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Preface and Acknowledgements 

The objective of this book is to describe methods of identifying animals of high 
genetic merit, for characters of interest, subsequently to be used as parents of the 
next generation in a genetic improvement programme. Information on an 
animal's own measurements, or the measurements on its sibs, progeny, parents 
or other relatives, can be used to predict an animal's genetic merit. Rather than 
being limited to measurements on one trait, information from several traits can 
be combined for the prediction of overall genetic merit. Given a particular 
method of predicting animals’ genetic merit, the rate of genetic improvement can 
be determined for evaluation of alternative breeding programmes. Therefore, 
knowledge of the methods outlined in the book is fundamental for efficient 

management of genetic improvement programmes. 
The book consists of five sections. In the first section consisting of 

Chapters 1-3, the statistical procedures and quantitative genetics theory necessary 
for predicting genetic merit are described. Readers with experience in estimation 
of genetic and phenotypic parameters can omit these chapters. However, 
regression of predicted genotype on phenotype is used to derive the selection 
index coefficients, so readers should be familiar with the ideas in Chapter 3. 
Prediction of genetic merit based on measurements on the individual and its 

relatives is discussed in Chapters 4—6, which form the second section of the text. 
Practical examples of breeding objectives and methods of predicting genetic merit 
are discussed in the third section, consisting of Chapters 7-9. The fourth section 
comprises Chapters 10-12, and outlines methods of predicting genetic merit, 
while simultaneously accounting for environmental effects, which affect animal 

performance. Chapter 10 uses selection index procedures to introduce the BLUP 

method, described in Chapters 11 and 12, which is used internationally within 
animal genetic evaluation organisations. In the fifth section, prediction of genetic 
merit when there exists a gene of large effect on the trait of interest is discussed 
in Chapter 13, followed in Chapter 14 by a similar discussion for a trait of a 
binary nature. A comprehensive list of references complements the text. In 
general, papers referred to in the text were chosen to reflect the present state of 
research in each subject, but reference to the original papers can be obtained from 
cited papers. There are examples with worked answers, throughout the text, to 

viii
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help the reader's understanding and a series of questions with detailed suggested 
answers completes the text. 

The text originated from material used to teach Quantitative Genetics courses 
at Cornell University and the University of Edinburgh. At John Pollak's 
invitation, I taught Quantitative Genetics to final year Animal Science students 
at Cornell, which was the catalyst for writing this book. The experience of 
teaching the courses has helped my understanding of Quantitative Genetics, as 
has the interaction with the students. Charlie Smith and Robin Thompson both 
taught me a great deal about Animal Breeding and Quantitative Genetics, which I 
hope is reflected in the book. Parts of the text were written at Cornell and 
Edinburgh, but it was in Guejar-Sierra, in the Sierra Nevada mountains, that the 
first draft was completed. Bill Hill read all of the manuscript and made many 
helpful suggestions, for which I am very grateful. Finally, I would like to thank 
Vicky Cameron for the continual encouragement, interest and patience that she 
has shown during the writing of this book.





Chapter one 

Introduction to Variance 

Introduction 

Genetic improvement is the process of selecting animals of higher genetic merit 
than average, to be parents of the next generation, such that the average genetic 
merit of their progeny will be higher than the average of the parental generation. 
Already, terminology has been introduced, which is not used in everyday 
language. What does the phrase "selecting animals of higher genetic merit" mean 
and how is "average genetic merit of their progeny" measured? It is necessary to 
be familiar with the concepts used in the practice of genetic improvement, before 
different methods of genetic improvement can be examined. 

The first three chapters provide the statistical and quantitative genetics 
background required for prediction of genetic merit and examination of alternative 
selection strategies. For further information, the reader is referred to Snedecor and 
Cochran (1989) and Falconer and MacKay (1996). 

Population and sample 

A population is defined as a group of individuals with a particular specification. 
Examples of populations are all Holstein—Friesian cows in Wisconsin or all 
Blackface ewes in Scotland. Obviously, every animal in the population cannot 
always be measured. Measurements can be made on a sample of the population 
to gain information about the population. The choice of sample is important, as 
animals in the sample should be representative of animals in the population. 
Examples of samples, given the above populations, would be first lactation 
Holstein—Friesian cows in Wisconsin or the Blackface ewes on three farms. 
Drawing conclusions about the population from the sample is more likely to be 
reliable in the second example than in the first, provided that the farms were 

chosen as being representative of different aspects of Scottish sheep farming. 
Therefore, it is important that the population is specifically defined, such that an 
appropriate sample of animals can be measured.
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Mean and variance of a sample 

The mean or average value of a sample provides information on where the 
observations or measurements are. For example, the mean growth rate of a 
particular group of animals was 800 g/day. The mean of the measurements made 

on N animals is 
re | > X 

Nia | 
where Xj is the measurement on the ith animal. To complement the mean, the 

variance provides information on the variation between measurements, to indicate 
the "spread" of values. The variance of N observations in a sample from the 

population is 

The variance is a measure of the average squared difference between each 
observation and the mean. If the squared term was omitted, then the average 
difference between the observations and the mean would just be zero. 

The variance is measured in squared units, such as 25 mm, as squared terms 
are used in calculation of the variance. The standard deviation is the square root of 
the variance and can also be used as a measure of the variation between the 
observations. For example, in two groups of animals, the standard deviations for 
growth rate were 80 g/day and 140 g/day, indicating a relatively greater range of 
growth rate for animals in second group. The standard deviation can be preferable 
to the variance for expressing the range of observations, as the dimensions of the 

mean and the standard deviation are the same. 
The variance can be calculated from the sum of the squared observations and 

the sum of the observations, squared, rather than calculating the square of each 

deviation from the mean: 
2 

1 N —)\2 ] N 9 =? l N 4 1 N —— ¥(x. -xX)° = ——| ¥ X* —NX* | =——- ¥ X7 -— | YX; 
Nai |S | N-1 2 ' oN ai i=l 

For example, weights of a sample of five animals from a herd were 13, 15, 11, 
14 and 12 kg. The variance is calculated from the sum of the squared 

observations 
n 

yX? =137 +157 +117 +147 +127 = 855 
i=] 

and the sum of the observations squared 
2 

n 

( x;] = (13+15+114+144+12)* = 4225 a 
1 

and the variance is =(855 _ £4225} =2.5, 

When calculating the mean and the variance for a sample of size N, the 

divisor for the mean is N, while the divisor for the variance is N—1. The 

difference in divisors comes about because calculation of the variance requires 

information on the mean, such that there are only N—1 independent observations,
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once the mean is known. For example, the mean measurement of five animals 
was 3.6, such that if the measurements on the first four animals, X;, X2, X3 

and X4, are known, then the fifth observation must equal 

5(3.6) —(X, + X_ +X3+Xz4). 

Different notation is used for the mean, variance and standard deviation of the 
population and of the sample, to indicate the source of the parameters, as shown 
in Table 1.1. 

Table 1.1. Notation for population and sample parameters 

  

  

Population Sample 

Mean | iv xX 

Variance o? 5? 

Standard deviation oO S 
  

Properties of Variance 

The variance has properties that are used throughout the text, and it is important 
that these properties are understood at the beginning. The variance of trait X will 
be denoted by var(X) and © is a constant. 

Property 1 var(X + @) = var(X) 

Adding the constant @ to each observation does not change the variance, as the 
variation between observations remains the same, although the mean changes by 
the amount o. If the variance does not change, then neither does the standard 
deviation. 

Property 2  var(a@X) = 0.2 var(X) 

Multiplying each observation by the constant © increases the variance by a. 
The variance was calculated from the squared deviations from the mean, so for 

. =\2 =\2 . . 
each observation (aX — OX] = 01” (Xx - X) , such that the variance increases by 

o.2. If the variance increases by «2, then the standard deviation increases by a. 
The mean will also increase by a. 

Property 3 _ If X and Y are two independent or unrelated traits, then : 
(a) var(X + Y) = var(X) + var(Y); 

(b) var(X — Y) = var(X) + var(—Y) = var(X) + (-1)2var(Y) = var(X) + var(Y); 
N 

(c) va > x;] = N var(X), from 3(a) assuming equal variance for each X; and 
i=] 

all the X; are independent. 

i N 1 N 
x24 J= eval 3x;)= var(X) 

i=] i=] 

Property 4 va



4 Chapter 1 

  

The fourth property of the variance is obtained by combining property 3(a) with 

property (2), with the constant o replaced by a The fourth property translates 

into "the variance of the mean of N observations is <lh of the variance of the 

observations". The variance of the mean, estimated from a sample of N 

observations, is a measure of the precision of the mean, as a mean with a smaller 
variance indicates a more precise estimate than a mean with a larger variance. The 
precision of a sample mean is a measure of the reliability of conclusions which 
can be made about the population mean, assuming that the sample is 

representative of the population. 
The square root of the variance of measurements in a sample of size N is the 

standard deviation. However, the square root of the variance of the sample mean 
is the standard error of the mean. Therefore 

4{ var(X) = standard deviation 

var(X) = var(X) = standard error 
N 

The standard error of the mean decreases as the square root of the number of 
observations in the sample increases. For example, if the population standard 
deviation is 3 mm, then standard errors of sample means with 100 or 400 
measurements will be 0.3 or 0.15 mm, respectively, such that quadrupling the 

number of measurements halves the standard error of the mean. 

Normal distribution 

Many traits are assumed to be normally distributed (Fig. 1.1), such that 
properties of the normal distribution are used for a variety of purposes. The 
normal or Gaussian distribution can be defined by the height of the normal 

distribution curve 

  exp(-5 x" | Tan "2 
for a point x standard deviation units from the mean. The normal curve 1s 
symmetrical about the mean (Fig. 1.1), as the formula for the height of the 

normal distribution curve is a function of x%. Therefore, a specific proportion of 
the population is expected to deviate from the mean by a specific number of 

standard deviations. 
For example, 0.34 of the population are expected to have observations 

between the mean and one standard deviation above the mean, such that 0.68 of 
the population are expected to have observations within one standard deviation of 
the mean. Similarly, 0.95 and 0.99 of the population are, respectively, expected 
to have observations within approximately 2 and 2.5 standard deviations of the 
mean. The actual number of standard deviations corresponding to the proportions 

of 0.95 and 0.99 are 1.960 and 2.576, respectively. 
The expected proportion of a population with values greater than a given 

threshold point, measured in phenotypic standard deviations from the mean, is 

provided in the Appendix.
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Given the properties of the normal distribution and knowledge of the mean 
and variance of a population, then properties of the distribution of observations 
for the population can be predicted. For example, if ultrasonic backfat depth has a 
mean of 15 mm and standard deviation of 3 mm in a particular population, then 
assuming a normal distribution, it is expected that 0.95 of the population would 
have backfat depths of between 9.1 and 20.9 mm, calculated from 

15-1.96x3 and 15+1.96x3 

Given several samples from the population, variation between the mean values 
of the samples is expected, just as there is variation between observations in a 
sample. If observations from the population have a normal distribution with 

mean wu and variance o“, then the mean values, estimated from samples of size 

N, will be normally distributed with mean p, but with a variance of o” /N and a 

standard error of o*/ N. 

Relative frequency 
of measurements 

0.407 

0.357 
0.307 
0.257 
0.207 0.34 
0.15- 
0.107 
0.057 {0.475 pn 

1 0.00 T T T —T I 

-3 -2 -1 0 1 2 3 

Standard deviations from the mean 

          

Fig. 1.1. Normal distribution 

As the observations are normally distributed, then the sample means will have a 
normal distribution. As 0.95 of all observations are expected to be within two 
standard deviations of the population mean, then 0.95 of all sample means are 
expected to deviate from the population mean by less than two standard errors. If 
the population standard deviation is 3 mm and samples of size 100 are repeatedly 
taken, then it is expected that 0.95 of all sample means would deviate from the 

population mean by less than 0.6 mm, equal to 1.96/37 /100.
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Analysis of Variance (ANOVA) 

In animal breeding, prediction of the rate of genetic improvement requires 
information about the observed variation between animals and the contribution of 
genetic and environmental variation to the observed variation. The methodology 
of analysis of variance, ANOVA, is used to separate the total variation between 
observations into its component parts. 

The ANOVA method is most easily explained with an example. Given s 
groups with n observations per group, the ANOVA method separates the total 
variation between the sn observations into the within-group variation and the 
between-group variation. The magnitude of the between-group variation is a 
measure of the size of differences between groups. If the group means are similar, 
then the between-group variation will be small. 

The j'® observation in the it) group is denoted Xij, such that X; is the 

mean of observations in group i and X is the overall mean. The deviation 
between an observation and the overall mean can be divided into two parts: 
(1) the deviation between the observation and its group mean; and 
(2) the deviation between the group mean and the overall mean 

(Xij -X) =(Xij- Xi) + (Xi -X) 
After squaring and summing terms, the equation leads to the total variance being 
separated into the within-group variance, the average variation between 

observations within a group, and the between-group variance, the variation 
between group means. 

Observations can be laid out in a two-way table, with the n observations for 
each of the s groups in rows: 

  

Observation 

| l 2 vee n 

l X11 X12 bee Xin 

Group 2 X?2] X22 Lee X2n 

S Xs] Xs? cee Xsn 

The total sum of squares is calculated as 
2 

¥ &(X-X) = Ex? -+ EDX; j 
i=lj=1 i=1j=1 sn | j=1j=1 

2 
S fn 

The om | > xs] , equivalent to snX , 1S the correction factor, CF. 
i=lj=l 

The total sum of squares is calculated as the sum of the squared observations 
minus the correction factor. Subtraction of the correction factor from the sum of 
squared observations enables the variation between observations to be expressed 
relative to the mean, rather than as deviations from zero. The total sum of 
squares has (sn—1) degrees of freedom, as there are sn observations in total. 

The sum of squares for group means, when treated as "observations", is
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S —_ — S 

Yn(X; — x)’ = - ¥ (group total)” — CF 
i=] i=l 

The between-group sum of squares has (s—1) degrees of freedom, given s groups. 
The within-group sum of squares can be calculated as 

s on _ \2 

x (Xj - X;) 
i=1j=1 

or as the difference between the total sum of squares and the between-group sum 
of squares. The within-group sum of squares has s(n—1) degrees of freedom, as 
there are s groups, each with (n—1) degrees of freedom. 

The between-group and within-group mean squares, denoted by MSp and 

MSw respectively, are the sum of squares divided by their degrees of freedom, in 

a similar manner that the variance of N observations is the sum of squares 

divided by (N—1) degrees of freedom, as outlined in Table 1.2. 

Table 1.2. Formula for calculating sums of squares and mean squares 

  

  

Source of 
variation DF Sum of squares Mean squares 

I 2 _ _ _ MS Between groups s—1 - > (group total)” - CF Divide sum of B 

by DF 
Within groups _s(n—1) By difference sees OY MSw 

2 

Total sn—1 » Xij ~ CF 

Balanced and unbalanced experimental designs 

In a balanced design, each group has the same number of observations, while in 
an unbalanced design, all groups do not have the same number of observations. 
Calculation of the between-group sum of squares and the within-group degrees of 
freedom for the unbalanced design is slightly different from the balanced design. 

The between-group sum of squares has to take account of the different 
number of observations in each group and is 

S S 

¥n;(X; -X/’ = E— (group total)” - CF 
i=! i=]Mi 

The total sum of squares and the within-group sum of squares are calculated as 
for the balanced design. Similarly, the degrees of freedom for the between-group 
and the total sum of squares are s—1 and N—1, respectively, where N is the total 
number of observations. The degrees of freedom for the within-group sum of 
squares is N-s. 

Expectation of Mean Squares 

Assuming that the groups are random effects, then in a balanced design with n 
measurements per group, the between-group mean square is an unbiased estimate 
of



8 Chapter 1 

  

ot +nos 
which is equivalent to noting that the expectation of the between-group mean 

square iS Oty + nog, where or and oy are the between-group and within- 

group variances, respectively. 
For an unbalanced design, the expectation of the between-group mean square 

1 S ng =] n—4f $03 
s-1 N i=l 

for a total number of observations of N. 
Estimates of the between-group and within-group variances are 

o% = MSw 

and 6% =(MSg -MSw)/n 
The variance of the estimated mean, for observations in a group, provides a 

measure of the precision with which the group mean is estimated. The variance 

of the estimated group mean is 

is O% +NpO® with 

2 G 
o4+—~ 

n 

If the group mean was known without error, then the variance would be O38. 

Since the group mean is estimated from a sample of n observations, then the 

variance of the sampling error is —~of, where oy is the variation within the 
n 

. l ; , 
group. Combining the two terms o% and —ow, results in the variance of the 

n 

estimated group mean. 

Example 
There are four groups with six observations per group: 

  

  

Group Observations 

A 9 11 10 9 9 12 
B 9 10 8 8 7 6 
C 5 8 6 9 8 9 
D 12 16 13 15 14 17 
  

The variance of measurements within groups A, B, C and D, calculated from 
the data, are 1.6, 2.0, 2.7 and 3.5. In particular, the mean and variance of group 

B are 8.0 and = (9° +107 +87 +87 +77 +67 -6x 8.0°] = 2.0. The average of 

the four within-group variances is (1.6 + 2.0 + 2.7 + 3.5)/4 = 2.45. Therefore, the 

estimate of the within-group variance, ow, is the average variance between 

measurements within groups.
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The group means are 10.0, 8.0, 7.5 and 14.5, and the variance between the 
group means is 

; (10.07 +8.07 +7.5? +14.5? -4x 107) =10.17 

The between-group mean square divided by the number of observations per group 
2 

is 61.0/6=10.17. Therefore, the variance of a group mean, o% + ow is 
n 

estimated from the variance of the group means. 

The analysis of variance table is as follows: 

  

Expectation of 

  

Source of variation DF Mean squares mean squares 

2 2 
Between groups 3 61.00 Ow +608 

Within groups 20 2.45 OW 
  

Example data set 
The following data set will be used on several occasions throughout this chapter 
and Chapter 2, to demonstrate how information on variances is used in a 

quantitative genetics framework. In each of eight groups, there are three 

observations: 

  

  

Group Observations Group total 

1 28 29 27 84 
2 30 33 31 94 

3 28 28 25 81 
4 30 31 28 29 
5 26 26 28 80 
6 27 29 29 85 
7 27 28 27 82 

8 25 21 32 78 
  

First, the correction factor, CF, is calculated, which is the square of the sum 
of the observations, 673, divided by the number of observations, 24. Therefore, 

CF = 6732/24 = 18872.04. 
The total sum of squares is the sum of the observations squared minus the 

correction factor, such that the total sum of squares is 

(282 + 292 + 272 + 302 +... +212 + 322) — CF = 148.96 

The between-group sum of squares is the sum of the group totals squared, 
divided by the number of observations per group, and then the correction factor is 

subtracted. The between group-sum of squares is 

(842 + 942 + 812 +... + 822 + 782)/3 — CF = 63.63



10 Chapter 1 

  

  

  

Source of Mean Expectation of 
variation DF Sum of squares squares Mean squares 

Between groups 7 63.63 9.09 ot + 30% 

Within groups 16 85.33 5.33 oy 
Total 23 148.96 
  

The between-group and within-group variances are estimated by equating the 
mean squares to their expectations. Estimates of the within-group and between- 

group variances, o% and O%, are 5.33 and (9.09 — 5.33)/3 = 1.25, respectively. 

Repeatability 

Now that the between-group, O%, and within-group, ow, variances have been 

estimated, what can be done with them? One parameter of interest is the 
repeatability, re, which is a measure of the similarity between the observations 

within a group. The repeatability is 

OR .. =a 
© Of + ow 

The repeatability is also known as the intra-class correlation, which is the 
expected correlation between observations within the group, or class. The 
correlation between observations is discussed in Chapter 3. 

The ratio of the between-group variance to the sum of the between-group and 
within-group variances is a measure of the relative contribution of the within- 

group variance to the total variation. If oy is small, then observations within a 

group are similar and highly repeatable. Conversely, a large value for ot 

indicates that there is substantial variation between observations within a group, 

and so the repeatability will be low. 
A formula for the variance of the repeatability estimate is 

2(1-re)*(1+(n—-1)re)° 
(s—1)n(n-1) 

where s and n are the number of groups and the number of observations per 
group, respectively (Robertson, 1959b). The variance of the repeatability 
estimate provides an indication of the precision with which the repeatability was 

estimated. 

  var(r.) = 

In the previous example, estimates of Of and o% are 1.25 and 5.33, 

respectively, such that the estimate of the repeatability is 

1.25 
'. = ———_— = 

1.25+5.33 

The variance of an estimated group mean was previously shown to be 

0.19
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2 
Oo of, +—¥ 

n 

but when the variance components, o% and ot, are expressed in terms of the 

repeatability: 

0% =1e(0R + OW | and oy =(1-1)(oB + ow | 

then the variance of an estimated group mean is 

E +} — |o3 + ow |   

Or 

a= Ire (cB +0%



Chapter two 

ANOVA in a Quantitative Genetics 
Framework 

In a quantitative genetics framework, the ANOVA method is used to separate the 

total variation between observations into its components, such as the genetic and 
environmental variation. The heritability is a function of the genetic and 
environmental variances and is central to animal breeding theory. Both the 
predicted rate of genetic improvement in a population and the prediction of an 
animal's genetic merit depend on the heritability. 

Animals can be grouped according to their sire, such that the total variation 
between animals can be separated into variation between animals of different sire- 
families and the variation within sire-families. Dairy cows are an example of 
grouping animals according to their sire, as there are often large half-sib families. 
The variation between sire-families and within sire-families provides information 
on the heritability. If the observations are grouped according to their dam, the 
variation between dam-families and within dam-families can provide information 
on maternal and common environmental effects. Pigs can be categorised into 
full-sib groups, according to their dam, but if pigs are categorised according to 
their sire, then sire-families will consist of both full-sibs and half-sibs. 

Variance components estimated with ANOVA are used to provide estimates 
of the heritability and the common environmental effect, as both parameters are 
required for prediction of genetic merit. The most straightforward method of 
explaining the use of ANOVA to separate the total variation between animals 
into the different variance components is with an example. Assume that there are 
S sires, each mated to d dams, and each dam has n progeny, such that there is a 

total of sdn animals. As in Chapter 1, the correction factor, CF, is calculated, 

which is the square of the sum of the observations, divided by the number of 
observations 

CF =(5X)*/sdn 
where X represents an observation. 

The total sum of squares, Total SS, is the sum of the squares of the 
observations minus the correction factor: 

Total SS = 5X? —CF 

12
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The between-sire sum of squares, Sire SS, is the sum of the squared sire totals, 
divided by the number of progeny per sire, minus the correction factor: 

Sire SS = <5 (sire total)” — CF 
n 

The sum of squares between-dams, but within-sires, Dam SS, is the sum of the 
squared dam totals, divided by the number of progeny per dam, minus both the 
correction factor and the sire sum of squares: 

Dam SS = L > (dam total)” — CF — Sire SS 
n 

The within-dam sum of squares is the total sum of squares minus both the 
between-sire and the between-dam within-sire sum of squares. 

If the number of animals per dam or per sire is not the same for each dam, or 
sire, an unbalanced design, then the between-sire sum of squares is 

: 2 
sire total 5 (sire total) 

nj 

— CF 

where n; is the number of progeny for the i sire and the between-dam within- 

Sire sum of squares is 
2 

y (dam total)” _ OE sire SS 
Nij 

where njj is the number of progeny of the j‘* dam mated to the i* sire. 
However, the equation for calculating the correction factor and the total sum 

of squares is the same for both balanced and unbalanced designs. 
The analysis of variance table, for a balanced design, is shown in Table 2.1. 

Table 2.1. Formula for calculating sums of squares and mean squares 

  

  

Source of Expectation of 
variation DF Sum of squares mean squares 

Between sires s—1 = ¥ (sire total)” — CF Ge + nog +ndo; 
n 

Within-sires 

d bet 2 2 ann g(d-1) + ~(dam total)? -CF-SireSS Se +n0{ 
n 

2 
Within-dams _sd(n—1) By difference Oe 

Total sdn—1 > X?-CF 
  

Variance Components 

The between-sires, between-dams and within-dams, or residual, mean squares are 
denoted by MS,, MSg and MSg, respectively. When the mean squares are equated 

to their expectations, the estimated variance components are as follows:



14 Chapter 2 

  

between-sire variance o2 = (MS, —-MS,g ) / nd 

between-dam variance O4 = (MS, — MS, ) / n 

residual variance o2 = MS, 

The estimated variance components are used to calculate functions of the variance 

components, such as 
2 2 2 2 

phenotypic variance Op =0, +04 +090; 

half-sib correlation tus = o? / oO 

full-sib correlation tes =(0¢ +03) /op 
The term phenotypic variance is discussed later in this chapter. Estimates of the 
half-sib and full-sib correlations provide an indication of the repeatability of 
measurements between half-sibs and between full-sibs, respectively. 

Example 
The previous data set is used, but now the data are grouped according to sires and 

dams. Dams 1 and 2 are mated to sire 1, dams 3 and 4 are mated to sire 2, dams 5 
and 6 are mated to sire 3, and dams 7 and 8 are mated to sire 4: 

  

  

Dam Observations Dam total Sire Sire total 

1 28 29 27 84 l 178 

2 30 33 31 94 l 

3 28 28 25 81 2 170 

4 30 31 28 29 2 

5 26 26 28 80 3 165 

6 27 29 29 85 3 

7 27 28 27 82 4 160 

8 25 21 32 78 4 
  

The dam sum of squares is calculated as: 

(34? +94? +...+827 +787) /3—-CF - Sire SS = 34.17 
  

Expectation of 

Source of variation DF Sum of squares Meansquares mean squares 
  

Between-sires 3 29.46 9.82 G2 +304 +602 
Within-sires and 7 ) 

between-dams 4 34.17 8.54 O- +304 

Within-dams 16 85,33 5.33 Ge 

Total 23 148.96 
  

The sire, O°," dam, of, and residual variances, 2, are estimated by equating 

mean squares to their expectations. The estimated variance components are 0.21, 

1.07 and 5.33, respectively.
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The estimated phenotypic variance, oO = 2 + o4 + o2 , Is 6.61. 

Estimates of the half-sib, tys = 6; /op , and full-sib, tps =(02 +03)/o8. 
correlations are 0.03 and 0.19, respectively. 

The variance of a sire-family mean is 

2 + O4 /a + 02 /nd equalto MS,/nd =1.64 

The variance of a dam-family mean is 

O4 + o2 /n + o2 equalto MS,/n+ o2 = 3.06 

The variance of a dam family mean includes the sire variance component, as 
variation between sires will be reflected in variation between dams, due to the 
hierarchical mating structure. 

Precision of Estimated Parameters 

Precision of the estimated parameters, such as the full-sib and half-sib 
correlations, is inversely related to the variance of the estimated parameters. As 
the estimated parameters are derived from the mean squares, and then the variance 
of the mean squares is used to determine the variance of the estimated parameters. 

The estimated variance of a mean square is twice the square of the mean 
square divided by its degrees of freedom plus two: 

2MS~ 

DF +2 
  var(MS) = 

and the variance has a X2 distribution. 
The dam variance component is a function of the dam and residual mean 

squares, (MS, -MS,)/n, so the estimated variance of the estimated dam 

variance component is 

var(oj -t var(MS, ) + = var(MS, ) 

  

n2 

2| MS; MS? 
=> + 

n*|s(d—1)+2 sd(n—1)+2 
Similarly, the estimated variance of the estimated sire variance component is 

2). 2 | MS? MS3 var(o?) = 2, ' 
n“d“|(s—1)+2 s(d-1)+2 

When measurements are taken on half-sibs only, such that dams are not included 

in the model, then the between-sire mean square is an estimate of o2 + noe and 

the estimated variance of the estimated sire variance component is 

2) 2 | MS2 MS2 | 
var|o< | = — + 

(9: n*|(s—1)+2 s(n—1)+2
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The variance of the estimated half-sib correlation, with one progeny per dam, is 
2 2 

2(1-tys) (1+(n —1)tys ) 

(s—1)n(n—-1) 

When the number of progeny per sire, n, is approximately 1/tyys> , the variance of 

the estimated half-sib correlation can be approximated (Robertson, 1959a) as 

8(1- tus)” tus 

sn 

  var(tyys ) = 

  var( tis) = 

Effect of including only sires or dams in the model 

If only sires were included in the model for analysis of the example data, then the 
between-sire mean square would remain the same as when both sires and dams 
were included in the model, but the residual mean square would increase to 

(34.17 + 85.33)/20 =5.97. The expectation of the sire mean square would 

estimate o2 + 602 , and the estimated sire variance would be 0.64. The estimated 

phenotypic variance would remain unchanged, at 6.61, but the half-sib 
correlation would increase from 0.03 to 0.10. 

If only dams were included in the model, then the dam mean square would 

change to (29.46 + 34.17)/7 =9.09. The expectation of the dam mean square 

would still be 2 +304, but the estimated dam variance component would 

increase to 1.25, with the estimated phenotypic variance decreasing to 6.58 (see 
Table 2.2). 

Table 2.2. Estimates of variance components assuming different models 

  

Variance components 
2 2 2 2 Relationship 

Model Os Od Ge Op between progeny 
  

Sires anddams 0.21 1.07 5.33 6.61 Full and half-sibs 
Sires only 0.64 — 5.97 6.61 — Half-sibs 
Dams only — 1.25 5.33 6.58  Full-sibs 
  

The effect of including only sires in the model is that estimates of both the 
sire and residual variances are inflated to account for the variation between groups 
of full-sibs from the same sire. The sire and residual variances are increased by 

n-1l d-—1)n . oy o2 and ‘< * o4, respectively, 

but the estimate of the phenotypic variance is unchanged. If d equals one, there 
will be no bias in the residual variance, but the estimated sire variance would be 
increased by the dam variance, as all progeny of a sire would be full-sibs. 
Conversely, if n equals one, then the estimated sire variance is unbiased, as all 
progeny of a sire will be half-sibs, but the estimated residual variance is increased 

by the dam variance. 
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If only dams are included in the model, then the estimated dam variance is 

increased by anny , but the estimated phenotypic variance is reduced by 
S — 

—1 
aay The sum of the changes in the estimated dam and phenotypic 

S — 

variances is the sire variance component, such that the estimate of the residual 
variance is unchanged. 

Clearly, the choice of model has an effect on the estimated variances. 
Therefore, it is important that the chosen model takes account of the genetic 
structure of the data to ensure appropriate estimates of the genetic parameters. 

Genetic Interpretation of Variance Components 

One model assumes that the animal's measurement, its phenotype, P, consists of 
a genetic, G, and environmental, E, effect. The genotype can be divided into an 

additive genetic effect, A, a maternal genetic effect, M, and a dominance effect, 
D. The environmental effect can be separated into a common environmental 
effect, Ec, and the general environmental effect, E. The model P = G + E can be 

extended to 
P=A+M+D + Ec +E 

genetic environmental 

For further information, consult Falconer and MacKay (1996). 
The additive genetic effect is the sum of the average effects of genes, with 

the summation over each pair of alleles at each locus, for all loci. The maternal 
genetic effect is the influence of the mother's phenotype on the phenotype of her 
progeny, which increases the resemblance between the dam and her progeny. For 
example, larger dams may give more milk to their progeny, which are larger than 
offspring from smaller dams. The dominance effect is due to dominance between 
alleles at a locus, or to the effect not accounted for by the average effects of 
genes. 

The common environmental effect increases the similarity between full-sibs, 
as they share the same environment. The common environmental effect differs 
from the maternal genetic effect, as the maternal genetic effect directly increases 
the similarity between offspring and dam, so indirectly increasing the similarity 
between progeny, while the common environmental effect increases the 
similarity between progeny directly. The general environmental effect is a result 
of differences between animals in nutrition, management etc., but is not due to 
factors relating to the animal's genotype. 

Relationship of variance components to genetic and 
environmental parameters 

Estimates of the sire, dam and residual variance components are used to quantify 
the different genetic and environmental contributions to the phenotype 
(Thompson, 1976).
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The sire variance component is a quarter of the additive genetic variance, 
which is the variance of the additive genetic effect. The dam variance component 
also includes a quarter of the additive genetic variance, but the maternal genetic 
effect, a quarter of the dominance effect and the common environmental effect all 
contribute to the dam variance component (see Table 2.3). Therefore, certain 
assumptions must be made about the composition of the dam variance 

component, as there are too many parameters to estimate simultaneously. For 
example, dominance may be ignored. Estimation of the maternal genetic effect 
requires information on progeny from several litters of each dam, such that the 
common environmental effect can be separated from the maternal genetic effect. 

Table 2.3. Expectation of sire, dam and residual variance components 

  

  

  

Environmental 

Genetic contribution contribution 

Additive Maternal Dominance Common General 

Variance (A) (M) (D) (Ec) (E) 

Sire - 1/4 

Dam 1/4 l 1/4 1 

Residual — 1/2 3/4 1 

If maternal genetic and common environmental effects are combined and 
dominance variance is ignored, then the phenotypic variance is the sum of the 
additive genetic, maternal/common environmental and environmental variances: 

03 =04 +04 +04 
Equating the sire, dam and residual variance components to their expectations in 

terms of the additive genetic variance, the maternal variance and the 

environmental variance provides the estimates 
2_1,2 

Os =GZOA 04 =402 
1 03 = 103 +0% 02, = 03 -02 

2 _ 2 2 i ! —o7*- 
Og = Op - 594 —5M = OE +504 Of = Oe — 205 

When all progeny are half-sibs, then the dam is not included in the model, and 
the estimated sire and residual variance components can be equated to the additive 
genetic variance and the environmental variance: 

2_!1/72 
Os =79OA 0% =402 

1 3 2 2 2 Og = Op — {OA = OB + TOA OF =O0¢ — 30; 

Lower case subscripts are used for the sire, dam and residual variance components 
and their corresponding mean squares, while upper case subscripts are used for the 
additive genetic variance, the maternal variance and the environmental variance. 
The reason for the difference in case is to prevent confusion between the residual 
variance component and the environmental variance.



  

ANOVA in a quantitative genetics framework 19 

  

Heritability 

The heritability is defined as the proportion of the phenotypic variance attributed 
to the additive genetic variance. A high heritability indicates that a substantial 
proportion of the phenotypic variance is due to additive genetic variation, while 
non-additive genetic factors make a larger contribution to the phenotype when the 

heritability is low. The heritability is 
2 

h2 = SA 
Op 

where o4 is the additive genetic variance. Examples of heritability estimates are 

0.09 for litter size in pigs (Haley and Lee, 1992), 0.39 for milk yield in dairy 
cows (Swalve, 1995) and 0.63 for carcass lean content in pigs (Hovenier et al., 
1992). 

The heritability can be estimated from estimates of the additive genetic 
variance and phenotypic variance, or from estimates of the half-sib correlation or 

the full-sib correlation. Since the expectation of the sire variance component Is a 

quarter of the additive genetic variance, then 
2 

h? =4 os = Atus 

Op 
The variance of the estimated heritability is 

_ 32(1-tys)"(1+(n—Dtys)” 
var(h” - (s—1)n(n —1) 

var(o2) 
Op 

A formula for the variance of the estimated intra-class correlation or 

repeatability was given in Chapter 1. 
If the heritability is estimated from the full-sib correlation, then the 

heritability estimate may be biased, as the maternal effect, the common 
environmental effect and the dominance effect are included in the dam variance 

component. 
In the example data set, the half-sib and full-sib correlations were 0.03 and 

0.16, respectively, such that the corresponding heritability estimates were 0.13 
and 0.65. 

  

= 16 var(tys ) = 16   

Maternal Effect 

The combination of the maternal and common environmental effects and the 

dominance effect, denoted by c2, can be estimated from the half-sib and full-sib 

correlations, as 

2 
Cc” =tps —tys 

An approximate variance of the maternal and common environmental effect is
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Op Op Op 
assuming that the sire and dam effects are independent. 

