

in poultry. Moav and Moav (1966) estimated the values of the constants in 

equation [14.4] for the situation in the British poultry industry in 1966. Inserting 

these values into equation [14.4] gives: 

P, = 10.6 — 0.1x, — 320/x, [14.5] 

Where P, is profit in pence per pound live-weight of broiler, x, is days from 

hatching to slaughter at a fixed weight of 3.8 lbs, and x, is egg production per 

hen. For the remainder of this section we will assume complete heritability, so 
that the phenotypic value is equal to the breeding value of each trait. 

14.3 Graphic representation of heterosis 

In Chapter 6 we showed how equation [14.5] could be used to construct a map 

of "profit contours" in which all points on a contour have an equal level of 

profit. The profit contours for this function are shown in Figure 14.1. As in 

Chapter 6, the profit contours are curved. A specific cross between two lines 

is shown superimposed on the profit contours. Genetic additivity is assumed for 

both traits on the scales measured, thus the genotype of the offspring is at the 

midpoint between the two parental lines. However, the profitability of the cross 
will be a function of both the offspring’s and dams’ phenotypes, as given in 

equation [14.4]. The profitability of the cross is marked as the point SD, and 

is at a higher profit contour than either, S, D, or O. Intuitively this result is 

actually quite obvious to most animal breeders. If two strains are available, one 

that excels at reproduction, and a second that excels at production, it iS 

advantageous to use the former as the female parent, and the latter as the male 

parent. Alternatively profit can be increased by using a smaller strain as the 

female parent and a larger strain as the male parent. Thus K, is decreased, and 

X, is increased. This is common practice for beef cattle in many production 

systems. 

Note also that although complete genetic additivity was assumed, the value 

of the profit contour at O is not equal to the mean of the profit contours at S and 

D. This is due to the fact that the profit contours on the scales of measurement 

used are not straight lines. The question of the scale of measurement is 
generally not a problem for breeding within a line, since in this case ranking of 
individuals will not be affected by changes in the scale. However, even for a 

single line, most models of selection and genetic evaluation assume additivity.
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For crossbreeding, this question takes on special significance. In Figure 14.2 the 

same parental combination is plotted on the same profit contours, but in this case 

genetic additivity is assumed on the scale of 1/x, and x,. Therefore the y-axis 

is no longer linear in x,, and the difference between 60 and 80 days is shown of 

equal scale to the difference between 60 and 48 days. In this case the profit 

value of the offspring is higher than either parent, even though both traits are 

genetically additive. This anomaly will be considered in more detail in the 

following section. 
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Figure 14.1 Profit of a cross between two strains of broilers. Broken lines are 

profit contours. S is the profit value of the sire strain. D is the profit value of 

the dam strain. O is the profit value of the offspring. SD is the profit value of 

the cross. 

The question then arises as to the optimum scale for trait measurement. 
Wright (1952) suggested that the "best" scale is the one in which the effects of 

the various factors of interest are additive. In breeding we would be interested 

in a scale that yields genetic additivity. This means that in a cross between two 

strains, the mean of the F-2 would be near the mean of the parental lines, and 

that the F-2 would have a normal distribution. This would not necessarily be the 

case for the F-1, due to overdominance and interactions at specific loci. For the 

specific question at hand, Moav (1966) suggested the following additional 

criteria: 1) linearity and independence in the profit equation, 2) minimization of 

the magnitude of risks from operational decisions when assuming additivity on
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a scale which is genetically non-additive, and 3) ease of measurement. 
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Figure 14.2 Profit of a cross between two strains of broilers with additivity on 

the inverse of market age. Broken lines are profit contours. S is the profit 

value of the sire strain. D is the profit value of the dam strain. O is the profit 

value of the offspring. SD is the profit value of the cross. 

In the example given above, complete linearity of profit is obtained only if 

the traits are additive on the scales of x, and 1/x,. However, this is the least 
realistic scale with respect to x, On this scale the egg production of the 

crossbreed would be at the harmonic mean of the parental strains, that is 

2x,,Xig/(X1, + Xig), Where x,, and x,, are the egg production of the sire and dam 

lines, respectively. Since egg production in both strains is greater than unity, the 

expected production of the crossbreed, under this assumption would always be 

less than or equal to the mean of the parental lines. In practice the opposite is 

generally true. In general the location of the point O will be more susceptible 

to scale effects than the point SD. It should be emphasized that this problem is 

only important when the range of strain values is large with respect to the mean 

of all strains. If differences between strains are small relative to the mean value, 

deviations from linearity will be negligible. 

We will define "profit heterosis" as the deviation of the profitability of a 
specific sire-dam cross from the midpoint of the two parental strains. It should 
now be clear that even with genetic additivity on the level of the individual traits, 

there can be significant profit heterosis for a specific sire-dam cross, and the
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economic value of the cross will be different if the sire and dam lines are 

reversed. Furthermore, even with additivity at the level of the component traits, 

two pairs of strains with equal midpoint values can have different profit values 

for across. This situation is illustrated in Figure 14.3 for two crosses between 

four lines of poultry. Although the midpoint of the parental lines is the same for 

each cross, the values of the crosses, denoted by the points SD and S,D, are 

different. SD has a higher profit value even though the profit values of the 
parental strains, S and D, are lower than those of the parental strains for the 

alternative cross. Thus, it is not sufficient merely to evaluate the parental lines 

in order to determine the most profitable cross. 
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Figure 14.3. Profit of two crosses among four strains of broilers. Broken lines 

are profit contours. S and S, are the profit values of the sire strains. D and D, 

are the profit values of the dam strains. O is the profit value of the offspring 

from both crosses. SD is the profit value of the S-D cross. S,D, is the profit 

value of the S,-D, cross. 

14.4 The five types of profit heterosis 

Moav (1966) divided profit heterosis into five distinct effects. 

1. Heterosis of component traits. This can consist either of overdominance 

or interactions at the level of individual loci. To estimate this effect it is 

necessary to measure the trait on a scale in which it is genetically additive, or to
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estimate the effects of individual loci, which is much more difficult. In plant 

species in which many strains of a species can be readily crossed, this effect is 

termed "specific combining ability" to differentiate it from "general combining 

ability" which is equivalent to an estimate of the additive breeding value of the 

strain. Only a few examples of overdominance at the level of individual loci for 

trait of economic importance have actually been presented in the literature, and 

only for plant species (Weller, Soller, and Brody, 1988). 

2. Heterosis due to sex-linkage. In mammalian species the male has one 

X and one Y chromosome, while the female has two X chromosomes. Many 

important traits have been localized to the X chromosome, which is much larger 

than the Y chromosome. A male passes his X chromosome to his daughters and 
the Y chromosome to his sons. Thus there is no genetic similarity between a 

sire and his sons for chromosome X-linked traits. This can result in a sex-linked 

difference among the progeny of specific crosses. 

3. Maternal effects. For most domestic species, the contribution of the sire 

to the offspring is only half of the nuclear genetic material. In addition to 
chromosomes, the female has three additional effects on the offspring: 

cytoplasmic inheritance, a prenatal maternal effect, and a postnatal maternal 

effect. Mitochondria also contain DNA. This cytoplasmic genetic material is 

passed by the egg cell directly from mother to progeny without reduction at 

meiosis. Conflicting reports have been presented as to the importance of 

cytoplasmic inheritance in milk production traits (O’ Neill and Van Vleck, 1988). 

In all domestic species the dam will have a prenatal effect on the offspring, and 

in certain production systems a significant postnatal effect as well. For 

mammalian species this will consist chiefly of the dam’s milk production. 

Weller, Brinks, and Quaas (1990) found that the dam genetic effect on weaning 

weight in dairy cattle was greater than the direct genetic effect. 

4. "Nonlinearity" heterosis. If the component traits are additive on a scale 

that is nonlinear to profit, then the profit value of the offspring will be different 

from the midpoint of the parental profit values. The difference between this 

effect and the first type of heterosis is that the first type would be considered 

only if the component traits were additive on the scale of profit. This will be 

illustrated using the example of equation [14.4]. Assuming complete heritability, 

the parental mean of two lines for profitability, P,,, can be computed as follows: 

P, = (P, + P/2 = K, — K,(x, + Xpy)/2 — K(X), + XiQ)/(2X1,X1a) [14.6] 

Where P, and P, are the sire and dam profit values, respectively. Assuming 

additivity on the scale of measurement, the profit value of the offspring, P, will 

be: 

P, = K, — K(x, + x,)/2 — 2K,/(x,, + Xj) [14.7] 

The difference between P, and P., is a measure of the nonlinearity heterosis, H,,,
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and can be computed as follows: 

K3(Xiq — Xie)” 

H,, = P, — P= [14.8] 

2X1sXig(Xig + Xia) 

  

In this case the nonlinearity heterosis is due only to a difference in the last term 
of the right-hand side of equations [14.6] and [14.7]. 

5. Sire-dam heterosis. This is the most important component of heterosis, 

and the main justification for crossbreeding. This will be illustrated again using 

equation [14.4]. In practice one line will be used as the dam line and the other 
line as the sire line. Assuming additivity on the scale of measurement and 

complete heritability, the profitability of the sire-dam combination, P,,, will be: 

Poy = K, — K(X, + Xoq)/2 — K,/Xqq [14.9] 

The magnitude of the sire-dam heterosis, H,,, can be computed as follows: 

H,; = Peas — Pa = Ko(Xig — X,)/(2%1,X1a) [14.10] 

The ratio of sire-dam to nonlinearity heterosis is then computed as follows: 

H,, Xis + Xia 
—_— = —_ [14.11] 

H,, Xig — Xa 

Thus the sire-dam heterosis will be greater than the nonlinearity heterosis if x,, 

is greater than x,,. That is, if the dam line has higher fertility than the sire line. 

This of course will be the general situation. 