Examples of maternal/common environmental effects in pigs for the 

performance test traits of growth rate, ultrasonic backfat depth and food 
conversion ratio are 0.14, 0.05 and 0.09, with corresponding heritability 

estimates of 0.30, 0.64 and 0.22 (Ducos et al., 1993). 

y var(o}-2) var(o3) _ var(o2) var(c?) = _ al



Chapter three 

Regression and Correlation 

So far, only one trait has been considered, but in many situations the association 
between traits is of interest. For example, if a particular breeding programme 
which increases carcass lean content also reduces reproductive performance, then 
prior information about the negative association between the two traits could 
have been used to prevent, or at least constrain, the reduction in reproductive 
performance. Secondly, measurement of the relationship between parent and 
offspring can provide information about genetic parameters, such as the 
heritability. 
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Fig. 3.1. Growth rate and ultrasonic backfat depth of pigs 

If the two traits are plotted with vertical and horizontal lines drawn at the mean 
value of each trait, then the graph can be divided into four areas (Fig. 3.1). If 
most of the data points lie in the bottom-left and top-right quadrants, then the 
trait on the Y-axis increases as the trait on the X-axis increases and the traits are 
positively related. Conversely, if the majority of data points lie in the top-left 

21
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and bottom-right quadrants, then the trait on the Y-axis decreases as the trait on 
the X-axis increases and the traits are negatively related: 

(X-X) <0} (X-X)>0 

(Y-Y)>0] (Y-Y)>0 
  

(X-X) <0} (X-X)>0 

(Y-Y)<0| (Y-Y) <0   
If the traits are positively related, then the product of (Xx - Xx) and (Y — Y] will 

generally be positive, as data points in the top-right quadrant will both be greater 
than their respective means and data points in the bottom-left quadrant will both 
be less than their respective means. In contrast, if the traits are negatively related, 

then the product of (X -X) and (Y -Y), in both the top-left and bottom-right 

quadrants, will generally be negative. 

Covariance 

The covariance between traits X and Y is denoted by cov(X,Y) or Oxy, Just as 

the variance of X is denoted by var(X) or 0% , 

The covariance is estimated by 

(X,Y)=— 3 (X X)(¥, - Y) cov(X, Y) = —— — — 
N-1ja)° ° 

where N is the number of X and Y pairs in the sample. The equation for the 
covariance is of the same form as that for the variance: 

1 N —\2 
var( X ) =——_— xX:—-X (X)= 5 (Xi -X) 

Just as the variance was calculated as 

1 |N ou. Vs 
——| =X; -—NX 
N—-1|i=1 

then rather than squaring deviations from the mean, the covariance can be 

calculated as 

N — 
cov(X, Y) = wal Bx - NXY | 

1= 

If a linear relationship between traits X and Y is assumed, such that, for every 
unit increase in X, there is a corresponding change in Y of by y units (Fig. 3.2), 

then 
Y=a+t byxX
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Trait Y 

Gradient of 

Y line = Dyy 

= Trait X 
0 X 

Fig. 3.2. Linear regression of trait Y on trait X 

The estimated regression coefficient of trait Y on trait X, by, is the covariance 

between X and Y divided by the variance of X 

cov(X, Y) 

var(X) 

with the regression coefficient subscripts denoting that it is the regression of Y 
on X. The regression line passes through the means of both traits, such that the 
estimate of the intercept, a, is 

YX — 

a= Y _ byyX 

The regression equation can be written as 

Y =(Y -—byyX)+ byyX Or aS (Y-Y) = byx(X-X) 

The estimated regression coefficient is such that the sum of the squared 
deviations between the observed values of Y and the regression line are 
minimised. For further information see Snedecor and Cochran (1989). 

One use of the estimated regression equation is to predict Y for a given value 
of X, particularly in an animal breeding context, when an animal's additive 
genetic effect is predicted from its phenotype. 

Properties of the variance 

The condition of independence, which was assumed in Chapter 1, can now be 
dropped to take account of the linear relationship between traits X and Y, such 
that the fifth property of the variance is as follows: 

Property 5 var(cX + dY) =c? var(X) + d2 var(Y) + 2cd cov(X,Y) 
where c and d are constants. 

If the constants c and d are equal to one, then: 

var(X + Y) = var(X) + var(Y)+2cov(X, Y) 

and when constants c and d are equal to plus and minus one, then: 

var(X — Y) = var(X) + var(Y) —2cov(X, Y) 

Therefore, var(X + Y) # var(X — Y) when the regression coefficient, byy, or 
the covariance between X and Y, is not zero.
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Correlation between Traits 

The regression coefficient describes the linear relationship between two traits, 
while the correlation coefficient is a measure of the variation in trait Y 

attributable to the linear relationship with trait X. 
The two distributions in Fig. 3.3 have the same regression coefficient and 

intercept, but there is considerably more variation about the regression line in 

one distribution compared to the other. 
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Fig. 3.3. Growth rate and ultrasonic backfat depth for two groups of pigs 

The correlation coefficient is 

_ cov(X,Y)  _ Oxy 

var(X)var(Y) OxOy 

The correlation coefficient lies between plus and minus one The regression, 

byx, and correlation, r, coefficients can be derived from each other: 

by = OkY = Oxy Oy _ Oy 
YX ~ "900 — 

Ox OxOy Ox Ox 

The estimate of the correlation coefficient is not normally distributed. 

However, the parameter 

2=0.5 inf =") 
—T 

r 

is almost normally distributed with an approximate standard error of ./1/(N - 3), 

for N pairs of observations on X and Y. Back-transformation of the standard error 

of z will provide an estimate of the standard error of the correlation coefficient, 

using the transformation 
we (2 - e2se(z) _| 

e2se(z) +1
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Analysis of variance for linear regression 

Analysis of variance is used to examine the linear relationship between traits X 
and Y. The analysis of variance table is as shown in Table 3.1. 

Table 3.1. Formula for calculating analysis of variance table 

  

  

  

Source of Sum of squares 
variation DF Sum of squares N-1 

Regression 1 byx Ls XY - 2aEy roy 

2\~2 
Residual N-2 By difference (1 —F Joy 

=>\2 
Total N-1 z(Y-Y) oY 
  

The regression sum of squares can be expressed as a function of the correlation 
coefficient, since 

  
2 2 

Oxy 0 2 2~2 
byx(N-l)oxy =—5"(N-1) = 44, of (N-1) = roy (N-1) 

Ox OxXOy 
The proportion of variance in trait Y, not accounted for by the linear regression, 

is essentially equal to (1 —1? |, as the residual mean square is 

( —r? Joy (N=) =) 
(N-2) 

The standard error of the regression coefficient reflects the variation in the 
dependent variable, Y, that is accounted for by the linear regression on the 
independent variable, X. The variance of the estimated regression coefficient is 
the residual mean square divided by the sums of squares of the independent 
variable, such that 

_72) 2 
(1 r ) 0% 

N-2 o% 
The estimated regression coefficient has a t distribution with (N—2) degrees of 
freedom. 

Although the precision of the regression coefficient is determined from the 

  var(byx) = 

l+r . 
standard error of the z parameter, where z = 0.5in(*"), an approximation to 

-1r 

the variance of the correlation coefficient is 
2 l-r 

N-2 
  var(r) = 

0 
as r= — byy 

Oy
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Example 

Calculate the regression equation and the correlation coefficient for offspring 
weight on parental mean weight, using the following data: 

  

Meanof 18.0 21.6 20.0 18.0 24.4 17.6 19.6 24.0 20.0 18.8 
parents 

Offspring 18.4 20.4 19.2 17.6 22.0 18.8 20.4 20.8 19.6 20.4 
  

A plot of the data (Fig. 3.4) reveals that there is a linear relationship between 
parental mean weight and offspring weight. 

Offspring weight 
227 o 

217 ° 

2074 

197 o 

187 

17 T T T ] 

17 19 21 23 25 
Parental mean weight 

Oo
o 

    
Fig. 3.4. Parental mean weight and offspring weight 

To calculate the regression equation and the correlation coefficient, the following 
totals are required, with parental mean weight and offspring weight denoted by X 
and Y, respectively: 

  

> X = 202.0 YX? = 4133.28 5 XY = 4014.88 

LY =197.6 SY? = 3919.68 } 
2 Xx 

The variance of X o% = | |sx?- 022.9 = 5.876 
N-1 N 

The covariance Oxy = sole XY — Xd | = 2.596 
N-1 N 

The regression coefficient byx = OXY = 0.442 
Ox 

The intercept a= Y-byyX = 10.837 

The correlation coefficient r= Oxy = 0.827 
Ox0y 

The regression equation is 

offspring weight = 10.83 + 0.44 average parental weight 

The analysis of variance table, for the example, is as follows:
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Source of variation DF Sum of squares 

Regression l 10.32 
Residual 8 4.78 
Total 9 15.10 
  

The regression coefficient is 0.44, with a standard error of 0.11, and the 
correlation coefficient is 0.83, with an approximate standard error of 0.20. 

Genetic Interpretation of Regression and Correlation 
Coefficients 

The regression coefficient of offspring measurements on parental measurements 
can be interpreted in a genetic framework, assuming that phenotype, P, is the 
sum of additive genetic, G, and environmental, E, effects: 

P=G+t+E 
The covariance between offspring phenotype and the phenotype of one parent is 

cov(Po, Pp) = cov(Go + Eo, Gp + Ep) 

= cov(Go, Gp) + cov(Go, Ep) + cov(Eo, Gp) + cov(Eo, Ep) 

where the subscripts O and P denote the offspring and parent. Assuming that 
there is no covariance between genotype and environment, or between the 
environment of the offspring and the environment of the parent, then 

cov( Po, Pp) = cov(Go,Gp) 

Assuming that P=G+E, then the genotype of the offspring is one half of the 

additive genetic merit of one parent, such that cov(Go,Gp) is the covariance 

between G and =. Since var(G) = 0%, then 

cov( Po, Pp ) = cov(Gg,Gp) = = OA 

The regression coefficient of offspring phenotype on the phenotype of one parent 
is as follows: 

1 2 
_ cov(Pp,Pp) 7°A _ 1 

var(Pp ) o 62 

as the variance of the parent's phenotype is the phenotypic variance, assuming 
the parent is a random sample from the population. The regression coefficient is 

h2 
  

also equal to sh? if the parents have been specifically selected for the purpose of 

estimating the regression of offspring on parent (Hill and Thompson, 1977). 
The correlation between offspring phenotype and the phenotype of one parent 

is as follows: 

1 2 
__cov(P9,Pp) | 535A 104 1 
— 2 | var(Po ) var(Pp ) 030% op 2 
  Top
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When offspring phenotype is regressed on the mean phenotype of both parents, 
. . | . 

the covariance 1s SOA, since 

covl Po. (Poi + Pp2)| = 1[cov(Po,Pp1) + cov(Po.Pp2)| = cov(Po, Pp) 
where Pp and Pp are the phenotypes of the parents. 

The variance of parental mean phenotype is oO / 2, assuming that there is no 

covariance between the parental phenotypes, just as the variance of a mean of n 

independent observations is o? / n. 

The regression of offspring phenotype on parental mean phenotype is 

  

1 2 
8 cov(Po, P5) : ZOA _O” 2 

OP var(P5 ) sop o3 

and the correlation coefficient is 

2 
__ ___cov(Po.P5) OA - [ESA = fin 

OP“ {var(Po) var(P5) otio23 Vv? o5 «(V2 
2 

The heritability can be estimated from the regression of offspring phenotype on 
the phenotype of one parent or on parental mean phenotype. 

  

Genetic Correlation between Traits 

The covariance between two traits can be estimated at both the phenotypic and 
genetic levels, in a manner similar to estimation of the phenotypic and genetic 

variance of one trait. 
The sums of squares and mean squares are replaced with sums of cross- 

products and mean cross-products between traits X and Y. For example, with s 
sires each with n half-sib progeny, the analysis of covariance table is as shown 

in Table 3.2. 

Table 3.2. Formula for sums of cross-products and mean cross-products 

  

Source of Expectation of mean 
covariation DF Sum of cross-products cross-products 

Between sires s—1 - > (sire totaly )(sire totaly )-CF e(xy) * "9s(xy) 

Within sires s(n—1) By difference Ce(Xxy) 

Total sn—1 > XY -CF 

The correction factor, CF, of NXY and the mean cross-products is expressed 
in terms of residual and sire covariance components, S.(xy) and Oxy):
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The estimated sire and residual covariance components are equated to the 
additive genetic, O A(XY)? environmental, Og;xy); and phenotypic, Op(xy): 

covariances, as follows: 
] 

Syxy) = 7 Pa(xy) 
Sa(xy) = 40,(xy) 

0 =O —--O or e(XY) P(XY)” 4 ~A(XY) _ 

3 SEXY) = Sexy) — 355(xy) 
= OR(xy) + 7 OA(xy) 

Similarly, if the data has a hierarchical structure with full-sibs and half-sibs, then 

the estimated sire, dam and residual covariance components can be expressed in 
terms of the additive genetic, maternal/common environmental, Om(xy): and 

environmental covariances in a manner comparable to the analysis of one trait: 

Oxy) = <6 A(XY) 
; Sa(xy) = 45,xy) 

Sa(xy) = | Pa(xy) + OM(xy) 
' or = Om(xy) = Fa(xy) ~ Fs(xy) 

Se(xy) = Opcxy) ~ 5 Fa(xy) ~ Om(xy) 
; Og(xY) = Se(xy) ~ 25,(xy) 

= ORxy) +5 SF a(xy) 
Genetic variances and covariance are combined to estimate the genetic correlation 

Oa(xy) 
2 2 

| ©a(X)PA(Y) 
and the variance of the genetic correlation is approximately 

1-r * -e.(h% |s.e.(h2 
vata) =! sce) a ae i 

TAa(XyY) > 

  

Assuming that the phenotype is the sum of additive genetic and environmental 
effects, then the phenotypic covariance is the sum of the additive genetic and 
environmental covariances: 

Spxy) = Sacxy) t SExy) 

TPO p(x)OP(y) = TAS a(x)Pa(y) + TEOE(X)FE(Y) 
  

2 2 
= tahyhyOprx)Spryy + re,|(1 - hx (1 - hy ]opcxy Spry 

Dividing by the phenotypic standard deviations for X and Y, 

ip= rahxhy +rey(I — hy |(1 — hy | 

which combines the phenotypic, genetic and environmental correlations with the 
heritabilities of the two traits. 
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Examples of heritabilities, genetic, environmental and phenotypic 
correlations between growth rate and ultrasonic backfat depth in pigs performance 
tested on ad-libitum or restricted feeding regimes, are shown in Table 3.3. 

Table 3.3. Effect of feeding regime on genetic and phenotypic parameters for 

performance test traits in pigs 

  

  

Feeding regime hApc BRAT TA TE rp 

Ad-libitum 0.31 0.50 0.38 0.20 0.27 
Restricted 0.17 0.29 -0.10 0.28 0.19 
  

This illustrates that specific genetic and phenotypic parameters are required for a 
given performance test (Cameron and Curran, 1994; Cameron et al., 1994). 

Repeated Measurements 

If several measurements are made on each animal, the measurements will not all 
be the same, due to measurement error, if the measurements were made over a 
short time period, and also to general environmental variation, if the 

measurements were taken over a long time interval. Differences between repeated 

measurements may be due to environmental variation specific to the animal, 

such as differences between the left- and right-hand sides of a carcass, or if the 

animal had a lower growth rate, due to a lower food intake compared to another 
period of time when food intake was normal. The environmental effect can be 

divided into the general environmental effect, E, which will affect all animals, 

and a specific environmental effect, Es, specific to each animal. 

The model relating phenotype, genotype and environment is 

P=GtEst+E 

The repeatability of measurements is 

OG + Of, 
fe = > 

Op 

such that the repeatability is an upper limit to the heritability. 

Example 

The data set with eight groups, each with three observations per group, from 

Chapter 1, is used to illustrate calculation of the repeatability, assuming that the 

observations were repeat records on each of eight animals. Values in the ANOVA 

table are the same as before, including the expectation of the mean squares. For 

the example only, interpretation of the between-animal, O%, and within-animal 

variance, ow, components is o% + Of. and oF , respectively. The repeatability 

is 0.19, given the values of 1.25 and 5.33 for o% and ow, respectively.
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Half-sib Correlation 

The half-sib correlation coefficient is estimated in the same manner as the 
repeatability, in that the estimated between-sire variance component is divided by 
the sum of the estimated between-sire and within-sire variance components. The 
repeatability and the half-sib correlation are effectively the correlations between 
observations in the same sire-family. 

The covariance between observations on half-sibs is a quarter of the genetic 
variance and the variance of observations on half-sibs 1s the phenotypic variance: 
then the half-sib correlation coefficient can be written as 

  

1 2 1 2 1 2 —O -—O — 2 2 
Oxy _ 4 4 _4A_ gOA ___ 9s OB 
22 2-2 2 3 24g Gt tae 

OxOY jOpop OP =A +(20h +08 | Os t0¢ OB tow 

The covariance between observations on two half-sibs, HS; and HS2, with 

respective dams d1 and d2, is 

cov(HS,, HS, ) = cov (G, + Gal ) + E1,5(G, + Ggo)+ E> | 

cow(G,,G,)= Z var(G) 

where Gg and Gg are the genotypes of the sire and dam, while E; and E92 are the 

environmental effects on each half-sib. No covariance is assumed between the 
sire and dam or between genotype and environment. For completeness, the 
covariance between two full-sibs is 

cov(FS}, FS) = cov|~(G, + Gy) + Ey,5(G, +Gg)+ Ep 7 d 

l cov(G.,G,)+ + cov(Gq,Gq) = + var(G,) += var(Gq) 

Advantage of repeated measurements 

From Chapter 1, the variance of a group mean with n observations per group is 

0% +0%/n, such that the variance of the mean value of n repeated 

measurements per animal will be 
2 2 2 

OG + OF, +OR /n 

or 

reOp+(I=r -)op/n= [re +( re)/nlop or ate lop 

The phenotypic variance of the mean value of n repeated measurements per 
animal is less than the phenotypic variance of the trait. With repeat 
measurements, the influence of the specific environmental effect on the mean
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measurement reduces as the number of observations increases. Therefore, the 

heritability of the mean measurement is greater than the heritability when one 

measurement is taken per animal, as the genetic variance accounts for relatively 
more of the phenotypic variance of the mean measurement. 

Proportional reduction 
in phenotypic variance 

  

  

  

1.07 

0.8- fe = 0.75 

0.6 ~ — fy = 0.50 
0.4- 

—— I, = 0.25 

0.2- fo = 0.10   
  0.0 —~TT 

1 2 3 4 5 6 7 8 9 10 

Number of measurements per animal 

Fig. 3.5. Proportional reduction in the phenotypic variance 
for the mean of n measurements relative to the phenotypic 

variance of one measurement 

The proportional reduction in the phenotypic variance for the mean of 
repeated measurements is illustrated in Fig. 3.5. If the repeatability is high, then 
there is little advantage in increasing the number of observations beyond two, as 
the impact of the specific environmental effect on one measurement is small. 

The importance of repeat measurements is discussed in Chapter 4, as the rate of 
genetic improvement can be increased through the use of repeat measurements.



  

Chapter four 

Identification of Animals of High 
Genetic Merit 

Selection of animals of higher genetic merit than average, to be parents of the 
next generation, is the basis of genetic improvement programmes, as it is 
expected that the offspring of selected parents will have higher genetic merit than 
if the parents had been chosen at random. The mean phenotype of animals in the 
parental generation, denoted by subscript P, can be written as 

Pp = Gp +Ep 
where G and E are the mean genotypic and environmental effects, and similarly 

for the mean offspring phenotype, Po. The amount of genetic improvement, 

Go — Gp, is the difference between the mean offspring phenotype, Po, and the 

mean phenotype of all animals in the parental generation, Pp, since 

Po — Pp =(Go +E) -(Gp + Ep) = Gg — Gp 

assuming the same mean environmental contribution to the parental and 
offspring phenotypes (Fig. 4.1). 

Given that the mean phenotype of the parental generation, Pp, and also the 

mean phenotype of the animals selected to be parents, Ps , are known, and if a 

linear relationship between the phenotypic means 

(Po -Pp) = b(Ps —Pp) 

is assumed, then the mean offspring phenotype can be predicted. The assumption 

of a linear relationship infers a constant rate of change in (Po - Pp) as the value 

of (Py _ Pp) increases. 

The predicted genetic improvement is 

(Go - Gp] = (Po _- Pp = b(Ps —Pp) 

Prediction of genetic improvement requires knowledge of the regression 
coefficient relating genotypes to the measured phenotypes, and of the mean 
phenotypic difference between the animals selected to be parents and all animals 
in the parental generation. The value of the regression coefficient depends on the 

33
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relationship between the offspring of selected parents and the individuals whose 
phenotypic measurements are used to determine which animals in the parental 
generation are selected. The following section examines how information on an 
individual can be used to predict its genetic merit. 

(a) 

Animals selected 

to be parents 

/ 
S 

    
y
u
!
 

(b)    

    
Genetic 

improvement 

      

Fig. 4.1. Distribution of phenotypes (a) in the parental generation 
and (b) of the offspring 

Information on the Animal 

Single measurement per animal 

The true breeding value of an animal is analogous to a population mean, as in 
both cases the value of the parameter is unknown. To extend the analogy, just as 
the population mean can be estimated from the mean of a sample of observations 
from the population, then the true breeding value of an animal can be predicted 

from a limited number of observations on the individual. 

The predicted breeding value, or predicted additive genetic merit, A, of an 
animal can be estimated by regression of the animal's breeding value, A, on its 

phenotype, P (Fig. 4.2).
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Breeding value 

Slope of line = b AP 

  

      Phenotype 
0 P 

Fig. 4.2. Regression of predicted breeding value on phenotype 

With one measurement on the animal, the regression coefficient of additive 
genetic merit on phenotype is the heritability, since 

2 
b — Cap _ 9A _}2 
AP 2 7 

Op Op 
The covariance between additive genetic merit and phenotype is equal to the 
additive genetic variance, assuming that the covariances of additive genetic effect, 
A, with non-additive genetic effects, nonA, and with environment, E, are zero 

cov(A, P) = cov(A,G + E) = cov(A, A + nonA + E) = var(A) 

The predicted breeding value of the animal is 

- 7 _ 
(A - Apop ) = h?(P — Prop) 

where Prop and Apop are the mean phenotype and mean additive genetic merit 

of the population. The value of Apop can be set to zero, without any loss of 

generality. The predicted breeding value, A, of the animal is 

A =h?(P -Ppop } 

Repeated measurements per animal 

When several measurements have been made on the animal, the predicted 
breeding value can be determined from the regression coefficient for additive 

genetic merit on the mean of n measurements, P. Derivation of the regression 
coefficient requires both the covariance between the genotype and the mean of n 
phenotypic measurements and the variance of the mean of n measurements. 

Firstly, the covariance is as follows: 

— n n 

cov(A, P) = cov I > n | -1 > cov(A, P; ) = cov(A, P) 
N j=] nN j=] 

The covariance between the additive genetic merit and the mean of n 

measurements is equivalent to the covariance between the additive genetic merit
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and one measurement, which is the additive genetic variance, O4. The variance 

of the mean of n measurements, discussed in Chapter 1, is 

einai joe 

n 

where fre is the repeatability of the measurement. The regression coefficient for 

genotype on the mean of n measurements is 

b.< =| —__— oA | nh 
AP | 14+(n-D)r [os | 1+(n-1)r 

The predicted genetic merit of an animal with n measurements 1s 

~ nh2 _ 8 
A= ol _- Prop | 

The manner in which the regression coefficient weights the mean of n 
measurements is easier to appreciate if it is assumed that the repeatability is 

equal to the heritability and that the phenotypic mean of the population is zero. 
Then, the predicted genetic merit is 

2 Ae oP -(—} 
1+(n—1)h? n+A 

2 2 

where A = _ = CE 
h O 

The regression coefficient increases as the number of measurements and the 

heritability increase, such that more weight is given to the phenotypic mean 

measurement for prediction of genetic merit. 
Before illustrating the advantage of repeated measurements in genetic 

improvement programmes with an example, the selection differential and 

response to selection need to be defined. 

Selection Differential 

If animals in the parental generation are ranked according to predicted genetic 

merit, and a given proportion of those with highest genetic merit are selected to 

be parents, then the response to selection can be predicted, as the difference in 

predicted genetic merit of the offspring and of the parental generation. As the 

proportion of animals selected to be parents decreases, the mean predicted genetic 

merit of selected animals increases and the genetic improvement also increases. 

The predicted response to selection depends on both the proportion of 

animals selected and the regression coefficient of additive genetic merit on 

phenotype. Assuming that phenotypic measurements are normally distributed and 

that a proportion, p, of animals with extreme phenotypes are selected, then it is 

expected that the minimum phenotype of the selected animals will exceed the 

mean phenotype of the parental generation by x phenotypic standard deviations, 

XO p.



  ~~ Oo TI 
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Proportion 

selected, p 

    rT 
UW w+Xop uUtiop 
<_____> 

Selection differential 

Fig. 4.3. Selection differential 

The expected difference between the mean phenotype of the selected animals, 
[1+ iOp, and the mean phenotype of the parental generation, U1, is the selection 

differential, iop, measured in trait units (Fig. 4.3). The parameters 1 and x are 

termed the standardised selection differential and the truncation point. For a given 
value of p, the values of i and x can be obtained from normal distribution tables 
(see Appendix). 

3.07 

2.577 

    

    

  

   

Standardised 

selection differential, i 
2.07 

1.57 

  
1.07 

0.5- Truncation point, x 

0.0 T T T T T T T l 
  

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Proportion selected, p 

Fig. 4.4. Standardised selection differential and truncation point 

In Chapter 1, some properties of the normal distribution were discussed; in 
particular, that a defined proportion of observations are expected to have values 
between the mean and a specific number of standard deviations from the mean. 
For example, 0.34 of the observations are expected to lie between the mean and 
one standard deviation above the mean. Conversely, 0.16 of the observations are 
expected to have values greater than one standard deviation above the mean, with 
an average value greater than the mean by 1.53 standard deviations (Fig. 4.4). 

Expected values for the selection differential, in standard deviation units, for 

various proportions of selected animals, are given in the Appendix.
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If sires and dams have different selection differentials, ig and ip, respectively, 

then the selection differential of parents is 

i= ls + Ip 

2 

Response to Selection 

The response to selection, R, 1s the difference between the mean phenotypes of 
the progeny and parental generations, which can be predicted given the selection 
differential, SD, and the regression coefficient relating genotype to phenotype. 

When each animal has one measurement, the regression coefficient is the 
heritability and the response to selection is 

R=h’SD = ih’op 
When there are n measurements on each animal, the selection differential is 

measured in terms of Of, rather than in phenotypic standard deviations, since 

the animals are selected on the basis of the mean of n measurements. The 
response to selection is 

2 
R, =b,5SD =| —~-—— lio; =ih2op |————— 
nap | P PV1+(n-JD)r, 

. | l+(n-1 
as the variance of n measurements is =e ls, 

n 

The advantage of repeated measurements is illustrated in terms of the 
response, Rn, relative to the response with one measurement, R, per animal (see 

Fig. 4.5). The relative response depends on the repeatability and the number of 

measurements, but not on the heritability of the trait. 

Relative response, R,,/R 

  

  

aa fo = 0.75 
2.2- oo 
2.07 

1.8 fo = 0.50 
1.67 

1.4 — Ip = 0.25 

12 fe = 0.10 
1.07     

reTST TT TT ST TOT 

1 2 3 4 5 6 7 8 9 10 

Fig. 4.5. Increase in response with repeated measurements per animal 

There is a substantial benefit of having repeated measurements when the 
repeatability is low, but not when the repeatability is high. With six
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measurements per animal and a repeatability of 0.1, the response is doubled, but 
when the repeatability is 0.75, the proportional increase in the response is only 
0.1 (Fig. 4.5). In many situations, it will not be possible to take multiple 
measurements, but even with only two measurements per animal, there are 
substantial increases in the response to selection, irrespective of the repeatability. 

Before discussing the relative advantages and disadvantages of alternative 
selection procedures, in a later section of this chapter, several parameters relating 
to the predicted breeding value will be described. 

Variance of Predicted Breeding Value 

The variance of a predicted breeding value is a measure of the precision with 
which the breeding value is estimated. Calculation of the variance of a predicted 
breeding value uses several properties of the variance, described in Chapter 1: 

var A) = var| AP (P — Prop ) 

= var(b ap?) regarding Prop as a constant and var(X + o) = var(X) 

= b45 var(P) regarding b,5 as aconstant and var(a@X) = a” var(X) 

= baz cov(A, P) since by5 = cov(A, P) / var(P) 

nh* 2 D 2 2-2 
= ——_———-6 as coviA, P}=cov(A,P)=0% =h“o 
1+(n-I)r (A.P)=cov(A.P)=4 =h'op 

Again, it is useful to assume that the repeatability is equal to the heritability, to 
appreciate how changes in the number of measurements and in the heritability 
affect the variance of a predicted breeding value. 

Variance of predicted breeding value 

      

507 

h2 =0.50 
407 

307 

2077 h2 =0.25 

— h- =0.10 

Ooo) TOT) 
1 2 3 4 5 6 7 8 9 10 

Number of measurements per animal 

Fig. 4.6. Change in variance of predicted breeding value with 

repeated number of measurements per animal, assuming that h* = lo
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In Fig. 4.6, a phenotypic variance of 100 has been assumed. As the number of 
measurements per animal increases, the variance of the predicted breeding value 
increases and tends towards the additive genetic variance. The variance of a 

predicted breeding value behaves in the opposite manner to the variance of an 

estimated group mean, which decreases towards the between-group variance as the 

precision of the estimate increases. 
Assuming that the repeatability equals the heritability, the variance of the 

predicted breeding value can be expressed as 
aA Nn 2 

var( A] ry OA   

  

Accuracy of Predicted Breeding Value 

The accuracy of a predicted breeding value is the correlation between the true 
breeding value and the predicted breeding value, and, with the variance of the 
predicted breeding value, is a another measure of the precision with which the 
breeding value has been estimated. Although the true breeding value is not 
known, the additive genetic variance is known, and the covariance between the 

true and predicted breeding values can be quantified. 
The covariance between the true and predicted breeding values is 

cov[A, A = cov(A, b apP) =Dap cov( A, P) 

and since b,5 cov(A, P) is the variance of the predicted breeding value, then the 

correlation between the true and predicted vali) values is 

cov (A, A var(A 
rs. 
AA s[var(A) var( ) var(A var(A “ism 1+ Ts —1)r. 

The square of the correlation alt) the true and predicted breeding values is 
just the regression coefficient with which the breeding value is predicted. If the 
repeatability is equal to the heritability, then as the number of repeated 
measurements increases, the accuracy of the predicted breeding value tends to 

unity. 
It should be noted that the regression of the true breeding value on the 

predicted breeding value is 

  

cov(A, A) var(A} 

var( A} var) 

which is appropriate, since the predicted breeding value predicts the true breeding 

value. 
Rearranging the formula for the square of the accuracy and assuming that the 

repeatability is equal to the heritability, then 

=]  
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r? =— 
AA nta 

2 2 
1—-h oO 

where A = 5 =—= 
h OA 

When the repeatability and heritability are equal, the accuracy of a predicted 
breeding value can be quickly determined. For example, if the heritability and 
repeatability equal 0.25, then the value of A is 3, and the accuracy of the 
predicted breeding value for an animal with 1, 2, 4 or 6 repeated measurements is 
0.50, 0.63, 0.76 and 0.82, respectively. 

The accuracy of the predicted breeding value can also be used to predict the 
response to selection, given the selection differential. The response to selection 
was previously defined as the product of the regression coefficient of additive 
genetic merit on phenotype with the selection differential: 

R, =ih2o — 
" P 1+(n-I)r, 

The regression coefficient is the square of the accuracy of the predicted breeding 
value, so the response can be expressed in terms of the accuracy 

R, =thopr,; from the definition of r AA 

= I AGA 

Given the accuracy of the predicted breeding value and the standardised selection 
differential, the response to selection can be predicted. 

Prediction Error Variance 

The prediction error variance (PEV) is a measure of the variation about the 
predicted breeding value, or is the variation in the mean phenotypic measurement 
of the individual which is not accounted for by the regression of additive genetic 
merit on phenotype. The prediction error variance is 

var(A about A) = (1 — re A var(A) 

2 = var(A)—r, , var(A) 

  

4 3 4 var(A) 
var(A) var since r= (A) 

Derivation of the prediction error variance provides the result that the additive 
genetic variance is the sum of the variance of the predicted breeding value and the 
prediction error variance. As the number of measurements per animal increases, 
the prediction error variance decreases, while the variance of the predicted breeding 
value increases. 

Again, assuming the repeatability and heritability are equal, for purposes of 
illustration, the variance of predicted breeding value complements the prediction 
error variance, as shown:
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Variance of 
Genetic variance predicted breeding value Prediction error variance 

n 2 Xr 2 
2 Oo Oo 

OA n+r7 4 n+r7 4 
  

In Fig. 4.7, the variance of the predicted breeding value and the prediction error 
variance were calculated for a heritability of 0.1 and a phenotypic variance of 
100, assuming that the heritability and repeatability were equal. The 
complementary nature of the two parameters is obvious, with the prediction error 
variance decreasing as the number of measurements per animal increases, and the 
variance of the predicted breeding value tending to the additive genetic variance. 

Although animals are unlikely to ever have 100 measurements, up to 100 
measurements were assumed to illustrate the complementary nature of the 
variance of the predicted breeding value and the prediction error variance. 

Prediction error Variance of predicted 

variance @ breeding value o 

10 

  

  

    0 T T T T r O 

0 20 40 60 80 100 

Fig. 4.7. The relationship between the prediction error 
variance and the variance of the predicted breeding value 

The prediction error variance is also used to derive the confidence interval for the 

predicted breeding value. The limits of the (1-20) confidence interval are 

A+x-+/PEV, where x is the value from the normal distribution, measured in 

standard deviation units, such that a proportion & of observations are greater than 
x, and PEV is the prediction error variance. Values of x corresponding to 

proportions, p, are given in the Appendix. 

Example 
The average weaning weight of Florence's first litter of piglets was 51.5 kg, 
while Emily had eight litters that averaged 46.0 kg. Predict the breeding values, 
the prediction error variance, the accuracy of prediction and the 0.95 confidence 
intervals for Florence and Emily, given that litter weaning weight has a 

heritability of 0.3, a repeatability of 0.4 and a phenotypic variance of 16 ke’,
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and that the population mean 1s 41 kg. Litter weaning weight is considered to be 
a trait of the dam. 

  

  

Florence Emily 

Breeding value A= b45(P— Prop] 3.15 3.16 

Accuracy Ta = Pap 0.55 0.79 

Prediction error _(,;_,2.\,2 i ovonce PEV = (1-12; loa 3.36 1.77 

Confidence interval A +1.96/PEV (—0.44,6.74) (0.55,5.76) 
  

The higher mean litter weight of Florence was compensated by the lower 
number of litters than Emily, as the breeding values of the two sows were the 
same. However, the larger PEV of Florence meant that her breeding value was 
not significantly different from zero. The accuracy of Emily's predicted breeding 
value is higher than for Florence, so which animal should be selected? 

The higher accuracy of Emily's predicted breeding value means a smaller 
confidence interval than for Florence. The probabilities that Emily's and 
Florence's true breeding values are greater than 5.76 are 0.025 and 0.075, as 5.76 
is 1.43 prediction error standard deviations greater than Florence's predicted 
breeding value of 3.15. To the entrepreneur, the probability of 0.075, that 
Florence's true breeding value is greater than the upper confidence interval of 
Emily's true breeding value, may be sufficient to offset the probability of 0.042, 
that Florence's true breeding value is actually less than zero. However, the 
probability that Florence's true breeding value is less than zero is nearly five 
times greater than the probability of Emily's true breeding value being less than 
zero, which may convince the conservative person to select Emily. 