14.5 Planned matings within a single line 

For dairy cattle nearly all breeding schemes are based on selection within a 

single line. Even so, a fair amount has been written, especially in the non- 

scientific press about the advantages of crosses between specific sire and dam 

pairs. In the dairy industry the economic advantage obtained by a specific sire- 

dam combination above the midparent breeding values is termed "nicking". 

Most results presented on the advantage of nicking have been anecdotal. That 

is, a particular farmer reports that a specific sire-dam mating gives good 

progeny. In dairy cattle, with few offspring per female it is very difficult to 

accurately estimate non-additive components of variance. Part of the reason for 
the emphasis on nicking by farmers is that it has virtually no cost. A farmer
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must mate his cows to a given list of available sires. Why not plan the matings 

so as to maximize the profitability of the sire-dam combinations? 

It is generally assumed that mating of opposites for specific traits is 

desirable, that is, a cow that is exceptional for production, but with only 

mediocre conformation should be mated to a sire with opposite characteristics. 

Assuming additivity of all component traits on the profit scale, there will be no 

over all gain in profitability if this procedure is followed. 

Allaire (1977) noted that this kind of disassortative mating would reduce 

both phenotypic and genetic variance. Since uniformity is often itself a goal of 

animal production systems, it is possible that the mating scheme described above 

can be justified on this basis. However, Allaire (1977) further noted that in 

practice it is unlikely that disassortative planned mating could of itself lead to a 

significant reduction in genetic variance due to the relatively low heritability of 

most economic traits, and incomplete phenotypic correlations among traits. 

Furthermore, long-term laboratory experiments with disassortative mating have 

not produced positive results. 

In the previous sections we noted that the effect of female fertility on profit 

will be nonlinear. This will be true for most other non-production traits, such 

as disease resistance and conformation traits. In Chapter 9 we discussed 

nonlinear selection indices, and in Section 9.3 we developed the optimum 

quadratic selection index for situations in which the aggregate genotype is a 

quadratic function of the trait values. For two traits, the aggregate quadratic 

genotype, H, will have the form: 

H, = aig; + ag, + agg,’ + agg,” + asg,8, [14.12] 

Where a, through a, are the economic values, and g, and g, are the breeding 

values for the two traits. The optimum quadratic index, I,, was given in 

equation [9.19], and for two traits, x, and x,, will have the following form: 

I, = b,x, + bx, + b,x,? + b,x,’ + b,x;x, [14.13] 

Where b, through b, are index coefficients. If profit is a quadratic function of 

a trait that is genetically additive on the scale of measurement, then the economic 

value for a specific sire-dam mating will have a similar form, with x, and x, 
replaced with the sire and dam values, respectively. Wilton, Evans, and Van 

Vleck (1968) demonstrated for a quadratic profit function that if selection is 

based on breeding values estimated for each trait, then the selection index 

coefficients (b,, ..., b;) will be equal to the economic values (a,, ..., a,;). The 

same principle holds true for the optimum sire-dam mating index. That is: 

In = ay, + ays + ay, + ayy’ + ayy [14.14] 

Where [,, is the optimum mating index and y, and y, are the estimated sire and
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dam breeding values, respectively. 

Allaire (1977) gives the following example. Assume that profit is a 

quadratic function of a trait x, as follows: 

P = 60x — 10x? [14.15] 

The profit of individuals with trait values 1, 2, 3, 4, and 5 will be 50, 80, 90, 80, 

and 50, respectively. Assuming genetic additivity on the scale of x, and complete 

heritability, the profit of a specific sire-dam combination will be: 

P = 60(x, + x,/2 — 10(x, + x,)°/4 [14.16] 

P = 30g, + 30g, — 2.5g,’ — 2.5g,’? — 5,2, [14.17] 

Where x, and x, are the sire and dam values for x. Changing the sire—dam 
combinations will affect the overall progeny mean for profit. For example 
assume two sires and two dams. One sire and dam have trait values of 1, while 

the other sire and dam have trait values of 5. If sires and dams are mated 

assortatively (low to low and high to high) then the mean offspring profit value 

will be 50. However if the two pairs are mated disassortatively (low to high) 
then the mean offspring profit value will be 90. Based on the results of Wilton, 
Evans, and Van Vleck (1968), with incomplete heritability, the trait values can 
be replaced with the estimated breeding values and the optimum mating index for 
this profit function will be: 

I, = 30y, + 30y, — 2.5y,’ — 2.5yy’ — 5y,Yq [14.18] 

Where y, and y, are the sire and dam breeding values for x. This will be the case 

only if all traits of economic importance are expressed only in the progeny. For 
the example in equation [14.4] the profit of the cross was determined by the 
dam’s phenotypic value for the fertility trait. 

Extension to the multitrait case is straightforward and not conceptually 

different from a cross between two lines considered in the previous sections. If 

at least one trait is nonlinear to profit on the scale of genetic additivity then 

nonlinearity heterosis can be exploited by planning specific sire-dam matings. 
Allaire (1977) considered in detail a two-trait situation, consisting of a production 

trait linear in profit, and a maintenance trait where returns diminish greatly from 

a maximum level for trait values below a threshold value. Above the threshold 
all values for the maintenance trait have equal profitability. On a practical level 
one could consider an example such as egg shell thickness. A certain minimum 
trait value is considered "acceptable". Values above this threshold do not 

increase profit, while below the threshold profit declines dramatically because 

eggs with shell thickness below the threshold value are virtually unsaleable. 

Again in this case disassortative mating will result in a greater mean offspring
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profit value than random mating. 

14.6 Summary 

"Heterosis" is generally defined as a situation in which the trait value for the 
progeny of a cross is greater than the trait value of either parent. “Economic 

heterosis" or "profit heterosis" is in fact a combination of five separate effects, 

each of which can generate heterosis on the scale of economic value. The main 

component of economic heterosis was defined by Moav (1966) as “sire-dam" 

heterosis. To achieve a net sire-dam heterotic effect over the population, it is 
generally necessary to maintain separate sire and dam lines. Nonlinearity 

heterosis can be obtained by planned matings within a line, and therefore adds 

virtually no additional cost to the breeding program. Unlike selection for 

additive genetic variance, increased economic value obtained by heterosis is not 

cumulative or permanent. As shown in Section 8.3, with a profit horizon of ten 

years and a discount rate of 0.15, the net present value of an increase in profit 
due to heterosis will only be one sixth of the cumulative economic value of an 

equal nominal profit gain from additive genetic selection. This calculation is 

based on the assumption that the same heterotic effects are generated each year 

to the profit horizon.



Chapter Fifteen 

Choice of the Most Profitable Parental 

Combination 

15.1 Introduction 

If a number of different lines are available for crossbreeding then the choice of 
the most profitable parental combination can be quite complex. In this chapter 
we will continue the example considered in the previous chapter of one 

production trait and one reproduction trait. We will first consider the situation 

in which the component traits are genetically additive on the scale of 

measurement, and then consider the situation in which the component traits are 

not genetically additive. Again this chapter will be based largely on the graphic 
method of profit representation developed by Moav. 

15.2 The choice of the most profitable parental combination 

when only two parental lines are available and traits are 

genetically additive 

In equation [14.4] profit per broiler was computed as a function of a production 

trait, growth rate, and a reproduction trait, the number of eggs per hen. We will 

repeat this equation with minor modifications: 

For simplification x, was replaced with y, and the subscripts were removed from 

P and x,. The profit contours were plotted for this function in Figure 14.1 

using the values for K,, K,, and K, of equation [14.5]. The profit contours are 

curved because profit is an inverse function of egg production. Assuming 

complete heritability and genetic additivity, the trait values of the offspring will 

be equal to the parental midpoints for both traits. As in the previous chapter we 

will consider only the case in which the profitability of the sire-dam cross is 

greater than the profitability obtained by either line separately. This requires that 

X, > X,, and yg < y,, where x, and x, are the egg production of the dam and
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of the dam and sire lines, respectively; and y, and y, are the growth rates of 
the dam and sire lines, respectively. The trait values for a specific cross 

between two lines are shown in Figure 15.1 on a map of profit contours. The 

points S, D, and O denote the trait values of the sire, dam, and offspring, and 

the point SD is the profit value of the cross. As explained in the previous 
chapter, the profit value for SD will be higher than either parent or the 
offspring. 
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Figure 15.1. The most profitable cross between two strains of broilers. Broken 
lines are profit contours. Points S, D, and O denote the trait values of the sire, 

dam, and offspring, and the point SD is the profit value of the cross. SO is the 

profit value of the cross between S and O. D,, is the optimum female parent. 

O,, is the profit value of the offspring of S and D,,. SD,, is the profit value of 
the optimum cross. 

If the offspring is mated back to the sire, then a backcross progeny is 

produced with trait values at the midpoint of S and O. However, as in the 

previous case, egg production will be determined by the dam, which in this 

case is O. Thus the profitability of this cross will be at the point SO. Note 

that this point is on the straight line connecting S and SD. The slope of this 
line will be (y,-y,)/[2(x -x,)]. Replacing y, and x, with y, and x,, which are the 
parental midpoints, will not change the slope of the line. Since the sire 
contributes to profit only through the production of the offspring, maximum 

profit will be obtained when the strain with the highest production is used as 

the male parent of the commercial cross. However, the economically optimum
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male parent of the commercial cross. However, the economically optimum dam 
line may be a cross between the two parental strains. By making a series of 

crosses and backcrosses between these strains, with S as the sire line for the final 

cross, it is possible to obtain the profit value of any point on the line connecting 

S and SD. Since the profit contours are curved, the profit values of these points 

will not be equal. As shown in Section 9.8 the point of greatest obtainable profit 
will be the point of tangency between the profit contours and the line S-SD. Any 

lower profit contour will cross this line at two points, while any higher profit 

contour will not meet the S-SD line. 

As in Section 9.8 the point of tangency can be computed by finding the 

profit contour with a slope equal to the slope of the S-SD line for a point on this 
line. Starting from equation [15.1], y as a function of P and x is computed as 

follows: 

y = (K, — P)/K, — K,/(K,x) [15.2] 

The tangent of the profit contours is then computed as the differential of equation 
[15.2] with respect to x as follows: 

tan P(x) = dy/5x = K,/(K,x’) [15.3] 

Equating this tangent to the slope of the S-SD line gives: 

Kj/(Ky%q) = (Ya — Ys)/[2(Ka — %,)] [15.4] 

Where x,, is the x-value for the dam of the most profitable cross. Solving for 

X, gives: 

4 

2K3(X, — X,) x = i [15.5] 
K0Va ~~ yz) 

The economically optimum dam line will be denoted D,. The trait values for 

the cross between S, the optimum sire line, and D,, will be the means of S and 
D,, for both traits. This point will be denoted O,. The profit value for this 
cross will be at SD,,, the point of tangency between the S-SD line and the profit 

contours. D,,, O,, and SD,, are also marked on Figure 15.1. Defining y,, as the 

value of the offspring for y, the point O,,, with coordinates (x,,,y,,) will also lie 

on the S-D line. Thus the value for y,, can be also be found by equating slopes 

as follows: 

(Ya — Ym)/(Xa — Xm) = (Ya — Ys)/(Xa — Xs) [15.6]
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Yin = (Xn¥s — Xs — XmVa + XYa)/(X, — Xy) [15.7] 

It is possible that x,, may be outside the range of x,-x,. If x, > x, then a simple 

cross between S and D with D as the female parent will result in higher profit 

than any other cross between the two lines. Conversely if x,, < x, then the sire 
line will have a higher profit value than any cross between these lines. 

15.3 Maximum profit when three parental lines are available 

and traits are genetically additive 

With more than two possible parental lines the possible crosses increase 

exponentially. For example, with three lines, it is possible to preform nine basic 
crosses; each line as the sire combined with each of the three lines as the dam. 

In the next generation, it is possible to cross the F-1 either as the sire or the dam 

with either one of the original three lines, or with a cross between them. How 

then can the best possible combination be determined from the myriad of 
possibilities? We will first determine principles for the case of three lines using 

the graphic method for illustration. 

From the discussion above it should be clear that certain combinations will 

be more profitable than others. Thus if line 1 has both higher production and 
fertility than line 2, then line 1 will be superior to any cross between these lines. 
(At this point we are still assuming complete heritability and genetic additivity. ) 

Thus the only case of interest is when one line has higher fertility while the other 

line has higher production. Since the sire only affects production, a priori, 

the line with the highest production will be chosen as the sire line. The x and 

y values for three potential parental lines are plotted in Figure 15.2. The line 

with the highest production is denoted S, while the other two lines are denoted 
D, and D,. D, has a higher reproductive rate than D,, while D, has a higher 

production rate than D,. Thus D, is intermediate for both traits. 

If D, is located below the line S-D, then no cross involving D, can have a 

higher profit value than the best cross involving progeny of S and D,. 

Conversely, if D, is located above the S-SD, line, then no cross involving all 

three lines can have a higher profit value than the best cross between either S 

and D, or D, and D,. However, if the slope of the S-D, line is between the 

slopes of the S-D, and S-SD, lines, it is possible to obtain a higher profit by 

crossing the three lines than that obtainable with any combination of only two 

lines. The line connecting S, SD, and SD, is the line of maximum profit 

obtainable by crosses between these three lines. The point of tangency between 

this line and the profit contours will be the point of maximum profit, and is 

denoted P,,, on Figure 15.2. Note that in this case P,,, is above both the S-D, 

and S-D, lines. Thus P,,,, can only be achieved by a three-way cross between 

these lines. In this example a maximum profit is obtained by first crossing D,
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and D,, and then mating this F-1 as the female parent with S as the male parent. 
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Figure 15.2. The most profitable cross between three strains of broilers. 

Broken lines are profit contours. Sis the profit value of the sire strain. D, and 

D, are the profit values of the three dam lines. SD, and SD, are the profit 

values of the crosses between S and D, and D,. D,,, is the female parent of the 

optimum cross. P,,,, is the profit value of the optimum cross. 

Even if the conditions described above are met, it is still possible that a two- 
way cross is most profitable. If the line connecting S, SD,, and SD, is tangential 

to the profit contour in the segment S, SD, then a cross involving only S and D, 

will be more profitable than any combination of all three lines. The method of 

equating tangents can again be used to algebraically determine the cross of 

maximum profit. An x-value for maximum profit can be found for both the S- 
SD, and SD,-SD, segments. We will define x,, as the x-value for maximum 

profit for the S-SD, segment. This point is derived by equation [15.4] with the 

values for x, and y, replaced with the appropriate values for the D, strain. The 

slope of the SD,-SD, segment will be [ya — (¥. + Ya2)/2VI2(%a — Xa2)]. The 

x-value for maximum profit along the SD,-SD, segment, x,,,, can be found by 

substituting the appropriate values in equation [15.5] as follows: 

14 

2K3 (X41 — Xaz) 

Koya — (Ys + Yaz)/2) 

  

Xml [15.8]
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If x1 > X, then a cross of all three lines will result in more profit than any 
cross of S and D,. Since the profit contours are convex while the S-SD2-SD1 
broken line is concave, x,, > x, implies that x, = x,. The rules for 
determining the most profitable combination of three parental lines are 
summarized in Table 15.1. 

As in the case of two lines, the strain with the highest production will 
always be the optimum male parent for the final cross. The optimum female 
parent for the commercial cross can be any of the three lines, or a cross between 
S and D,, or D, and D,. If the optimal female parent is one of the original lines, 
then P,.,, will have the fertility value of optimal female strain. If the optimal 
female parent is a cross between S and D, then P_,, will be located at SD,,, and 
only these two lines will be used to produce the commercial broiler. Only in the 
fourth situation are all three lines used to produce the maximum profit cross. 
However, even in this case, it is not necessary to maintain all three lines, since 
it should be possible to maintain the cross between D, and D, as a "synthetic" 
line. 

Table 15.1. Rules to determine the economically optimum cross among three 
parental strains. 

  

  

Situation Location of P.,,, Maximum profit 

Xm < X, S P,; = K, — K,y, — K,/x, 

Xe < Xm < Xay2 SD,, Psom = Ky — Kol¥e+Vm)/2 — Ka/x, 
Xm <Xq2 ANd X41 <Xqz SD, Psp2 = Ky — Kaly,+Yao)/2 — Kg/xy2 
Xg2 S Xmi < Xay SD, Psom1 = Ky — Kol¥.+Vmn1)/2 — Ka/Xmn4 
Xm1 > Xa SD, Psor = Ky — Koly.t+Vay)/2 — Ka/Xq, 
  

15.4 Maximum profit when many parental lines are available, 
and traits are genetically additive 

In the previous section we demonstrated that when three potential parental strains 
are available, a cross involving all three strains will be most profitable only 
under rather restrictive conditions. These conditions will now be made general 
for the case of many strains, illustrated in Figure 15.3. The x and y values for 
a number of potential parental strains are located on a map of profit contours. 
Obviously any strain with both lower fertility and a lower production level than 
an alternative strain can be excluded from consideration as a potential parental 
strain. Thus, starting with the strain with the most favorable value for the 
production trait we will first consider the strain with next best production,
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provided that it has higher fertility than the previous strain. Following this 

principle strains can be added until the strain with the highest fertility is reached. 

These strains can then be connected with a broken line that will have a negative 

slope in all segments. From the previous section it should also be clear that if 

any segment has a less negative slope than the previous segment, the strain at the 

break-point between these segments can be eliminated from consideration. As 

shown for the situation of three strains, in this situation no cross involving this 

strain will have a higher value than a cross of two alternative strains. Thus it 

is possible to draw a "concave" broken line connecting those strains that should 

be considered as potential parental strains from the strain with the best 

production to the strain with the highest fertility. This line will be termed the 

"single line profit front", and is marked "SL-front" on Figure 15.3. All other 

strains will be below and to the left of this line. 
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Figure 15.3. The most profitable cross among many strains of broilers. Broken 

lines are profit contours. S is the profit value of the sire strain. D,, D2, and D, 

are the profit values of the two dam lines. SD,, SD, and SD, are the profit 

values of the crosses between S and the dam lines. D,, is the female parent of 

the optimum cross. P,,,, is the profit value of the optimum cross. Cd, the dam 

contour, is denoted with a dotted line. 

Again starting with the strain with the best production, it is possible to 

perform a series of crosses between adjacent strains on the single line profit 

front. Each of these crosses will have the fertility value of the dam strain and
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the production value of the midpoint of the two parental strains. Thus a second 
broken line can be drawn above the single line profit front to represent the profit 

value of all possible crosses between strains on the single line profit front. This 

line will be termed the "sire-dam additive profit front", and is marked "SD- 

front" on Figure 15.3. These two fronts will meet only at their upper-left end, 
in which case the strain with the best production is used as the single parental 

strain. 