Emily 

   
   

  

Florence 

Prob = 0.042 Prob = 0.075 

Ne x 

Fig. 4.8. Distributions of predicted breeding values for Florence and Emily 

  

  

  

0.00 3.15 5.76



Chapter five 

Information from Relatives 

Information from Sibs 

Measurements on an individual's relatives can contribute information towards the 
individual's predicted breeding value, as measurements on sibs are comparable 
with repeated measurements on the individual, once account has been taken of the 
genetic relationship between the individual and its sibs. Prediction of the 
individual's breeding value from measurements on its n sibs requires the 
regression coefficient of the individual's breeding value on the mean value of its 
sibs' measurements. The variance of the mean of n measurements is 

eed -[teit| 2 

n n 

where t is the repeatability, or the correlation between sibs. If the individual's 
relatives are half-sibs, the progeny of a sire mated to a random group of dams and 

each dam has only one offspring, then t = zh, but if the individual's relatives 

are all full-sibs, then t = = h? +c”, where h* and c? are the heritability and the 

maternal effect, which includes the common environmental effect, respectively. 
Calculation of the regression coefficient requires the covariance between the 
individual's breeding value and the mean of its sibs' measurements. However, the 
covariance depends on which relatives are measured and whether or not the 
individual is measured. Therefore, each case must be considered separately. 

Selection on sib information 

With selection on sib information, the breeding value of the individual is 
predicted from the measurements of its sibs, but the individual is not measured. 
Selection decisions are made on the sib of the animals with measurements, rather 

than on the animals with measurements. Measurements on sibs can be used to 
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provide information on reproductive traits, carcass composition or meat quality, 
which could not be obtained on potential breeding animals. 

In the section on repeated measurements on the individual, in Chapter 4, the 
covariance between genotype and mean of n measurements is equivalent to the 
covariance between genotype and one measurement. Therefore, the covariance 
between an individual's breeding value and its sibs' mean measurement is the 
covariance between an individual's breeding value and one sib's measurement. 

The covariance is ro4, where r is the genetic relationship between the 

individual and its relative, which is a half for full-sibs and a quarter for half-sibs. 
The genetic relationship between two animals is the probability that the 

genotypes of the two animals, for a gene taken at random, are identical by 
descent. The value of the genetic relationship can be simply determined from the 
pedigree, by counting the number of steps in the pedigree that connect the 
individual to the relative via the sire and via the dam. The genetic relationship is 
then one half to the power of the number of sire steps plus a half to the power of 
the number of dam steps. 

For example, with an individual and its half-sib, two steps connect the 
individual to the half-sib via the sire, but no steps connect via the dam, as they 

1 2 

do not have a dam in common, so the genetic relationship is (+) =F) 

Half-sib Full-sib 

Sire Sire Dam 

Individual Sib Individual Sib 

For the individual and a full-sib, two steps connect the individual to the full-sib 
2 2 

e e ° ° e s e l 

via the sire and via the dam, so the genetic relationship is (*) + (+) =>: 

Therefore, the regression coefficient of the individual's breeding value on the 
mean measurement of its n sibs is 

  

b <=. ro+ _ nrh2 

AS Ha 1+(n-I)t 
——— Op 

n 

which has similar form to the regression coefficient for repeated measurements 
on the individual of 

a= 
AP 1+(n-1)r 

with rh? replacing h* to account for the genetic relationship between the 
individual and its sibs and the correlation, t, between the sibs’ measurements 

replacing the repeatability, re, of the individual's measurements. 

With selection on sib information, the predicted breeding value of the 
individual is 

b 

A= bas(S ~ Prop}
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where S is the mean measurement of the n sibs and Prop is the mean phenotype 

of the population. 
When measurements are taken on sibs, then the square of the accuracy of the 

predicted breeding value is obtained from: 
- 5 _ 

2 var(A) _ bag var(S) rm. = = 

AA var(A) var(A) 

where S represents the mean sib measurement, as discussed in Chapter 4. 
Therefore, the square of the accuracy is: 

  

2 nr7h? 
rm. =——— 

AA 14+(n-I)t 

When measurements are taken only on half-sibs, then r = ; and t= zh and the 

square of the accuracy of the predicted breeding value simplifies to 

2 1 oon 
ro. =— 
AA 4n+A 

  

2 

where A = 4 a 
h 

  

Selection on between-family deviations 

With selection on between-family deviations, the predicted breeding value of the 
family is based on the deviation between the mean measurement of all animals in 

the family and the population mean. Therefore, all n family members have the 

same predicted breeding value and the whole family is either selected or not, as 
there is no differentiation between family members. Although all family 
members are allocated the same predicted breeding value, derivation of the 
regression coefficient of breeding value on the mean measurement of the family 
is based on one family member. The covariance between the individual's breeding 
value and mean measurement of the family has to account for the individual 
being included in the mean. The individual's phenotype and breeding value are 
denoted P, and Aj, with the (n—1) phenotypes of the individual's family 

members denoted P;, for i equal to 2,3....n. The covariance between the 

individual's breeding value and mean measurement of the family, F, is 

— on 
cov( Ay, F) = COV An 2F 

1 1 2 
= —cov(A;,P,)+ — ¥ cov(A;, P;) 

n n j=2 
l —1 

=o, + . ro% 
n 

since the covariance between the individual's breeding value and phenotype is the 
additive genetic variance, while the covariance between the individual's breeding 
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value and the phenotype of a family member is the additive genetic variance 
multiplied by the genetic relationship. Therefore, 

cov(A),F) = Oa 

The variance of the mean of n measurements is 

[irr g3 
n 

so the regression coefficient of breeding value on mean family measurement is 

1+(n-1)r |, 2 
b,c =| ————__ h 
AF ae = 

With selection on between-family deviations, the predicted breeding value of each 
family member is 

A =b4z(F—Ppop| 

where F is the mean measurement of the family and Prop is the mean phenotype 

of the population. 

Selection on within-family deviations 

In selection on between-family deviations, all members of a family are selected, 
as there is no discrimination between family members. Conversely, for selection 
on within-family deviations, animals are assessed relative to the family mean, 
such that information on between-family differences is not used in the selection 
decision. Animals are selected solely on the basis of their deviation from their 
family mean, with no account taken of the family group, such that the number 
of animals selected from each family will be variable (Hill et al., 1996). 
Selection on within-family deviations would be used when there are large 
environmental effects specific to each family. Direct comparison of phenotypes 
of animals from different families would include comparison of the between- 
family environmental effects, such that differences in phenotypes would not 
directly reflect differences in additive genetic merit. For example, the phenotypic 
difference between an animal in family 1 and an animal in family 2, assuming 
that the general environment is similar to both animals, is 

P, —P, =(A; +M, +E,)—(Az +My + Ez) =(A; — Az) +(M; - M2) 

where M is the maternal and common environmental effect 

For selection on within-family deviations, an animal's predicted breeding 

value 1s 

A =bap(P-F) 

where P is the animal's phenotype and Fis the mean family measurement, which 
includes the animal's measurement. Derivation of the regression coefficient for 
the animal's breeding value on the deviation between the animal's measurement 
and the family mean requires the covariance between the animal's breeding value 
and the difference between the animal's measurement and the family mean,



a _—_— ——-—_— _ 
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cov(A,P-F), and the variance of the difference between the animal's 

measurement and the family mean, var(P ~ F) , 

As in derivation of the regression coefficient for selection on between-family 
deviations, it is assumed that the individual's phenotype and breeding value are 
P, and A,, with the (n—1) phenotypes of the individual's family members equal 

to P., fori = 2,3....n.. The covariance is 

cov(Ay Pir F) = cov(Ay, P, ) - cov(Ay ; F) 

1 n-1 = of -| +03 + ro 
n n 

= (1 - *\( - 10% 
The variance of the difference between the animal's measurement and the family 
mean 1s 

  

var(P, - F) = var(P, ) + var(F) —2 cov( P| ; F) 

which uses property (5) of the variance, that 

var(cX + dY) = c” var(X) +d? var(Y) + 2cd cov(X, Y) 

The variance of the animal's measurement, var(P,), and of the mean family 

measurement, var(F), have already been determined, so only the covariance 

between the measurements of the animal and the family mean remains: 

— 1 2 
cov(P, ; F) =cov| P,, 7 aR 

rasan, - cov(P;, P -) 
n i=2 

1 >» n-l 

n 
as the covariance between the measurement of the animal and a family member 
is phenotypic variance multiplied by the intra-family correlation, t. 

The variance of the difference between the animal's measurement and the 
family mean Is 

var(P, _ F) = var(P ) + var(F) —2 cov(P; ’ F) 

= oO + +1=tho3 -o| 263 +r higs 
n n n 

= (1 - *\( —t)os 

The regression coefficient for the animal's breeding value on the difference 
between the animal's measurement and the mean family measurement is 

l-r 2 
bap =|—— fh ae = (7) 
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For selection on within-family deviations, the predicted breeding value of the 
individual is 

A= bap(P _- F) 

where F is the mean family measurement of the n family members, including 
the individual. 

Responses to selection on between-family and _ within-family 
deviations 

Responses to selection on between-family and within-family deviations are equal 

to the product of the standardised selection differential, i, the appropriate 
regression coefficient to predict breeding values from measurements, b, and the 
standard deviation, 6, of the actual trait on which selection is based. Direct 
comparison of the two selection methods is difficult, as the trait on which 
selection is practised and the corresponding standard deviations differ. In general, 
the standardised selection differentials will be quite different for selection on 
between-family or within-family deviations, as the maximum family size may be 
lower than the number of families. The selection methods can be compared by 

expressing the responses as multiples of ihop: 

l-r 
r+— 

n 

1-t 
t+— 

Between-family which tends to as n tends to co 

. r 
which tends to Trot as n tends to oo 

—t 

  Within-family (1-r) 

  

Response relative to 
mass selection, ine, 

P 

  

    

1.47 BF: t=0.1 

1.37 

1.27 

14- WF: t =0.8 

10-7 BF: t=0.2 

0.9- WF: t = 0.75 

0.87 

0.77 
1 J t { 

0 5 10 15 20 

Number of full-sibs per family 

Fig. 5.1. Responses to selection on within-family (WF) and between- 
family (BF) deviations, relative to the response with mass selection
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With large numbers of full-sibs, the response to selection on within-family 
deviations, relative to mass selection, increases as the full-sib correlation 

increases, while the response to selection on between-family deviations decreases 
(Fig. 5.1). Assuming the same standardised selection differential and a low value 

for the correlation between full-sibs, then the response to selection on between- 

family deviations will be relatively greater than the response to selection on 

within-family deviations. 

Information from Progeny 

Measurements on an individual's relatives are not just restricted to full-sibs or 

half-sibs, as information from progeny can also be used to predict an individual's 

breeding value. Progeny testing is standard practice in the dairy industry to obtain 

milk quantity and quality information, for prediction of breeding values for bulls. 

Similarly, progeny test information can be used to collect data on reproductive 

performance or on carcass composition. 
Incorporation of progeny test information to predict the animal's breeding 

value is comparable to the use of repeated measurements on the individual, once 

the genetic relationship between the individual and its progeny is accounted for. 

It is straightforward to derive the regression coefficient of the animal's breeding 

value on the mean of its progeny measurements. The variance of the progeny 

mean, P, is just the variance of the mean of n measurements, which is 

var(P) = atl 

where t is the between-progeny correlation. For full-sib progeny, the correlation 

is sh? +c” and for half-sib progeny the correlation is zh’. The covariance 

between the individual and the mean of its progeny measurements is equivalent 

to the covariance between the individual and one of its progeny, which is = OA ; 

as discussed when predicting an animal's breeding value from the mean of its n 

sib measurements. The regression coefficient of predicted breeding value on the 

mean of n half-sib progeny measurements, P, is 
1 2 

  

ba=- ZOA _ rh? 

AP [1+(n-1)t|_» 14+(n-J)t 

n OP 

. | . ' . . . 
since r=, and the animal's predicted breeding value is 

A =b,5(P—Ppop) 
where Ppop is the mean phenotype of the population. 

Rearranging the equation for the regression coefficient gives 
2 

an where A = 4 :   
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As the number of progeny measurements increases, the regression coefficient 
tends to 2, since the genetic merit of the individual's progeny reflect only half the 
genetic merit of the individual. 

The regression coefficient of the individual's breeding value on the mean 
measurement of its n progeny is of the same form as the regression coefficient 
when measurements are available on the individual's sibs 

_ mh? 

AS 1+(n—1)t 
and when repeated measurements are made on the individual itself 

_ nh? 
AP 14 /n_1)r_ 1+(n—1)r, 

with firstly, rh? replacing h? to account for the genetic relationship between 
the individual and its sibs or progeny and, secondly, the intra-class correlation, t, 
between the sibs' or progeny measurements replacing the repeatability, r., of the 

individual's measurements. 

Given progeny information, the square of the accuracy of the individual's 
predicted breeding value is derived from: 

n 5 _ 

2. = var(A) _ Pap var(P) 
AA _ var(A) var(A) 

The square of the accuracy 1s: 

  

2 nr?h? 
rm. =—————_ 
AA 1+(n-I)t 

Since r= - and for half-sib progeny t = ah, then: 

2 
2 n 4—-h 
me = where 1 = 
AA n+A h? 

Note that the accuracy of predicting the individual's breeding value with half-sib 
measurements is half the accuracy with measurements on half-sib progeny, since 
half-sib measurements predict the breeding value of the individual's sire. 

    

Response with selection on progeny information 

The equation for the response to selection given progeny information is 

n 

1+(n—-1)t 

which is similar to the response with repeated measurements on the individual 

1 e 2 

= —ih 
2 OP 

nr 
1+(n—-1)r, 

with the repeatability replaced by the intra-class correlation between progeny and 
account taken of the genetic relationship between the individual and its progeny. 

R=ih’op
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Information from Parents 

An animal's breeding value can also be estimated from the predicted breeding 

values of its parents, as 
A 1 A A 

A=—(Ag +Ap} 

where Ag and Ap are the sire's and dam's predicted breeding values, 

respectively. The response to selection using the average parental predicted 

breeding value is 
R= b4SD; 

where SD A is the selection differential for average parental predicted breeding 

values. Calculation of the regression coefficient of predicted breeding value on 
average parental predicted breeding value requires the covariance between breeding 

value with average parental predicted breeding value, cov(A, A) and the variance 

of average parental predicted breeding values, var( A), 

The covariance 1s 

cov(A A = cov] (A +A ) 5(A +A ) ’ 2 S D)}> 4 S D 

= {cov As, As] + cov(Ap, Ap) 

Assuming the sire and dam breeding values are uncorrelated, the the covariance is 

2 _1f.2, 2] 2 : _ var( A) 
=5(r +1504 since TAA = var(A) 

Similarly, the variance of the average of the parental predicted breeding values is 

  , from Chapter 4 

var(A) = var{+ (As +Ap)) 

= {12 +13]03 
The regression coefficient of predicted breeding value on average parental 
predicted breeding value is unity, so the response to selection is just the selection 

differential for average parental predicted breeding values 

bgoD; = i0 5 =< (02 +15)o, == (3 +15 )hop 

As the accuracy of the parental predicted breeding values increases, then the 
response to selection on average parental predicted breeding value increases. 

The accuracy of the animal's breeding value estimated from the predicted 

. . . | ' 
breeding values of its parents is satd + tp). If the accuracy of each parent's 

predicted breeding value was unity, then the accuracy of the animal's predicted
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breeding value would be iB , which is the same as if the breeding value had been 

predicted from a very large number of full-sibs. The upper limit of the accuracy 

is constrained to ft , due to the effect of Mendelian sampling, as the animal's 

two alleles at a particular locus are not equal to both alleles of either parent. 

Example 
An animal's sire has 50 progeny test records and the dam has two repeated 
measurements. If the heritability of the trait is 0.25, then what is the accuracy of 
the animal's predicted breeding value, assuming that the heritability and 
repeatability are equal? 

The accuracies of the sire's and dam's predicted breeding values are 

  

The accuracy of the animal's predicted breeding value is > (rg + rp) = 0.54. 

Predicting breeding values with measurements on the animal, 
sibs and progeny 

There are several similarities between predicting an animal's breeding value from 

repeated measurements on itself compared to measurements on its sibs and 
progeny. For example, the regression coefficients for breeding value prediction 
have a similar structure, with the correlation between sibs or progeny replaced by 

the repeatability and inclusion of the genetic relationship between the animal and 
its sibs or progeny. The square of the accuracy of the predicted breeding value is 
the regression coefficient multiplied by the genetic relationship between the 
animal and its sibs or progeny. If the repeatability is equal to the heritability and 
there is no maternal or common environmental effect, then as the number of 
measurements on the individual or the number of half-sib progeny increase, the 
accuracy tends to unity, but with measurements on full-sibs, the accuracy tends 

to ft or 0.71 (see Table 5.1). The difference in the upper limits of the 

accuracies between the mean full-sib and mean progeny measurements is due to 
Mendelian sampling of alleles. Mendelian sampling can be thought of as the 
random process of allocating parental alleles to progeny. For example, if the 
sire's and dam's genotypes at a particular locus are AB and CD, then the four 
possible progeny genotypes are AC, AD, BC and BD. If one offspring has 
genotype AD, then some of its full-sibs may have a completely different 
genotype, BC, or only have half the alleles in common, AC or BD. 
Measurements on full-sibs are not necessarily the most reliable indication of the 
animal's genotype. However, all of the sire's progeny have one of his alleles,
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such that the mean progeny measurement is a more reliable predictor of the sire's 
genotype than the mean of the sire's full-sibs. 

Table 5.1. Formula for the regression coefficient of predicted breeding value on 

mean phenotypic measurement and the accuracy of selection 

  

  

  

      

Measurements 
Repeated § Measurements on half-sib 

measurements __ on full-sibs progeny 

1 42 
—nh 

Regression coefficient, b nh znh” — egression coefficient, Oe) 4 
1+(n-1)r, 1+(n—1)t 1+(n—-)7h 

Lb Lb 
(Accuracy of selection) b 2 2 

l 

If repeatability = heritability n 72 n 
and maternal effect = 0, , 1—-h2 2 —h2 4—h2 

then (accuracy of selection) n+ ~ n+ h2 n+ h2 

  

Responses with Measurements on the Animal, Sibs and 
Progeny 

The response to selection was defined as the regression coefficient of breeding 
value on measurements, b, multiplied by the selection differential, SD. The 
regression coefficient is a multiple of the square of the accuracy of the predicted 
breeding value, so the response can be expressed in terms of the accuracy. 

For example, with sib selection, the response is as follows: 

response =b,g5 (S - Prop} 

oO _ 

= —As. 105 since the selection differential = id; 

OS 
_ oO AS ae 

=1 OA multiplying above and below by O, 
Oo AOS 

=1r A AO A 

The response to selection can be defined as the product of the standardised 
selection differential, i, the accuracy of the predicted breeding value, r AA? and the 

additive genetic standard deviation, 0,, of the trait to be improved. The same 

procedure can be used for selection on progeny measurements or with repeated 
measurements on the individual, but in each case the response to selection is 

always equal to ir, ;O,. 
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Alternative selection procedures can be easily evaluated using the three 

parameters, 1, and Oa. If the proportion of selected animals is the same in TAA 
each selection procedure, then alternative selection procedures can be evaluated 
solely on the basis of the accuracy of predicted breeding value. It is for this 

reason that Chapter 4 dealt with the variance of the predicted breeding value and 
prediction error variance, for estimation of the accuracy of the predicted breeding 
value. 

For example, the responses to selection based on repeated measurements of 
potential sires, or measurements on progeny or measurements on full-sibs or on 
half-sibs were compared, given a phenotypic variance of 100, a heritability of 
0.25 and standardised selection differential of one. For purposes of illustration, it 
has been assumed that the repeatability equals the heritability, and that there are 
no maternal or common environmental effects. Selected sires were mated to a 
random group of females, such that the selection differential on dams was zero 
and the overall standardised standard deviation was 0.5. Responses for the four 
Selection procedures are illustrated in Fig. 5.2. The large range in the number of 
possible measurements was used to illustrate the response limit in each selection 
procedure. Obviously, in practical situations, it is unlikely that one animal will 
have more than five measurements or that the number of full-sibs, such as for 
pigs, will be greater than 15. 

  
  

           
  

    

  
      

Response . Accuracy . 
05-7 Individual 107 Individual 

20- Progeny 0.8- Progeny 

1.57 Full-sibs 0.674 Full-sibs 

I 

1.07 Half-sibs 0.4— Half-sibs 

0.57 0.27 

0.0 T T I | 0.0 T T l T 7 

0 20 40 60 80 100 0 20 40 60 £80 £=100 
Number of measurements Number of measurements 

Fig. 5.2. Response and accuracy of selection for different numbers of 
measurements on the individual, and number of progeny, full- and half-sibs 

(assuming that re = h? and c? = 0) 

As the number of measurements increases, the responses increase to an upper 
limit of 2.50, with selection on measurements on the animal or on progeny, but 

to limits of 1.77 (- 2.5/2) and 1.25 (= 2.5/4) with selection on full-sib 

and half-sib measurements, respectively. Similarly, as the number of 
measurements increases, the accuracy or breeding value prediction tends to one
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for repeated or progeny measurements, but to 0.71 (- {E) and 0.5 for 

measurements on full-sibs and half-sibs, respectively. The graph of the accuracy 

of the predicted breeding value has exactly the same form as the responses graph 

(Fig. 5.2), as expected. The two graphs are shown to reinforce the point that 

R=i1r A AG A 

The advantage of measurements on progeny is demonstrated, as the number 

of measurements on the individual or the number of full-sibs will not generally 

be greater than the number of progeny. 

However, accuracies with more realistic parameters for the repeatability, 0.4, 

common environmental effect, 0.1 3, the number of repeated measurements on 

the animal and the number of full-sibs are given in Fig. 5.3. The range of 

accuracies for the predicted breeding value of the individual with repeated 

measurements is similar to the range of accuracies with measurements on 

progeny and similarly with measurements on full-sibs and half-sibs. As the 

accuracy is a reflection of the response, then it is clearly important that unbiased 

estimates of the genetic and phenotypic parameters are required for appropriate 

evaluation of alternative selection strategies. 

Accuracy 

0.877 Individual 

0.67 fo Progeny 

0.47 L. 

Half-sibs 

    0.27] Full-sibs 

0.0--TTTTT T T ] 

12345 10 15 20 

Number of measurements or animals 

Fig. 5.3. Accuracy of selection for different numbers of measurements 

on the individual, and number of progeny, full- and half-sibs 

(assuming that re = 0.4 and c? = 0.1 op) 

If a particular response is required, then the required number of measured 

progeny can be determined from the corresponding accuracy. For example, if the 

required improvement in carcass lean content is 40 g/kg, which has a heritability 

of 0.4 and a phenotypic standard deviation of 60 g/kg, and the selection 

proportions in boars and gilts are 0.10 and 0.20, then how many progeny with 

carcass information are required, per animal in the parental generation?
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Firstly, the standardised selection differentials of boars and gilts are 1.755 
and 1.400, such that the average standardised selection differential is 1.578 and 

the genetic standard deviation is 38 g/kg (= V0.4 x 60 g/ kg). 

Secondly, the required accuracy is 0.67 (= response /i0 a) and the number of 

progeny is seven, equal to 

r? 2 AA |4-—-h . 

j-r?. h? AA 
For each of the animals being considered for selection, seven progeny with 

carcass composition information are required to achieve the desired response. 

 



Chapter six 

Selection Index Methodology 

Several methods for predicting an animal's breeding value, given measurements 
on one trait on either the individual, sibs or progeny, have been described. In this 
chapter, methods developed in Chapters 4 and 5 will be extended to prediction of 
breeding values by combining measurements on the individual and its relatives 
for one trait or by combining measurements of several traits on the individual. 

If the traits in the selection objective are the same traits as in the selection 

criterion, then one option may be to select on each trait in a sequential manner. 
Such selection is called "selection with independent culling levels", in that all 
animals with values for trait Y; greater than a threshold are selected for the 

second stage of selection, when those animals with trait Y2 greater than a 

threshold are selected for the third stage, and so on. However, selection with 

independent culling levels is less efficient than using a selection criterion which 
combines measurements on all traits to predict genetic merit for the selection 
objective, using information on the genetic and phenotypic covariances. If the 
selection objective and selection criterion do not consist of the same traits, then 

selection with independent culling levels is not feasible. 
Hazel (1943) developed a method of combining information from several 

sources, be it the same trait from different types of relatives or different traits 

measured on the animal, to predict the animal's genetic merit. The method for 
establishing a selection criterion for a given selection objective is referred to as 

selection index methodology. 

Selection Objective and Selection Criterion 

Selection objective 

Assume that there are several traits which have to be improved, denoted by Yj, 

Y, .., Yn, and that the traits have economic values of aj, a2, ..., an, 

respectively. 

58
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The economic value of a trait represents the additional economic return per 
marginal unit improvement in the trait. For example, the economic value of 
carcass lean content may be two economic units, assuming no change in food 
intake or growth rate. 

Since the economic objective is to improve all traits, then the traits and 
their economic values are combined into a selection objective, where 

selection objective = aj Y}] +a2Y2+...+anYn 

The selection objective can be expressed in matrix notation as a'Y and is denoted 
by H. 

For example, if growth rate and carcass lean content are to be improved and 
have economic values of 5 and 2, respectively, then the selection objective is 

5 X growth rate + 2 x carcass lean content. 

Selection criterion 

The traits which are measured to predict the animal's breeding value are denoted 
X], X2, ---»> Xm, The measured traits are combined into an index on which the 

animals are selected. The selection index or selection criterion is as follows: 

selection criterion = bj X) + bo9X9 +... + bmXm 

The selection criterion can be expressed in matrix notation as b'X and is denoted 
by I (for index). 

For example, if growth rate and ultrasonic backfat depth are the traits 
measured, then animals are selected on the basis of 

b; X growth rate + b2 x ultrasonic backfat depth. 

Traits in the selection criterion need not necessarily be the same traits as in the 
selection objective. For example, in one breeding programme, growth rate and 
carcass lean content are the traits to be improved, while growth rate and 
ultrasonic backfat depth are the traits measured for selection purposes. Similarly, 
the number of traits in the selection objective need not be the same as the 
number of traits in the selection criterion. In a second breeding programme, litter 
weight at weaning is to be improved, and the selection criterion consists of litter 
size and weight at birth. 

The selection index method determines the selection criterion coefficients 
that maximise the response in the selection objective, H, with selection on the 
selection criterion, I. As several traits can be included in both the selection 
objective and the selection criterion, then information on the variances of the 
traits and on the relationships between the traits at the phenotypic and genetic 
levels is required. The information is in the form of three matrices: 

P : the phenotypic variance—covariance matrix of traits in the selection 
criterion 

G : the genetic covariance matrix between traits in the selection objective and 
the traits in the selection criterion 

C : the genetic variance—-covariance matrix of traits in the selection objective
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Information on the necessary matrix algebra required for selection index 
methodology is included in the Appendix. 

For example, if the selection objective is improvement in growth rate and 
carcass lean content, while the selection criterion consists of growth rate and 

ultrasonic backfat depth (bfat), then 

p= varp(growth) — covp(growth, on 

cov p(growth, bfat) varp (bfat) 

or 

2 
P= O growth pO growth Obfat 

~~ 2 
TpO growth® bfat Obfat 

var, (growth) cov a (growth, lean) 

cov ,(bfat, growth) cov, (bfat, lean) 

or 

2 2 
_ h growth®© growth tah growth AjeanS growth© lean 

TA Npfat h growth© bfat Oo growth rah bfat jean Obfat Olean 

C var, (growth) cov a (growth, lean) 

cov , (growth, lean) var , (lean) 

or 

2 2 
C= h growth 0 growth TA h growth h lean9 growth lean 

~ 2 2 
TA h growth h lean9 growth© lean h lean© lean 

where varp and covp are phenotypic variances and covariances, vara and cova are 

additive genetic variances and covariances, rp and ra are the phenotypic and 

genetic correlations between traits and o” is the phenotypic variance for a trait. 

The P and C matrices are always symmetric. The G matrix will not 

generally be a symmetric matrix, as the number of traits measured will not 

always equal the number of traits to be improved and, secondly, the traits in the 

selection objective will not necessarily be the same traits as in the selection 

criterion. 

Selection Criterion Coefficients 

Derivation of the selection criterion coefficients for predicting genetic merit is 

more straightforward with matrix notation than it was in Chapter 4. 

The variance of the selection criterion or the predicted genetic merit is 

var(I) = var(b' X) = b’ var(X)b = b' Pb
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Similarly, the variance of the selection objective is 

var(H) = var(a’ Y) =a' var(Y)a =a' Ca 

and, lastly, the covariance between the selection objective, H, and the selection 
criterion, I, is 

cov(b' X,a' Y) = b' cov(X, Y)a = b' Ga 

Given the P and G matrices and the economic values, a, of traits in the selection 
objective, the selection criterion coefficients can be defined as the coefficients 
that minimise the squared difference between the selection objective and the 
predicted genetic merit. The squared difference is 

(H-I)* =(a' Y-b' xX) 
= a' var(Y )a — 2b’ cov(X, Y)a+ b' var(X)b 

= a' Ca -—2b' Ga+b' Pb 

Differentiation of the squared difference with respect to the selection criterion 
coefficients, b, gives 

2 

oH = 1)" = 2Pb—2Ga 
db 

which, when equated to zero, results in 

b=P'Ga 

Two other derivations of the selection criterion coefficients are provided for 
completeness. The important point is that the selection criterion coefficients 
satisfy: 

Pb = Ga 

The selection criterion coefficients can also be defined as those which maximise 
the response in the selection objective. The response per standardised selection 
differential is 

OTH _ b' Ga 
by1O; =— = 
To, Vb Pb 

Differentiation of the standardised response with respect to b, to identify the 
value of b that maximises the response, results in 

Ob vb' Pb Vb! Pb 

I 
= Ga - SIH pp 

O7 

    

Oo 

— I — = 5, (Oa Pb]
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; Oo : . : . 
by setting — = by] to unity, so that the mean predicted breeding value is 

I 
equal to the mean breeding value. Equating the partial differential to zero gives 
Pb = Ga. Therefore, the selection criterion coefficients are 

b=P7'Ga 

A third derivation defines the selection criterion coefficients as those that 
maximise the correlation, or the accuracy between the selection criterion and the 
selection objective. However, as 1,70 = by), 0] and the standard deviation of 

the selection objective, Oy, is constant, then maximising the correlation is 

equivalent to maximising the response to selection per standardised selection 

differential, 0], since by equals unity. 

The predicted genetic merit for the selection objective, H, is b'X, and it is on 

the basis of the predicted genetic merit that animals are selected. In Chapter 4, 

the regression coefficient for the predicted breeding value on phenotypic 
cov(A, P) 

var(P) 

included in the selection objective and in the selection criterion, then the 

measurement of an animal was . Similarly, when several traits are 

regression coefficient in the selection index method is P-'Ga, where G equals 
cov(H,I), which is analogous to cov(A,P), and P equals var(I), which is 

analogous to var(P). 
In Chapter 4, with selection on one trait, the regression of true breeding 

value on predicted breeding value was equal to one, such that an increase in the 
predicted breeding value corresponded to the same increase in true breeding value. 
With selection on several traits, using a selection criterion, the regression of H 

nL of cov(I,H) b Ga 

var(I) _b' Pb 
  , ls equal to unity, as expected. 

In the remainder of this chapter, several parameters relating to genetic 
improvement of the selection objective with selection on the selection criterion 
are derived, to enable a series of different cases to be discussed, without having to 
derive further equations. The derivations of all equations regarding the selection 
index method are contained in a single chapter, rather than being spread 

throughout the text. 

Responses to Selection 

Selection for overall genetic merit in the selection objective, which consists of 
several traits, Y;, Y2, .... Yn, implies that the response in the overall selection 

objective will be the sum of the individual responses in each trait. The correlated 
response in trait Yj, denoted by CRj, to selection on the selection criterion is 

derived in the same manner as 1n Chapter 4:
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CR; = bi SD; 

where bjyis the regression coefficient of trait Yj on the selection criterion, I, and 

SD] is the selection differential in the selection criterion 

cov Yj, 1) 

var(I) 

where i is the standardised selection differential in the selection criterion, I. 

The variance of the selection criterion has already been determined, as b'Pb. 
The covariance between the trait Yj in the selection objective and the selection 

criterion 1s derived as 

CR; =i 

m 

cov( Y;,1) = COV Yj; ZK 

- Xbxcov(¥ Xx) 

= b,j; + b20j9 +... + bm Ojm 

where Ojm is the genetic covariance between Yj and Xm 

= biG; where G; 1s the jt column of the matrix G 

The correlated response for a trait Yj in the selection objective to selection on 

the selection criterion, I, is 

b'G; 
vb’ Pb 

The correlated responses of traits, which are not included in the selection 
objective, can be calculated in a similar manner as for traits in the selection 
objective, by using the appropriate genetic covariances with the traits in the 

selection criterion. 
The economic value of the response in the selection objective is the product 

of the responses for each trait in the selection objective multiplied by the 
corresponding economic values, CRa, where CR is the vector of correlated 
responses. The economic value of the response per standardised selection 

differential is 

  CR; = 1 

CRa_ bGa 

1] b' Pb 
    

The above equation is valid with any selection criterion coefficients, but if 
the selection criterion coefficients satisfy 

Pb = Ga 

then the economic value of the response per standardised selection differential is 

CRa_ b'Ga 
i,  ~vb'Pb 

=~b' Pb    
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which is the standard deviation of the selection criterion. 

The accuracy of predicted genetic merit for any selection criterion 1s 

_ cov(I, H) 

mI var(I) var(H) 

b' Ga 

f(b’ Pb)(a’ Ca) 

If the selection criterion coefficients satisfy Pb = Ga, then the accuracy is 

re Ib Ga 

a’ Ca 

If a selection criterion, combining several traits, is used to identify animals of 
high genetic merit, then the between-animal variation in the selection criterion 
value will depend on the variance of the selection criterion. In certain situations, 

it would be useful if the intended variation for values of the selection criterion 
was fixed. For example, if the intended standard deviation for values of the 
selection criterion was 25, then it would be expected that the proportion of 
animals with a selection criterion value between -50 and 50 would be 0.95. 
Further, if the mean selection criterion value was set at 50, then the 
corresponding range of selection criterion values would be 0 to 100. Such a 
scaling of the selection criterion may be useful in commercial circumstances. 

Scaling a selection criterion does not change the ranking of animals, such 

that the same animals are selected on both the unscaled and the scaled selection 
criteria. Both the accuracy of the scaled selection criterion and the predicted 
responses to selection using the scaled selection criterion are exactly the same as 

for the unscaled selection criterion. 

  

  

  

Scaled selection criterion 

If the intended variance of the scaled selection criterion is 7, then the 
selection criterion coefficients of the scaled selection criterion are equal to 

2 

\ b' Pb 

since a2 = b' Pb. 

If the scaled selection criterion is denoted by I, then the accuracy of scaled 

selection criterion 1s 

cov(I, H) 

AI var(i} var(H) 

b'Ga 

“/ o.7a' Ca 

r=  
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_ Ib Ga 

a'Ca 

which is equal to the accuracy of the unscaled selection criterion. 
The predicted response with selection on the scaled selection criterion is 

  

  

    

  

CRa_ bGa 

ij Vb Pb 
_ bGa 

b' Pb 

which is the predicted response with the unscaled selection criterion. 

Contribution of Traits in the Selection Objective 

One method of assessing the contribution of a trait in the selection objective to 
the overall genetic merit is to determine the correlation between the trait and the 
selection criterion. If the correlation is low, then the response in the trait will be 
low, and will not contribute substantially to the response in overall genetic 
merit. If there are several traits to be considered for inclusion in the selection 
objective, then the selection objective should contain only the traits which will 
respond significantly to selection on the selection criterion. If too many traits are 
included in the selection objective, then this will be analogous to "trying to go 

in several directions at once, but going nowhere fast”. 
The correlation between a trait Yj in the selection objective with the 

selection criterion, I, provides a method of identifying traits for inclusion in the 
selection objective and is 

b'G; 
ry, (j) = ———— 
vi) b Pb C; 

where Cjj is the jth diagonal element of the C matrix, corresponding to the 

genetic variance of trait Yj. 

Contribution of Traits in the Selection Criterion 

Similar to determining the contribution of a trait in the selection objective to the 
overall genetic merit, it is useful to determine the contribution of a trait in the 
selection criterion to the response in the selection objective. If a trait in the 
selection criterion does not significantly contribute information regarding traits 
in the selection objective, then there is little point of including the trait in the 
selection criterion, particularly if the trait is expensive or difficult to measure. 