As in the previous section, the best parental combination can be found by 

equating the tangent of each segment of the sire-dam additive profit front to the 

profit contours. Since the profit contours are convex, while the sire-dam 

additive profit front is concave, there will be only one point of tangency between 

them. Thus the cross of maximum profit will be found in the single segment in 

which the point of tangency between the profit contours and the sire-dam additive 

profit front is within the boundaries of the segment. Alternatively we note that 

for any given sire, K, — K,y,/2 is a constant. Thus the potential dam lines can 

be ranked by the following formula: 

Cy = Ky,/2 + K,/x, [15.9] 

Where C,, is the contribution of the dam to the cost of production. This equation 

can be rearranged so that y, is a function of C, as follows: 

Ys = 2C,/K, — 2K,/(K>x,) [15.10] 

It is now possible on the profit map to plot the "dam contour" for any given dam 

line. Thus the optimum cross can also be found by equating the tangent of the 

dam contour with the single line profit front. The dam contour for the optimum 

cross is marked C, on Figure 15.3. The optimum dam strain and the profit 

value of the cross are marked D,, and P,,,,, respectively. Due to the assumed 

additivity for the production trait, the slope of the dam contours is twice the 

slope of the profit contours. Similarly the slopes of the segments of the single 

line profit front will be twice the slope of the corresponding segments of the sire- 

dam additive profit front. 

15.5 Choice of the most profitable parental combination when 

component traits are not genetically additive 

In the previous sections genetic additivity on the scale of measurement was 

assumed for both traits. Thus of the five types of heterosis defined in the 

previous chapter only nonlinearity heterosis and sire-dam heterosis were 

considered. Nonlinearity heterosis was included because the scale of genetic 

additivity was nonlinear to the scale of profit. Therefore the profit contours
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were curved on the x and y scales. We will now show how the three additional 

types of heterosis, particularly heterosis of component traits and maternal effects, 

can be included in determination of the economically optimum cross. 

In the example considered so far of a broiler production enterprise, profit 

will be a function of the broiler’s and her dam’s phenotypes. The only trait of 

economic importance in the sire’s phenotype will be male fertility, and its 

economic value will be negligible relative to the former two traits. To utilize all 

possible forms of heterosis would require that the sire, the dam, and the 

offspring all be crossbreeds. Since the phenotype of the sire is of minimal 

importance, we will consider only heterotic effects on the offspring and the dam. 

In any cross between two lines there can be both a maternal effect and heterosis- 

of-component-traits effect on the productivity of the offspring. Although we 

assumed previously that the only trait of importance in the offspring is 

productivity, heterosis can also affect the viability of the offspring. If the dam 

is a crossbreed then there can be both types of heterotic effects on her 

reproductive rate. Even if only two lines are available, it is still possible to 

obtain heterosis for the dam’s fertility by backcrossing the F-1 to one of the 

parental strains. 

On a profit map the effect of heterosis will be to move the sire-dam profit 

front farther to the right. However, unlike the previous situation of assumed 

additivity, the amount of heterosis that will be obtained from any particular cross 

cannot be predicted accurately. For example if two lines are crossed to produce 

an F-1 that exhibits heterosis for production, and these progeny are then 

backcrossed to the dam strain to obtain heterosis for female reproduction, it is 

difficult to predict how much of the heterosis for production will be retained by 

the backcross progeny, which are now the commercial broilers. Even if it is 

assumed that half of the heterosis will be retained, this will not have an equal 

effect on profit, since the profit contours are curved relative to the scales of trait 

measurement. 

If there is heterosis for component traits, then several of the conclusions of 

the previous section no longer hold. In the previous section we demonstrated 

that strains below and to the left of the single line profit front can be excluded 

from consideration as potential parents. However, due to heterosis of component 

traits, it is possible that a cross between lines below the single line profit front 

may be the most profitable. Also, due to heterosis, two lines with equal 

profitability may result in different trait values, and therefore different 

profitability for a cross. In the previous section we explained how even in the 

absence of heterosis for component traits, the most profitable dam line may in 

fact be a cross between two lines. In the previous sections we noted that, under 

the assumption of genetic additivity, there is no need to maintain the two parental 

dam lines separately. However, if there is heterosis for reproductivity, then 

dams produced as an F-1 cross between the two maternal parental strains may 

be more profitable than a "synthetic" dam strain that would result from repeated 

crossing among later generations of the original cross.
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In conclusion, with heterosis, the most profitable cross can only be found 
by field trials and comparison among the different possibilities. If more than two 
or three strains are available, the number of possible crosses becomes quite 
large, especially if all possible three-way and four-way crosses are included. 
Although we can no longer use the absolute rules developed in the last section 
to exclude strains from consideration, it does seem reasonable to adopt several 
criteria to limit the number of possibilities. First, the strain with the better 
reproductivity should be used as dam strains, or parents of dam strains. Second, 
strains clearly inferior for all traits of interest can be excluded from 
consideration. Third, it is unlikely that a four-way or five-way cross can be 
significantly better than the best three-way cross. Finally, maintaining multiple 
lines is expensive. Thus, a more complicated crossing structure should be 
accepted only if a significant increase in profit can be demonstrated over the best 
simpler crossing structure. 

15.6 Summary 

Using the graphic method of Moav, strategies were developed to determine the 
most profitable cross among a number of potential parental strains. Profit was 

assumed to be a linear function of a single production trait, and an inverse 
function of a single reproduction trait. The method of equating tangents was 
used to determine the optimum cross under the assumption of genetic additivity 
for both traits on the scale of measurement. If there is heterosis for component 
traits and maternal effects, the best cross can only be determined by field trials. 

Furthermore, if the profit equation is nonlinear, the same degree of heterosis for 
component traits can have a different effect on profit, depending on the trait 
values. Since both the dam and her offspring directly contribute to profit, 

efficiency of production may be increased if both are crossbreeds. In this case 

it will be necessary to maintain at least three separate parental strains.



Chapter Sixteen 

Planned Matings Together with Line 

Breeding 

16.1 Introduction 

Until this point in our evaluation of heterosis we ignored selection within the 

parental lines, and assumed complete heritability of the traits affecting the 

profitability of a cross. In this chapter we will develop methods to economically 

evaluate crossbreeding together with selection within the parental lines under the 

assumption of incomplete heritability for the component traits. Most of this 

chapter will be based on Moav and Hill (1966), and we will again consider 

primarily the case of a single production and a single reproduction trait. Long- 

term selection for both traits in a single line will be compared to selection within 

separate sire and dam lines. Comparison of alternative breeding schemes will 

be based on the graphic method of Moav and Hill (1966) which we explained in 

Section 9.8. We will show how the tangents of the profit contours and the 

response ellipse can be equated to determine the optimum selection index for 

parental lines used to produce crossbred progeny. 

16.2 Derivation of the optimum selection index for a single line 

In Chapter 9 we discussed the various methods that have been suggested to 

determine selection indices for situations in which the economic criterion is not 

a linear function of the trait values. For the linear situation, selection of the 

individuals with the highest estimated aggregate genotype will result in the 

greatest economic response to selection. However, as shown by Goddard (1983) 

this is not the case for nonlinear profit functions. Thus Wilton, Evans, and Van 

Vleck (1968) showed that for the case of a quadratic profit function, a nonlinear 

selection index will maximize the expected mean breeding value of the selected 

individuals. However, maximum long-term genetic progress will always be 

obtained by a linear selection index. 

In Sections 9.8 and 9.9 we showed how the optimum linear index, i.e. the 

index that will result in maximum increase in the economic criteria, can be 

derived by equating the tangents of the "response ellipse" and the profit contours.
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If the profit contours are curved then the optimum index will be a function both 
of the original trait values and the "size" of the response ellipse. That is the 
optimum index will be different for a low vs. a high selection intensity. Also, 
as shown by Goddard (1983) the optimum selection index to achieve maximum 
gain in a single generation will be different from the optimum selection index to 
achieve maximum gain over several generations. 

In Chapters 6, 7, 9, 14 and 15 we considered the example of a broiler or 
swine production enterprise. We assumed that all individuals were selected on 
the same index, and that profit was a linear function of a production trait, such 
as growth rate, and an inverse function of a reproductive trait, for example the 
number of viable progeny per dam. Profit per broiler, which we will denote 
simply as P, was computed using the following equation, which appeared 
previously as equations [6.21], [7.9], [9.75], [14.4] and [15.1]: 

P= K, — Ky — K,/x [16.1] 

Where y is the production trait value, for example age to reach market weight; 
x is the reproduction trait, for example number of live progeny per dam; and 
K,, K, and K, are economic constants. For simplicity, x, and x, of the equations 
[6.21], [7.9], [9.75], and [14.9] were replaced with x and y. Assuming a linear 
index, I, of the form given in equation [9.49], the index coefficients that result 
in the greatest economic progress, under the assumption that x and y are 
uncorrelated were derived in equation [9.76]. We will repeat these two 
equations here: 

  

I = b,x + by [16.2] 

b, —x’K,h/ 

= ——— [16.3] 
b, K,h,’ 

Where h,’ and h,? are the heritabilities of x and y, respectively. As is generally 
true for selection index, it is only the ratio of the coefficients which is important, 
not their absolute values. We note that this ratio is a function of x2. Thus as 
reproductivity increases, the economic value of this trait in the selection index 
decreases, and emphasis in selection will shift to the production trait. The 
correlated responses of the component traits, ¢, and g,, Were computed in 
equations [9.52] and [9.53] as follows: 

¢, = ib,(h,o,)7/o, [16.4] 

d, = ib,(hyo,)’/o, [16.5] 

Where i is the selection intensity, and g,, o,, and o,, are the standard deviations
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of x, y and the selection index. The variance of the selection index was derived 

in equation [9.50] as follows: 

(01, c= (b,0,)° + (b,o,)° 
[16.6] 

Substituting the values for b,, b,, and 9), from equations [16.3] and [16.6] into 

equations [16.4] and [16.5] gives the following formula for ¢, and ¢,: 

iA, 
¢, = ——_= [16.7] 

KVA, + x‘A, 

—iA,x’ 

= —______ [16.8] 
KWVA, + x‘A, 

Where A, = K,2h,‘o,2 and A, = K,’h,‘o,’. For a given selection intensity, 

selection on the index of equations [16.2] and [16.3] will maximize the mean 

aggregate genotype of the offspring in the following generation. However, for 

a situation of differing sire and dam contributions to profit, this is not equivalent 

to the index that will result in maximum profit in the next generation. 