The contribution of a trait in the selection criterion to the response in the 
selection objective can be measured as the proportional reduction of the response 
in the selection objective, if the trait was excluded from the selection criterion. 
As discussed in Chapter 4, the accuracy of the predicted breeding value is
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proportional to the response to selection. Therefore, the contribution of a trait in 
the selection criterion to the selection objective is actually measured as the 
proportional reduction to the accuracy of the selection criterion if the trait was 
excluded from the selection criterion. The contribution of a trait in the selection 
criterion to the selection objective is 

* 

ITH —|-— 

NIH 

  

where rq is the accuracy of the selection criterion with the trait Xj omitted 

from the selection criterion and P; is the jth diagonal element of the inverse of 

the P matrix (Cunningham, 1972). 

Setting up the P, G and C matrices 

Only the above formulae regarding the selection criterion coefficients, the 

accuracy of the selection criterion, the correlated responses to selection and the 
contribution of traits in the selection objective and in the selection criterion are 
required. The only difference between one selection procedure and another is in 
the elements of the P, G and C matrices. Calculation of the elements of the three 
matrices uses the equations derived in Chapters 4 and 5: 

  

      
  

Traits Traits 

measured to improve 

P G 
Traits m 

measured m 

m n 

Traits - C 
to improve n       

Fig. 6.1. Dimensions of P, G and C matrices 

When determining the P, G and C matrices, i.e. "filling in the boxes", then the 
derivation of selection criteria and evaluation of selection procedures is 
straightforward (see Fig. 6.1). There are m traits measured and included in the 
selection criterion, so that P is a m X m matrix of phenotypic variances and 
covariances for the m traits in the selection criterion. Similarly, C is an Xn 

matrix of the genetic variances and covariances for the n traits included in the 
selection objective. Lastly, G is the m X n matrix of genetic covariances 
between the m traits in the selection criterion and the n traits in the selection 

objective.
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The selection index methodology has been outlined in this chapter and there 
are examples of the use of the methodology in subsequent chapters. 

As noted previously, information on the necessary matrix algebra required 
for selection index methodology is included in the Appendix. However, there are 
several computer packages which can be used for deriving selection criterion 
coefficients and the associated parameters, such as the accuracy of the selection 
criterion and the correlated responses to selection.



Chapter seven 

Examples of Selection Objectives and 
Criteria 

Now that formulae regarding the selection objective and criteria have been 

developed, examples of selection for several traits, using the selection index 
methodology, are presented. The first example is to simply equate the selection 
index formulae of Chapter 6 with those in Chapter 4, for selection on one trait. 

Single measurement on an animal 

From Chapter 4, an animal's breeding value can be predicted as 

A =h*(P—Ppop) 

with an accuracy equal to h, where h* is the heritability, P is the phenotypic 

measurement and Ppp, is the mean phenotype of the population. The response 

to selection is 

R=ih’op 
where iOp is the selection differential. 

In matrix notation, the P matrix equals of and the G and C matrices both 

equal o4. The economic value of the trait is arbitrarily set to one. 

The selection criterion coefficients are 

b=P'Ga= (03) 0% =h? 

and the accuracy of predicted genetic merit is 

fb Pb {h203h? 
iW =.J/— = —— =vh° =h 

a' Ca o% 

with a response to selection of 
o% _bG _, hon 9 

Vb Pb ' fh203h2 hz 

CR = 

68
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The simple example illustrates how the selection index method can be used to 
determine the selection criterion coefficients, the accuracy of predicted genetic 
merit and the response to selection. Discussion on evaluating the contribution of 
traits in the selection objective and traits in the selection criterion requires more 
complex examples. 

Measurements on an Individual and the Mean of its Sibs 

The response to selection and the accuracy of predicted genetic merit for 
performance tested animals may be increased by incorporating measurements on 
an animal's sibs into the selection criterion. If X, is the animal's own 

performance test record and X2 is the mean performance test record of its sibs, 
with the animal excluded, then the selection objective is X1, as it is the animal's 

genetic merit which is to be predicted, and the selection criterion consists of X 

and X9. 

It is arbitrary if the selection criterion consists of the individual and the 

mean of its sibs, with the individual included or excluded, or the individual's 
deviation from the family mean plus the family mean, as in each case the same 
total amount of information is used to predict the individual's breeding value. As 
illustrated in Question 16, at the end of the text, if one selection criterion is 

b,ind + b5S, with the individual included in the sib mean, S, and a second 

selection criterion 1s b3(ind —S)+b,S, then the information used in the two 

criteria is the same, since b3(ind - S) +b,S = b3ind + (by - b3)S. 

The P matrix is a 2 X 2 matrix of the variances of X; and X97 and the 

covariance between X 1 and X39, such that 

2 2 2 Oo to l t Ox, Ox,x P F 
P= ! 2 7 {=} 2 (1+(n-It) 2 f=}, 1+@-)t lop 

Sx.x, Ox, | |p | ———— [Sp n 

The G matrix is a 2 X 1 matrix, as there are two traits in the selection 

criterion, X] and X2, but only one trait in the selection objective, X1, such that 

G genetic var(X;) o% h2 2 
= = = oO 

genetic cov(X,X>) ro4 rh2 P 

For the P and G matrices, the covariance between an animal and the mean of its 

sibs is equal to the covariance between the animal and one of its sibs, tos and 

104, respectively. 

Finally, the C matrix is [genetic var(X,)]=[04]=[h? |op.
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Example 

The food intake of pigs performance tested from 45 kg to 85 kg is to be reduced: 
this has a heritability of 0.2, a full-sib correlation of 0.25 and a phenotypic 

variance of 100 kg2. Full-sib groups of six pigs are tested. Breeding values for 
each full-sib are required. 

The above equations are used to determine the breeding value of each animal, 
calculated from the selection criterion consisting of the animal's food intake and 
the mean food intake of its five full-sibs. The P, G and C matrices are 

100 25 20 
, and [20] 

25 40 10 

respectively, with a vector of economic weights, a, equal to minus one, since 
food intake is to be reduced. The selection criterion coefficients are 

4 _1 [40 -25]720] [-0.163 
b=P Ga=— = 

3375|-25 100] 10 —0.148 

The breeding value of an animal is predicted from 

A = -0.163(P — Ppop ) - 0.148(S — Ppog | 

where P is the food intake of the animal, S is the mean food intake of the 

animal's full-sibs and Ppop is the population mean food intake. 

The variance of the selection criterion is 

100 ‘olo 163 
b' Pb = [0.163 0.148] 40 10.148 |=474 

The accuracy of predicted genetic merit is 

NH = p Pb = 4.741 = 0.487 

a’ Ca y 20 

The correlated response in the animal's food intake 

= j b’ G; 

' /b' Pb 
20 

where G, = | and iy is the standardised selection differential of the selection 

  

CRx, = -2.177i, 

criterion. If an animal is selected on the basis of the selection criterion, then food 

intake is expected to reduce by 2.2 kg per standardised selection differential. 
Although the mean food intake of the full-sibs is not included in the 

selection objective, the correlated response in mean food intake of the full-sibs 
can be determined, which requires the genetic covariance between mean food 
intake of the full-sibs with traits in the selection criterion. The genetic 
covariance between X, and X> is already known, and the genetic variance of the 

mean food intake for the full-sibs is
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10 
With G» = ; | the correlated response in mean food intake of the full-sibs is 

  

  0 G2 1.564 iy 16 Pb 
The mean food intake of the full-sibs also decreases, but to a lesser extent 

than the animal's food intake, when the response in full-sibs is treated as a 

correlated response to selection. Information from the full-sib mean is not a 
direct reflection of an animal's genetic merit, due to Mendelian sampling, such 
that the expected response of the animal is not totally reflected by the correlated 
response of the full-sib mean. 

As it 1S expensive to measure food intake, it is sensible to determine the 
relative contribution to the selection criterion made by food intake of the animal 
and by the full-sib mean, using the formula 

b2 

b' Pb P; 

The diagonal elements of the inverse of P are 0.012 and 0.030, such that the 
relative contributions to the selection criterion by the animal and the full-sib 
mean are 0.27 and 0.08, respectively. If the selection criterion did not include the 
animal's food intake, then the accuracy of predicted genetic merit and the expected 
response to selection would be proportionately reduced by 0.27, but the 
proportional reduction would only be 0.08 if the mean food intake of full-sibs 
was not included in the selection criterion. 

The contribution of a trait to the selection criterion can also be determined 
by directly comparing the accuracies of predicted genetic merit when the selection 
criteria includes or excludes the trait. For example, if selection was on the basis 
of the animal's own food intake, then the accuracy of the predicted breeding value 
would be the square root of the heritability, equal to 0.447. When mean food 
intake of full-sibs was excluded from the selection criterion, the proportional 
reduction in accuracy would be 

\ 0.447 

0.487 

If all animals eligible for selection were performance tested and had food 
intake records, then there would be no extra cost incurred by including the food 
intake of full-sibs in the selection criterion. The response in food intake would 
be proportionally greater by 0.08 when the mean food intake of full-sibs was 
included in the prediction of an animal's breeding value. Given that the food 
intake information on full-sibs was available, anyway, then it would be 
inefficient to ignore the information when predicting breeding values. 

The selection criterion consisted of the food intake of the animal and the 
mean of its full-sibs. Information on the mean food intake of the animal's half- 

CRx, = 1 

= 0.08.
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sibs could be used to increase the accuracy of the predicted genetic merit. 

Similarly, information from parents and second-degree relatives could be included 

in the selection criterion, assuming that there were no substantial differences in 

the environments in which animals belonging to the parental and progeny 

generations were tested. Calculation of the selection criterion and related 

parameters would be similar to the example, except that the P and G matrices 

would be extended to accommodate the additional variances and covariances. 

Measurement of Two Traits on the Individual 

Inclusion of several traits measured on the individual into the selection objective 

and selection criterion is similar to incorporation of information from relatives 

into the selection criterion to predict the genetic merit of the individual for one 

trait. With two traits, X; and X9, in the selection objective and criterion, the P 

and G matrices are 

2 2-2 
Ox, POX,Ox, | og hy Ox, rahyh ox Ox, 

2 22 
[pO x, Ox, OX, ra hyha6x Ox, h0x, 

where OX, and o%, are the phenotypic variances of traits X, and X92. 

The C matrix is equal to the G matrix, as the traits in the selection objective 

. . oo. . . | at 
are the same as those in the selection criterion. The a matrix 1s | 

a2 

Example 

The number of eggs laid and the egg weight have economic values of 3 per egg 

and 60 per gram, with both traits to be improved in a breeding programme. The 

genetic and phenotypic parameters are as follows: 

  

  

Trait xX] X72 Op Presentation 

Number of eggs 1 0.1 -0.1 30 h2 Ip 

Egg weight X22 -0.2 04 2 rA h2 
  

One style of presentation of parameters in the scientific literature is to present 

the heritabilities on the diagonal, with phenotypic correlations above the 

diagonal and genetic correlations below the diagonal. 

900 -6 90 -2.4 
The P and G matrices are and , respectively. 

-—6 4 —2.4 1.6 

The selection criterion is 

0.29 x egg number + 22.64 x egg weight 

and the accuracy of predicted genetic merit is 0.60. The correlated responses, the 

contribution of each trait to the selection objective and criterion, are as follows:
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Egg number Egg weight (g) 

Correlated response t —0.62 0.78 
Contribution to objective —0.06 0.62 
Contribution to criterion 0.02 0.91 
  

+ Correlated response per standardised selection differential of the 
selection criterion. 

If selection was only on egg weight, then egg weight would increase by 
0.80 g and egg number would reduce by 1.2 eggs, per unit selection differential, 
which would be economically worth 44.4. Selection on the full selection 

criterion is worth 45.2 per unit selection differential, such that exclusion of egg 
number from the selection criterion proportionally reduces the economic value of 
the response by 0.02; the contribution of egg number to the selection criterion. 

Traits in the Selection Criterion but Not in the Selection 
Objective 

It is not necessary for traits in the selection criterion to be included in the 
selection objective. For example, the selection objective may include growth rate 
and food intake, but the selection criterion may consist of only growth rate. 

If trait Y is to be improved and the selection criterion consists of trait Y and 

a correlated trait X, measured on each animal, then the P, G and C matrices are 

2 22 
oO rpOoyo h*“o 

P=| ce etl PCS Y |, c=[h¥o%] 
rpOxOy Ox rahyhyoy0x 

The selection criterion coefficients are 

OX —IpOyOx hyoy 
2 

o4o%(1—r | —IpOyOx OY rahyhyOyox 

he — hvh ] Y ~larphynyx 

(1-15 (rahyhy - rph¥ Joy /ox 

The accuracy of the selection criterion 1s 

b=P'G= 

  

hy + ra hy _ 2rprahyhy 

(I-98 
When the selection objective is to improve trait Y, the effect of different 

values of the heritability of trait X, a correlated trait, and the genetic correlation 
between traits X and Y on the accuracy of the selection criterion, that includes 
both traits X and Y, is illustrated in Fig. 7.1. For example, given a heritability 
for trait Y of 0.3 and a phenotypic correlation between traits X and Y of 0.4, 
there is little advantage of including trait X in the selection criterion relative to 
direct selection on Y, for low values of the heritability of trait X when the 
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genetic correlation is at least 0.5 or for high values of the heritability of trait X 

when the genetic correlation is 0.3. However, if the genetic correlation is only 
0.1, then there is an advantage of including trait X in the selection criterion, 
irrespective of the heritability of trait X. 

Clearly, reliable estimates of the genetic and phenotypic parameters are 
required when evaluating alternative selection strategies in breeding programmes. 

Accuracy of selection criterion 

0.597 

0.57- TA = 0.1 
tA = 0.5 

0.567 

‘A = 0.4 
0.55 i, = 03 

0.54 T T T T I 
    

0.1 0.2 0.3 0.4 0.5 

Heritability of trait X 

Fig. 7.1. Change in accuracy of selection criterion by 
inclusion of trait X in the selection criterion 

However, there are instances in which inclusion of a correlated trait in the 
selection criterion may not necessarily improve the response to selection or the 
accuracy of predicted genetic merit. If the selection criterion coefficient for trait X 

is equated to zero, then 

rahyhyOyOx _ TpOy0x 
hyoy oY 

such that the genetic regression of X on Y equals the phenotypic regression of X 
on Y. In such a situation, trait X contributes no useful information regarding the 
genetic merit of trait Y, as the genetic correlation between traits X and Y is just 
a multiple of the environmental correlation: 

2-2 hy (1- nx] 

hy (1- hy | 

Example 
The selection objective is to improve trait Y, and the selection criterion consists 

of traits X and Y. The genetic and phenotypic parameters are as follows: 

  

Y X Op 
  

Y 0.10 0.60 10 
Xx 0.30 0.40 10



Examples of selection objectives and criteria 75 

  

with heritabilities on the diagonal, phenotypic correlations above the diagonal 
and genetic correlations below the diagonal. 

The selection criterion is 0.1Y, with P and G matrices of 

100 60 d 10 
an , 

60 100 6 

The accuracy of predicted genetic merit in Y is the square root of the 
heritability of Y, 0.316. Intuitively, it seems unusual that X contributes no 
additional information to the breeding value of Y, particularly as X is positively 
correlated with Y and has a higher heritability than Y. However, the genetic 
regression of X on Y is equal to the phenotypic regression, and so the selection 

criterion coefficient for X is zero. 

Restricted Selection Objective 

In certain situations it may be appropriate to constrain the correlated response of 
a particular trait to zero, while still maximising the rate of genetic improvement 
in the selection objective. For example, if one of the consequences of selection 
for carcass lean content is a reduction in reproductive performance, then it may 
be preferable to restrict the genetic change in reproductive performance to zero, 
but still improve carcass lean content. Similarly, genetic improvement in 
growth rate is generally associated with increased food intake, but it would be 
desirable to increase the growth rate without necessarily increasing food intake. 
The derivation of the selection criterion that results in zero genetic change in a 
particular trait requires a minor change to the existing formulae (Kempthorne and 
Nordskog, 1959; Cunningham et al., 1970). 

Two traits, Y; and Y2, are included in the selection objective and the 

selection criterion consists of traits X; and X. The correlated response in trait 

Y>4 is to be restricted to zero. 

The first step is to determine the selection criterion, as if there was no 
restriction on the genetic change in trait Y7. The P, G , C and a matrices are 

_|  varp(X;) covp(X1,Xz) cova(X,,¥;) cova(X1,Y2) 
covp(X,,X2) var p(X>) cova (X,Y) cova (X>,Y2) 

var 4 (Y)) cova(¥i,¥2)| _ ay, | pola cova(Y;,Y¥2) — var,a(Y2) ay, 

The selection criterion coefficients are b = P-!Ga and the selection criterion 

bi (X; ~X,)+b2(X2 -X») 

where X, and X, are the population mean values for traits X, and X3. 

The second step is to introduce a new variable, Y3, into the selection 

criterion. There are now three traits in the selection criterion, so that the 
phenotypic variance—covariance matrix, of traits in the selection criterion,
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increases to a 3 X 3 matrix, which is denoted NP. The new phenotypic variance— 
covariance matrix, NP, is equal to the P matrix, with the column of G 
corresponding to trait Y2 added as a column and as a row, and the remaining 

diagonal element of NP set to zero. The new phenotypic variance—covariance 
matrix, NP, is 

P cova (X},Y2) P Gy 

NP = cova(X2,Y) -|« . 

cova(X,,Y¥2) cova(X2,Y2) 0 "2 

The genetic covariance matrix of traits in the selection criterion and in the 
selection objective must be changed, in accordance with the phenotypic variance— 
covariance matrix. There are now three traits in the selection criterion, but the 
selection objective, which consists of two traits, is unchanged, such that the new 
genetic covariance matrix, NG, is a 3 X 2 matrix. The new genetic covariance 
matrix is the G matrix with the addition of a row of zeros. The new genetic 
covariance matrix, NG, is 

0 NG = 
0 

where 0 represents a row of zeros. 

As the response in trait Y2 is restricted to zero, then the economic value of 

trait Y2 is changed to zero, and the new vector of economic values, Na, is 

a 
Na = ¥ | 

0 

No change is made to the C matrix. 
The coefficients of the new selection criterion, Nb, are calculated in the same 

manner as with an unrestricted selection criterion, as 

Nb = (NP) /NG Na 

The restricted selection criterion is 

Nbj(X, — X;)+Nb2(X> - X)] 

as the term Nb3 is ignored. 

The inferred economic value of trait Y> which results in no correlated 

reponse with an unconstrained selection criterion is —Nb3. 

Parameters relating to the selection objective and selection criterion, such as 
the accuracy of the predicted genetic merit and the correlated responses, are 
calculated with the formula for an unrestricted selection criterion, using matrices 

NP and NG. 
Coefficients for the restricted selection criterion can also be derived from the 

equation (Brascamp, 1984) 
' —l., 

b= a -Gy,(Gy,P"'Gy,) Gy, p“'\Ga = RGa 

with Gy, equal to the column of G corresponding to trait Y2.
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The method of augmenting the P and G matrices to determine the selection 
criterion coefficients for the restricted selection criterion is equivalent to use of 
the Brascamp (1984) equation. The augmented matrices are: 

cy 0 al Lol 
The first equation is as follows: 

Pb + Gy, b» = Ga 

After solving for b and multiplying by Gy, , gives 

' oP an p-l | 
Gy,b = Gy, P Ga-—Gy,P Gy, b2 

The second equation of the augmented matrices is as follows: 

Gy, b=0 

giving a solution for b2 of 
' i] —-1! ' 

b> =(Gy,P"'Gy, ) Gy,P™'Ga 

and incorporation into the first equation gives the Brascamp (1984) equation. 

Example 

The restricted selection objective is to improve growth rate, but to also constrain 
the genetic change in food intake to zero. Both growth rate and food intake are 
included in the selection criterion. The genetic and phenotypic parameters are 

  

  

Economic 
Growth rate _ Food intake Op value 

Growth rate (g/day) 0.45 0.50 100 1 
Food intake (g/day) 0.60 0.30 200 —2 
  

with heritabilities on the diagonal, phenotypic correlations above the diagonal 
and genetic correlations below the diagonal. 

az 

—2 

The P,G and a matrices are 

100 70.7 45 31.2 
P= ; G= , 

70.7 200 31.2 60 

The G and C matrices are the same, as traits in the selection objective are equal 
to those in the selection criterion. The selection criterion coefficients are 

0.187 

—0.510 

and animals would be selected on the basis of the index: 

0.187 x growth rate —0.510 x food intake 

b=P"Ga-| 

The correlated responses to selection are determined from
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CR. =; b G; 
- =] 

J" Yb Pb 
Growth rate and food intake would be reduced by —1.15 g/day and —3.82 g/day, 
respectively, per standardised selection differential. The undesirable reduction in 
growth rate indicates that use of a restricted selection index may be preferable. 

As the response in food intake is to be restricted to zero, then the column of 
G corresponding to food intake is added to the new phenotypic variance— 
covariance matrix, NP, as a column and as a row. The remaining diagonal 

element of NP is set to zero. Therefore, NP is 

  

100 70.7 31.2 

NP =| 70.7 200 60 

31.2 60 0 

A row of zeros is added to the new genetic covariance matrix, NG, which equals 

45 31.2 

NG =| 31.2 60 

0 0 

and the economic value of food intake is set to zero, such that Na is 

“-f 
The coefficients of the new selection criterion, Nb, calculated using the new 

matrices, Nb = (NP)~'NG Na, are 

0.358 

Nb =| —0.186 

0.718 

The restricted selection criterion is now 

0.358 x growth rate —0.186 x food intake 

as the term Nb3 = 0.718 is ignored in the selection criterion. The selection 

criterion now has relatively more emphasis on growth rate than on food intake, 
compared to the selection criterion when no constraints were imposed on the 

correlated responses. 
If the selection criterion coefficients are calculated with the economic weight 

of food intake set at —Nb3 and no constraints imposed on the correlated 

responses, then the correlated response in food intake will be zero. In the context 

of a restricted selection objective, the inferred economic weight of the trait, 

whose correlated response is restricted to zero, is equal to —Nb3. 

In a similar manner to the unrestricted selection objective, the correlated 

responses with selection on the restricted selection criterion are determined from 

Nb NG; 

1 Nb' NP Nb 
CR; =1
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and the responses in growth rate and food intake are 3.21 g/day and 0 g/day, 
respectively, per standardised selection differential. Selection on the restricted 
index will increase growth rate, without changing food intake. 

Derivation of the selection criterion coefficients using the NP, NG and Na 
matrices may be considered to be more straightforward than using the Brascamp 

(1984) equation. 
In the example, 

0.0124 -—0.0065 0.358 
R= , such that b= 

—0.0065 0.0034 —0).186 

Desired Gains Selection Objective 

The responses of specific traits in the selection objective may be required to 
equal predetermined values, while the rate of genetic response in other traits is 
maximised (Brascamp, 1984). The selection criterion coefficients are determined 
from the desired gains and the economic values of traits in the selection 

objective. 
Two traits, Y, and Y», are included in the selection objective, and the 

selection criterion consists of traits X,; and X2. The correlated response in Y2 is 

required to equal & times the response in Yj, in numerical terms. For example, 

the desired response in daily food intake may be equal to twice the response in 
growth rate, or the desired response in carcass fat content may be equal to a 
multiple (presumably negative) of the response in carcass lean content. The 
coefficients of the desired gains selection criterion are determined from 

b=S'RGa 

= "Hl I where S=1-aP"'Gy,(Gy,P'Gy,} Gy, 

; ' O-1 | with R=I-Gy,(Gy,P"'Gy,) Gy,P 

and Gy equal to the column of G corresponding to trait Y1. 

The restricted selection objective is clearly a special case of the desired gains 
selection objective, with & equal to zero in the equation for the S matrix, such 

that the response in trait Y2 is equal to zero. 

The inferred economic values of the traits, which correspond to the desired 

responses in the case of a unconstrained selection objective, ap, are 
, _ —| ‘ 

(G P 'G) Gb 
Conversely, given the economic values, ap, the responses with an unconstrained 

selection objective will be equal to those with the desired gains selection 

criterion.



80 Chapter 7 

  

Example 

Using the parameters for growth rate and food intake in the restricted selection 
objective example, the correlated responses to an unconstrained selection 
objective are —1.15 g/day for growth rate and —3.82 g/day for food intake, and 
the economic value of the response is 6.48, per standardised selection differential 

(see Table 7.1). The accuracy of the corresponding selection criterion is 0.512. 
When a restriction is imposed on the correlated response in food intake, the 

response in growth rate is 3.21 g/day, with an economic value of the response of 
3.21, per standardised selection differential, and an accuracy of the restricted 
selection criterion of 0.254. 

If the desired response in food intake was to equal 0.25 of the response in 
growth rate, then the correlated responses in growth rate and food intake would 
be 3.82 and 0.95 g/day, respectively, with the economic value of the response 
equal to 1.92, per standardised selection differential. The selection criterion 
coefficients would be 0.379 and —0.145. The accuracy of the selection criterion, 
given the desired gains selection objective, would be 0.198. 

Table 7.1. Predicted responses to selection when the response in food intake is 
unconstrained or restricted and the responses to a desired gains selection objective 

  

Response in   

  

Growth Food Economic Accuracy of Economic 
Selection rate intake value of selection value of 
objective (g/day) (g/day) response criterion food intake 

Unconstrained -1.15 -—3.82 6.48 0.512 —2.0 

Restricted 3.21 0 3.21 0.254 —0.718 

Desired gains 3.82 0.95 1.92 0.198 ~0.5551 
  

+ The economic value of food intake relative to the economic value of 

growth rate to achieve similar responses compared to the desired gains 

selection objective, given an unconstrained selection objective. 

Constraining the responses to selection can substantially reduce the rate of 
gain in overall genetic merit, as indicated by both the reduction in the economic 
value of the response and in the accuracy of the selection criterion. In the 
example, the short term advantage of a reduction in food intake may be offset in 
the long term, by low food intake essentially imposing a constraint on genetic 
improvement in growth rate. The responses to the different selection objectives 
are summarised in Table 7.1. 

Several aspects of selection index methodology have been discussed in this 
chapter, with examples to illustrate each point as they were developed. It is 
useful to have one comprehensive example to cover the points discussed.
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Example from a Pig Breeding Programme 

The selection objective is to increase carcass lean content (LEAN) and growth 
rate (GAIN) during a performance test from 30 kg to 85 kg, while daily food 
intake (FOOD) during the performance test is to be reduced. Although the food 
conversion ratio (FCR: food intake divided by weight gain) during the test is not 
included in the selection objective, the genetic change in food conversion ratio is 
to be monitored. The traits which can be included in the selection criterion are 
average daily gain (GAIN), average daily food intake (FOOD) and ultrasonic 
backfat depth (BFAT) measured at the end of the test. An animals’ genetic merit 
is determined only from measurements on the animal. Incorporation of 
measurements from relatives will be discussed in the next section of this chapter. 

There are four questions to be answered: 

(1) What are the responses to selection, per unit selection differential of the 
selection criterion? 

(2) What are the relative contributions of each trait in the selection objective 
and in the selection criterion? 

(3) If the response in food intake is restricted to zero, how are the accuracy of 
predicted merit and the response in genetic merit changed? 

(4) What is the efficiency of a selection criterion consisting only of growth rate 
and ultrasonic backfat depth? 

The genetic and phenotypic parameters and the economic values of traits are as 
shown in Table 7.2, with heritabilities on the diagonal, phenotypic correlations 
above the diagonal and genetic correlations below the diagonal. The phenotypic 
correlations between GAIN, BFAT and FOOD with LEAN and FCR are not 
required, as the latter two traits are not included in the selection criterion. 

Table 7.2. Genetic and phenotypic parameters for pig example 

  

    

GAIN BFAT FOOD LEAN’ FCR Economic 
(kg/day) (mm) _(kg/day) (dg/kg) (kg/kg) Op value 

GAIN | 0.46 0.06 0.54 0.102 5 
BFAT | -0.05 0.31 0.42 3.48 
FOOD] 0.58 0.54 0.34 0.221 -5 
LEAN} 0.00 -0.60 -0.45 0.45 4.0 1 
FCR_| -0.60 0.55 0.30. 0.40_~——0.36 _0.209   
  

The economic values for growth rate and food intake are expressed relative to 
carcass lean content. For the purpose of the calculations, growth rate and food 
intake are expressed as kg/day rather than as g/day, while carcass lean content is 
expressed in decagrams, such that the phenotypic standard deviations of the five 
traits are of the same order of magnitude, to reduce rounding errors. 

To set up the P, G and C matrices, the traits should be grouped according to 
those in the selection criterion and those in the selection objective, with var and 
cov indicating the phenotypic (subscript P) and additive genetic (subscript A) 
variances and covariances.
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Traits in 

selection 

criterion 

Traits in 

selection 

objective 

GAIN 

BFAT 

FOOD 

GAIN 

FOOD 

LEAN 

Traits in selection criterion Traits in selection objective 

  

  
  

GAIN _ BFAT FOOD _ GAIN __ FOOD _ LEAN 
Varp COVp COVp vara COVA COVA 

COVp Varp COVA COVA 

COVp COVp P COVA var a G 

var a COVA COVA 

COVA var a 

COVA COVA C     
  

Calculation of the correlated responses for traits not in the selection 

objective requires the genetic variance—covariance matrix for traits in the 

selection criterion with traits not in the selection objective, G". 

  

Traits in GAIN 

selection BFAT 

criterion FOOD 

Traits NOT in the 
selection objective 

BFAT —_FCR 
COVA COVA 

var 4 

COVA G*     
  

The elements of the matrices are as follows: 

Traits in 

selection 

criterion 

Traits in 

selection 

objective 

Formulae for calculating the various parameters are as follows: 

Traits in selection criterion Traits in selection objective 

  

  
  

    
  

  

GAIN BFAT FOOD GAIN FOOD LEAN 

GAIN | 0.0104 0.0213 0.0122] 0.0048 0.0052 0 

BFAT | 0.0213 12.110 0.3230 | -0.0067 0.1348 -3.119 

FOOD]! 0.0122 0.3230 0.0488] 0.0052 0.0166 -0.1556 

GAIN 0.0048 0.0052 0O 

FOOD 0.0052 0.0166 -0.1556 

LEAN 0 -0.1556 7.200 

Traits NOT in the 

selection objective 

BFAT FCR 

Traits in GAIN ] -0.0067 -0.0052 

selection BFAT | 3.7542 0.1336 

criterion FOOD | 0.1348 0.0048     
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Selection criterion coefficients: b=P7'Ga 

; ; ; b' Pb 
Accuracy of predicted genetic merit: nH = 

a’ Ca 

Correlated CR: =] b G; orrelated responses: ju Te Pb 
b' Pb 

where Gj is the j column of G or G* 

Economic value of response: CRa/i; =~Vb' Pb 

Contribution of traits in the selection objecti (j) PS) ontribution of traits in the selection objective: ry;(J ” ePoc, 
b' Pb C;. 

JJ 

where Gj is the j column of G 

ae ok . Lo. ri 
Contribution of traits in the selection criterion: tH =1-— 

lH 

  

The questions are answered in order. 

(1) What are the responses to selection, per unit selection differential of the 

selection criterion? 
The responses in each trait are qualitatively as required by the selection objective, 
as growth rate and carcass lean content were increased, while food intake was 
reduced. Food conversion ratio was also reduced. Ultrasonic backfat depth was 
reduced in accordance with the increase in carcass lean content, as there was a 

large negative genetic correlation between the two traits: 

  

  

Carcass lean Food conversion 
Growth rate Food intake content Backfat depth ratio 

3 g/day —55 g/day 10.1 g/kg —1.1 mm —0.06 kg/kg 
  

The reduction in food intake may be acceptable in the short term, as a means 
of reducing food conversion ratio, but in the long term continued reduction in 
food intake may be unacceptable, if genetic improvement in the efficiency of 
lean growth is constrained or reproductive performance is impaired. Therefore, 
One option is to restrict the genetic change in food intake to zero. 

(2) What are the relative contributions of each trait in the selection objective 

and in the selection criterion? 
Correlations between the selection objective and growth rate, food intake or 
carcass lean content are 0.05, —0.43 and 0.38, respectively, which indicates that 
the response in economic merit is primarily due to the responses in food intake 
and carcass lean content. The economic value of the response in genetic merit is 
1.306, per standardised selection differential, as the economic values of the 

responses in growth rate, food intake and carcass lean content are 0.017, 0.276 

and 1.013, respectively.
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If growth rate, ultrasonic backfat depth or food intake was not included in the 
selection criterion, then the accuracy of predicted genetic merit and, consequently, 
the response in genetic merit, would be proportionately reduced by 0.06, 0.13 or 
0.16, respectively. Growth rate contributes less information regarding genetic 
merit for the selection objective than backfat depth and food intake. 

(3) If the response in food intake is restricted to zero, how are the accuracy of 
predicted merit and the response in genetic merit changed? 

Calculation of the restricted selection criterion requires the matrices NP and NG, 

and the vector of economic values, Na. 

P or | 
The NP matrix is , 

hon 0 

cov, (GAIN, FOOD)] [0.0052 
where Groop =| cova (BFAT, FOOD) | =| 0.1348 

var a (FOOD) 0.0166 

i, G 
while the NG matrix 1s 

0 0 0 

5 

and the Na vector is | 01], since the economic value of food intake is set to zero. 

1 

With the restricted selection objective, responses to selection are as follows: 

  

  

Carcass lean Food conversion 
Growth rate Food intake content Backfat depth ratio 

35 g/day 0 g/day 7.3 glkg —0.9 mm —0.07 kg/kg 
  

Growth rate is substantially increased with a larger reduction in food 
conversion ratio compared to when the unrestricted selection criterion is used. 
Responses in carcass lean content and ultrasonic backfat depth are lower (7 
versus 10 g/kg and 0.9 versus 1.1 mm, respectively) with the restricted selection 
objective, relative to the unrestricted objective. 

The accuracies of predicted genetic merit with and without the restriction on 
food intake are 0.34 and 0.43, respectively. The corresponding responses in 
genetic merit, per standardised selection differential, with and without the 
restriction on food intake, are 0.907 and 1.306. In both cases, carcass lean 
content proportionately accounts for 0.80 of the economic value of the response. 
The reduction in economic value is primarily due to the smaller response in 
carcass lean content with the restricted selection objective, rather than the reduced 
economic value from a restriction on food intake, which is compensated for by 
an increase in growth rate. The effect of the restriction on genetic change in food 
intake is proportionally to reduce the response in economic merit by 0.40, 
largely due to a reduction in the response of carcass lean content.
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The substantial decrease in response due to the restriction on genetic change 

in food intake may not be a viable alternative to the reduction in food intake 

with the unrestricted selection objective. Another alternative would be to exclude 

food intake from the selection criterion, which may reduce the magnitude of the 

response in food intake, and as food intake is an expensive trait to measure, the 

reduction in costs may be beneficial. 

(4) What is the efficiency of a selection criterion consisting only of growth rate 

and ultrasonic backfat depth? 

The new P, G, C and a matrices are sub-matrices of the matrices calculated for 

the original selection objective and criterion. 

With the new selection criterion, the responses to selection are as follows: 

  

  

Carcass lean Food conversion 

Growth rate Food intake content Backfat depth ratio 

4 g/day —37 g/day 9.0 g/kg —1.1 mm —0.04 kg/kg 
  

The responses in growth rate, carcass lean content and ultrasonic backfat 

depth are similar to when food intake was included in the selection criterion. The 

magnitude of the responses in food intake and food conversion ratio are lower 

compared to the original selection criterion and the economic value of the 

response (1.103 versus 1.306) is proportionately reduced by 0.16. Although the 

efficiency of the selection criterion to predict genetic merit is reduced, the 

decrease in the magnitude of genetic change in food intake, from 55 g/day to 37 

g/day, may be acceptable in both the short and the long term. 

A summary of the selection criterion coefficients, accuracies and responses 

for each selection objective is given in Table 7.3. 

Table 7.3. Selection criterion parameters and responses when the response in 

food intake is unconstrained or restricted and when food intake is not recorded 

  

Selection criterion 

  

  

  

  

  

coefficients Economic 

Growth Backfat Food Accuracyof value of 

rate depth intake selection response 

Selection objective 5.23 -0.21 -4.26 0.43 1.31 

Food restricted 7.29 -0.17  —-0.90 0.34 0.91 

Food not recorded 0.46 —0.32 — 0.37 1.10 

Growth Food Carcass __ Backfat Food 

rate intake lean depth conversion 

(g/day) (g/day) (g/kg) (mm) ratio (kg/kg) | 

Selection objective 3 —55 10.1 —1.1 —0.06 

Food restricted 35 0 7.3 —0.9 —0.07 

Food not recorded 4 —37 9.0 —1.1 —0.04
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Selection on Several Traits with Information from 
Relatives 

In Chapters 4 and 5, the prediction of breeding values for single or for several 
traits was based on information on the individual, with either one measurement 
or repeated measurements, or information from one group of relatives. In this 
section, measurements on several traits, both on the individual and on its 
relatives, are combined to predict the genetic merit of the individual. 

The equations to predict genetic merit of the individual for the different 
combinations of information are summarised in Table 7.4, with P equal to the 

individual's measurement and P equal to the mean measurement on its relatives. 
For simplicity, a population mean phenotype of zero, has been assumed. 

Table 7.4. Formulae for predicting genetic merit of the individual from 
information on the individual and relatives 

  

Traits in the selection criterion 
  

  

Selection Individual and 
objective Individual Relatives relatives 

5 I= nth? = _ 
Single trait I=h‘*P ~T+(n—-t I=b,;P+b5P 

Several traits I= b,P, +b2P, [= byP, + b2P> T= 2 b)Pj +2 bjP; 
  

The methodology to predict genetic merit, the accuracy of the prediction and 
the response to selection is the same in each case. The phenotypic variance— 
covariance matrix of traits in the selection criterion, P, the genetic covariance of 
traits in the selection criterion with traits in the selection objective, G, the 
genetic variance—covariance matrix of traits in the selection objective, C, and the 
economic value of each trait in the selection objective, a, are required. The 

selection criterion coefficients are b = P-'Ga. The only difference between the 
different circumstances is in calculation of the elements of the P, G and C 
matrices. 

The example from pig breeding is again used to illustrate the combination of 
information on several traits measured on both the individual and its relatives. 
The selection objective is to increase growth rate and carcass lean content. Each 
performance tested animal has its growth rate measured during the test and its 
ultrasonic backfat depth measured at the end of the test. Measurements are 
available on the individual and the mean of its n full-sibs, such that there are 
four traits in the selection criterion: growth rate and backfat depth measured on 
the individual and the full-sib mean measurement for growth rate and ultrasonic 
backfat depth, with the individual excluded. 

The P, G and C matrices are formed, firstly, by grouping the traits according 
to those included in the selection criterion, those included in the selection 
objective and then, secondly, by calculating the elements of the matrices ("filling 
in the boxes").
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In the example, there is a degree of overlap between the four traits in the 
selection objective with the two traits in the selection objective. One approach 
would be to code the traits in the selection criterion as X,, X2, X3 and X4 and 

the traits in the selection objective as Y; and Y2, which may result in 

unnecessary confusion, as there are only three traits in total: growth rate, 
ultrasonic backfat depth and carcass lean content. Therefore, the selection 
criterion consists of the growth rate and backfat depth of the individual, denoted 
by growth and backfat, and the full-sib mean growth rate and ultrasonic backfat 

depth measurements, denoted by growth and backfat, respectively. 

In the equations for elements of the matrices, the three traits have been coded 
as follows: 1, growth rate; 2, ultrasonic backfat depth; 3, carcass lean content; 
with subscripts P or A denoting a phenotypic or an additive genetic variance and 
similarly for covariances. 

The P matrix, for traits in the selection criterion, is 

  

  

  

Growth _Backfat Growth Backfat 

2 2 
Growth} Opi = Opi2 Op; 7 Fa12 +912 

2 I 2 
Backfat Op2 | 79a12 + 9c12 {20 p2 

= 1-t Oo n-1/1 
Growth C +1168, oP A oan +Sc12] 

n n n 

Backfat Inte \ 2 ackfa to + an joP2         

with t; and tz equal to the correlation between full-sibs for traits 1 and 2. 

The G matrix, for traits in the selection criterion with those in the selection 
objective, is 

Carcass lean 

  

  

Growth content 

Growth o% ' OA13 

Backfat oO A2] Oo A23 

——___ | a) l 
Growth 7 PAI 57 PAI3 

_—_ 1 1 

Backfat 7 PA21 5 FA23       
and the C matrix, for traits in the selection objective, is 

  

Carcass lean 

Growth content 

Growth o4 | OA13 

Carcass lean 2 
Oo oO 

content A31 A3      
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For clarity of presentation, only the upper triangular part of the P matrix has 

been given. The equation for the phenotypic covariance between the full-sib 
means for growth rate and ultrasonic backfat depth is: 

n n 

cov( growth backfat ) = COV I ¥ growth, , i ¥: backfat ] 
n j=l N j=1 

, \ 

n 1 n 
= “3 X. cov( growth; , backfat ) 

j= 

1 1 
= 3 0 Opi2 +(n -1(50a12 + Scr] 

The double summation is essentially equal to adding up all the elements of a 

square, with n rows and n columns. A row represents the covariance between 
growth rate for animal i with backfat depth of its (n—1) full-sibs and itself, while 

a column represents the covariance between backfat depth for animal j with 

growth rate of its (n—1) full-sibs and itself: 

  

  

  

Sib 1 2 3 4 

l Opi2 5 SAI +Oc12 = SAl2 +Oc12 5 SAl2 + Oc12 

2 SAI + Oc12 Opi2 =OA12 + O12 =OAl2 + 9¢12 

3 NY + O¢12 sOAl2 + Oc12 Opi2 5 OAl2 + O¢12 

4 sOAl2 + Oc12 sOAl2 + Oc12 sOAl2 + Oci2 Opi2     
  

There is no difference between adding up the elements of the square by rows 

or by columns, as each row or column will contain the same elements. For 

example, with four full-sibs, the row corresponding to the second animal 

contains the phenotypic covariance between growth and backfat depth for itself, 

Op >, and one half of the genetic plus common environmental covariance 

between growth and backfat depth, =o A12 + Oc12, for each its three full-sibs. 

Row two is 
l 

Spi. + (4—- Fear + Sci2] 
and as there are four rows, then the sum of the elements is 

l 

4 opr2 +(4- (5 Oai2 +9c12 } 

which has to be divided by a for calculation of the covariance. 

The covariance between the full-sib mean for growth rate and the full-sib 

mean for ultrasonic backfat depth is 

1 1 
—| p12 +(n- (5 Saiz + S12)
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The same genetic and phenotypic parameters are used as in the example from the 
previous section. The common environmental effects for growth rate and 

ultrasonic backfat depth account for 0.1 O35, such that the correlation between 

full-sibs is one half of the heritability plus 0.1. The common environmental 
covariance between growth rate and ultrasonic backfat depth is zero. 

Changes in accuracy of the selection criterion, the selection criterion 

coefficients and the correlated responses to selection, as the number of full-sibs 
increase, are presented in Table 7.5 and illustrated graphically in Fig. 7.2. 

Table 7.5. Accuracy of the selection criterion, the selection criterion 
coefficients and the correlated responses to selection according to the number of 

full-sib measurements in the selection criterion 

  

Number of full-sibs 
(excluding the individual animal) 

Animal 1 2 3 4 5 

Accuracy IH 0.35 0.36 0.37 0.37 0.38 0.38 

  

  

Selection growth 2.84 2.64 2.59 2.54 2.50 2.48 

criterion 

coefficients § growth 0.32 0.47 0.55 0.60 0.62 

backfat -0.26 -0.25 -0.24 -0.23 -0.22 -0.22 

backfat —0.07 -0.11 -0.14 -0.16 -0.18 

Correlated growthrate 16.2 15.8 15.6 15.4 15.2 15.1 

responses __ carcass lean 
content 8.7 9.0 9.2 9.3 9.4 9.4 

As the number of full-sibs with measurements increases, the accuracy of 

predicted genetic merit increases (Fig. 7.2). Genetic improvement in carcass lean 

content increases with an increasing number of full sibs measured, while the 

response in growth rate decreases. The accuracy increases to a limit of 0.40, and 

the more full-sib information; the better. The selection criterion coefficients for 

growth rate, and for backfat depth, of the individual and full-sib mean change in a 

complementary manner as the number of full-sibs increases. The selection 

criterion coefficients tend to limits of 2.36 and 0.64 for growth rate on the 

individual and the full-sib mean, and —0.18 and —0.31 for backfat depth. 

Although the accuracy increases as the number of measured full-sib increases, if 

performance test facilities are limited, then it may be more important to increase 

the number of families tested and selected, such that variation in inbreeding is 

not increased, rather than reduce the number of families tested and selected, by 

increasing the number of full-sibs per family.
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Accuracy of selection criterion Selection criterion coefficients 

0.380 7 1.00) growth (coefficient/3) 

0.375 = 0.757 
growth 

0.370 — 0.50 — 

0.365 — 0.25 — 

0.360 7 0.00 — backfat 
a 

0.355 | -0.25 backfat 

0.350 —T Tes 0.50 TTT 
Individual 1 2 3 4 5 6 Individual 1 2 3 4 5 6 

Number of full-sibs Number of full-sibs 
(excluding the individual) (excluding the individual) 

Fig. 7.2. Accuracy of selection criterion and selection criterion coefficients 
with increasing numbers of full-sibs 

Economic Values 

The economic value of a trait represents the additional economic return per 
marginal unit improvement in the trait. Economic values can be expressed 
relative to an animal, the producer or the national interest: this has been 
examined by Brascamp et al. (1985) and Smith et al. (1986). Weller (1994) 
comprehensively discusses economic aspects of animal breeding. Therefore, there 
is no need for a detailed derivation of economic values within this text. 

For illustrative purposes, economic values for a pig breeding context are 

determined for continuous and discrete traits. One method of estimating 
economic values is to change the trait of interest by a unit amount, relative to 

the mean of the trait, and to determine the change in the cost of production, 
assuming that all other traits remain fixed at their current levels. 

For example, assume that the mean growth rate and food intake of pigs 
grown from 30 to 85 kg are 850 g/day and 1.9 kg/day, respectively. Food costs 
150 economic units per tonne and there is an overhead cost of 0.20 economic 
units per day. 

The economic weight for growth rate can be calculated as the reduction in 
costs between a pig growing at 860 g/day compared to one growing at 850 
g/day. The economic gain by increasing growth rate by 10 g/day is 

(85 —30) _ (85 — 30) 

0.850 0.860 

such that the economic value for growth rate is 0.036 economic units. 
Similarly, the economic value of daily food intake can be derived from the 

increased food costs of a pig eating 10 g/day more than a pig eating 1.9 kg/day, 
with no change in growth rate: 

  x (1.9 x 0.150 + 0.20) = 0.365
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(85 — 30) 

0.850 

and the economic value for daily food intake is 0.010 economic units. 
Carcass shape is graded for processing purposes, with the carcass price 

depending on the grade. The distribution of carcasses and the carcass price per kg 
for each grade is given in Table 7.6. 

x 0.150 x (1.91 — 1.90) = 0.097 

Table 7.6. Distribution of carcasses and the carcass price per kg by grade 

  

  

Grade 1 2 3 4 

Distribution of carcasses 0.50 0.30 0.15 0.05 

Carcass price per kg 105 100 95 85 
  

Under the assumption of an underlying normal distribution for carcass grade, the 
thresholds of t;, tg and t3 between the four carcass grades, with corresponding 

ordinates of z), z2 and z3, are shown in Figure 7.3. 

74 

  

  

  oO 

J
 

  

Fig. 7.3. Thresholds and ordinates corresponding 
to proportions, assuming a normal distribution 

If the proportion of carcasses in each grade are pj, p2, p3 and pq, with 

corresponding carcass prices of cj, c2, c3 and cq, then the marginal cost of a unit 

change in the underlying scale (Meijering, 1986) is 

(Cy — C4 )Zy + (Cc _ C3 )Z9 + (C3 - C4 )Z3 

For carcass grade, the economic value is 

(105 — 100) x 0.40 + (100 — 95) x 0.28 + (95 — 85) x 0.10 = 4.4 

If the selection objective of the breeding programme is to increase growth rate 
and carcass grade, but to reduce daily food intake, then the economic value for 
daily food intake is negative, to reflect the intended reduction, as shown in Table 
7.7. Economic values for the three traits differ substantially, but not when 
expressed in terms of phenotypic standard deviations. Note that the derived 
economic values are for illustrative purposes only.
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Table 7.7. Examples of economic values for pig production traits 
  

  

Economic Standard Economic 
value deviation (s.d.) _ value per s.d. 

Growth rate (g/day) 0.036 100 3.6 
Daily food intake (g/day) —0.010 220 —2.1 
Carcass grade 4.4 l 4.4 
  

Changes in the economic values of traits in the selection objective can have 
a substantial effect on the accuracy of a selection criterion (Smith, 1983). 
Reductions in the accuracy will depend on changes in the economic value of 
traits with both relatively high economic values and relatively high 
heritabilities. If the vectors of the correct and incorrect economic values are a and 

a, then the accuracy of the selection criterion with incorrect economic values for 
traits relative to the accuracy with the correct economic values 1s: 

b Pb 

iG Pb )(b' Pb) 

where b = P~'Ga and b= P~'Ga. 

For example, traits X and Y are included in both the selection objective and 
selection criterion, with heritabilities equal to 0.3 and 0.2, respectively, with 
equal phenotypic and genetic correlations. The correct economic values of traits 
X and Y are two and one, and the economic value of trait X is changed. The 
relative accuracy of the selection criterion with incorrect economic weights is 

illustrated in Fig. 7.4. When the economic value of trait X is less than the 
correct value, there is a substantial reduction in accuracy, while there is little 
loss of accuracy with a positive change to the economic value of trait X. 

Relative accuracy 
of selection criterion 
1.07 

  

  

0.57 

0.07 

-0.57 

  

    
-1.0 T T T T T T 1 

-1.0 -05 00 05 1.0 1.5 2.0 

Economic value of trait X 

Fig. 7.4. Relative accuracy of the selection criterion 
when changes are made to economic value of trait Y



Chapter eight 

Factors Affecting the Rate of Genetic 
Improvement 

Errors in Genetic and Phenotypic Parameters 

Differences between estimated and population genetic and phenotypic parameters 
will have an effect on the predicted response to selection. Given the population 
parameters, the formula for the actual responses of traits in the selection 
objective for a given selection criterion, was discussed in Chapter 6, and is 

cov(I, H) SD. = j b'G 

var) ~ b' Pb 

The predicted responses given the estimated selection criterion coefficients, b, 
A 

derived from the estimated G and P matrices are 

b'G 

b' Pb 
but the actual responses given the estimated selection criterion coefficients are 

b'G 

b' Pb 
If the estimated genetic and phenotypic parameters are not equal to the 
population parameters, then the response will be less than the maximum 
response. The loss in efficiency due to the difference between the estimated and 

population parameters (Sales and Hill, 1976a) is 
R* 

|-—— 

R=i   

R* =   

One trait in the selection objective and criterion 

When the selection objective is to improve one trait and the selection criterion 
consists of measurements on the individual and its relatives, then errors in 

estimates of the intra-class correlation and the heritability will have little effect 
on the response (Sales and Hill, 1976a). For example, if the selection criterion is 

93



94 Chapter 8 

  

based on measurements on an individual and the mean of its four half-sibs, then 
the loss in efficiency increases as the deviation between the population and 
estimated intra-class correlation increases. However, for heritabilities between 
0.05 and 0.8, the loss in efficiency is less than 0.02 when the deviation between 
the population and estimated half-sib correlation is 0.1. 

Two traits in the selection criterion 

If the selection objective is to improve trait Y and there is a correlated trait X, 
included in the selection criterion, then the selection criterion coefficients are 

2 
b=p'g-—_! hy —tatphyhx 

~ ~~. VY 2 
(1 - rp | (rahyhy - phy Joy /ox 

The need for reliable estimates of the genetic and phenotypic parameters for 

evaluation of alternative selection strategies was discussed in Chapter 7, in the 

section on "Traits in the selection criterion, but not in the selection objective”. 
The advantage of including a second trait in the selection criterion was largely 
dependent on the genetic correlation between traits. 

However, in the special case when the population parameters satisfy 
rahx =rphy, then the response to selection, R, will be a multiple of the 

heritability for trait Y. If the estimated genetic correlation is r, +, then the 

actual response to selection with the selection criterion coefficients determined 

from the parameter estimates, R”, is proportional to 

hy oO hy hy 
————, where A= 5 

hy +A l-rp 

The predicted response to selection given the selection criterion coefficients, R, 

iS proportional to | hy + A, with a predicted gain in efficiency by incorporating 

trait X in the selection criterion of 

R yhyt+A 
— = a 

R hy 

The actual response to selection on the estimated selection criterion relative to 
selection on the selection criterion derived from the population parameters is 

* 2 R hy 
  

Ro Jnt+a 
which is exactly the reciprocal of the predicted gain in efficiency. Therefore, the 
actual loss in efficiency and the predicted gain in efficiency increase as the 
difference between the estimated genetic correlation and the population genetic 
correlation, &, increases, and as the absolute value of the phenotypic correlation 
increases. When the estimated parameters differ from the population's parameters 
and rahy =rphy (Sales and Hill, 1976b), then the predicted gain in efficiency
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from including trait X in the selection criterion is equal to the actual loss in 
efficiency. 

Example 
If the difference between the estimated genetic correlation and the population 

genetic correlation is 0.4 in magnitude, and the phenotypic correlation is equal to 

+0.4, then, as (nx -h¥} increases, the actual loss in efficiency increases 

proportionately by up to 0.40, when he is greater than 0.1 (Fig. 8.1). As the 

heritability of trait Y increases, the actual loss in efficiency decreases when X is 
included in the selection criterion. 

  

  

Predicted gain or 
relative loss in 409- 

efficiency (%) 

307 

207 

107 

0 T ! T I T 
    

0.1 0.2 0.3 0.4 0.5 
Heritability of trait Y 

Fig. 8.1. Predicted gain or relative loss in efficiency by including 

trait X in the selection objective to improve trait Y, when rahy =Tlphy, 
relative to selection on trait Y only 

Modification of Parameter Estimates 

Negative variance component estimates can be obtained from ANOVA analyses, 
such that the corresponding heritability estimate will be negative. For example, 
given the following liveweights of progeny from four sires, in Table 8.1: 

Table 8.1. Liveweights of progeny from four sires 

  

  

Sire A Sire B Sire C Sire D 

12 13 15 14 
14 14 15 12 
15 15 16 16 
18 16 18 14 
  

the corresponding analysis of variance is given in Table 8.2:
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Table 8.2. Analysis of variance for progeny liveweights 

  

  

Sum of Mean Expectation of 

Source of variation DF Squares squares mean squares 

Between-sires 3 8.69 2.90 Og +405 

Within-sires 1237.75 3.15 Ge 
  

The estimated between-sire variance component is —0.062 and the corresponding 
heritability estimate is —0.08. Clearly, prediction of breeding values and 
responses to selection, given a negative heritability estimate, will be of no 
value. 

For selection on several traits, valid genetic and phenotypic parameters are 
required to determine selection criterion coefficients, as otherwise predicted 
responses to selection will be unreliable. Estimates of the heritability, genetic 

and phenotypic correlations can be examined for inconsistent values, such as 
heritabilities outside the range of 0 to 1 and correlations outside the range of —1 
to +1. One method of determining whether the phenotypic and genetic variance— 
covariance matrices, P and G, are consistent with expectations is to examine the 

eigenvalues of the matrix P'G (Hayes and Hill, 1980). 

Eigenvalues and eigenvectors 

The following section on eigenvalues and eigenvectors and the discussion on 
bending is included in the text for completeness. Knowledge of matrix algebra, 
other than covered in the Appendix, is required. However, the section can be 

omitted, if necessary. 
For a symmetric matrix, A, there is a diagonal matrix, D, and a square 

matrix, V, such that 
V'AV=D and VV'=!I 

The diagonal elements of the D matrix are eigenvalues, while the columns of the 
V matrix are eigenvectors (Rao, 1973), which are the solutions to the equation 

|A-AI |=0 

and the eigenvectors are determined by solving (A — AI)x = 0. 

9 3 
If A= ; A then the eigenvalues are 2.59 and 10.40, with corresponding 

0.906 0.424 

is the sum of the diagonal terms of the A matrix. 
If the phenotypic and genetic variance—covariance matrices, P and G, are 

estimated in a multivariate analysis, then the corresponding analysis of variance 
table, for s sires each with n half-sib progeny is given in Table 8.3, noting that 

P=(B+(n—-1)W]/n and G=4(B-W)/n 

—0.424 0.906 
eigenvectors of and . As a check, the sum of the eigenvalues
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Table 8.3. Formula for analysis of variance table 

  

  

Mean Expectation of 
Source of (co)variation DF squares mean squares 

1 | 
Between-sires s—] B P- 7 Gt Z nG 

1 
Within-sires s(n—1) W P— 7 G 
  

The eigenvalues of the matrix P'G are determined from IP-'G —XI |= 0 

or |G —AP|=0. If all eigenvalues of P~'G are positive and less than one, then 

the heritabilities, genetic and phenotypic correlations will be within the 
appropriate parameter spaces of (0,1) and (—1, 1), respectively, as will the partial 

correlations. If the two conditions for the eigenvalues of P~'G are satisfied, then 
selection index coefficients and predicted responses to selection determined from 

the P and G matrices may be reliable, given the precision of the estimated P and 

G matrices. Determining whether the eigenvalues of the P-'G matrix are 
between 0 and 1 is the multivariate equivalent of checking whether the estimated 
heritability of a trait lies between O and 1. 

Given ANOVA estimates of the P and G matrices, the probability of P'G 
having a negative eigenvalue increases as the number of traits increases and as 
the number of progeny per sire decreases, as illustrated in Fig. 8.2, with data on 

the half-sib progeny of 20 sires and the eigenvalues of P'G equal to 0.25 (Hill 
and Thompson, 1978). 

Probability 100 7 

  

    

(x 100) of 
anegative 807 
eigenvalue 

40- 

20- 

O — 

T ! T I 

0 10 20 30 40 
Number of progeny per sire 

Fig. 8.2. The probability of a negative eigenvalue for the P-1G matrix 

The mean of the eigenvalues of the estimated P~'G matrix is unbiased, but 
the larger eigenvalues are positively biased, while the smaller eigenvalues are 
negatively biased. The magnitude of the bias increases as the number of traits 
increases and as the sample size decreases. If the spread of eigenvalues of the
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estimated P~'G matrix was reduced, then the reliability of the predicted accuracy 
of a selection criterion may be improved. One method of reducing the spread of 
eigenvalues is called "bending" (Hayes and Hill, 1981). 

In particular, if some eigenvalues of estimated P~'G matrix are either less 

than zero or greater than one, then the "bending" procedure can be used to ensure 

that eigenvalues of the modified P~'G matrix are non-negative and less than 
one. Rather than modifying the P and G matrices directly, the eigenvalues of the 

B and W matrices are "bent". The eigenvalues of the W'B matrix are 

4(v-1) 
, where v are 

(v—1+n) 
equivalent to eigenvalues of the P~'G matrix, as A= 

the eigenvalues of W~'B, obtained by solving [B— vW|=0, since the P and G 
matrices are linear combinations of the B and W matrices. The degrees of 
freedom for within-sires are generally greater than the degrees of freedom for 
between-sires, such that the W matrix is more precisely estimated than the B 

matrix. Only the eigenvalues of the B matrix are "bent" and the modified B 
matrix, B*, is 

B*=(1-y)B+ WW 

where 0 < y < 1 and V is the mean eigenvalue of w'B. 

The modified P* and G* matrices are 

G* =4[(1-y)B-(1-w)W]/n 

p* =((1-y)B+(n-1+y)W|/n 

The optimal value of y depends on the eigenvalues and the number of traits. One 
approach is to determine the smallest value of y that results in the smallest 

-| 
eigenvalue of P” G” being equal to zero. 

Generation Interval 

The response to selection per generation 1s 

Im t+! m f h*op 

2 
where ip, and ig are the standardised selection differentials of selected males and 

females, respectively, for selection on an animal's single measurement. The 
response to selection per unit time is 

Im +1 2 

Lin + Lr 

where Lp and L¢ are the respective generation intervals for selected males and 

females. The generation interval is defined as the average age of parents when 
their offspring are born, where the offspring are parents of the next generation. 
The length of the generation interval must be considered when evaluating 
alternative selection strategies. 

Op
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Example 

Two alternative breeding programmes are to be evaluated. The first programme 
selects animals of the basis of n repeated measurements on an individual, with a 

repeatability of re and heritability of h2, and a generation interval, L, of one 

year. The repeated measurements are made before mating, such that the 
generation interval is not increased. In the second breeding programme, animals 
are progeny tested, with each of the np half-sib progeny measured once. The time 

delay in obtaining the progeny measurements increases the generation interval to 
two years. How many progeny are required, per animal being considered for 
selection, to obtain the same rate of genetic improvement as selection on the 
animal's measurements? 

The responses per generation can be compared using the generation interval 

and accuracies of predicted merit. The accuracies with n repeated measurements 

on the individual or one measurement on each of np half-sib progeny are 

   
The number of progeny required per animal being considered for selection is 

nL?(4—h? | 

l-r+ n(re - Lh’) 

If there are two measurements on the individual for a trait with a heritability 
of 0.1 and repeatability of 0.2, 0.3 or 0.4, then at least 78, 63 or 52 progeny 
would be required to obtain a similar annual response compared to selection on 

the individual's mean measurement. It may not be possible to select the same 
proportion of animals with individual testing as with progeny testing, due to a 
limit on the testing facilities for large numbers of progeny, such that the 
selection proportion with progeny testing may be lower than with repeated 
measurements. 

  

Np 

Reduction in Variance (Bulmer Effect) 

Selection on a trait reduces both the phenotypic and genetic variances, such that 
prediction of long-term responses based on the response to one generation of 
selection will tend to overestimate the long-term response (Bulmer, 1971; 
Robertson, 1977). 

Let oO and o% be the phenotypic and additive genetic variances in the 

population before selection. The same proportion of males and females are 
selected as parents, with selection on the basis of an animal's one measurement. 

The phenotypic variance of the selected parents is reduced by ko, where 

k =i(i-x), with i and x, determined from normal distribution tables, 

corresponding to the mean of the selected animals, in phenotypic standard
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deviation units, and the threshold value, above which animals are selected. The 

phenotypic variance of the selected parents is: 

(1- k)op 
The genetic variance of the selected parents and their progeny are: 

(1-h?k}o% and (1 -+ h?k}oq 
The additive genetic variance within full-sib families is not changed by selection 

. I . . . . 
and remains at = OA; but the between full-sib family variance is reduced to 

=(I — h°k]o4, such that the additive genetic variance of full-sib progeny 1s: 

(1 _1 h?k|oA 
2 

For example, with a selection proportion in males and females of 0.20, i and 

x equal 1.40 and 0.842, and the changes in variance and response per generation 
are as shown in Table 8.4. 

Table 8.4. Changes in genetic and phenotypic parameters with selection 

  

Generations of selection 
  

  

0 1 2 3 4 

2 
Op 100 90.2 88.1 87.6 87.5 

2 
OA 50 40.2 38.1 37.6 37.5 

2 
© Disequilibrium 0 ~9.8 -11.9 ~12.4 ~12.5 

Heritability 0.5 0.446 0.432 0.429 0.428 

Response 7 5.93 5.68 5.62 
  

There is a substantial reduction in the response per generation after the first 

round of selection, due to the reduction in additive genetic variance and 

heritability. The environmental variance is assumed to be constant between 

generations, such that the phenotypic variance after t generations of selection 1s 

equal to the additive genetic variance plus the environmental variance: 

2 _ ~2 2 
OP(t+1) = FA(t+1) TOE 

The additive genetic variance after t generations of selection depends on the 

proportion of animals selected in generation t and the disequilibrium variance at 

generation t: 

2 _|,_ 1,2 4 |, 1 2 
SA(t+1) = 1 -3 héyk 0 A(t) ~ 5 ODisequilibrium(,)
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The disequilibrium variance is the difference between the additive genetic variance 
after t generations of selection and prior to selection. The disequilibrium variance 
is due to genes segregating together as a result of selection: 

2 _ 2 2 
ODisequilibrium = F A(t) — FA(0) 

The additive genetic variance after t generations of selection is 

O-A(t41) = =[oAay( - h?,)k) + 5% (0)| 

The reduction in genetic variance due to selection has several consequences. 
Predicted long term responses to selection will be overestimated, as shown in 
Table 8.4, when calculated using a heritability estimate from an unselected 

population. Secondly, predicted responses with selection based on between- 
family or within-family deviations will be incorrect, due to the redistribution of 
the genetic variance between and within families. Thirdly, if progeny tested sires 
are highly selected, then the value of additional information from sibs may be 
less than predicted, due to the reduction in genetic variance. 

Inbreeding 

Inbreeding is the mating of animals that have ancestors in common, such that at 
a particular locus their progeny may be homozygous for an allele, which 
belonged to one ancestor. The inbreeding coefficient, F, for progeny of two 
individuals, is half the genetic relationship between the individuals, which was 
discussed in Chapter 5. For example, the inbreeding coefficients for progeny of 
full-sibs and progeny of half-sibs are 0.25 and 0.125, respectively. Evaluation of 
alternative breeding programmes should take account of both the rate of genetic 
improvement and the rate of inbreeding, due to the detrimental effects of 

inbreeding depression. 

Inbreeding depression 

In an inbred population, if there are n loci affecting a trait, with allele frequencies 

pj and dominance deviations dj, then the reduction in the mean phenotypic 

performance of 
n 

2F 2 Pi (1— pj); 
1= 

relative to the outbred population, due to the level of inbreeding is called 

inbreeding depression. Calculation of inbreeding depression assumes that there is 

no interaction between the n loci affecting the trait. The effect of a 1% increase 

in inbreeding coefficient of the individual and of the dam has been a reduced litter 

size of 0.013 and 0.023 in pigs (Hill and Webb, 1982), a reduced weaning 

weight in cattle of 0.44 and 0.30 kg (Burrow, 1993), and a reduced milk yield of 

25 kg (Miglior et al., 1995).
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Rate of inbreeding 

The rate of inbreeding in a population, AF, is the difference in the average 
inbreeding coefficient for the population at generation t+1, Fy, ), and at 

generation t, F;, relative to the difference between complete inbreeding, when the 

inbreeding coefficient is one, and the level of inbreeding at generation t: 

AF = Fist ~~ F, 

1-F, 

The predicted rate of inbreeding in an "idealised" population, which is a 
population of size N, consisting of equal numbers of males and females, selected 
and mated at random, and with random family size, is 

  

| 
2N 

In a non-"ideal" population, the rate of inbreeding is predicted from 

AF = 
2N, 

where Ne is the effective population size, corresponding to the population size 
required to achieve the observed rate of inbreeding in an "idealised" population. 
When the numbers of breeding males and females are unequal, the effective 
population size can be approximated by 

_ ANN 

© Nin tNe 
where Nm and N¢ are the number of breeding males and females in the 

population, and the rate of inbreeding is 

AF = i + a 

8N,, 8N¢ 

As the variance of the family size increases, the effective population size 
decreases, such that the rate of inbreeding increases. 

Incorporation of variation in family size into the formula for the rate of 

inbreeding (Hill, 1979) assumes that variation in family size has no genetic 
component. In a selected population, variation in family size will have a genetic 
component, as animals of high genetic merit will have more selected progeny 
than animals of low genetic merit, such that the rate of inbreeding will be under- 
estimated. Several studies have developed methods to predict the rate of 
inbreeding in selected populations (Woolliams et al., 1993;Wray et al., 1994). 

Variance of response and inbreeding 

The rate of genetic improvement is a function of the selection differential, the 
accuracy of selection and the genetic variance, with a successive reduction in the 
genetic variance as the number of generations of selection increases, i.e. the 
Bulmer effect. The variance of the rate of genetic improvement, AG, also 
depends on the rate of inbreeding, AF: 

var(AG) = 2AFOAc2( — rok]
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where 04. andr,, are the asymptotic values for the genetic variance and 

accuracy of selection after several generations of selection (Meuwissen and 
Woolliams, 1994). An increase in the rate of inbreeding will be accompanied by 
increased variation in the rate of genetic improvement, such that the realised rate 
of genetic improvement may differ substantially from the predicted rate of 
genetic improvement. Simultaneous maximisation of the rate of genetic 
improvement and minimisation of the difference between the predicted and 
observed rates of genetic improvement will be difficult to achieve, as both 
parameters depend on the proportion of animals selected to be parents of the next 
generation, which determines, to an extent, the rate of inbreeding. However, 

several methods have been proposed which markedly decrease the rate of 

inbreeding, and therefore the variance of genetic response, without substantially 
reducing the rate of genetic improvement. 

Methods to reduce the rate of inbreeding 

One method of reducing the rate of inbreeding, while maintaining the rate of 
genetic improvement, is to increase the population size. Several approaches have 
been examined to constrain the rate of inbreeding, without increasing the size of 
the population. The approaches can be categorised according to family structure, 
selection on biased predicted breeding value, and the combination of predicted 
breeding value and inbreeding coefficient. 

Family structure 

The rate of inbreeding increases with the variance of family size, but the effective 
population size can be maximised by selecting animals within families, to 
ensure that a female from each full-sib family replaces her dam and a male from 
each half-sib family replaces his sire (Hill et al., 1996). 

The rate of genetic improvement for within-family selection is lower than 
with mass selection, such that the advantage of reducing the rate of inbreeding is 
offset by the reduced rate of genetic improvement. Increasing the number of half- 
sib families, by reducing the number of full-sibs in a family, would reduce the 
rate of inbreeding without reducing the rate of genetic improvement. 

For example, in a dairy cattle breeding programme, one procedure is for 
immature follicles to be collected from a donor cow with the ova matured in 
vitro and ova fertilised using semen from different bulls (Woolliams, 1989). 
Fertilised ova would be transferred to recipient cows. Given 36 donor cows mated 
to four bulls with eight ova fertilised per cow, the predicted rate of genetic 
improvement with nine full-sib families of size eight, for each bull, was the 
same as with 18 full-sib families of four offspring per bull, but the predicted rate 
of inbreeding, as measured by the effective population size, was lower. 

Selection on biased predicted breeding values 

Inclusion of information from relatives for prediction of breeding values 
increases the correlation between relatives’ predicted breeding values and also the
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probability of selection for relatives of animals with high genetic merit. One 
method of reducing the probability of selecting relatives is to increase the value 
of the heritability used to determine the selection criterion coefficients, such that 
the selection criterion weighting on the mean measurement of the animal's 
relatives is reduced (Grundy et al., 1994). 

For example, if the selection criterion is based on measurements of an 
individual and its six full-sibs, and the heritability of 0.25 is incremented by 
0.01, 0.025 or 0.05, then the selection criterion coefficient for the mean 

measurement of the full-sibs changes from being 1.80 times the coefficient for 
the individual's measurement to 1.77, 1.70 and 1.62, respectively, such that 

there is relatively less emphasis on the full-sib information. 
The rate of inbreeding can be reduced substantially, with a only marginal 

reduction in the rate of genetic improvement, with the latter being due to the use 
of a non-optimal selection criterion. The increment to the heritability for 
calculation of the selection criterion coefficients depends on the heritability and 

the required rate of inbreeding. 