16.3 Derivation of economically optimum sire and dam indices 

for maximum profit in the next generation 

In the previous two chapters we have dealt primarily with a case in which the 

dam and sire have different contributions to the total profitability of the cross. 

We will now develop formulas for the optimum selection index for the case 

considered in detail in the previous two chapters. Since the offspring are 

generally sold for slaughter before they reach the age of reproduction, the 

economic value of the reproduction trait will be a function of the dam’s 

phenotype, while the economic value of the production trait will be a function 

of the offspring’s phenotype. Assuming genetic additivity and complete 

heritability, the offsprings’s phenotype will be equal to the mean of the parental 

values. Using these assumptions we derived equation [14.9], which we will 

repeat here with minor modifications: 

P,, = K, — Ky, + ya)/2 — K,/X, [16.9] 

Where P,, is the profitability of the particular cross, y, and y, are the dam and 

sire values for the production trait, and x, is the dam value for the reproduction 

trait. Again we replaced x, and x, of equation [14.9] with x and y. The
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contribution of the sire to the cost of production is K,y,/2. In equation [15.9] we 
showed that the contribution of the dam to the cost of production, C, can be 
derived from equation [16.9] as follows: 

Cy = Kyy,/2 + K,/x, [16.10] 

The optimum dam index can be derived by equating the tangent of the response 
ellipse to the tangent of C,. The derivatives of the sire contribution will be zero 
and K,/2 for x and y, respectively. Thus the optimum sire index will be direct 
selection on y. The optimum dam index can be derived by the method described 
in sections 9.8 and 9.9. The derivatives of Cp with respect to x and y are 
—K,/x,? and K,/2, respectively. These derivatives are equal to a, and a, of 
equation [9.59]. Substituting these values into equation [9.59] gives: 

  

b, ~—x.K,h, 

= [16.11] 
b, 2K,h,” 

Which is the same as equation [16.3], except for a factor of 2 in the 
denominator. Thus for the optimum dam index, twice as much emphasis will be 
placed on the reproductivity trait for a given value of x. 

Selection of sires and dams on these indices will result in the most profitable 
cross in the next generation, but will not result in the greatest possible gain in 
the aggregate genotype of the progeny. This is illustrated in Figure 16.1 for a 
swine enterprise, using values adapted from Moav and Hill (1966) for the 
contemporary situation in the United Kingdom. Profit is measured in pence per 
progeny. In this example K, = 6.8 pence/day, K, = 13,000 pence/progeny, 
i= 1,h’ = 0.1, o, = 5 progeny, h? = 0.4, and go, = 25 days. The initial 
values for x and y are 10 progeny and 200 days. The points S and D,, denote 
the genetic gain in one generation, with sires selected only on growth rate, and 
dams selected by the linear index with the index coefficients of equation [16.11]. 
The point I denotes the maximum genetic gain if all individuals are selected on 
the optimum single line index, using the index coefficients of equation [16.3]. 
All three points are on the response circle centered at O. The point O’ is the 
mean breeding value of the cross between sires and dams selected on separate 
indices. Note that O’ is within the response circle and on a lower profit contour 
than I. The point SD,, denotes the profit value of the cross between S and D.,,. 
Note that this point is outside the response circle, and on a higher profit contour 
than S, D., I, or O’. Thus, selection on separate sire and dam indices can result 
in a greater mean profit in the next generation than that obtained by selection on 
the optimum single index.
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Figure 16.1. Selection of male and female pigs on specialized indices. Broken 

lines are profit contours. O is the trait values prior to selection. S and D,, are 

the genetic gain in one generation, with sires selected only on growth rate, and 

dams selected by the linear index with the index coefficients of equation 

[16.11]. The point | denotes the maximum genetic gain if all individuals are 

selected on the optimum single line index, using the index coefficients of 

equation [16.3]. O’ is the mean breeding value of the cross between sires and 

dams selected on separate indices. SD,, is the profit value of the cross between 

S and D,,. 

If the sires are selected only on growth rate, while the dams are selected on 

an index of both traits, the profit values of all possible crosses will describe an 

ellipse denoted the "sire-dam profit ellipse". For sires the response to selection, 

dy, will be ih,’0,, where i, is the selection intensity for sires. Following 

equation [9.60] the response in standardized units, ¢,, » is computed as follows: 

oy, = dy/(h,’o,) = i, [16.12] 

The response of the dams for y in standardized units can be derived from 

equation [9.61] as follows: 

(da + ya)? = i” [16.13] 

dys = Lig — (ba ))]” [16.14]
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Where i, is the selection intensity for dams. The profit values for the progeny 

in standardized units will be: 

Pysa = (Pye + bya )/2 [16.15] 

Pra = Pra [16.16] 

where ¢,,, and ¢,,, are the profit values of the cross for y and x, respectively. 

(These values are not the correlated responses to selection of the progeny, which 

will be equal to the parental means for both traits.) Substituting equations 

[16.12] and [16.14] into equation [16.15] gives: 

dysa = i,/2 + {Lig? — (bysa)71*}/2 [16.17] 

On rearrangement, the following ellipse is obtained: 

(Pxsa) (Pysa ~ 1,/ 2) 

+ —— = 1 [16.18] 

iy” (i,/2)? 

  

The sire-dam response ellipse is also illustrated on Figure 16.1. The center of 

the ellipse relative to the base population will be at the point (0,1/2). The axes 

will be parallel to the co-ordinate axes, and of length 2i, and i,, for x and y, 

respectively. Note that a considerable section of the sire-dam response ellipse 

is outside the response circle to the right. Any of these crosses will result in 
greater profit than can be obtained by selection of all individuals on a single 

index. 

16.4 Heterosis and line breeding, long-term considerations 

Although separate sire and dam indices will result in the greatest gain in profit 

in the next generation, it will not necessarily result in the greatest long-term gain 

in profit. In the example given above, the profit value of the cross will be at 
SD,,. However, the mean genetic level of the progeny will be at O’, and this 
will be the base level of the population for selection in the next generation. Thus 

the strategy described in the previous section does not maximize genetic progress 

or mean profit value of the offspring over several generations. Moav and Hill 

(1966) compared three long-term breeding strategies: 

1. Selection of both males and females on the optimum single-line index. 

2. Splitting of the original population into separate sire and dam lines each 
selected on the economically optimal index for that sex.
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3. Selection of males and females on individually economically optimal 

indices within a single line. 

In evaluating these strategies we are first confronted with the problem that 

the profit contours are nonlinear. Thus the index for maximum gain in one 

generation will not be the same as the index for maximum gain in several 

generations. However, gains made in later generations should be discounted 

more heavily than gains made in earlier generations. For simplicity we will 
assume that the selection intensity is equal to unity in all cases, and that the goal 

is to maximize progress in four generations. 

Using the values given for Figure 16.1, we will first compute the optimum 

index for selection in a single line. From equation [16.3]: 

b, —x’K,h,’ 
= ——_ = ~x(0,002092) = —(x, + ¢,,)°(0.002092) [16.19] 

b, Kh? 
  

Where x, = 10 is the original number of progeny per dam, and ¢,,, is the 

response of x to selection on the optimum linear index. ¢,,, can be derived from 

equation [16.7] as follows: 

iA, 13,000 

KVA, + x‘A, -V42,250,000 + 4624(10 + ¢,,,) 
  

Although the selection intensity is equal to unity in each generation, the objective 

is to determine the index that results in maximum progress after four 

generations. Therefore the value of 1 = 4 is used in equation [16.20]. This 

equation has only one unknown, ¢,, but it is a complex function of this value. 

Solving by iteration, ¢, = 1.21, and the value for x after selection is 11.21 

offspring. Inserting this value in equation [16.19] gives b/b, = 

—(11.21)7(0.002092) = —0.262. The correlated response in y, ¢,,, can be 
computed from equation [16.8] as follows: 

      

—iA,x’ —2720(11.21) 
Pym = ———_—_———_ = = 

KWVA, + x‘A, V 42,250,000 + 4624(11.21) 

= —31.83 days [16.21] 

Thus the value for y after selection is 200 — 31.83 = 168.17 days. Under the 

assumption that pigs are slaughtered at a constant weight, genetic improvement 

increases profit by decreasing the variable costs of production, which can be 

computed from equation [16.1] as: K,y + K,/x. The original value was 6.8(200)
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+ 13,000/10 = 2680 pence. The new value for the variable cost can then be 
computed as follows: 

Ky’ + K,/x’ = 6.8(168.17) + 13,000/11.21 = 2303.2 pence —_ [16.22] 

Where x’ and y’ are the trait values after selection. 

We will now compute the optimum sire and dam indices if the population 

is split into separate sire and dam lines. If the sire line is selected only on y, 

then the gain in one generation will be —0.4(25) = —10 days, or 40 days in 

four generations. (The maximum gain that could be made for selection only on 

reproduction rate would be (0.1)(5) = 0.5 offspring in one generation, or 2 
offspring in four generations.) The optimum dam index can be found by 

substituting 2K, for K, in equations [16.19], [16.20], and [16.21]. The 

responses of x and y to selection on this index, ¢,, and ¢,,, are computed as 

follows: 

    

  

    

  

2iA, 26,000 

eu = KV4A, + xtA, 7 V169,000,000 + 4624(10 + ¢,,) 

= 1.63 progeny [16.23] 

—iA,x? ~2720(11.63) 
dy = = = 

KV4A, + x‘A, V 169,000,000 + 4624(11.63)4 

= —23.10 days [16.24] 

As in the first breeding scheme, these equations are evaluated with i=4. The 

value for the variable costs after selection of the sire and dam line cross can then 

be evaluated by inserting these values into the expression for the variable costs 

in equation [16.9] as follows: 

Ky. + yg)/2 + K,/xy = 6.8(160 + 176.90)/2 + 13,000/11.63 = 

= 2263.3 pence [16.25] 

Thus the second alternative results in a reduction of 40 pence per pig sold after 
four generations, or a 2% increase in genetic gain for profitability. 