Predicted breeding value and inbreeding coefficient 

When predicting breeding values, rather than altering the balance of information 
from the animal and its relatives, the breeding values could be adjusted for 
inbreeding directly, to reduce the rate of inbreeding. The animal's predicted 
breeding value could be adjusted for either its inbreeding coefficient, F (Toro and 
Perez-Encisco, 1990), or for the average genetic relationship between the animal 
and other selected animals, r (Brisbane and Gibson, 1995), such that the adjusted 

breeding value would be either 

A-kF or A-kr 

respectively. Examination of the predicted rates of genetic improvement and 
inbreeding for a series of k values is required to determine the appropriate k 

value. 
Adjustment of an animal's breeding value for its inbreeding coefficient is 

straightforward once the value of k has been determined. In contrast, adjustment 
of the individual's breeding value for the average genetic relationship between the 
individual and other selected animals requires knowledge of the identity of the 
selected animals, which can only be determined after their breeding values have 
been adjusted. Therefore, breeding values of all animals are initially calculated 
and animals with the highest predicted breeding values are allocated to the 
selected group, with their breeding values subsequently adjusted for the genetic 
relationships. Animals in the selected group with lower adjusted breeding values 
than animals in the unselected group are replaced, and the breeding values are 
adjusted for the new genetic relationships. The process is repeated until no new 

animals are selected. 
Generally, large reductions in the variance of the rate of genetic 

improvement can be obtained, without substantially reducing the rate of genetic 
improvement, by either incrementing the heritability when predicting breeding 
values or by adjusting the breeding values for the animal's inbreeding coefficient
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or for its genetic relationship with other selected animals. However, the 

optimum value for the adjustment factor has to be determined empirically, as no 

formal method of determining the optimum adjustment factor has been proposed.



Chapter nine 

Performance Testing, Progeny Testing 
and MOET 

Several aspects of predicting breeding values and responses to selection have 

been examined and a series of examples have been used to illustrate each new 
point. Measurements have been made on the individual and its relatives for one 
or several traits to enable prediction of the individual's breeding value, with all of 
the animals belonging to the same generation. However, performance testing and 
progeny testing are complementary methods of providing information for 
breeding value prediction. Similarly, measurements on animals from previous 
generations can be incorporated with measurements on an animal and its relatives 
for prediction of breeding values. In dairy cattle breeding, bulls are evaluated 
using information from their dam's generation, their sibs and their progeny, such 
that information is available from several generations. In this chapter, the 
combination of performance testing and progeny testing is examined, with a 
sheep breeding example, and incorporation of information from several 
generations is discussed with regard to dairy cattle breeding. 

Optimising Performance Testing and Progeny Testing 

The selection objective of a particular sheep breeder is to improve carcass lean 
content in the crossbred progeny of purebred rams. A total of five rams are to be 
selected from 100 performance tested rams. Growth rate and ultrasonic backfat 
depth are measured on all rams, and are combined into an index by the sheep 
breeder. The index of growth rate and ultrasonic backfat depth has a heritability 
of 0.25 and a genetic correlation with carcass lean content of crossbred progeny 
of 0.6, which has a heritability of 0.4 and a phenotypic standard deviation of 30 
g/kg. The sheep breeder could select the rams on the basis of the performance 
test index, with a generation interval of one year. 

However, the sheep breeder also owns a flock of crossbred ewes, with carcass 
information available on a total of 500 progeny. The sheep breeder could also 
select the rams on the basis of a progeny test, which has a generation interval of 
two years. The question posed by the sheep breeder is: What is the optimal 
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combination of performance testing and progeny testing, to identify the five 
rams for selection? 

The performance test index is denoted as trait 1, with carcass lean content 

denoted as trait 2. The genetic parameters are h? = 0.25, h3 =(0.4 and 

ra = 0.6. 

One option is to select the five rams on the basis of the performance test. 
For purposes of the example, only the selection of rams is considered, such that 
the annual rate of genetic improvement is equal to half the genetic merit of the 
selected rams divided by the generation interval. The annual rate of response is 

0.5b>,;SD, 
R P = 

erformance L performance 

where b, is the regression of predicted breeding value for carcass lean content 

on the performance test index and SD, is the selection differential for the 

performance test index. As five rams are selected from 100, then the selection 
proportion is 0.05 and the standardised selection differential is 2.063. The 

, . ... Tahyh,o,o ; ; 
regression coefficient is Ae Therefore, with performance testing 

0} 
only, the annual response in carcass lean content is 5.9 g/kg. 

Alternatively, the five rams could be selected on the basis of the progeny 

test, with an annual rate of response of 
R _ 0.5b ,pSD5 

Progeny — L 
Progeny 

where b ,5 is the regression of predicted breeding value for carcass lean content 

2 

on mean progeny carcass lean content, equal to ——————,, and SDj is the 
4+(n-1)h 

selection differential based on mean progeny carcass lean content. Since there are 
500 progeny from 100 rams, then the number of progeny per ram is five and the 

1+(n-1)t 

n 
regression coefficient is 0.714. The value of SD5 is 12 O», equal to 

0.529i,0>, since all progeny are half-sibs and t=7h}. Therefore, with 

progeny testing only, the annual response in carcass lean content is 5.8 g/kg. 
There is little difference between the annual rates of improvement with 

selection on either performance test or on progeny test, in the example. 
The third option is to select a proportion of rams on the basis of 

performance test, progeny test those rams and finally select the required five rams 
on the basis of performance test and progeny test (Cunningham, 1975). The 
combination of performance test and progeny test makes full use of the 
performance test facilities; and progeny testing of a subset of the 100 rams, 

rather than all 100 rams, will increase the number of progeny per ram, to 

increase the accuracy of selection. If the genetic correlation between the 

performance test index and carcass lean content is substantially lower than one, 

then the rams of high predicted genetic merit for the performance test index may
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not have high predicted genetic merit for carcass lean content. Therefore, the 
advantage of increasing the accuracy of the predicted genetic merit for carcass lean 
content, by increasing the number of progeny per sire, may be offset by the 
disadvantage of excluding rams of high genetic merit for carcass lean content 
from the progeny test. 

The response, with both performance testing and progeny testing, is 

igh3(1—rahpk}o, 
  Rcombine = hit ahyhgo2 + Ton? 

a(t ~rAhtk) +——* 

The annual rate of response is 0.25Reombine to take account of the generation 

interval of two years, due to progeny testing, and assuming that the rate of 
genetic improvement is equal to one half of the genetic merit of selected rams. 
The first part of the equation, i,;r,h,h>, is the correlated response in trait 2, 

carcass lean content, given selection on trait 1, the performance test index. The 

second part of the equation is the response with selection on the basis of progeny 

test, with the variance in trait 2 reduced by (1 - rah;k), to take account of the 

prior selection on trait 1. 
The terms i; and ig reflect the proportion of rams selected on the 

performance test index and on the basis of the progeny test, respectively, with 

k=1, (iy - x1). When all rams are progeny tested, then 1; = 0 and the equation 

reduces to the expected response with selection on mean progeny measurement, 
as discussed in Chapter 5. 

Annual response, Op 

    

  

    

0.257 
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Fig. 9.1. Annual rates of genetic improvement in carcass 
lean content for different numbers of rams progeny tested 

For the example, the optimum number of rams to progeny test was 
determined empirically, by varying the number of rams selected on the 
performance test index. The annual rates of genetic improvement in carcass lean 
content for different numbers of rams progeny tested, with several values of the
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genetic correlation between the index of performance test traits and carcass lean 
content, are illustrated in Fig. 9.1. 

The annual response in carcass lean content of 7.1 g/kg, from progeny 
testing 40 selected performance tested sires, is proportionately 0.20 higher than 
the annual response with either performance testing or progeny testing alone. 

The example illustrates the combination of performance and progeny testing 

for one generation of selection. However, the reduction in genetic variance would 
have to be accounted for in the evaluation of the three testing procedures over 
several generations of selection. 

Progeny Testing and MOET (Multiple Ovulation and 
Embryo Transfer) 

In conventional dairy cattle breeding programmes, the predicted genetic merit of 
bulls is based on progeny performance, which has a high accuracy, provided that 
sufficient daughters are recorded. One disadvantage of progeny testing, in a dairy 
context, is the long generation interval of seven years, on average, which reduces 

the annual rate of genetic improvement. 
The four pathways of genetic improvement in dairy cattle breeding are bulls 

to breed bulls, BB, bulls to breed cows, BC, cows to breed bulls, CB, and cows 
to breed cows, CC. Each pathway uses different information to predict the 

breeding values of animals within the pathway. 
For the BB and BC pathways, if a bull's breeding value is predicted from 

milk records on n daughters, then the accuracy of predicted breeding values is 

—h? 
o— andA= = If the heritability of milk yield is 0.25 and there is a 

n+AXA 
milk record on each of the bull's 50 daughters, then the accuracy of the bull's 

predicted breeding value is 0.88. 
For the CB pathway, the accuracy of predicted breeding values of cows is 

0.63, when the selection criterion consists of the 50 milk records of the maternal 
grandsire's daughters, the 50 milk records of the sire's daughters and the cow's 

first lactation record. 
In the CC pathway, the cow may have zero, one or two lactation records, 

with accuracies of predicted genetic merit of 0.49, 0.63 and 0.69, respectively, 
giving an average accuracy of 0.60. For the cow with no lactation records, the 

accuracy of the predicted breeding value is 

  

2 _1 ( 2 5 | ra =Glis tp 

where re and ry are the accuracies of predicted genetic merit for her sire and 

dam. If the cow's breeding value is predicted from information on her sire's 

daughters and her maternal grandsire's daughters (MGS), the accuracy of the 

cow's predicted genetic merit is 

1 2 1 2 
— —r_r = 4 fie += Ics = 0.49 
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The annual rate of genetic improvement in a conventional dairy breeding scheme, 
using progeny testing, can be determined when information on the accuracies of 
predicted breeding values are combined with the selection differentials and 
generation intervals of each pathway, as shown in Table 9.1. 

Table 9.1. Response to selection in each of the four pathways 

  

  

Average Accuracy 
generation of predicted Selection 
interval breeding Proportion’ differential Response 

Pathway (years) value selected (Op) (Op) 

BB 6.5 0.88 0.03 2.27 1.00 
BC 7.5 0.88 0.11 1.70 0.75 
CB 6.5 0.63 0.02 2.38 0.75 
CC 4.5 0.60 0.90 0.20 0.12 
  

The response per generation in each pathway is ir A ahop. The annual 

genetic improvement in a conventional dairy breeding scheme is the sum of the 
genetic improvements in each pathway divided by the sum of the generation 
intervals, which is 0.10 0p (Nicholas and Smith, 1983). 

In a conventional dairy breeding scheme, the two main constraints on the 
annual rate of genetic improvement are the long generation intervals of the bulls 
and cows to breed bulls, BB and CB, and the bulls to breed cows, BC, pathways, 
and the very low selection differential in the cows to breed cows, CC, pathway. 
The generation interval in the BB and BC pathways could be substantially 
reduced if bulls' breeding values were predicted from information on their parents 
and relatives, rather than from progeny test information. Secondly, if the 
reproductive rate of cows could be increased, then the selection differential in the 
cows to breed cows, CC, pathway would be increased. The combination of the 
two factors— (1) selecting bulls on predicted breeding value, rather than from 
progeny test records and (2) increasing the reproductive rate of cows— is the 
basis of multiple ovulation and embryo transfer (MOET) in a dairy cattle 
breeding scheme (Nicholas and Smith, 1983). 

Multiple ovulation and embryo transfer (MOET) 

Multiple ovulation to increase the number of eggs and the transfer of embryos to 
recipient cows increases the reproductive rate of cows and so increases the 
potential selection differential of cows to breed cows. Cows would be selected on 
a within-family basis, as a cow's transferred embryos could be considered as full- 
sibs, to maintain the number of cow families and prevent an increase in the rate 
of inbreeding. 

Evaluation of bulls on the lactation records of their half-sibs and their full- 
sibs, through the use of MOET, will substantially reduce the generation interval 
for bulls, compared to progeny testing. The use of half-sib and full-sib 
information, rather than progeny information, will result in a lower accuracy for
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a bull's predicted breeding value, due to the smaller number of half-sibs and full- 
sibs compared to the number of progeny in a conventional breeding programme. 
Therefore, two alternative procedures have been proposed for dairy cattle breeding 
schemes using MOET. In the adult scheme, each cow has a lactation to increase 
the accuracy of her predicted breeding value, but the generation interval is longer 
than in the juvenile scheme, in which animals are selected only on the basis of 

parental breeding values. 
Assume that each bull is mated to s cows, each of which has n male and n 

female progeny from transferred embryos. For a particular animal, there will be 
lactation records available from its dam, its dam's (n—1) full-sibs, FS, and (s—1)n 
half-sibs, HS, and its grandam, and similarly on the sire side of the pedigree: 

s sibships of size n s sibships 
I | [ | 

Sire's dam Dam's dam 

    

Sire'sH Sire'sFS Sire Dam  Dam'sFS_ Dam's HS 

Cow 

Juvenile MOET scheme 

At 13 months of age, animals are selected on the basis of their parental breeding 
values, which incorporate lactation records on the animal's dam, the dam's full- 
sibs and half-sibs, and also the sire's full-sibs and half-sibs. At 15 months of 
age, the selected animals are mated, with a generation interval of 22 months 
(Nicholas and Smith, 1983). An animal and its full-sibs have the same predicted 
breeding values, as there is no information to differentiate between the full-sibs. 
The proportion of males selected is 1/s, rather than 1/sn, as full-sib males have 
the same predicted breeding value; so bulls are effectively selected on a between 
full-sib family basis. In contrast, the proportion of selected females is 1/n, as 
cows are selected at random, on a within full-sib basis, to replace their dams. 

Example 
If each bull is mated to eight cows, each of which has four male and four female 
progeny, through MOET, then the predicted breeding values have an accuracy of 
0.43. The response to selection in the male and female pathways is as follows: 

  

  

Generation Accuracy of Selection 
interval predicted Proportion differential Response 
(months) breeding value _ selected (Op) (Op) 

Males 22 0.43 1/8 1.65 0.36 
Females 22 0.43 1/4 1.27 0.27 
  

The annual response of a juvenile MOET scheme is 0.17 Op, equal to the sum 

of the responses in the two pathways divided by the sum of the generation
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intervals (Nicholas and Smith, 1983). The annual rate of genetic improvement is 
substantially greater than that of a conventional progeny testing scheme, but 
there may have to be an incentive for dairy producers to use semen from bulls 
that have not been progeny tested. 

Adult MOET scheme 

In the adult MOET scheme, cows are selected after one lactation, which increases 
the generation interval to 44 months, but the accuracy of predicted breeding 
values is also increased, as lactation records are now available on the cow's full- 

sibs and half-sibs. 

Selection of males in MOET schemes 

In both the juvenile and adult MOET schemes, there is no performance 
information on males, to enable differentiation between full-sib males, compared 
to selecting a bull at random from within a full-sib group. If full-sib bulls could 

be differentiated on the basis of an indicator trait, then the selection intensity of 
bulls would be increased (Woolliams and Smith, 1988). Incorporation of 
between full-sib and within full-sib selection for males changes the annual rate 
of response in a juvenile MOET scheme from 

+ iT a Iml AA AA 
hop 

Lin + Lr 

to 

im® a; | +(iggt | +(igr : | 
( m” AA} between _\ ™ AA/within _\f AA 

Lin + Lr 

where the m and f subscripts denote the selection intensities and generation 

intervals of males and females. 
The standardised selection differential for within full-sib family selection is 

  hop 

  i, ; (used by Woolliams and Smith, 1988), where n is the number of full- 
n — 

sibs, and the accuracy of a predicted breeding value given within full-sib 

selection on the basis of an indicator trait, X, is 

1 n-1 1,2 

. 1. 1,2 
The term (imt A ) ie equals bimtaby / I 5 hx , 

The above equations are based on one generation of selection and have not 
taken account of the reduction in genetic variance due to selection. The long term 
responses to MOET schemes will be lower than implied by the above equations. 

  

  

Example 
Blood urea nitrogen (BUN) is negatively correlated with protein deposition, with 
protein deposited either as muscle or as milk. Bulls could be measured for BUN
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to differentiate between full-sibs. As with the previous example on juvenile 
MOET schemes, it is assumed that each bull is mated to eight cows, each of 
which has four male and four female progeny, through MOET. 

The annual responses in milk yield in a juvenile MOET scheme, with BUN 
measured on bulls, for different values of the heritability for BUN and the genetic 
correlation of BUN with milk yield (Woolliams and Smith, 1988) are as 

follows: 

  

Genetic correlation 

between BUN and milk yield 
  

  

h2 
BUN 0.25 0.50 

0.25 0.18 0p 0.206p 
0.50 0.19 6p 0.216p 
  

For one round of selection, inclusion of an indicator trait can further increase the 
annual response of a juvenile MOET scheme, from 0.17 6p to 0.20 Op, provided 

that the genetic correlation between the indicator trait and milk yield is at least 

0.5, and the indicator trait has a heritability of 0.25.



Chapter ten 

Simultaneous Prediction of Breeding 
Values for Several Animals 

In Chapter 5, the breeding value of one animal was predicted, when information 

was available on relatives. Rather than predicting breeding values separately for 
each animal, it would be more efficient if breeding values were predicted for all 
animals, simultaneously. The equations derived from selection index theory to 
predict the breeding value of one animal, as discussed in Chapters 4, 5 and 6, are 
used to predict the breeding values of all animals under consideration. 

For example, one animal's breeding value is predicted as 

A = bap(P—Ppop] 
where b ap is the regression coefficient of breeding value on phenotype, P is the 

animal's phenotype and Ppop is the population mean phenotype. If bap and P 

were replaced by a matrix containing the regression coefficients and a vector with 
the animals’ phenotypes, then breeding values for all animals could be predicted 
simultaneously. The selection objective and selection criterion would consist of 
all animals’ breeding values and all phenotypic measurements, respectively. 

Breeding value prediction 

Let X be the vector of phenotypes for n animals and let pp be the population 

mean phenotype. Then the vector of predicted breeding values, A is 

A =b'(X-yl) 

where | is a vector of ones. With observations on the n animals, the phenotypic 
and genetic variance—covariance matrices, P and G, are of size n X n, with 

b=P'G. The parameter b is now a matrix of size n X n. 
In terms of a selection objective and a selection criterion, the n animals with 

measurements are equivalent to the n traits to be improved. The variances, 
prediction error variances and accuracies of all of the predicted breeding values are 
determined in a comparable manner to when the breeding value was predicted for 

one animal. 
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Variance of predicted breeding values 

The variance of a predicted breeding value for one animal, discussed in Chapter 4, 

iS b45 var(P) , where b,j is the regression coefficient for additive genetic merit 

on the mean phenotypic measurement of the individual, P. In matrix notation, 
the variance of a predicted breeding value is b' Pb, where P is the variance of the 

mean phenotypic measurement, with b = PG 
The variance—covariance matrix of predicted breeding values for n animals is 

b Pb =(P~'G} P(P"'G} =(G'P')P(P"'G)=G P'G 

The diagonal terms of G' P~'G are the variances of the predicted breeding values. 

Prediction error variance 

Similarly, the prediction error variance of one animal is var(A)— var( A), as 

outlined in Chapter 4, which can be represented in matrix notation by C—b' Pb, 
where C is the genetic variance of the mean phenotypic measurement. Therefore, 

by analogy, the prediction error variance can be written as G—G' P'G, when 
traits in the selection objective are equal to the traits in the selection criterion, as 

then C equals G. 
If measurements are made on only m animals and there are n animals, the 

breeding values of which are to be predicted, then G is an m X n matrix of the 
genetic covariances between the m phenotypic measurements and the breeding 
values of the n animals. C is an n X n matrix of the genetic variance—covariances 
for breeding values of the n animals. 

The prediction error variance—-covariance matrix of the predicted breeding 

values is C-G' P7'G, with the prediction error variances on the diagonal. 

Sire Evaluation 

The predicted breeding values and prediction error variances of several sires can be 

determined simultaneously, from measurements on their progeny, rather than 
separately. Information on the genetic relationships between sires can be 
incorporated in the breeding value prediction, such that information from one 
sire's progeny can contribute to the predicted breeding value of a related sire. 

Use of the sire model is illustrated with an example to demonstrate the link 
with selection index methodology, firstly assuming the sires are unrelated and 

then accounting for the genetic relationship between sires. 

Example 
Three unrelated sires, A, B and C, have 10, 20 and 40 half-sib progeny with 
progeny mean values of 170, 220 and 190, respectively. The trait has a 
heritability of 0.25 and a phenotypic variance of 20, and the mean phenotype for
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the population is 180. The predicted breeding values and the prediction error 
variance of the three sires are required. 

The selection objective can be considered as the breeding values of the three 
sires, and the selection criterion to consist of the progeny mean values for the 
three sires. The phenotypic variance—covariance matrix for the mean 

measurements of the three progeny groups 1s: 
T _ 7 

(« + —* 65 0 0 
10 

P= 0 t+ = lob 0 
20 

0 0 (¢ + = op 
| 40) P|     

and the genetic covariance matrix of the three breeding values with the three 
progeny phenotypic means is: 

xh’op 0 0 

G=| 0 <xh’op 0 
0 0 shop 

The traits in the selection objective, the breeding values of the three sires, are not 

equal to the traits in the selection criterion, the phenotypic mean measurements 
of the three groups of progeny, such that the genetic variance—covariance matrix 
of the three sires' breeding values, C, is equal to 2G. The matrix of regression 

coefficients, b = PG, is 

0.830 0 0 

0 1.14 O 

0 O 1.45 

and the predicted breeding values of sires A, B and C are 

170-180] [-8.0 
A=b'(X-p)=b' 220-180] =| 45.7 

190-180] [14.5 

The prediction error variances of the three predicted breeding values are the 
diagonal elements of the prediction error variance—covariance matrix, 

c-GP'c: 
3.00 

PEV =| 2.14 
1.36 

The breeding values and prediction error variance are exactly the same as if they 
had been calculated individually rather than simultaneously. The real benefit of 
breeding value prediction for several animals simultaneously is when genetic 
relationships between individuals can be incorporated in the prediction of
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breeding values, which would not have been possible if breeding values were 

predicted separately. 
If sires A and B are half-sibs, then the progeny of sire A can provide 

information towards the predicted breeding value of sire B and vice versa. The 
phenotypic mean measurements of progeny from sires A and B are no longer 

uncorrelated and similarly, the breeding values of sires A and B are now 

correlated. There is also a covariance between the breeding value of sire A with 

the phenotypic mean measurement of progeny from sire B and vice versa: 

4 GS ‘ GS: grandsire of progeny 

2 J \ 2 
S 4 SB 5. and SR sire A and sire B 

1] | 1 
2 2 

xy Xx B A and X,: mean phenotype of 

progeny of sire A and sire B 

The covariance between the progeny mean measurements for sires A and B is the 

covariance between one progeny of sire A with one progeny of sire B, which is 
4 

1 . . - ae 
—h*op. The coefficient of “ is (=) , as there are four steps linking progeny 

from sire A to progeny from sire B. The covariance between the breeding value 

of sire A with the phenotypic mean measurement of progeny from sire B is 

qh’op , as there are three steps connecting sire A to the progeny of sire B. 

The phenotypic variance-covariance of the mean progeny phenotypes, the 

measured traits, and the genetic covariance matrix between the mean progeny 

phenotypes and the sire breeding values, the traits to be improved, are 
-~ 

[((. 1-t) 2 1,22 [t+ 0 Jo 165 Op 0 1 1 0 

_ 1,22 1-t)\ 2 _{i ot 2.2 
P= 165 Op [t+ 0 Jo 0 and G= 2 2 s h Op 

0 0 (+= )o5 0°35 
40) "|     

The third matrix equal to the genetic variance—covariance of the sire breeding 

values, C, is 2G, as the genetic relationship between progeny and sire is 0.5. 

The matrix of regression coefficients, b = PG, is 

0.78 0.09 0 

0.17 1.13 0 

0 O 1.45 

and the predicted breeding values of sires A, B and C are
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4,3 
A =b'(X—p) =| 43.5 

14.5 
The prediction error variances of the three predicted breeding values are 

2.93 

PEV =C-G'P7'G=]2.12 

1.36 
Prediction of the breeding value of sire A now incorporates the mean phenotype 

of progeny from sire B, such that the extra information reduces the prediction 
error variance. The predicted breeding value of sire A is 

0.78(170 — 1) + 0.17(220 — 1) + 0(190 — 1) 

The proportional reduction in the prediction error variance of 0.02 for sire A 
indicates that there is a contribution of information from the mean phenotype of 
progeny from sire B to the predicted breeding value of sire A. Given that there is 
information on relatives, it is appropriate to incorporate that information in the 
prediction of the breeding value, to increase the precision of the predicted 
breeding value. The predicted breeding value and prediction error variance for sire 
C are unchanged, as sire C is unrelated to either sire A or sire B. 

The predicted breeding values of sires A and B have changed, with a larger 

change for sire A, when information from the progeny of each sire's half-sib was 
included in the prediction. The example indicates that the inclusion of additional 
information can change predicted breeding values, such that predicted breeding 
values can decrease, as for sire B, as well as increase, as with sire A. 

Animal Evaluation 

Rather than just predicting breeding values for sires of animals, the breeding 
values of all animals in a pedigree can be predicted, including those animals with 
no measurements. The methodology is the same as with sire evaluation, in that 
the phenotypic variance—covariance matrix of observations, P, the genetic 
covariance of an animal's phenotypes with the breeding values of all animals in 
the pedigree, G, and the genetic variance-covariance matrix of breeding values for 
all animals in the pedigree, C, are required. Animal evaluation can be considered 
as the selection objective, being equal to the breeding values of all animals in the 
pedigree, with the selection criterion consisting of the phenotypes of animals 
with measurements. 

Example 
Sire Dam 

A B (10, 25) 

Animal C(10) D(16) E ~ F(14, 17, 15)
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In the pedigree of six animals, C and D are half-sibs, and D and E are full-sibs, 
while F is unrelated to the other animals. The measurements on each animal are 
given in parentheses. The heritability of the trait is 0.25, the repeatability is 0.4, 
the phenotypic variance is 4.0 and the population mean phenotype is 15.0. 
Determine the predicted breeding values for each animal. 

The phenotypic variance-covariance matrix, P, of measurements is of size 
4 x 4, as only four animals have measurements, such that 

fe + 0 =h° 0 B 

0 1 sh 0 |, | C 
P= 1,2 1,24 0 Op for animals D 

0 0 O nt = r     
; ; . . 1 ; 

Animals B and D are dam and offspring, with a covariance of = h*op, while 

animals C and D are half-sibs and the covariance between measurements is 
1 . . . . . . 
Z h2o3. The genetic covariance matrix of four measurements with six breeding 

values 1s as follows: 

J 

  

i 1 I 
1 O 2 0 , 2 B 

= = C 
G= Ol 4 0 2 4 h703, with rows equal to animals 

Poly ogo ILL D 
2 4 2 2 
000100 F   

and animals B, C, D, F, A and E in columns. Calculation of the prediction error 

variances also requires the genetic variance-covariance of the breeding values, C. 

The matrix of regression coefficients, b = PG, is 

0.34 -0.01 0.14 O -0.02 0.16 

—0.01 0.25 0.05 0O 0.12 0.06 

0.08 0.05 0.23 O 0.12 0.10 

0 0 0 042 0 0 

The predicted breeding values and prediction error variances for the animals are 

TB] [| 0.96] 0.62 | 

C ~1.21 0.74 

D 0.33 0.69 

F{ | 0.14 a toss 
A —0.52 0.88 

FE} | 0.22) 0.86,            
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In the b matrix, the regression coefficients for each animal are in columns, with 
the underlined terms equal to the regression coefficients for the animal's own 
measurements. Therefore, the predicted breeding value of animal B is 

20 +15 
  0.34 - 15} —0.01(10~15)+0.08(16 - is) +o SAE 15] 

Records on animals C and D have similar regression coefficients, 0.1175 and 

0.1203, for predicting the breeding value of their sire, animal A, since both 

animals have the same number of records. When predicting the breeding value of 

animal E, the regression coefficients for animal E's dam B, 0.16, half-sib C, 

0.06, and full-sib D, 0.10, reflect the combination of a greater number of records 

on the dam than on the full-sib and the genetic relationships between animal E 

with its relatives. The predicted breeding value of animal E is also equal to the 
average predicted breeding value of its parents, A and B, as expected, since animal 

E has no record. As animal F is unrelated to the other five animals, then its 

breeding value is predicted from its own records. 
The prediction error variances reflect the contribution of information from 

animals in the pedigree to the calculation of predicted breeding values. For 

example, animals C and D both had one record, but information from D's dam 

and full-sib reduced the prediction error variance of animal D relative to animal 

C. Similarly, both animal A and E have no records, but there is relatively more 

information from animal E's relatives than from animal A's progeny, and so the 

prediction error variance of animal E is lower than for animal A. 

The link between selection index methodology and simultaneous prediction 

of breeding values for several animals has been established. However, one 

assumption of selection index methodology is that all animals are measured in 

the same environment. Obviously, such an assumption is not realistic, such that 

different environmental effects need to be accounted for when predicting breeding 

values, which is the subject of the next chapter.



Chapter eleven 

Prediction of Breeding Values and 
Environmental Effects 

In previous chapters, animals were assumed to belong to the same environmental 
group, and phenotypic differences between animals were due to genetic 
differences, rather than to a combination of genetic and environmental differences. 
Examples of environmental effects are year of measurement, management 
system, age of dam or the age at the end of performance test. One approach 
would be to estimate the environmental effects and then adjust each animal's 
record for the estimated environmental effects, before predicting breeding values. 

Table 11.1. Average milk yields of daughters by sire and herd 
  

  

  

Sire 

Farm 1 2 3 

A 27 (24) 23 (20) 
B 17 (20) 16 (19) 
  

For example, if sires have the same number of daughters on each farm, then 
between-farm differences can be accounted for in the comparison of sires. If each 
of three sires have a very large number of daughters on two farms and the average 
daily milk yields are as shown in Table 11.1, then the difference of 6 kg/day 
between progeny of sire 2 on farms A and B provides an estimate of the effect of 
being reared on farm A or B. Therefore, the value of 3 kg/day is subtracted from 
progeny means in farm A, but added to progeny means in farm B, such that the 
"population" mean after accounting for farms is (24 + 20 +19)/3 = 21 kg/day. 
After adjusting the progeny mean values for the effects of farm, as indicated by 
values in parentheses, the breeding values of the sires can be predicted as 6, —2 
and —4 kg/day, respectively. If there was a high degree of confounding between 
genotype and environment, then such an approach would be unsatisfactory. If the 
number of progeny of each sire on each farm is not very large, then it would be 
preferable to predict sires' breeding values and estimate the environmental effects 

simultaneously. 
A procedure for simultaneous prediction of breeding values and estimation of 

environmental effects, called best linear unbiased prediction, was developed by 

Henderson (1953). 
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Best Linear Unbiased Prediction (BLUP) 

BLUP can be used with different models to predict breeding values and estimate 
environmental effects. The properties of the BLUP procedure are as follows: 
Best: maximisation of the correlation between the true breeding value 

and the predicted breeding value 
Linear: predicted breeding values are linear functions of the observations 
Unbiased: estimates of fixed effects are unbiased and the unknown, true 

breeding values are distributed about the predicted breeding values 
Prediction: the procedure predicts the true breeding values 

BLUP is generally used to predict sire breeding values, given measurements on 
progeny, or to predict breeding values of animals with repeated records, or to 
predict breeding values of all animals in the pedigree. The three models are called 
the sire model, the repeatability model and the individual animal model, 
respectively. Use of BLUP in each of the three models will be discussed in turn. 

Fixed and random effects 

The environmental effects, such as farm of measurement, sex or breed of animal 
and age of dam, are referred to as the fixed effects, as the effect is of specific 
interest. Hypotheses can be proposed regarding the fixed effects, such as "There is 
no difference in mean perforamance of animals from the two breeds A and B". A 
model with a fixed effect is represented as: 

Yjj =U +O; + ej 

which refers to the j'" animal in the i class of the fixed effect. A model which 
estimates only fixed effects is called a fixed effects model. 

In contrast, estimating the effect of the specific pen in which an animal was 

housed during performance test is not of interest, although some account should 
be taken of variation 1n the performance test traits, due to animals being tested in 
different pens. Effects, such as pen, are referred to as random effects. A model 
with a random effect would be : 

yj =U+9; +e; 

which refers to the j'. animal in the if" class of the random effect. A random 
effects model estimates variation between the random effects. A mixed model 

includes both fixed and random effects, other than the error term. 

In both fixed and random effects models, the error terms are random effects 

with a mean of zero and a variance of o2. In the model with a fixed effect, the 

a's represent differences between classes of the fixed effect, while in the model 
with a random effect, the 5's are random samples from a population with a mean 

of zero and a variance of O%. The covariance between the random effect and the 

error term is assumed to be zero. The subject of fixed and random effects is 
discussed by Searle (1971). 

In animal breeding, the sires or animals, the breeding values of which are to 
be predicted, are referred to as random effects, as the sample of sires in the data
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are assumed to belong to a population of sires with a variance of oO... However, 

the BLUP method is used to estimate the sire effects, or predict the sires' 
breeding values, such that the sires are also "treated" as fixed effects. 

Sire Model 

In the sire model, sire effects equal to half the breeding values of sires are 
predicted from observations on progeny. The sire model is particularly used in 
dairy cattle breeding programmes, where progeny testing of sires 1s practised. The 
model for the observation on one animal, in this case the offspring of a sire, 1s 

Y=A+E 

where A is half the breeding value of the sire and E is the environmental effect. 
The equation for the sire model is 

y = Xb+Zut+e 

where y is the vector of observations, X is the incidence matrix of the fixed 
effects, b is the vector of fixed effects, Z is the incidence matrix of the sire 
effects, u is the vector of sire effects and e is the vector of residuals. In an 
incidence matrix, each element consists of either a zero or a one, according to 
which level of the fixed or random effect each animal is classified. 

If all effects are considered as fixed, the following equations are derived: 

X'Xb + X'Zu = X'y from multiplying both sides of the equation by X’ 
Z'Xb + Z'Zu = Zy from multiplying both sides of the equation by Z' 

X'X X'Z]5 [xy 

ZX ZZal |Zy 

The mixed model equations should include a factor relating to the variation 
between the sire effects, as sires are random effects and are not fixed, and this can 

be derived from selection index methodology. 

Or 

The predicted breeding value of a sire, A, given the mean progeny 

measurement, P, and the population mean, L, is 

A=b(P-y) where b=P'G 
or 

loz +toz|A=| in? +4(1-ih?) lop A =—h*o3P 

; ; 4 ; 
assuming that 4 =0, and by mutiplying throughout with > = ——, gives 

Os; Op 

[n+ aji=nP=| 3, 
i=l
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2 

where A = 52 and u is half the predicted genetic merit of the sire. However,   

if the estimated sire effect is determined from the sire part of the above fixed 
effects model 

ZzIsJ=[2y] or (nfa]=| 38 | 
then the solution for the sire effect would not be the same as from selection 
index theory, as the term A is omitted from the left-hand side of the equation. 

The equation from selection index theory is equivalent to incorporating the 
AI matrix in the fixed effects model, so that the mixed model equations include a 
factor relating to the variation between the sires (Henderson, 1973): 

XX XZ bl [xXy 

ZX ZZ+lal |Zy 

In Chapter 10, genetic relationships between animals were included in the P and 
G matrices, such that information from relatives could be combined for 
prediction of the individual's breeding value. The matrix of genetic relationships 
between sires, A, can be incorporated into the equation as: 

[Acs +1102 [A = A1nopP 

and multiplying thoughout with =A , gives 
Os 

“ln 5 n 
[n+ AA Jb=nP-| 3, 

In analogous manner, relationships between sires are also incorporated into the 

mixed model equations by including the term AA! to obtain the mixed model 

equations: 

X' X X' Z b X'y 

ZX ZZ+aAA' Hal [Zy 

where A is the numerator relationship matrix consisting of the genetic 
relationships between sires. In the context of a selection objective and selection 
criterion, the A matrix is analogous to the genetic variance—covariance matrix of 

sire breeding values divided by the genetic variance, Cox’ , 

Computational procedures to solve the mixed model equations for 
simultaneous estimation of the fixed or environmental effects and prediction of 
breeding values are outwith the remit of this text, but are comprehensively 

discussed by Mrode (1996).
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Example 

The milk yields of 13 Jersey cows from two sires were recorded on two farms for 
one day. The heritability of daily milk yield is 0.25. The breeding values of the 

two sires are to be predicted. The animal identities, farm, sire and each animal's 
milk yield are as follows: 

  

  

Animal Farm Sire Milk yield 

l A 1 8 
2 A l 9 
3 A 2 11 
4 A 2 12 
5 A 2 12 
6 A 2 13 
7 A 2 14 
8 B 1 15 
9 B 1 14 

10 B 1 15 
11 B 2 18 
12 B 2 19 
13 B 2 20 
  

The mixed model equations require the incidence matrices for the farm, X, 
and sire, Z, effects, which are obtained from the data and each element consists of 
either a zero or a one, according to which farm or sire each animal was classified. 
Similarly, the vector of observations, y, is required. 