For the third breeding scheme, it is necessary to first estimate the genetic 

gain for a single generation of selection with separate sire and dam indices. In 

this case, i = 1. Thus, for the sires the gain will be h,’o, = —0.4(25) = —10 

days. The correlated responses for selection on the optimum dam index can then 

be derived from equations [16.23] and [16.24] with i = 1, as follows:
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21A, 6500 
Px = ——_——_ = = 

KWV4A, + x‘A, V 169,000,000 + 4624(10 + ¢,,) 

= 0.43 progeny [16.26] 

—iA,x’ —680(10.43/ 
Pya = = =   

  

KV4A, + x‘A, V 169,000,000 + 4624(10.43)* 

—4.94 days [16.27] 

The trait responses for a single generation are nearly equal to one fourth of the 

response for four generations, but the optimum index for one generation gives 

slightly greater emphasis to reproduction. If the population is not split into two 

separate breeding populations, then the mean trait values will be the means of the 
progeny of the two selected groups. Thus: 

%, = (x, + x/2 — x, = (10 + 10.43)/2 — 10 = 0.215 progeny _—[16.28] 

%, = (y, + yg/2 — y, = (190 + 195.06)/2 — 200 = —7.47 days [16.29] 

In three generations the gains will be approximately three-fold these values, that 

is 0.645 progeny, and 22.41 days. In the final generation there will be an 

additional gain of —10 days for y in the sires and 0.43 and —4.94 for x and y 
for dams. Thus the trait values will be x, = 10.654 and y, = 167.59 for sires, 

and x, = 11.075 and yy = 172.65. The reduction in the variable costs in the 

fourth generation progeny will then be: 

K,(y, + ya/2 + K,/xy = 6.8(167.59 + 172.65)/2 + 13,000/11.075 = 

= 2330.6 pence [16.30] 

This alternative results in the lowest long-term gain, although even this 

alternative is only 67 pence less than the best alternative (3%), and only 27 

pence less than the first alternative. It should be noted though, that this 

alternative results in the maximum gain in profit in the first generation of 

selection. 

We should note here again a point that we have mentioned previously 

several times. Selection index is highly robust. Relatively large changes in the 

economic values, and therefore the index coefficients of the component traits, 

have only minor effects on the correlated responses of the individual traits. Thus 

it is not surprising that all three alternatives resulted in very similar responses. 

Thus although maximum progress was obtained by splitting the original
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population into separate sire and dam lines, it is hard to justify this scheme, 
except for species with short generation intervals and high fecundity. 

16.5 Choice of the optimum lines for line breeding together 
with cross breeding 

In the previous chapter we considered the question of the optimum cross when 
several lines are available, but without considering selection within the parental 
lines. We concluded that the line with the highest production should be used as 
the sire line. Assuming that maternal effects and heterosis of component traits 
are insignificant, then lines on the same dam contour, i.e. , equal C, values, will 
result in crosses of equal profitability. If selection is practiced within the sire 
and dam lines, the long-term profitability of dam lines with equal C, values can 
differ. This will be illustrated by continuing the example of the previous section. 

Cp of the line of swine considered in the previous section can be computed 
from equation [16.10] as follows: 

Cp = K,y,/2 + K,/x, = 6.8(200)/2 + 13000/10 = 1980 [16.31] 

Assume an additional line, D,, with equal Cp, but with x,, = 14. In this case 
Ya = 309.2 days. Although these lines have equal C, the profitability of the 
new line will be lower. The variable cost of production, Ky, + K,/x,, is 2660 
pence for the original line, and 3031 pence for the new line. This is because the 
slopes of the dam contours are twice the slopes of the profit contours. In the 
previous section we assumed that a single line was used to breed both sires and 
dams on individual indices. The variable costs of production of a cross produced 
from one generation of selection of sires and dams from this line can be 
computed from equation [16.25] as follows: 

K,(y, + ya)/2 + Kj/xy = 6.8(190 + 195.06)/2 + 13,000/10.43 = 

= 2555.6 pence [16.32] 

We will now assume that the line considered in the previous section is still 
used as the sire line, but D, is used as the dam line. The optimum sire index 
will still be selection on y. The responses to selection on the optimum dam 
index, ¢,,, and ¢,4,, can be computed from equations [16.26] and [16.27] with 
the new values for this line. 

21A, 6500 

Pxa1 = = = 
KV4A, + x‘A, V 169,000,000 + 4624(14 + ¢,,,)° 
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= 0.34 progeny [16.33] 

—iA,x’ —680(14.34) 

Pya = ——_——_—  * = 

KV4A, + x‘A,  V169,000,000 + 4624(14.34)* 
  

  

= —7.32 days [16.34] 

Note that for this line the correlated response is less for x, but greater for y. It 

should now be clear that since there is an inverse relationship between profit and 

reproduction, the reproductive trait should be given less emphasis in selection for 

a strain with a higher reproductive rate. Equation [16.25] can again be used to 

compute the economic value of this cross, as follows: 

Ky, + Ya/2 + Ka/xq = 6.8(190 + 192.68)/2 + 13,000/10.34 = 

= 2558.4 pence [16.35] 

Thus profit for this cross is 5 pence less than profit from sire and dam 

selection from the original line. This is again due to the inverse relationship 

between profit and reproduction. Since D, is already at a higher reproductive 

level, the additional gain in reproduction has less of an effect on profit than for 

the original strain. Of course a line with the same reproductive level as D,, but 

with slightly higher production although still less than the original line would 

result in a more profitable cross. A line with these trait values would still be 

situated on a lower profit contour than the original line. 

From this example it is apparent that the choice of the optimal parental lines 

is even more complicated once selection within each line is considered. It will 

not only be a function of the trait values, but also a function of the discount rate 

and the profit horizon. More exact calculations have not been worked out, to the 

best of my knowledge. 

16.6 Summary 

In this final chapter we extended the graphic method of Chapter 9 to determine 

the optimum selection index and the correlated trait responses for the case of a 

production and a reproduction trait. Profit was assumed to be a linear function 

of production and an inverse function of reproduction. We demonstrated that the 

profit of a cross between sires and dams selected on different indices can have 

a higher profit value than any point on the response ellipse. 

Three breeding schemes were compared: 1) selection of all individuals on 

the optimum selection index, 2) splitting of the original population into separate
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sire and dam lines each selected on the economically optimal index for that Sex, 
and 3) selection of males and females on separate indices within a single line. 
Scheme 2 gave maximum long-term increase in profit, and scheme 3 gave the 
least. For a single generation, maximum profit was realized by scheme 3, 
followed by scheme 2. 

If selection is practiced within parental lines that are then crossed to produce 
the commercial offspring, then dam lines on the same dam contour can result in 
differing profit values after selection.



GLOSSARY OF SYMBOLS 

Matrices and vectors are listed in bold type. Matrices and Vectors are listed 

before scalars with the same symbol. Symbols with capital letters are listed 

before symbols with the same lower case letters. The section in which the 

symbol is first mentioned is listed in parenthesis after the definition. Greek 

symbols are given after the Latin symbols. 
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Latin Symbols 

Matrix of quadratic economic values (8.5) 

Vector of economic values (3.4) 

Price of unit product (6.2) 

Average costs (2.8) 

Accuracy of genetic evaluation (13.3) 

Price of unit of dam product (5.2) 

Price of unit of offspring product (5.3) 

Regression of offspring on parent (1.5) 

Matrix of quadratic index coefficients (8.4) 

Annual income per animal selected and per unit of selection intensity (11.4) 

Vector of selection index coefficients (3.4)
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D 

D 

d 

D, 

d, 

dy 

d, 

Dyrax 
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o 

d, 

d q 

D, 
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Breeding value (1.6) 

Genetic covariance matrix among traits in x and y (3.4) 

Costs (4.5) 

Annual costs of a breeding program (8.3) 

Contribution of the dam to the costs of production (15.4) 

Unit feed costs (5.4) 

Initial costs of a breeding program (11.4) 

Non-feed costs per enterprise (7.2) 

Investment (7.2) 

Matrix that describes the passage of genes from time t-1 to time t (8.4) 

Days from weaning to slaughter (5.4) 

Vector of discounting factors (8.4) 

Net present value discounting factor for annual costs of a breeding program 

(11.5) 

"Nominal" interest rate (2.7) 

Vector of discounting factors for consecutive years (8.4) 

Risk on investment (8.3) 

Optimum slaughter age for maximum economic efficiency (5.5) 

Opportunity cost discount rate (8.2) 

Change in profit due to index selection (9.8) 

"Real" discount rate, corrected for inflation (2.9) 

Net present value discounting factor for annual returns of a breeding
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program (11.5) 

d, Required "nominal" interest corrected for inflation, tax, and risk (8.2) 

The social time preference discount rate (8.2) 

Inflation rate (2.9) 

DV Discounted value (2.9) 

d, Tax rate on investment (8.2) 

Economic efficiency (4.5) 

e Environmental effect or residual (1.3) 

E, Biological efficiency (7.2) 

E, Elasticity of demand (2.4) 

E(f) Expectation of f (9.3) 

EF, Feed costs per dam (5.1) 

EF, Feed costs per offspring (5.1) 

E; Inverse of economic efficiency (7.3) 

E, Elasticity of supply (2.4) 

F Quantity of feed given per enterprise (7.2) 

F, Fixed costs per unit product (6.2) 

F, Fixed costs per animal (6.2) 

F, Annual feed costs of the enterprise (5.4) 

Fu Maintenance feed per unit metabolic body weight of the dam (5.4) 

Fy. Maintenance feed required per unit weight of offspring per day (5.4) 

Fpa Feed required by the dam per offspring produced (5.4)
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Feed required per unit product of offspring (5.4) 

Variance matrix for traits in y (3.4) 

Genetic effect (1.3) 

Genetic superiority of females selected as parents for the next generation 

(8.4) 

Genetic superiority of males selected as parents for the next generation (8.4) 

Aggregate genotype (3.4) 

Heritability (1.5) 

Non-linearity heterosis (14.4) 

Aggregate quadratic genotype (9.2) 

Sire-dam heterosis (14.4) 

A linear selection index (9.8) 

Selection intensity (1.7) 

Non-feed costs of dam (5.1) 

Optimum linear selection index (9.3) 

Optimum sire-dam mating index (14.5) 

Non-feed costs of offspring (5.1) 

Optimum quadratic selection index (9.3) 

Selection index (3.4) 

Return on investment (7.2) 

Matrix so that J’J = P (9.8) 

Income less fixed costs per unit product (6.2)
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K, Costs of breeding program per animal examined (11.4) 

K; Fixed costs of breeding program (11.4) 

K, Fixed costs per daughter of sire sampled (13.3) 

K, Income per gram egg less fixed costs per gram egg (6.5) 

K, Fixed costs per egg (6.5) 

K, Fixed costs per unit weight of animal (6.3) 

K, Fixed costs per animal (6.3) 

L_ Generation interval (1.7) 

M Matrix to account for gene flow over generations and time (8.5) 

M_ Number of selected individuals (11.4) 

m Vector of the value of trait expressions in an animal in consecutive years 

(8.4) 

m Number of animals per enterprise (6.4) 

my) Original number of animals per enterprise (6.4) 

MC Marginal costs (2.8) 

m, Number of dams per enterprise (5.2) 

m, Vector of proportion of genes at time t in all age-sex classes (8.4) 

MU Marginal utility (2.8) 

N_ Current value in monetary units (2.9) 

N, Discounted gain from selection to time t (8.4) 

n, Number of semen doses per sire (13.3) 

n, Number of daughters sampled per sire (13.3)
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Production costs as a function of the offsprings’s genotype (14.2) 

Phenotypic variance matrix for traits in x (3.4) 

Profit (4.5) 

proportion selected (1.7) 

Profit per unit product (6.2) 

Profit per animal (6.2) 

Profit per unit weight of animal (6.3) 

Predicted difference (1.6) 

Profit of a dam line (14.4) 

Profit per enterprise (6.4) 

Profit for fixed number of animals (6.4) 

Mean of the profit values of two parental lines (14.4) 

The proportion selected for which profit is maximum (11.4) 

Profit value of a cross between two lines (14.4) 

Profit with fixed demand (6.4) 

Price (2.4) 

Profit of a sire line (14.4) 

Profit of a cross between sire line s and dam line d (16.3) 

Profit with fixed investment (6.4) 

Matrix that includes changes in the population structure due to ageing (8.4) 

Quantity of production (2.4) 

Revenue or returns (2.4)
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rpt 
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Discounting factor (8.3) 

Returns from female production (5.1) 

Genetic correlation (3.3) 

Correlation between the selection index and the aggregate genotype (3.5) 

Number of individuals examined for each individual selected (13.3) 

Returns from offspring production (5.1) 

Repeatability (1.5) 

RSE Relative selection efficiency of an alternate index vs. the optimum index 

R, 

TY, 

S 

T 

t 

Tax 

T, 

U 

u 

Vv 

(3.5) 

Total returns from continuous selection to time t (8.4) 

Returns from one generation of selection at time t (8.3) 

Mean value of selected individuals in trait units (1.7) 

Years to profit horizon (8.3) 

Time in years (2.9) 

Value for T at which profit is maximum (11.4) 

Number of individuals examined (11.4) 

Matrix for probability of trait expression in progeny times fraction of 

ancestor’s genotype expressed for a given year-parity combination (8.4) 

Vector of the fraction of an ancestor’s genotype expressed in his progeny 

in consecutive years (8.4) 

Minimal acceptable annual return, also the value from one year of genetic 

improvement (2.9)



Ya 

Yeo 
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Vector of economic values of gains in selection from generation | to t (8.4) 

Total weight of animals per enterprise (6.4) 

Vector of measured traits (3.4) 

Phenotypic trait value (1.3) 

Quantity of product per dam (5.2) 

Value of reproductive trait for the dam line (15.2) 

Value of reproductive trait for the dam of the most profitable cross (15.2) 

Value of reproductive trait for the sire line (15.2) 

Number of offsprings (eggs) marketed per dam per year (5.3) 

Original number of offsprings (eggs) per dam (6.4) 

Number of offsprings marketed/female/year (5.3) 

Mean weight of eggs (6.3) 

Quantity of product per offspring (5.3) 

Product per unit weight of dam (5.2) 

Body weight of animal (6.3) 

Mean weight of dams (5.2) 

Original weight of animals prior to genetic improvement (6.4) 

Mean weight of progeny (5.5) 

Daily gain of progeny (5.5) 

Vector of breeding values for traits of economic importance (3.4) 

Value of the production trait for the dam line (15.2) 

Vector of original breeding values of females (8.4)



224 

Ym 

Yo 
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Value of the offspring of the most profitable cross for the production trait 

(15.2) 

Vector of original breeding values of males (8.4) 

Predicted trait value for progeny of a parent (1.6) 

Trait value of parent (1.6) 

Value of the production trait for the sire line (15.2) 

Matrix to describe passage of genes from one time unit to the next (8.4) 

ordinate of the normal curve (1.7) 

Greek Symbols 

Scaling factor or proportionality constant (7.5) 

Vector of proportional changes in economic traits (9.7) 

Partial derivative (7.5) 

Vector of trait means (9.2) 

Additive genetic variance (1.5) 

Genetic covariance between traits x and y (3.3) 

Environmental variance (1.5) 

Genetic variance (1.5) 

Variance of the aggregate genotype (3.4) 

Covariance between the aggregate genotype and the selection index (9.6)



AF 

AG 
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Variance of any linear selection index (9.6) 

Variance of optimum linear selection index (9.4) 

Variance of the optimum selection index (3.5) 

Variance of optimum quadratic selection index (9.4) 

Parent-offspring covariance (1.5) 

Phenotypic variance (1.4) 

Vector of correlated responses of individual traits to selection on an index 

(3.5) 

Response to selection in trait units (1.7) 

Response of trait x due to index selection (9.8) 

Standardized response of trait x due to index selection (9.8) 

Response of trait y due to index selection (9.8) 

Standardized response of trait y due to index selection (9.8) 

Correlated response of trait y to direct selection on trait x (3.3) 

Vector of Lagrange multipliers (9.7) 

Small change in parameter value (7.5) 

Increase in inbreeding per generation (1.8) 

Response to selection per year (1.7)
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Inflation rates, discounted values 
affected by 41, 103 

Insemination proportion 167, 178 
Interest rates 41-2 

nominal rates affected by inflation 
41, 103 

Investment 
breeding programs 40, 42 

optimization 156-8 
factors affecting decisions 40-2 
return on 92-3 
supply costs affected by 22, 23 
vs. consumption 18, 19 

Israeli dairy industry 
example calculations for selection 

indices for nonlinear profit 
functions 138-42 

genetic trends in cattle production 
175 

pricing of bull calves and semen 179 
selection proportion 178 

Kuhn-Tucker conditions 135 

Lactose percent (in milk), energy 
requirements 85 

Lagrange multiplier 48, 125 
Latin symbols used (in this book) 

216-24 
Law of diminishing returns 18-19 

effect on supply curves 21 
Law of diminishing utility 34 
Law of marginal utility 35 
Least squares equations 47-8 
Line breeding 

choice of optimum lines together 
with crossbreeding 213-15 

and heterosis, long-term 
considerations 209-13 

Index 

planned mating together with 
204-15 

Linear equations, use of matrix algebra 
to solve 46-7 

Linear programming (LP) 59 
profit calculations 100-1 

Linear selection index 
actual preferences contrary to result 

179-80 
compared with nonlinear indices 

122-3, 145-8 
long-term advantage 146 

Long-term breeding strategies, 
comparison 209-12 

Long-term considerations 102-16 
see also Discounted returns 

Long-term supply curves 25 

Maintenance traits 192 
Marginal cost of production 35-6 

equilibrium point 37, 37, 38, 39 
relationship with 

average costs 38-9, 39 
total costs 36-7, 36, 38 
utility 38 

shutdown point 37, 37, 39, 40 
Marginal profit change 79-80 
Marginal utility 34-5 

investment considered 40 
law of 35 
relationship to total utility 34, 35, 38 

Marker-assisted selection (MAS) 154, 
171-2 

applications 172 
costs 172 

Mass selection 11 
Maternal effects (on heterosis) 189, 202 
Matrix addition 45 
Matrix algebra 

linear equations solved 46-7 
nomenclature 44 
principles 44-8 

Matrix inversion 45, 46 
Matrix multiplication 45 
Matrix subtraction 45 
Meat production 

dissemination of traits in population 
108 

evaluation of breeding program for 
dual-purpose breed 164 

Mendelian rules 2, 3 
Milk production 

costs of recording traits 160
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dissemination of traits in population 
107-8 

economic weights calculated 85, 86 
evaluation of breeding program for 

dual-purpose breed 164-7 
example calculations for selection 

indices for nonlinear profit 
functions 138-42 

optimization of breeding program 
163-4 

restricted selection indices used 124, 

128-9 
in selection index 54, 55, 140, 141, 

163 
Minimum attractive rate of return 

(MARR) 40-1 
Models, system analysis 58 
Momentary supply curves 25 
Monopolies, supply and demand 

affected by 28-9 | 
Most profitable parental combination 

194-203 
component traits not genetically 

additive 201-3 
genetically additive traits 

many parental lines 199-201 
three parental lines 197-9 
two parental lines 194-7 