X matrix Z matrix y vector 
Animal Farm Farm Sire 1 Sire 2 Milk 

A 
  

8 
9 

11 
12 
12 
13 
14 

15 
14 
15 
18 
19 
20 
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The mean daily milk yield and number of observations, in parentheses, for each 
farm-sire subclass are as follows:
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Sire 1 Sire 2 Total 

Farm A 8.5 (2) 12.4 (5) 79 (7) 

Farm B 14.6 (3) 19.0 (3) 101 (6) 

Total 61 (5) 119 (8) 
  

The left-hand side of the mixed model equations can be split into the 

submatrices that describe the number of observations in each class of the fixed 
effects, X'X, the random effects, Z'Z, and the cross-classification of fixed and 

random effects, X'Z, 

7 O 5 0 2 5 
x X= : ZZ= ; xX Z= 

i 4 ° |; 

Note that the submatrices can be simply derived from the number of observations 

for each farm-sire subclass and that, unlike selection index methodology, 

information on the population mean is not required for breeding value prediction. 

The right-hand side of the mixed model equation is the sum of the 

observations in each class of the fixed effects, X'y, and the random effects, Z'y, 

ey | 2 ay | 8 
YT 1011’ y= 1119 

In the sire model, the observations on each animal are not used directly, as only 

the sum of observations in each subclass of fixed and random effects is included 

in the mixed model equations. Later in this chapter, discussion of the individual 

animal model will illustrate how the observations on each animal can be directly 

included in the mixed model equations. 
With sires treated as fixed effects, the fixed model equations are 

7 02 5 79 farm A 10.40 

0 6 3 3b] {101 b| |farmB| | 16.83 
= with solutions =; . = 

2 3 5 OG 61 a sire | 11.56 

5 3 0 8 119 sire 2 15.68 

With sires treated as random effects, the inverse of the numerator relationship 

matrix needs to be incorporated into the mixed model equations. If the two sires 

1 O 
are unrelated, then A = , | 

1,2 
of I-gh 4—h? 

If the heritability is 0.25, then %=—*% = —4+—= =15 
of ah h? 

and rA-! S ‘| 

  

0 15 

The mixed model equations are
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7 0 #2 =55 79 farm A 11.04 

06 3 3 | 101 | sn solutions | farm B |_| 16.83 
2 3 20 OG 61 a sire | —0.58 

5 3 0 23 119 Sire 2 0.58 

Although the solutions for the farms are similar to the fixed effects model, the 
sire solutions now sum to zero. 

In the mixed model equations, no account was taken of the genetic 
relationship between the sires and their offspring, on whom the milk yields were 
recorded. The sire solutions are equal to one half of the sires’ predicted breeding 

values, as the genetic relationship between sire and offspring is one half. 
Information on the genetic relationship between sires can be incorporated 

into the mixed model equations, in a manner similar to that outlined in Chapter 

10. 
If sire 1 is a parent of sire 2, the numerator relationship matrix is 

1 05 _, [ 20 -10 _, [ 25 -10 
such that AA = and Z Z+AA = 

0.5 |] —10 20 —10 28 

Solutions to the mixed model equations are now obtained from 

7 O 2 5 79 farm A 11.14 
aA 

0 6 3 3 1b] | 101 and b|_ | farm BY] _ 16.83 

2 3 25 -10}a] | 61 G}| | sirel | |-0.34 

5 3 -10 28 119 sire 2 0.34 

Note that after accounting for the genetic relationships between sires, that the 
sire solutions still sum to zero. 

Incorporation of information on the genetic relationships between sires, for 
breeding value prediction, is based on the assumption that the sires are a sample 
from a population with mean breeding value of zero. However, there are 
occasions when groups of animals have been derived from populations with 
different mean breeding values. For example, in dairy cattle, the progeny of 
Holstein cattle from North America may have a different mean breeding value 
than progeny of Holstein cattle from Great Britain. Therefore, the existence of 
different genetic groups should be incorporated in the methodology for breeding 

value prediction. Mrode (1996) discusses the procedure for grouping, based on the 
methods of Thompson (1979) and Westell et al. (1988). 

Several computer packages are available for BLUP evaluations, such as 

PEST (Groeneveld et al., 1990). 

Residual Maximum Likelihood (REML) 

Predicted breeding values determined from solving the mixed model equations are 
unbiased, provided that the genetic and phenotypic parameters, and therefore the 
value of A, are known without error. There are several methods to estimate the
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required parameters, particularly for unbalanced experimental designs, as is 
generally the case with animal breeding data. ANOVA procedures are based on 
the assumption that animals are a random sample from the population, which 
will not be approriate in selected populations, such as in livestock improvement 
programmes. Maximum likelihood methods can account for selection conditional 
on all the information, which has contributed to selection decisions, being 
included in the analysis. Even when the condition is not fully satisfied, 
parameters estimated with maxiumum likelihood are generally less biased than 
ANOVA estimates (Meyer and Thompson, 1984). 

One maximum likelihood procedure is REML (Patterson and Thompson, 
1971), which is widely used for estimation of genetic and phenotypic parameters. 
REML is an iterative procedure, involving two steps: 

(1) For a univariate analysis, the value of X is calculated from estimates of 
the genetic and phenotypic variances and the mixed model equations are solved 

for the fixed effects and predicted breeding values, u. 
(2) Updated estimates of the genetic and phenotypic variances are determined 

from the predicted breeding values. 
The cycle is repeated until estimates of the genetic and phenotypic parameters 
converge. 

To illustrate the relationship between predicted breeding values, u, of s sires, 
and estimates of the genetic and phenotypic variances, one such relationship is: 

6? = i Ait ogtr(A~IC) js 

and 62 =lyy-y Xb-y' Za|/[N - 1(X)] 

—1 
where c=(Z MZ+AA~'| , M=I-X'(X'X)'X, tr A~'C| is the sum of 

the diagonal elements of the matrix A7!C, N is the number of observations and 

r(X) is the column rank of the X matrix (Harville, 1977). 

Derivation of the expected value of the product of predicted breeding values is 
illustrated for s unrelated sires, each with n half-sib progeny, and no fixed effects. 
The mixed model equations reduce to a random effects model: 

IZ Z+A-' [a] =[Z'y] 
For one sire 

; -l_, ; P -1 
Uj =[Z;Z; + ATi Ziyi = CiZiy; 

=[n+ wy nP 

= bP 
where b is the regression coefficient of the estimated sire effect on the progeny 

mean phenotype. 
The variance of the estimated sire effects is 

la. 12 — 
su u=b var(P)
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However, 

2 2 — 1-t]> a) ed Oo PBL 
var(P) =| t+—— Jop =| 0; + + |=0 =—=6 

( ) n P | . | ‘| on b s n 

such that 

La. A 
“i i=02{1- r 
S n+A 

and 

1 A aA — 

Oo = |i Gt+oe[n+A] : 
S 

which has the same structure as the formula for the REML estimate of o? 

62 = ~[i Ali+ setr(A~C)| 
S 

Computer packages for REML analysis with one random effect or for several 
random effects using the DFREML (Graser et al., 1987) procedure are available 

(Meyer, 1985, 1989). 

Repeatability Model 

Breeding values of animals with repeated measurements and specific 
environmental effects can be predicted in an manner analogous to predicting sire 
breeding values with measurements on progeny. The model with one observation 

is 
Y=A+Ec+E 

where A is the breeding value of the animal, Es is the specific environmental 

effect, as discussed in Chapter 3, and E is the general environmental effect, which 

will affect all animals. The mixed model equations are essentially formed in the 
same manner as with the sire model, but the definition of A changes to 

of 1 
Mey = 35 

OA h 

The value of the repeatability, re, is incorporated in the model by including the 

term Z' Z+ lI in the mixed model equations, where 

2 2 

  

    

y= OF _ OF _ l-rR 

~ 2 ~~ 2 
OF, (r. _ h lop r—h 

and I is the identity matrix, with dimensions equal to the number of animals. 
The inclusion of Z' Z+/lI in the mixed model equations requires an extra row 

and an extra column in the mixed model equations, which are 

x'X X'Z XZ 1b] [xy 

ZX ZZ+*A ZZ fagl=lZy 
ZX ZZ ZZ+%| U, Z'y
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where uA and ur, are the additive genetic effect and the specific animal effect, 

respectively. Prediction of the animal's future performance requires ua, and u,, 

while prediction of the animal's offspring performance is based only on ua. 

Example 

The data set used to illustrate the sire model is adapted for the repeated 

measurements model. The fixed effect of farm is replaced by month of 
measurement and the random effect of sire is replaced by the animal effect. With 
the animals assumed to be full-sibs and a repeatability of 0.4, the sub-matrices 

model equations are 

              

‘70 2 #5 2 57 r 797 r month 1] [10.647 
06 3 3 3 3.9 |101 month 2| | 16.83 

23 82 -16 5 OF. 61 animal | —0.68 
u, |= and solutions |_ = 

5 3 -16 112 0 8]. 119 animal 2 0.68 

23 5 0 9 ob'l | 61 | repeat 1| | -0.82 
53 0 8 O12] 119 | repeat2| | 0.82|   
The predicted breeding values of the two animals are —0.68 and 0.68, 
respectively, but the predicted future performance of the animals is —1.50 and 
1.50. Note that the predicted breeding values of the two animals are double the 
sire solutions estimated in the sire model, in the previous section. The sire 
model predicted half of each sire’s genetic merit, based on progeny measurements, 
which is analogous to repeated measurements on the sire itself, except that the 
repeated measurements model predicts the genetic merit of each animal. 

Individual Animal Model 

The individual animal model or the animal model is the most general model, as 

repeated measurements can be incorporated and breeding values can be predicted 
for all animals in the pedigree, even those animals without records. Construction 
of the mixed model equations is the same as for the repeated measurements 
model, except that the numerator relationship matrix, A, contains the genetic 
relationships between all animals in the pedigree and the X'Z and Z'Z matrices 
are extended with rows and columns of zeros to accommodate animals without 
records. Solving the mixed model equations for the individual animal model, 

where the dimensions of the Z matrix equal the number of animals in the 
pedigree, requires considerable computing power. Improvement in the efficiency 
of computational procedures for solving the mixed model equations is the focus 
of several research projects, particularly with ever increasing numbers of 
equations as models become more complex, with multivariate analyses, 
inclusion of common environmental and maternal effects and particular traits 
being recorded on a subset of animals.
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Example 
Milk yield was measured on three cows during three months. The heritability, 
repeatability and phenotypic variance are 0.4, 0.6 and 10, respectively. Predict 
the breeding values of the cows, their sire and dam, and determine the prediction 
error variance of the predicted breeding values and of the cows’ future 

performance. The pedigree of the animals and the milk records, by month of 
measurement are: 

Sire Dam 

  

  

Month Cow 1 Cow 2 Cow 3 

1 10 9 

2 12 10 

3 15 12 

The submatrix, corresponding to the fixed effect of month, X'X, is 

2 0 0 

xX X=|0 2 O 

00 2 

as there are two observations in each month. 
The submatrix cross-classifying the fixed and random effects, X'Z, is a3 x 5 

matrix, as there are three months and five animals in the pedigree. The columns 
of X'Z corresponding to animals without records consist of zeros: 

1010 0 

XZ=!1 01 0 0 

0 110 0 

The submatrix for the random effects, Z'Z, is a 5 x 5 matrix, as there are five 
animals in the pedigree, and the rows and columns corresponding to animals 

without records consist of zeros: 
—_ ~ 

    

20 0 0 0 

0 100 0 

ZZ=|0 0 3 0 O 

000 0 0 

10 0 0 0 0 

The upper triangle of the symmetric numerator relationship matrix A 1s: 

yi ill 
2 4 2 2 

1 1 1 lo. - = 

A= ar 
— 1 O = 

2 

1 O 

ba I _    
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The inverse of the A matrix can be derived explicitly from the pedigree, rather 
than having to invert the A matrix (Henderson, 1976). For each animal in the 

pedigree, the elements of A“! are added in sequence, using the rules: 

  

Animal Sire Dam Add to element (and its transpose) in AT! 

(a) (S) (d) (aa) (as) (ad) (s,s) (dd) __(s,d) 
  

Known Known 2 —1 —] 1/2 1/2 1/2 

Known — 4/3, —2/3 1/3 

— Known 4/3 —2/3 1/3 

— — 1 
  

Note that a procedure to account for inbreeding, when calculating the inverse of 
the A matrix, has been developed by Quaas (1976). 

The A~! matrix for the pedigree in the example is 

    

r2 0 0 -] -] 1 

0 2 O ~| —] 

At=|0 0 4/3 0 ~2/3 
~1 -1 OO 1/2+41/2+1 1/2 +1/2 

P-L 1-2/3 Y24+1/2 1/2 +1/2+1/3 +1] 

The mixed model equations are 

x'X X'Z XZ 1b [xy 
ZX ZZ+AA! ZZ fag l=|Zy 
ZX ZZ ZZ+y1} u, Zy 

l-r l-f, 
with A= =land y= =?2, 

h? y r. —h? 
    

6 cl ¢l2) cB Tx y 

with solutions Gy l=|C7) c? cBizy 
i, C3! c32 C33 Zy 

The terms C!! denote the submatrices of the inverse of the left-hand side of the 

mixed model equations. For example, C”* is not equal to (z Z+ rat The 

Cil submatrices are required for calculation of prediction error variances and 
covariances (Henderson, 1975). 

Prediction error variances of the predicted breeding values are the diagonal 

terms of the C7” submatrix, multiplied by the general environmental variance, 

of = (1 - re Op. 

Similarly, the prediction error variances for future performance of animals are 
equal to the diagonal terms of the sum of the matrices |
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(c? + +207 Jog 
In practice, with large numbers of animals, calculation of prediction error 

variances by matrix inversion is not always feasible, such that the diagonal 
elements of the inverse matrix are approximated (Thompson et al., 1994). 

Solutions to the mixed model equations are as follows: 

  

  

Animal Animal 
(additive genetic) (specific environment) 

l 2 3 1 2 3 Sire Dam 
  

0.28 0.50  —0.58 0.08 0.31  -0.39 0.39 0.00 

with estimates of the month effects equal to 9.81, 11.31 and 13.58. 

The future performance of the three cows is predicted from the sum of the 

additive genetic and special environmental effects of each animal, which are 0.36, 

0.81 and —0.97. 

The prediction error variances for the predicted breeding values and for future 

performance of the three cows are 

3.35 0.84] [0.42] [-0.11 
3.50| and 0.88 |+| 0.44 |+ 2] -0.08 |4o2 

3.17 0.79] | 0.41} |-0.14 

Prediction Error Variance 

The additive genetic variance is the sum of the variance of the predicted breeding 

value and the prediction error variance, as discussed in Chapter 4. The variance of 

the predicted breeding value tends to the additive genetic variance as the accuracy 

of the predicted breeding value increases, such that the prediction error variance 

decreases. Solving the mixed model equations provides both the predicted 

breeding values and the prediction error variances, such that the accuracy of a 

predicted breeding value can be determined from the prediction error variance. 

The effective number of records can be estimated, given the prediction error 

variance, which is an indication of the number of records on the animal, 

assuming that the records were evenly distributed between the different classes of 

the fixed effects. If there was a high degree of confounding between a fixed effect 

and an animal, then there would be a substantial difference between the actual 

number of records and the effective number of records. The effective number of 

records can give an indication of the balanced nature of the data. 

The prediction error variance, PEV, is 

PEV = (1 - re A Jon where r AA is the accuracy of the predicted breeding value 

r e e 

PEV = o% where Ne is the effective number of records  
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PEV = o4 - O% where O% is the variance of the predicted breeding value 

Interpretation of the prediction error variance is dependent on whether the 
breeding values are predicted with a sire model or with an individual animal 
model. In particular, 

  

with a sire model PEV = diag(C”? Joe where Oo: + o2 = Op 

with an animal model PEV = diag(C” Jog where o% + OF = Op 

The accuracy of the predicted breeding value is 

| PEV , ; 
ra = fl- = with a sire model 

S 

and 

r~= fl- PEV for an individual animal model AA a4 

The effective number of records is 

Nn, = |PEV" —O, 2 loz with a sire model 

Nn. = |PEV! _ on log for an individual animal model 

With a sire model, the interpretation of U is half the predicted breeding value. 

The variance of the predicted breeding value is 4 var(ti) and the prediction error 

variance of the predicted breeding value is 4PEV/(i).



Chapter twelve 

Multivariate Breeding Value Prediction 

Information from several traits can be incorporated into the mixed model 
equations, for prediction of breeding values, in a manner analogous to predicting 
an animal's genetic merit for one trait using information on two traits as in a 
selection criterion. The mixed model equations for one trait, 

x'X XZ Tb] [xy 

ZX ZZ+rAt haul | Zy 
2 

where A = ce. can be extended for several traits (Henderson and Quaas, 1976). 
u 

Equal Design Matrices 

When several traits are measured on all animals, the incidence matrix for fixed 

effects for trait i, Xj, will be the same as the incidence matrix for fixed effects of 

trait j, X;, and similarly for the incidence matrices for the random effects, Z; and 

Z;. The incidence matrices are referred to as the design matrices, such that when 

all traits are recorded on all animals, the design matrices are equal. 
For two traits, the design matrices for the fixed effects, X; and X», and the 

matrices for the random effects, Z; and Zz, can be expressed as submatrices of 

the X and Z matrices 

x.|%1 9 mi alll 9 
“10 Xs “10 = Z, 

Similarly, the vectors for the fixed, by and b2, and random, uy and uo, effect 

solutions and the traits, y; and y2, can be expressed as subvectors of the b, u and 

y vectors 
b u 

pale ef vel by uy Y2
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The model for the two traits can be written as 

salto xlm)*lo zhe|*l0 the y> O Xp, } bo O Zp} u» 0 I, ]e, 

which is analogous to the model for one trait 

y = Xb+Zut+e 

The (co)variance structures for the residuals and random effects are 

2 2 
va | _ Ide, "eres =R and va _ AGy, AGy,, =G 

2 
e7 uy AOy,, AOy, 

where ot and Ss, are the residual and random effect variances for trait 1, while 
1 

Ge,e, and Oy,y, are the corresponding covariances. The matrices R and G are 

Square matrices of size 2n, where n is the number of measured animals. 
The mixed model equations for two traits are 

Ps R'x x'R7!z [+ md 
ZRIx ZR!z+G7 ful [zroly 

The form of the mixed model equations for two traits is the same as for one 

trait. With one trait the matrix R7! is equal to the matrix o.7I, and after 

multiplying throughout by 2, the mixed model equations for one trait are: 

X' X X'Z b} |X y 

ZX ZZ+aAAt ful [Zy 

Predicted Genetic Merit with Unmeasured Traits 

When breeding values are predicted for several measured traits, then an animal's 
predicted genetic merit is defined as 

a u= a,Uy + aU» + + a,u, 

where a; is the economic value and U; is the predicted breeding value for trait 1. 

Traits included in the selection objective may be measured on some animals 
but not on others. For example, the selection objective may consist of growth 
rate and reproductive performance, with growth rate measured on both males and 
females. The genetic relationship between male and female sibs will enable 
breeding values for reproductive performance to be predicted for males. A second 
situation is when all animals have measurements for one set of traits, but the 
selection objective contains traits for which no animals have measurements. For 
example, the selection objective may consist of growth rate and carcass lean 
content, but animals have measurements on growth rate and ultrasonic backfat 
depth. A third situation is when some animals are performance tested in one of 
two test environments, where a trait, such as growth rate, would be treated as 
two traits, growth rate in one environment and growth rate in the second
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environment, and breeding values for the two traits could be predicted for all 
animals. However, such a situation is discussed in the section on geneotype with 
environment interaction, later in this chapter. 

Information on the genetic covariances between measured traits and traits in 
the selection objective can be incorporated into the mixed model equations, for 

prediction of breeding values for all traits in the selection objective. 
For example, if the selection objective is to improve traits 1 and 2, but only 

trait 1 is measured, then using the format of the mixed model equations for two 

traits 

x' Rx xX RZ o To) [xrRly 
ZR?IX ZR'Z+ATg!! Alg!? Lu, [=| ZR ly 

—| 21 -| 22 
0 A sg A sg u» 0 

where 
—l 7 

2 11 12 
G7! -| om ma -|° g 

2 21 22 
Oa21 OA2 gS g§ |   

Trait 2 is not included in the mixed model equations, since 

eA lay + eA li, =0 

Therefore, the predicted breeding values for trait 2 are calculated directly from the 

predicted breeding values of traits 1, as 
2 aA 

—O 4210) + OAjU2 = 0 
or 

  

which is the genetic regression of trait 2 on trait 1. 
Similarly, if traits 1,2....n are measured and have breeding values 

U),09...,0,, but a different set of traits, i,j...,.k, are included in the selection 

objective, then the predicted breeding values of traits i,j....k are obtained from 
—] A . 2 

Uj Sail Oai2 “* OSAin | Oar Saiz “* Sain} | 4 
“~ ° . eee . 2 U Uj {_| Fa; Faj2 Cajn }Oar1 FA2 “* Saran] | 42 

A 2 A 

Uk} LOAkI OAk2 “* SAkn |} Oant Oan2 “* GOAn | LUn 
Overall genetic merit is 

a'u=a; ju; +aju uj +. +a, Uy 

Common Environmental Effect 

Mixed model methodology can be used to predict the common environmental 
effect, which is responsible for increasing the similarity between full-sibs, as 
they share the same environment. If the common environmental variance
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2 
. 0 . . 

component is of and ¥y =-4, then using the format for the mixed model 
Oc 

equations for two traits, the mixed model equations for a model including a 
common environmental effect are 

x'X X'Z, X'Z, |b] [XxX'y 
ZX Z,Z,+’A! ZZ, lal=|Zay 
ZX Z Za ZZeo+lle| | Zey 

where Ze is a square matrix with dimensions equal to the number of litters. An 

estimate of the proportion of the phenotypic variance due to the common 
2 

. 0 . . or . 
environmental effect, c* = — , 1S required for accuracte prediction of breeding 

Op 
values. Further, the decision whether or not to record a trait on full-sibs will 
depend on the magnitude of the common environmental effect. 

Example 
In a study of Hereford cattle, the heritability of weaning weight was 0.26, but 
when a maternal (Common) environmental effect was included in the model the 
heritability reduced to 0.10 and the maternal environmental effect was 

0.29 o3 (Meyer, 1992). If the maternal environmental effect was ignored for 

breeding value prediction, then the breeding values would be overestimated. 

Maternal Genetic Effect 

The genotype of the dam affects the phenotype of her progeny through both the 
additive genetic effect and the maternal genetic effect. The maternal genetic effect 
is the influence of the dam's genotype for maternal effects which influence the 
trait of interest in her progeny. For example, larger dams may provide more milk 
to their offspring, such that progeny of heavier dams will be heavier than 
progeny of lighter dams, to a greater extent than expected from the dam's 
genotype for weight. Note that the common environmental effect is not the same 
as the maternal genetic effect, as the common environmental effect is independent 
of the dam's genotype for the measured trait. 

Prediction of an animal's breeding value should take account of the maternal 
genetic effect, particularly if the maternal genetic effect is related to the additive 
genetic effect. Prediction of both the additive genetic and the maternal genetic 
effects can be considered as a form of multivariate analysis (Quaas and Pollak, 
1980). 

Mixed model equations for a model including a maternal genetic effect are 

X'X X'Z, X' Zin b X'y 

ZX  ZaZqathaA! ZaZm tam | a l=! Zay 

ZmX ZmZathamd  ZmZmtmA-|m| | Zmy



Multivariate breeding value prediction 139 

  

by again using the format for the mixed model equations for two traits, where, in 
this case, a and m represent the additive and maternal genetic effects. The 
variance—covariance matrix for the additive and maternal genetic effects is 

a Aor AO AM 
var = 4 

m AO AM Ao M 

-1 
Na in| ee o4 ma 

Nam Am OAM Om 

The Z, and Z,, matrices correspond to the incidence matrices for the additive and 

maternal genetic effects, respectively, and are determined in a comparable manner 
to that discussed in Chapter 11. 

Each animal will have a predicted breeding value and a predicted maternal 
genetic effect, even though some animals have no progeny. An analogous 
situation was discussed in Chapter 11, when the predicted breeding values and 
specific environmental effects could be determined for all animals with records, 
even though some animals had only one record. REML methodology can be used 
to estimate the additive and maternal genetic variance component, for estimation 

with 

  

  

2 
so age Oo . 

of the maternal heritability, h2, = M , and the correlation between 
m 2 2 2 

Oa, +Oxy +OF 

woe . . Oo 
additive genetic and maternal genetic effects, ray, =—AM. 

OAom 

Example 

Returning to the study of Hereford cattle, weaning weight had a heritability, h?, 

of 0.14, a maternal genetic effect, h2, of 0.13, and a maternal (common) 

environmental effect, c”, of 0.23, with a correlation between additive genetic and 
maternal genetic effects of —0.59. The estimated parameters indicate that the 

genotype of the calf for weaning weight is less important than the maternal 

genetic and maternal environmental effects, since h*< h2, +¢7 (Meyer, 1992). 

The negative correlation between additive genetic and maternal genetic effects for 
weaning weight suggests an antagonism between genes for post-natal growth, 
with genes controlling the maternal environment. 

When the maternal genetic effect was not included in the model, there were 

no substantial changes in the other parameters (h? =0.10 and c* =0.29), as 
noted in the previous section, but when the maternal (common) environmental 
effect was not included in the model, there was no change in the heritability, 

h* =0.14, but the maternal genetic effect increased, h2, = 0.46. Clearly, 

breeding values predicted with an inappropriate model will be poor indicators of 
the performance of progeny of selected animals.
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Unequal Design Matrices 

Rather than being able to estimate genetic and phenotypic parameters only when 
all animals have measurements on all traits, with equal X and Z matrices for each 
trait, the REML procedure can also be used to estimate the genetic and 
phenotypic parameters when not all animals have measurements on all traits 
(Thompson et al., 1995). For example, growth traits can be measured on males 
and females, but reproduction traits can only be measured on females. 
Information on growth traits measured on males can be incorporated in the 
analysis of both growth and reproduction traits on females. 

Example 
The genetic correlation between pig litter weight at birth was positive with 
growth rate, 0.33, but negative with food conversion ratio, —0.46, and backfat 
depth, —0.33, when estimated from data of farrowing Large White gilts from 
lines selected on performance test traits. When performance test data on all boars 

and all non-farrowing gilts was incorporated with performance test and farrowing 
data of gilts which farrowed, the estimated genetic correlations were 0.65, —0.23 
and —0.29, respectively. Exclusion of information from boars and non-farrowing 
gilts from the analysis may have resulted in negatively biased genetic correlation 
estimates (Kerr and Cameron, 1996). 

Genotype with Environment Interaction 

A second example of unequal design matrices is the estimation of the genetic 
correlation, ra, between a trait measured in one environment with the same trait 

measured in a second environment (Schaeffer et al., 1978). The same trait in the 
two environments can be treated as two separate traits. Information on the 
genetic correlation between the trait measured in the two environments 1s required 
to determine whether the rate of genetic improvement in environment 1 would be 
higher with direct selection in environment 1 or with indirect selection in 
environment 2. The relative responses from selection in the two environments 

rah,h , a ege wi , 
would be “2 where h3 is the heritability of the trait in environment 2. 

1 

The genetic correlation is a measure of the relative ranking of genotypes in both 
environments and is a measure of the genotype with environment interaction, 

G XE. Design of breeding programmes should take account of the G x E, as 
the predicted relative response in environment 1 with selection in environment 2 
may be substantially lower than the expected value of h»/h,, if no account is 

taken of the G x E. 
Estimation of the genetic correlation between traits measured in the two 

environments requires that the animals in the two environments are genetically 
related, with the relationship matrix for animals measured in environments | and 
2 equal to Aj2. Similarly, the relationship matrix for animals measured in 

environment | is Aj. The variance—covariance matrix for the random effects is
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vay AyjOy, A129y,, -G — M12 | = 

U2] | A21Su,, A225, 
There is no correlation between residuals in the two environments, as the traits 

are measured on different animals. The variance-—covariance matrix for the 

residuals is 

ec] |Iog 0 ly, o77 
Var = = 

e2 0 log, 0 Ty 

Absorption of fixed effects 

  

With multitrait analyses, the number of mixed model equations increases rapidly, 
as the dimensions of the matrices are proportional to the number of fixed and 
random effects to be estimated. One method to reduce the number of equations is 
to absorb the fixed effects, such that only equations for the random effects need to 
be solved. If the model is written as 

Xb+ Zu=y 

then multiplying both sides of the equation by the transpose of X, multiplying 
by the inverse of (X'X) and then multiplying by X results in 

Xb+X(X' X) 'X' Zu = X(X' X) /x'y 
Subtraction of the new equation from the initial equation removes the fixed effect 
terms, and the resulting equation is 

Zu —X(X'X)'X'Zu=y-X(X'X)/X'y 

If the matrix M is defined as I— X(X' x)! x’ , then the above equation can be 

written as MZu = My and the random effect solutions are obtained from 

u =(Z MZ+2A7!)°Z My. 

The mixed model equations for the G x E, after absorption of the fixed effects, 

are 

2 M,Z, +G"! Gc [i -| ¥1Z1 Miy1 

G?! ¥oZy' MyZy +G”* fur] 'Y¥2Z2' Maye 
or 

ea ca] | -| ViZ1 Miy) 

C2! C2 Lug] Ly2Z2'Moy2 
where 

Gls Gi! G'2 

7 G?! G22 

Each animal will have two predicted breeding values, one for each environment, 
and the genetic variance for the trait in each environment can be estimated from
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the predicted breeding values, as for the univariate analyses, with the estimated 
genetic covariance for the trait in the two environments equal to 

a, Ala, +trfAlcl? 
Oo... = 2 

12 
Ny 12 

  

Example 
In a population of Large White pigs, half the pigs within each litter were 
performance tested with ad-libitum feeding, with their littermates performance 
tested on restricted feeding. The genetic correlation between growth rate of ad- 
libitum fed pigs and growth rate of restricted fed pigs of 0.4 was significantly 
less than unity, which indicated a substantial genotype with feeding regime 
interaction. The genetic correlation for ultrasonic backfat depth was 0.8. When 
pigs selected for lean growth rate on restricted feeding were tested on ad-libitum 
feeding, they grew faster than pigs selected for lean growth rate on ad-libitum 
feeding. The genotype with feeding regime interaction for growth rate indicated 

that selection for lean growth rate should be based on restricted feeding, rather 
than on an ad-libitum feeding regime (Cameron and Curran, 1995).



Chapter thirteen 

Breeding Values with a Gene of 
Known Large Effect 

In previous chapters, the model has assumed that quantitative genetic variation is 
due to the effect of an infinite number of genes, each with small effect. The 
assumption is made to enable prediction of breeding values and responses to 
selection. The assumption is unrealistic, as there are a finite number of genes and 
single genes with large effects have been identified. For example, the oestrogen 
receptor gene in pigs (Rothschild et al., 1996) and the Booroola gene in sheep 
(Piper and Bindon, 1985) are both associated with increased litter size. The 
ryanodine receptor (MacLennan et al., 1990) or the "halothane" (Eikelenboom 
and Minkema, 1974) gene alters the susceptibility to porcine stress syndrome, 
there is a double muscling gene in cattle (Hanset and Michaux, 1985) and there 
are two genes associated with meat quality in pigs (Le Roy et al., 1990; Janss et 

al., 1994). 
Although the assumptions of the infinitesimal model may be simplistic, the 

model appears to have been robust in terms of predicting responses to selection. 
If there are genes of known large effect, then incorporation of information on the 
effects of these genes is expected to increase the accuracy of predicted breeding 
values and estimated responses to selection. Secondly, DNA can be sampled from 
an animal at any age, such that the generation interval can be reduced if animals 
are selected directly on their genotype, rather than waiting for a phenotypic 

measurement. 

Parameterising a Gene of Known Large Effect 

For genes of known large effect, the genetic model assumes that the difference 
between the two homozygotes is equal to twice the effect of the favourable allele, 
denoted by a, and the difference between the heterozygote and the average of the 
two homozygotes is the heterozygote advantage, denoted by d. Quantifying the 
effect of a single gene requires information on homozygotes with two copies of 
the favourable allele, AyA 1, on homozygotes with no copies of the favourable 

allele, A2A2, and the heterozygotes, which have a copy of each allele, Aj A2. 

The effect of the favourable allele is 

143
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a = BAL ~A2A2 
2 

where AA} is the mean phenotype of homozygotes with the favourable allele. 

Similarly, the heterozygote advantage is 

(AA; +A2Ap} 

2 
which measures the difference between the observed value of the combination of 
the two alleles and the expected value of the combination of the two alleles, 
based on information from the homozygotes. 

If the phenotypes of the homozygote with the favourable allele and the 

heterozygote are equal, then d equals a. When the heterozygote is equal to the 
average of the two homozygotes, there is no heterozygote advantage, d is zero 
and the gene is referred to as being completely additive. 

For example, in a Merino population (Piper et al., 1985), mean ovulation 
rate and litter size of the three genotypes are as shown in Table 13.1. 

  

  d=A,A>) - 

Table 13.1. Ovulation rate and litter size of the three Merino genotypes 

  

Homozygote with 

  

Booroola gene Heterozygote | Normal homozygote 

Ovulation rate 4.3 2.8 1.3 
Litter size 2.7 2.1 1.2 
Model Uta u+d U-a 
  

The allele effect for ovulation rate is 1.5 and that for litter size is 0.75, while the 

heterozygote advantage is equal to O for ovulation rate and 0.15 for litter size. 

Genotypic Values and Breeding Values 

In previous chapters, breeding values were determined from the regression of 
genotype on phenotype. For a gene of known large effect with the frequency of 
the favourable allele equal to p, the regression coefficient is estimated from a 
weighted regression of the assigned values to each genotype (a, d and —a) on the 

number of A, alleles (2, 1 and 0), with the genotype frequencies as weights (p2, 

2pq and q2), where q = 1 — p. The genotypic values are the difference between the 
assigned values and the mean genetic merit of the population, with the latter 
equal to 

ap” + d2pq — aq? =a(p—q)+2dpq 

Breeding values for the gene of known large effect are estimated by multiplying 
the genotypic values by the regression coefficient. The difference between the 
genotypic value and the breeding value is equal to the dominance deviation, 
which accounts for the non-additive components of genetic variation (see Table 
13.2).
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Table 13.2. Formulae for estimating genotypic and breeding values 

  

  

Genotype 

A1A1 AlA2 A2A2 

Assigned value a d —a 
Frequency p2 2pq q2 

Genotypic value 2q(a-—dp) a(q-—p)+d(i-—2pq) -2p(a+dq) 

Breeding value 2qoa (q - p)a —2 pa 

Dominance deviation ~2dq? 2dpq —2dp” 
  

a=a+d(q-p). 

If the frequency of the favourable allele is 0.5, then © is equal to a and the 
mean genetic merit of the population is d/2. The breeding values of the three 

genotypes are a, 0 and —a, and the sums of the genotypic values plus the mean 
genetic merit of the population are a, d and —a, respectively. 

The additive genetic variance accounted for by the gene of known large effect 
is the sum of the squared breeding values multiplied by the genotype frequencies: 

(2qax)* p” +(q- p)” 0.7 2pq + (-2pa)*q? = 2pqa” 

Similarly, the non-additive genetic variance is (2dpq)’ 

The total variance accounted for by the gene of known large effect, 0% , 1S 

2pq(a? + 2d” pq| 

The phenotypic variance of the trait, OS, iS 0% + o4 + OF, where the polygenic 

variance and environmental variance are o% and of , respectively. 