Multiple ovulation and embryo 
transplant (MOET) 154 

economic impact on breeding 
programs 167-70 

main methods of use 167-8 
all-cows breeding scheme 167, 168 
best-cows-in-herd scheme 168, 

169-70 
bull-calves breeding scheme 167, 

168 
nucleus herd scheme 168-9 

Multiple traits 
dissemination of genetic gains 109 
economic evaluation 80-1 

Multitrait breeding programs 160-1 

National economy, effect of genetic 
improvement 64, 65, 159 

Net present value 
breeding-program costs 106-7 
genetic gains 109 

Nicking 190 
Non-additive genetic effects 5 
MAS used in selection 172 

Nonlinear profit functions 
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selection indices for 118-42 
graphic methods used 133-5 
linear indices 143-5 

Nonlinearity heterosis 189-90, 193, 201 
Nucleus herd (MOET) scheme 168-9 

adult selection scheme 169 
disadvantages 169 
juvenile selection scheme 169 

Objective function 59 
Offspring marketed per female per 

year 70 
factors affecting 71 
typical values 71 

Oligopolies, supply and demand 
affected by 29 

Opportunity cost (discount) rate 102 
Optimization techniques 58-60 
Optimum dam index 207, 211 
Optimum selection index 50, 112 

computation 114 
for maximum profit in next 

generation 206-9 
for single line 204-6 

graphic method for derivation 
131-2, 204-5 

selection in single line 210 
subindex components 114 
see also Suboptimal selection indices 

Optimum sire index 207 
Overdominance 5 

Parent-offspring regression 12 
additive genetic component of 

variance estimated using 7 
truncation selection value 11, 12 

Partial dominance 5 
Partial regression, meaning of term 

101 
Paths of inheritance 13, 107 
Perfect competition 22, 25 
Phenotypes 

contrasted with genotypes 3 
environmental effects 3 

Phenotypic correlation 49 
Phenotypic variance—covariance 

matrix 48, 112 
Pigs, see Swine 
Planned matings 

with line breeding 204-15 
within single line 190-3 

Postnatal maternal effect 189 
Poultry 

growth rates 73
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Poultry (cont'd) 
profit calculations 79-81, 84, 85, 86, 

88, 185 
effect of crossbreeding 186, 187, 

188, 195, 198, 200 
profit maps 87, 131 
reproduction ratio quoted 71 

Predicted difference (PD) 6 
see also Breeding value 

Prenatal maternal effect 189 
Price ceilings, supply and demand 

affected by 26-7, 27 
Price fluctuations, factors affecting 32 
Price supports, supply and demand 

affected by 27-8, 28 
Pricing 

semer/breeding stock 
actual pricing vs. theoretical 

considerations 178-80 
effect on selection proportion 178 
Israeli dairy industry 179 

Production costs 
feed costs 72-3 
non-feed costs 76 

Production quotas 34 
differential quotas 84-5 
effect on profits 82 

Production-limiting government 
measures 34 

Production-possibility frontiers 16-18 
Profit 

alternative criteria compared with 
91-3 

definitions 65, 91 
factors affecting 82-4 
genotypes affecting 183-4 
graphical representation 86-90 

Profit calculations 
parental combination effects 

194-203 
many parental lines and 

genetically additive traits 
199-201 

non-additive traits 201-3 
three parental lines and 

genetically additive traits 197-9 
two parental lines and genetically 

additive traits 194-7 
poultry 79-81, 84, 85, 86, 88, 185 

effect of crossbreeding 195, 198, 
200 

with separate sire and dam lines 
183-5 

swine 88-9, 95, 184-5, 207-9 

Index 

unit of comparison used 78-9 
Profit contours 86 

poultry 87, 186, 187, 188, 195, 198, 
200 

swine 89 
Profit criteria 

choice of appropriate criteria 82-4 
poultry 81, 84 

Profit functions 
traits not included in selection index 

137-8 
see also Nonlinear profit functions 

Profit heterosis 
definitions 187-8, 193 
types 188-90 

Profit horizon 42 
discounted-return calculations 105, 

115 
Profit maps 86-7, 87, 89 

heterosis represented 186, 187, 188 
parental-combination optimization 

in crossbreeding 195, 198 200 
response ellipse plotted 131, 208 

Progeny testing 154 
advantages/disadvantages 162 
compared with half-sib selection 

scheme 163 
optimization of breeding program 

based on 163-4 
Progress—surplus—bankruptcy cycle 

Protein percent (in milk) 
energy requirements 85 
in selection index 140, 141 

Quadratic aggregate genotype 
function 119 

comparison of linear and quadratic 
indices 122-3 

linear index calculated 120-1 
quadratic index calculated 121, 191 

Quadratic models, aggregate 
genotype 118-19 

Quadratic programming 59-60 
Quadratic selection index 121 

compared with linear selection 
index 145-8 

Quality of produce, difficulties of 
measurement 69 

Quantitative genetics, basic concepts 
2-15 

Quantitative traits 
factors affecting 4 
vs. categorical traits 2-3



  

Index 

Quotas, production 34, 82 

Recording of traits, costs involved 154, 

160 
Reduced selection index 53, 149 

References listed 226-36 
Relative selection efficiency (RSE) 53, 

149-50 
Repeatability 8 

differing use of same term 10 
Reproduction ratio 

definition 70 
typical values 71 

Research funding, effect on prices 
32-3 

Response circle 132 
maximum-profit index calculated 

132-3 
two-trait case 134 

Response ellipse 130-1, 131 
maximum-profit index calculated 

131-2, 145, 208 
transformation to circle 133 

Response per unit time 13 
computation methods 13 

Restricted selection indices 123-4 
derivation 125-9 
milk-production example 

calculations 128-9 
theoretical justification 146-7 

Return on investment 92-3 
Returns 

female production 69-70 
reproduction effects 70-2 

Risk, discounted returns affected by 
103 

Risk reduction, as goal of animal 
breeding 65 

Row vector 44 

Scalar quantity 44 
Selection 

estimation of response 11-13 
inbreeding affected by 14 

Selection criteria 
determination 60-2 
inadvisability of using ratios 62 

Selection index 9 
comparison of different indices 

143-51 
deleting traits from index 53, 149 
derivation 50-1 

example calculations 54-5 
future gains discounted 112-14 
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effects of incorrect economic 
weights on efficiency 149-51 

graphic methods for derivation 
129-33 

advantages/disadvantages 144 
application to more than two 

correlated traits 135-7 
application to two correlated traits 
and nonlinear profit function 

133-5 
linear indices 

for nonlinear profit functions 
143-5 

vs. nonlinear indices 145-8 
for nonlinear profit functions 118-42 

example calculations 138-42 
graphic methods 133-5 

properties 52-4, 212 

quadratic index 
comparison with linear index 

122-3 
derivation 119-22 

reduced index 53, 149 
restricted index 

derivation 125-9 
theory 123-4 

suboptimal indices 148-9 
traits included of no economic value 

137 
traits in profit function not included 

137-8 : 
see also Economic. . .; Genetic. . .; 
Optimum selection index 

Selection intensity 12 
reasons for low intensities 178 

Selfing 171 
Semen collection/storage, in progeny 

testing 40, 155, 162, 166 
Semen pricing system 178 

actual prices vs. theoretical 
considerations 179-80 

Israeli dairy industry 179 

Semen sexing 170-1 
Sex-linkage heterosis 189 
Sheep, reproduction ratio quoted 71 
Short-term supply curves 25 
Shutdown point (on marginal cost 

curve) 37, 37, 39, 40 
Single line profit front (in 

crossbreeding) 200 
Sire—dam additive profit front 201 
Sire—dam heterosis 190, 193, 201 
Sire-dam profit ellipse 208, 209
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Social time preference (discount) rate 
102 

Specific combining ability 189 
Square matrix 44 
Statistical analysis, costs involved 155 
Suboptimal selection indices 148-9 

reasons for using 148 
Supply curves 21-2 

effect of investment 22, 23 
effect of marginal cost 35-6 
equilibrium with demand 21, 22, 23 
long-term supply curves 25 
momentary supply curves 25 
short-term supply curves 25 

Supply and demand 
curves 19-22 

effect of investment 22, 23 
simultaneous shift 29, 30, 33 

effect of cartels 29 
effect of monopolies 28-9 
effect of oligopolies 29 
effect of price controls 26-7 
effect of price supports 27-8 
effect of taxes 25-6 
elasticity of 23-5 
oscillations 30, 31 

Supply elasticity 24-5 
Swine 

economic weights used by farmer 
179 

genetic gain calculations 110-12 
profit calculations 88-9, 95, 184-5, 

207-9 
profit maps 89, 208 
reproduction ratio quoted 71 

Symbols used (in this book) 216-25 
Symmetrical matrix 44-5 
Systems analysis 57-66 

Index 

definition of goals 57-8 
implementation of results 62-5 
optimization techniques used 58-60 
use of models 58 

Taxation 
discounted returns affected by 103 
supply and demand affected by 

25-6, 26 
Threshold selection 149 
Total economic merit index 101 
Total performance index (TPI) 180 
Trace of matrix 44 
Transpose of matrix 44, 45 
Truncation selection 11, 179 
Turkeys, reproduction ratio quoted 71 

Unrestricted selection index, 
derivation 124-5 

US dairy cattle population 
genetic trends 175 

reasons for less than theoretical 
expectations 176-8 

selection proportion 178 
Utility 

meaning of term 34 
see also Marginal utility 

Variable costs 38, 79 
Variance components 6-8 
Variance—covariance matrices 48—9 

Vector 

of activities 59 
meaning of term 44 

Work force, US agriculture 31-2 

Zero-profit conditions 37, 94