Further information on the variance formula is given by Falconer and 
MacKay (1996). 

Example 
A trait with a completely additive gene of known large effect has a phenotypic 

variance of 1, a total genetic variance, 0% +04, of 0.25, of which the 

polygenic variance, o% , 1S 0.20 and the frequency of the favourable allele, p, is 

0.15. The genotypic values equal the breeding values and the three genotypes are 

determined from 2pq(a? + 2d pq} = o2 = 0.05 and d=0: 
  

  

  

Genotype 

AJA} AjA2 A2A2 

Assigned value 0.443 0 —0.443 
Frequency (%) 2.25 25.5 72.25 
Genotypic value 0.75 0.31 —0.13
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Selection with a Gene of Known Large Effect 

Assuming that the gene of large effect has been identified, the effect of the gene 
is known and all animals can be genotyped without error, then the phenotype of 
an animal can be expressed as 

p= SS*OD + Gus +(A+E) 

Gs +Gp 
where is the average genotypic value for the gene of known large 

effect of the animal's sire and dam. The term Gyg is the Mendelian sampling 

term for the gene of known large effect, A is the polygenic effect and E is the 

environmental effect. The polygenic and environmental effects are combined for 
the purpose of selection, which is exactly the same as when breeding values were 
predicted under the assumption of the infinitesimal model. 

An animal's breeding value can be predicted from the three components of 
the animal's phenotype (Woolliams and Pong—Wong, 1995), which can be 

considered as three traits in a selection criteria, when the selection objective is to 
improve the overall genotype. The general selection criterion is 

T= b; Sst SD + boGus + b3(A+E) 

The P and G matrices and the vector of economic values, a, required for 

calculation of the selection criterion coefficients are 

1 2 1 2 

P=| 0 70g 0 |, G=]| 0 50% 0}, a=|1 
0 0 oi+0% 0 0 I 

The genotypic effect and the Mendelian sampling term have a variance of = 0G ; 

as the genetic variance attributable to the gene of known large effect, o% , 1s the 

sum of the genotypic effect and the Mendelian sampling term. Genetic 
covariances between the genotypic effect, the Mendelian sampling term and the 
polygenic effect are assumed to be zero. Similarly, covariances between genetic 
effects and the environmental effect are also assumed to be zero. Economic values 
for the genotypic effect, the Mendelian sampling term and the polygenic effect 
are equal, and arbitrarily set to one, as the selection objective is to improve the 

overall genetic merit. 
The selection criterion coefficients for the genotypic effect, the Mendelian 

sampling term and the polygenic effect, which maximise the accuracy of the 

predicted breeding value, are 1, 1 and h3 = o4 / (o4 +08), respectively, where 

hs is the heritability of the polygenic component of the trait, after accounting 

for the gene of known large effect. 
An alternative selection criterion, consisting of the Mendelian sampling term 

and the polygenic effect, would reduce the emphasis on the mean family genetic 
merit. Selection on the Mendelian sampling term is analogous to selection on
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the within-family deviation, as discussed in Chapter 5, such that family members 
are less likely to be selected, compared to when the selection criterion includes 
the genotypic effect, with a corresponding reduction in the rate of inbreeding. The 
selection criterion coefficients can either be obtained using the P and G matrices 
for selection on the genotypic effect, the Mendelian sampling term and the 
polygenic effect, with the economic value for the genotypic effect equal to zero, 
or by using submatrices of the P and G matrices corresponding to the Mendelian 
sampling term and the polygenic effect. In either case, the selection criterion 

coefficients are 1 and he. 

Finally, the third alternative selection criterion is phenotypic selection, 

which does not use information on the animal's genotype, and the selection 
criterion coefficients for the genotypic effect, the Mendelian sampling term and 

the polygenic effect are all equal to h? = ly +04 |/o%, where the 7 G A P 

heritability is estimated assuming that there is no gene of large effect. 
In summary, the three alternative selection criteria of genetic, Mendelian and 

phenotypic selection emphasise different components of the phenotype, as shown 
in Table 13.3. 

Table 13.3. Selection criterion coefficients for genotypic, Mendelian and 
phenotypic selection 

  

Value of selection criterion coefficient 

  

Selection by b2 b3 

Genotypic 1 ] hp 

Mendelian 0 l hp 

Phenotypic h? h2 h? 
  

Example 
Selection criterion coefficients and the accuracy of the predicted breeding value for 
genotypic, Mendelian and phenotypic selection on a trait with a completely 
additive gene of known large effect, a phenotypic variance of 1, a total genetic 

variance, o% + o% , of 0.25, of which the polygenic variance, o4, is 0.20, and 

the frequency of the favourable allele, p, is 0.15, are as follows: 

  

Value of selection criterion coefficient 

  

Selection by b> b3 Accuracy 

Genotypic 1 ] 0.210 0.607 
Mendelian 0 1 0.210 0.546 
Phenotypic 0.231 0.231 0.231 0.480 
  

The higher accuracy of the predicted breeding value with genotypic selection 
compared to phenotypic selection illustrates the advantage of including both the
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genotypic effect and the Mendelian sampling term in the selection criterion. In 
the example, Mendelian selection has intermediate accuracy, compared with 
genotypic and phenotypic selection, since genotypic information is not included 
in the selection criterion. 

Selection on genetic and polygenic effects versus genetic effect 
and phenotype 

For the purposes of selection, the genotypic effect and Mendelian sampling term 
could be combined, to form the genetic effect, with the selection criterion 
consisting of the genetic effect and the polygenic effect. From the previous 

section, the selection criterion coefficients would be 1 and hé for the genetic 

effect and polygenic effect, respectively, 

I1=G, +h3(A+E) 
where Gy, represents the gene of known large effect. 

Alternatively, the selection criterion could consist of the genetic effect and 

the phenotype: 

I=b,G, +b2(Gy +A+E) 
The P and G matrices and the vector of economic values, a, required to calculate 
the selection criterion coefficients, are 

2 2 2 2 
p=-|9G 9G G =| °G OG a=] 

02 Op OG 04 +0% I 

The covariance between phenotype and gene effect is o4 and the economic value 

of the gene effect is zero, as both the genetic effect and polygenic effect are 

included in the phenotype. The selection criterion coefficients are 

1 fog | _|i—hs 
o4 + of o% hs 

The selection criterion is 

I=(1-hp)G, +hp(G, +A+E) 

bo
 

or 

1=G, +hs(A+E) 
The two selection criterion are expected to be equal, as the same information is 
included in both criteria, although it is combined differently. 

Responses to Selection 

Responses to genotypic, Mendelian or phenotypic selection are dependent on the 
number of generations of selection, the frequency of the favourable allele, p, the 
proportion of the total variance accounted for by the gene of known large effect 
and the heritability of the polygenic component of the trait.
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Example 
Cumulative responses to genotypic, Mendelian and phenotypic selection are 

illustrated in Fig. 13.1 for several generations of selection on a trait with a 

completely additive gene of known large effect, a phenotypic variance of 1, and a 

total genetic variance, 0% + o% , of 0.25, of which the polygenic variance, 04, 

is 0.20 and the frequency of the favourable allele, p, is 0.15. Each generation, 20 

males are selected from 180 and 60 females are selected from 180, with 

hierarchical mating at random (Woolliams and Pong-Wong, 1995). 
Cumulative responses for genotypic or Mendelian selection are greater than 

for phenotypic selection only in the first five generations of selection. Genotypic 

selection results in a greater cumulative response than Mendelian selection in 

generations two and three, after which the cumulative response of Mendelian 

selection is marginally greater 

  

            

    
             

Cumulative response relative Frequency of 
to phenotypic selection favourable allele 

1.47 . 1.0 7] Genotypic 
Genotypic 

1.37 0.87 

1.27 0.67 

117) Mendelian 0.4~ Phenotypic 

1.0 SS 0.27 

0.9 r_T_T_T_T_T-1__ 0.0 TT T 1 TT TW 

0123 4 5 6 7 0123 4 5 6 7 
Generations of selection Generations of selection 

Fig. 13.1. Cumulative responses with genotypic or 
Mendelian selection and frequencies of the favourable allele 

In the early generations of selection, the greater cumulative response with 

genotypic or Mendelian selection, relative to phenotypic selection, is due to a 

greater accuracy of predicted breeding value, resulting in a higher rate of increase 

in the frequency of the favourable allele (see Fig. 13.1 for the example). 

However, in the longer term, the gene of known large effect will be fixed (i.e. 

the frequency of the favourable allele equals unity) with genotypic or Mendelian 

selection, and the cumulative response will be lower than for phenotypic 

selection, due to relatively less emphasis on selection at the polygenic level. 

In the example, three generations of genotypic selection are required before 

the frequency of the favourable allele is at least 0.99, five generations for 

Mendelian selection, but 12 generations for phenotypic selection. Therefore, after 

five generations of selection, sustained selection on both the gene of known large 

effect and the polygenic level by phenotypic selection results in a greater 

cumulative response than either genotypic or Mendelian selection.
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Genetic Markers 

In the previous section, it was assumed that the gene of large effect was known 
and that animals could be genotyped for the gene. If a gene of large effect exists, 
but the gene has not been identified, then direct selection on the genetic effect is 
not possible. However, sections of DNA surrounding the gene are likely to 
segregate with the gene, particularly if the distance from the gene is relatively 
small. If there is genetic variation in the section of DNA close to the gene and 
animals can be genotyped for the section of DNA, then animals could be selected 
on the basis of both the DNA segment and the phenotype. The small sections of 
DNA are referred to as genetic markers and incorporation of information from 
genetic markers in the selection criterion is called marker assisted selection. If the 
trait of interest is associated with several close genes that generally segregate 
together, then the group of genes is called a quantitative trait locus, QTL. There 
is essentially no difference between using marker assisted selection to predict 
genetic merit for a trait associated with a single gene or a QTL. 

Detailed discussion of methods to identify markers for QTL is outwith the 
scope of this text, but the reader is referred to Lander and Botstein (1989). 
However, two simple, but not necessarily powerful, methods for identifying 
markers associated with QTL are illustrated. 

Two inbred lines have different alleles at both the marker (M; and M2) and 

the QTL (QTL; and QTL?) and the performance of lines 1 and 2 is u+a and 

Lt — a, respectively: 

Line 1 Line 2 

M, QT X M, Qi 
TT T_T 

M, QTY M, QT 
Line 1 

M QT ™M QTY 
~T  T X ~T TT 

M, QTY M) QTly 
If the two lines are crossed and the F; cross is mated to line 1, then all progeny 

will inherit M; QTL from line 1, but there are four possibilities for the F 

cross, due to recombination, which has probability r, and the expected 
performance of the four possible genotypes is as shown in Table 13.4. 

Table 13.4. Expected frequency and performance of genotypes from the 

  

  

backcross 

Genotype Frequency Performance 

M; QTL; Mj QTL; ~— (I~1)/2 +a 
M2 QTL? M, QTL (l-r)/2 u+d 

M, QTL? M; QTL; r/2 u+d 

M> QTL; My QTL) r/2 Uta 
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The expected performance of M;M, and MjM 2 animals is w+(1—r)a+rd 

and 1+ra+(i—r)d, such that the difference in performance between animals 

with the M, and M2 marker alleles is (a—d)(1—2r). The difference between 

marker genotypes could be due to a gene with a small effect and a small distance 
from the marker, such that the recombination rate is low, or to a gene with a 
large effect and a large distance from the marker, such that the recombination rate 
is high. For example, the difference between marker genotypes is the same for a 
=2,d=1 andr=0.1 as fora=5,d=1 andr=0.4. 

If the F] cross is mated to line 2, then the difference in performance between 

animals with the M,; and M2 marker alleles is (a+d)(1—2r), rather than 

(a—d)(1—2r). If the marker and QTL are completely linked, then the M,; —M> 

difference will be a+d when estimated by crossing F; with line 2, and equal to 

a—d when estimated by crossing F, with line 1. 

In an outbred population, differences between marker genotypes must be 
determined on a within-family basis, due to possible between-family differences 
in the linkage of the marker and the QTL. For example, linkage between the 
marker and the QTL is opposite for sires A and B, while there is no detectable 
association between the marker and the QTL for sires C and D: 

Sire A Sire B Sire C Sire D 

M TL M M TL M TL My QTL My QTL» My QTL My QTL 
or + or +s 

The within-sire family association between the marker and the QTL can be 
determined by either measuring the performance of progeny and genotyping 
progeny for the marker, the daughter design, or by measuring the performance of 
grand-progeny and genotyping progeny for the marker, the grand-daughter design 
(Weller et al., 1990). The daughter and grand-daughter designs could be used in 
dairy cattle populations. In the grand-daughter design, performance would be 
measured on progeny of sons of the sire, the grand-progeny, to identify 
associations between the marker and the sons’ predicted breeding values, based on 
their daughters’ performance. 

Breeding Values with Marker Assisted Selection 

Incorporation of marker information in breeding value prediction exploits within- 
family linkage disequilibrium to increase the accuracy of the predicted breeding 
value. Linkage information between the marker and QTL alleles is incorporated 
in the mixed model equations, on a within-family basis only, as the association 
between a marker allele and the favourable QTL allele will be family dependent. 

For a QTL, each animal has two alleles, one from each parent, and associated 
with the QTL is a genetic marker. An animal's predicted breeding value is 

a=utVvVeotVy
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where u is the polygenic effect, while vg and vp are the additive genetic effects 

associated with the markers from the sire and dam, respectively. 
The model can be written as 

y = Xb + Zu+ Wovo + WpVpn +e 

or 
y = Xb+Zu+Wv+t+e 

where b and u are the vectors of fixed and polygenic effects, with corresponding 
incidence matrices, X and Z, with rows of the W matrix describing the presence 
or absence of the genetic marker from each parent (Fernando and Grossman, 
1989; van Arendonk et al.,1994). 

The mixed model equations are 

x'X X'Z X'W b] [X'y 
ZX ZZ+rA7! ZW ul=| Zy 
WX WZ Wwe Givi lwy 

with A= OF / o4 and y= OF / of , where o% and of are the variances of the 

polygenic effect and the additive genetic effect associated with the marker. The 

total genetic variance is o4 = 07, + 20%. The matrix Gy,), is the variance— 

covariance matrix of the additive genetic effects associated with the markers from 
each animal's sire and dam, given the recombination rate. 

Example 
The pedigree from van Arendonk et al. (1994) is used to illustrate construction of 
the G,,, matrix. The marker genotype of each animal is shown in parentheses, 

with the first marker allele being the paternal allele. Animals 1 and 2 are 
unrelated: 

Animal 1 Animal 2 

(1,2) (3,4) 

Animal 3 Animal 4 

(1,3) (2,3) 

Animal 5 

(3,3) 

For animals 3, 4 and 5, the lower triangle of the numerator relationship matrix is 
as follows: 

  

  

Animal 

3 0.5 05 1 

4 0.5 05 0.5 1 

5 0.5 0.5 0.75 0.75 1
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If no account is taken of the marker genotypes, then the lower triangle of the 
relationship matrix for an animal's paternal (p) and maternal (m) QTL alleles 
with another animal's parents’ paternal and maternal QTL alleles is as follows: 

  

  

  

  

  

      

Animal 

1 2 3 4 5 
Animal p m p m p m p m p m 

3 pj OS O5 | O 0 1 
mi O 0 0.5 0.5 | 0 1 

4 pi} O05 O54 O 0 05 O l 

m{ 0 0 0.5 0.5 j 0 0.5; 0 1 

5 pi 0.25 0.25} 0.25 0.25} 0.55 O55} 0.25 0.25} 1 
mj 0.25 0.25} 0.25 0.25} 0.25 0.25} 0.5 0.5 j O 1     
  

Note that half the sum of terms for each animal is equal to the corresponding 

term in the numerator relationship matrix, A. For example, the probability that 

the paternally derived allele of animal 5 is the same as the paternally derived 

1 2 
allele of animal 4 is 0.25, equal to 2 x (; x 1} 

If the marker genotypes are taken into account, then the lower triangle of the 

relationship matrix for an animal's paternal (p) and maternal (m) QTL alleles 

with another animal's paternal and maternal QTL alleles is as follows: 

  

  

  

  

  

Animal 

I 2 3 4 5 
Animal p m p m p m p m p om 

3 pi i-r r 0 0 1 
m{ 0O 0 l—r r 0 l 

4 p r l-r 0 Q j2rd-r) 0 1 
mi O 0 l-r r 0 A 0 1 

5 p{rdi-r) r2 {(i-r)2 ri} or (in| B C 1 
m{| r2  (1-r)r}(i-r)? r(i-r)}| B C r (1-r} D 1           
  

where A =r? +(1—r)?, B=2r7(1—r) and C=r7(1-r)+(1-r)°.. 

Elements of the relationship matrix are essentially the probability that the 
animal's paternal or maternal QTL allele are the same as another animal's 
paternal or maternal QTL allele, given the marker genotypes. 

The relationship matrix also contains the inbreeding coefficient for both the 
marker and QTL alleles. For example, animal 5 is totally inbred for the marker 
allele, and assuming a recombination rate of 0.1, the inbreeding coefficient for 

the QTL is 0.67, equal to D=(1—r)* +r7(1-r)? +2r°(1-1), the probability 

that the paternal and maternal alleles are identical by descent. 
The advantage of accounting for the marker genotype is illustrated with 

animal 5, as the relationship with animal 1 is substantially lower than with 
animal 2, compared to equal relationships when no account was taken of the 

marker:
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Account of marker No account of marker 

Animal 1 Animal 2 Animal 1 Animal 2 

p m p m p m p m 
  

p 0.09 0.01 0.81 0.09 0.25 0.25 0.25 0.25 
m 0.01 0.09 0.81 0.09 0.25 0.25 0.25 0.25 

As the distance between a genetic marker and a QTL increases, the probability of 
recombination increases, which reduces the value of marker information. If two 
markers flank a QTL, the probability of mis-classifying an animal's QTL 

genotype on the basis of two genetic markers, r, is substantially lower than the 
probability of mis-classification given one marker, assuming a negligible 
probability of double recombination. Methodology for determining the 
relationship matrix for QTL alleles, based on information from two flanking 
markers, has been developed by Goddard (1992). 

Simulation studies for dairy cattle (Meuwissen and van Arendonk, 1992), pig 
(Meuwissen and Goddard, 1996) and poultry (van der Beek and van Arendonk, 

1996) breeding programmes have suggested that marker assisted selection could 
increase short terms rates of genetic response in nucleus breeding schemes by 
10-20%, particularly when animals have to be selected before the trait can be 
measured, as in the case of carcass traits or longevity. However, as with direct 
selection on a gene of known large effect, the greater short-term response with 
marker assisted selection, compared to phenotypic selection, is not sustained in 

the long term.



  

Chapter fourteen 

Breeding Values for Binary Traits 

Several traits of interest in animal breeding, such as twinning in cattle or an 
animal contracting a disease, are of a binary nature. One of the problems with a 
binary trait, with phenotypic scores of zero and one, is that the mean value of the 

trait, p, is related to its variance p(l—p), where p is the incidence of the 

phenotype scored as one. If the incidence of a particular phenotype depends on the 
group of animals observed, then the assumption of equal within-group variances 
will be inappropriate when variance components are estimated with analysis of 
variance techniques. Methods for estimation of variance components for binary 
traits have been developed, based on the concept of a threshold model. 

Threshold Model and Liability 

The threshold model assumes that phenotypic expression of the binary trait is 
determined by an underlying normally distributed trait, and that categorisation of 
the phenotype is defined by the value of the underlying trait. For example, if the 
underlying trait was related to an immune response which determined the 
animal's susceptibility to a disease, then values of the underlying trait below the 

Proportion, p, of 
category 1 animals 

    
0 x 

Fig. 14.1. Liability with the threshold model 
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threshold would result in the animal contracting the disease, while an animal 
would not contract the disease when the value of the underlying trait was above 
the threshold. The underlying normally distributed trait on a continuous scale 
with unit variance is called the liability. The value of the liability, x, which is 
assumed to differentiate between animals with phenotypes zero and one, is related 
to the incidence, p, of the binary trait, as illustrated in Fig. 14.1. The mean 
value of liability for category one animals is i, as described in Chapter 4. 

For a normally distributed trait, the response to selection is predicted from 
the selection differential and the heritability of the trait. The selection differential 
is the difference between the phenotypic mean of the selected individuals and the 
population mean. With a binary trait, all animals in a particular category will 
have the same phenotype, but will have different liabilities. If the proportion of 
animals selected as parents is less than the incidence of the binary trait, then the 
selection differential for the liability is i, irrespective of the proportion selected, 
as animals are essentially selected at random from the category one animals. If 
the proportion of selected animals, s, is greater than the incidence of the binary 
trait, p, then the selection differential for liability is 

ip(1—s) 
s(1—p) 

When the proportion of selected animals is equal to the incidence of the binary 
trait, then s equals p, and the selection differential for liability is i, as before. 

  

The heritability of liability, h?, can be estimated from the heritability of 

the binary trait, hay: 

    

p(l—p I—p nz = PCP) 2, VP) 2, 
Z 1p 

where z is the height of the normal distribution curve corresponding to the 
proportion p, and z equals ip (Robertson and Lerner, 1949). An estimate of the 
heritability of liability can be obtained by transforming the estimated heritability 
for the binary trait, which was determined using REML or analysis of variance 
with observations on progeny or from offspring—parent regression. In the 

formula for the heritability of liability, the numerator, p(1—p) reflects the 

change from a normally distributed trait, with unit variance, to a binary trait with 

variance p(1—p), and the denominator is an approximation to the non-linear 

relationship between liability and incidence. 

The heritability of liability, h7, is greater than the heritability of the binary 

trait, ha, with their ratio increasing with decreasing incidence of the binary 

trait. For example, when the incidence is 0.5 and 0.1, the heritability for liability 
is 1.57 and 2.92 times greater than the heritability of the binary trait.
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Response to Selection 

An estimate of the predicted response to selection in a binary trait can be derived 
from the selection index methodology discussed in Chapter 6. The response in 
the binary trait , denoted by Ro), to selection is 

Ror = Joi, 4(o1)F A(01) 

where ig; is the standardised selection differential for the binary trait, r, 5 (01) is 

the accuracy of selection and 401) is the genetic variance for the binary trait. If 

there are n repeated measurements on an animal for the binary trait, which has a 
repeatability of Te(01) and the animal is selected on the basis of the mean 

measurement, then the accuracy of the selection criterion is 
  

nhoy 

A400)“ Y1+ (= Dron 
The binary trait has a phenotypic variance of p(1 - p). Therefore, the response to 

  

selection 1S 
  

n 

1+(n=1)r(01) 
  

. 2 
Roy = iothoiyp(1- ° 

With one measurement of the binary trait, the response is 

Roy = igth$1/p(1— p) 

Note that the formula for the response with n measurements of the binary 
traits has the same form as the response to selection, on the basis of n repeated 
measurements of a normally distributed trait, as discussed in Chapter 4: 

2 n R =ih’o — 
Pvi+(n—1)r, 

Rather than directly predicting the response in the binary trait, it may be 
more appropriate to predict the response in the liability, a normally distributed 
trait, and then transform to the binary scale to predict the response in the binary 
trait. The response in the liability is 

R, = lol, A(L)PL 

where ig; is the standardised selection differential for the binary trait, r, ; (L) 1S 

the accuracy of selection on the liability and the genetic variance of the liability 

is he. If there are n repeated measurements on an animal for the binary trait, 

then the accuracy of the selection criterion (see Foulley, 1992) is
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nha, 
  

“AA(L) ~ “AA(O1) ~ I +(n—1)reo1) 
The predicted response in the liability is 

  

  Ri = ‘rbaho | 

If animals are selected on the basis of one measurement of the binary trait, 
then the response in the liability is 

n 

1+ (n _ I)te(o1) 

Ry = igyhL ho; 

The response in liability is the difference between the value of the liability in the 
parental generation, Xpar, which differentiates between animals in categories zero 

and one, and the liability threshold of the progeny generation, Xprog: 

Ry = ioihLhoy = Xpar — X prog 

The expected incidence of the trait in the progeny generation is determined from 
the value of Xprog, 

Xprog = X par — ip hy ho; 

and the response in incidence is the difference between the incidences of the 

progeny and parental generations. 

     
Parental 
generation    

  
    

  

Proportion, p, of 

category 1 animals 

  

Progeny 
generation 

lodhL hoy 

      

par 

Proportion of 

category 1 progeny 

        

*prog 
Fig. 14.2. Response in liability and incidence to selection
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Example 
The heritability and incidence of a binary trait are 0.15 and 0.1, respectively, and 
all animals in category one are selected as parents. The predicted response in the 
binary trait is 0.079, as the standardised selection differential corresponding to a 
selected proportion of 0.1 is 1.755. 

The heritability of the liability is 0.438 and the response in liability is 
0.450. The liability thresholds in the parental and progeny generations are 1.282 
and 0.832, with a corresponding incidence in the progeny generation of 0.20, 
such that the response in the binary trait is 0.103. 

The response in incidence depends on the heritability and the incidence of the 
binary trait as illustrated in Fig. 14.3, where the proportion of selected parents is 
0.10 for all values of the incidence. The response in incidence is more dependent 

on the heritability of the binary trait than on the incidence, particularly when the 
incidence is at least 0.2. In general, the predicted response in the binary trait was 
greater when derived from the predicted response in the liability than when 
predicted directly. The difference in the predicted responses using the two methods 
increased as the heritability of the binary trait increased and as the incidence of 

the binary trait decreased. 

Response in incidence 

0.207 

h2 = 0.2 
0.157 

h2 = 0.15 

0.107 
h2 = 0.1 

0.057 @ derived from liability 

| © derived for binary trait     
T I T T l 

0.1 0.2 0.3 0.4 0.5 

Incidence of binary trait 

Fig. 14.3. Response in incidence, given a selection proportion of 0.10, 
with responses derived for the binary trait or from the liability, 

with different heritabilities of the binary trait 

Methods of predicting the response in a binary trait with selection based on 

progeny measurements was discussed by Foulley (1992). 

Heritability Estimation 

The heritability of liability for a categorical trait with m levels can be determined 

from the heritability of the categorical trait, hoot:
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2 2 | ™.o m * m=! , * 
Ap = Neat} LIF Pj -| LijP; x 2;(ij41 — ij] 

j=l j=l j=! 

where category j has an incidence of pj and a mean value of ij, and Zj is the 

height of the normal distribution curve corresponding to the proportion Pj 

(Gianola, 1982). The mean values of each category are determined from 
standardised normal deviates of the normal distribution, corresponding to the 
proportion of animals in each category. 

The standardised normal deviate for the extreme categories can be determined 
directly from normal distribution tables. For intermediate category k, the 
standardised normal deviate, ip, is determined from 

Pxik = (p; + Px )ijs — pj 

where pj is the proportion of observations in more extreme categories with 

corresponding normal deviate ij, pk is the proportion of observations in category 

k and ij, is the normal deviate corresponding to proportion (p jt Px). If the 

actual category scores are replaced by the standardised normal deviates, then the 
categorical trait will have a mean and variance of 0 and 1, respectively. 

For example, an eating quality trait has five scores of 1, 2..., 5, and the 
proportions of animals in each category are 0.40, 0.25, 0.20 0.10 and 0.05, 
respectively. The two extreme categories, of 1 and 5, have standardised normal 
deviates, 1; and 15, of —0.966 and 2.063, with the corresponding standardised 

normal deviates for categories 2, 3 and 4 equal to —0.064, 0.686 and 1.300, 
respectively. The normal deviates for the five categories are not necessarily 
equally spaced, as the differences between adjacent categories are 0.90, 0.75, 0.61 
and 0.76. Therefore, under the assumption that there is an underlying trait with a 
normal distribution, the difference between eating quality scores 1 and 2 is not 
the same as the difference between scores 3 and 4. 

For a binary trait, the formula for deriving the heritability of liability from 
the heritability of the categorical trait reduces to 

p(1—p) 
27 
  

2 2 
hr = ho; 

as the mean values for the two classes are —1 p/ (1- p) and i, respectively. 

The transformation of the heritability for the binary trait to the heritability 
of liability 1s only approximate, as the derived heritability of liability is 
generally overestimated. The positive bias increases as the heritability for the 
binary trait increases, particularly at low incidences of the trait. The magnitude of 
the bias can be demonstrated empirically. The generation of a continuous trait 
and a corresponding binary trait, derived by imposing a threshold point on the 

continuous trait, enables comparison of the actual heritability of liability, hz, 

with the derived heritability for liability, based on the heritability of the binary 

trait, hy. For example, when the heritability of liability, h?, is 0.10, 0.25 or 

0.40 and the incidence is 0.2, the derived heritability of liability is 0.10, 0.25
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and 0.41; but when the incidence is 0.05, the derived heritability of liability is 
0.10, 0.27 and 0.45 (McGuirk, 1989). 

Inclusion of fixed effects in the model 

Approximation of the heritability for liability from the heritability of the binary 
trait using 

  
1- ne = Ps, 

is appropriate if all animals belong to the same group. However, if the incidence 
of the binary trait depends on the group of animals being measured, such as 

animals of one herd measured in different years, then derivation of the heritability 
for liability by transformation of the heritability for the binary trait is 
inappropriate, as the transformation is a function of the incidence, which is 
different for each group of animals. 

As discussed in Chapter 11, mixed model procedures, such as REML, can 
simultaneously estimate fixed and random effects and provide an estimate of the 
heritability for a normally distributed trait. Given the mixed model equation 

y = Xb+Zut+e 

then a change in the level of a fixed effect, such as between boars and gilts, will 
directly correspond to a change in the measured trait, such as growth rate. 

In the analysis of a binary trait, with the assumption of a threshold model, 
then differences between levels of fixed effects will correspond to changes in the 
liability. Therefore, a function to link changes in the liability to changes in the 
binary trait needs to be incorporated in the mixed model equations. One such link 

function is the logit function, 

PA 
  y= with @=Xb+Zut+e 
l+e 

where 6 represents the liability and y represents the probability that the animal 

belongs to category one of the binary trait. 

8 

    

1.00 7 

e 0.75- 

1+ ef 

0.50 7 

0.25 7 

0.00 T T T T T T T 
-3 -2 -1 0 1 2 3 

6 

Fig. 14.4. The curve of the logit function
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The curve of the logit function, illustrated in Fig. 14.4, indicates that 
extreme values of the liability correspond to probabilities of zero and unity of an 
individual being in category one. The liability, 8, can be expressed in terms of y, 

y 

l-y 
For example, if the effect of two treatments on the resistance to a disease is 

  since 6 = log 

modelled using a threshold model, and estimates of the treatment effect, @, are 
2.5 and 3.0 on the liability scale, then the probability of not contracting the 
disease is 0.92 and 0.95, respectively. However, if estimates of the treatment 
effect are 1.0 and 1.5 on the liability scale, then the probability of not 
contracting the disease is 0.73 and 0.82. Therefore, there is not a linear 
relationship between the estimated treatment effect and disease resistance. 

There are several procedures for the analysis of binary data, using a threshold 
model, to estimate variance components (e.g. Gilmour et al., 1985; Foulley et 
al., 1987). The relationship between a linear model for the analysis of a normally 
distributed trait and a threshold model, incorporating a link function, for the 
analysis of a binary trait is illustrated with the Schall (1991) method. 

Firstly, the model for a normally distributed trait is 

y = Xb+ Zut+e 

and the mixed model equations, as outlined in Chapter 11, are 

XRIX xXR1!Z * _|X'R’ly 
ZR'X ZR!z+G! fu] |zrR-ly 

where var[e]=R =I? and var[u] = Ao2 =G. 

Variance component estimates are determined from functions of the estimated 

random effects, U and é. When the random effects, u, are uncorrelated, one pair 
of functions is 

  

  

62 _ u'u 

q- r(C” \/o% 

and 

62 = ee 02 
N-1(X)-q+t(C”)/o? 

where q is the number of random effects. 
However, for a binary trait, y, the model for the liability, 0, is 

  

  

0 

O=Xb+Zute and y= 
I+e 

The liability is linked to the binary trait by the link function 

8 = log y 
I-y 

Rather than calculating the liability directly, the link function is replaced by a 

first order Taylor series, evaluated at the predicted value of each observation, ¥;:
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| vi |. (¥i- i) 
y yi(1-J;) 

  

  

1— yj 

The mixed model equations for the liability are 

X RIX xX'R7!Z | _|xX'R 6 
ZR x zR'z+G!luL| | zrR'e 

where the ith diagonal term of R7! is Vi (1 _ i) 

CL 

2 
and var| uy | = AGy, =G 

with the residual variance on the liability scale equal to Oe, ; 

Variance components for the liability are estimated from functions of the 
estimated random effects: 

2 _ Up Up — 
“gq -tr(C”)/o5, 

  G 

G2 _ er R'é, o2 2 = 
' N-r(X)-q +tr(C?)/o5, “L 
  

Note that the form of the formulae for the estimated variance components, Si, 

and Se, , on the liability scale is same as for the estimated variance components, 

62 and 62, for a normally distributed trait. 
The iterative process is repeated until convergence, with the predicted value 

of 6, equal to Xb, + Ziu,, transformed, using the link function, to obtain the 

6G 
new predicted value of y, equal to c , and the updated estimate of Ro. 

l+e 

  

Linear and Non-Linear Models 

Incorporation of the link function in the mixed model equations to estimate 
variance components and predict breeding values is termed a non-linear model, 
due to the non-linear relationship between the liability and the probability of an 
individual belonging to a particular category of the binary trait. The complexity 
of the non-linear model increases computational time, such that the efficiencies 
of linear and non-linear models for the prediction of breeding values and 
responses to selection in a binary trait should be determined with different values 

for the heritability of liability and incidence of the binary trait. 
One method of comparing the efficiencies of the two models is to use 

simulated data, with the normally distributed trait, the liability, generated with a
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given heritability, to which a threshold is applied to achieve a binary trait. For 

example, half-sib data for the liability, with a heritability of h7, can be 

simulated from 

0; = 0.5s; + Ci 

where 0); is the liability of the j'" progeny of the i'” sire, with the sire genetic 

and environmental effects, s; and ejj, being random numbers with normal 

distributions and variances of hz and 1— 0.25h? , respectively. 

When no fixed effects are included in the data simulation and for a constant 
or variable number of progeny per sire, sire breeding values for the binary trait 
have similar ranking when predicted with the linear and non-linear models, 
independent of the heritability of liability or the incidence of the binary trait 
(Meijering and Gianola, 1985). 

In the more realistic situation, when fixed effects are included in the model 
with a variable number of progeny per sire, then the ranking of the true and 
predicted sire breeding values is more similar when breeding values are predicted 

with the non-linear model than with the linear model. The advantage of the non- 
linear model over the linear model increases as both the heritability of liability 
and the incidence of the binary trait decrease. Therefore, breeding values of traits 
which have both low heritabilities and low incidences, as in reproductive traits 
like twinning in cattle, should be estimated with a non-linear model rather than 
with a linear model.
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Appendix 

Matrix Algebra 

Matrix notation can be used to represent equations in an uncomplicated manner, 
such that an understanding of the properties of an equation can be obtained 
without getting distracted by detailed algebra. Secondly, obtaining solutions to 

equations is routinely performed through the use of matrices. 
A very simple example of the use of matrices can be taken from school 

mathematics. If one person buys nine oranges and four apples and pays 158p and 
a second person buys five oranges and six apples and pays 118p, then what are 
the costs of oranges and apples? The standard approach is to set up two equations 

describing the purchases 

9 oranges + 4 apples = 158p 
5 oranges + 6 apples = 118p 

The equations are solved by eliminating one of the variables from the equations 
and then solving for the other variable. To eliminate apples from the equations, 
the first equation is multiplied by six and the second is multiplied by four; then 
the first equation is subtracted from the second equation to provide 

34 oranges = 476 

such that oranges cost 14p. The cost of oranges is substituted in either equation, 
to enable the cost of apples to be determined, which 1s 8p. 

Before illustrating how matrix algebra can be used to solve the problem, 
some definitions are required. 

Definition of a matrix 

A matrix consists of R rows and C columns of numbers. For example, if matrix 

l 
A was equal to | } then A would be a 2 X 3 matrix, as the number of 

6 

rows proceeds the number of columns. The element of matrix A in row i and 
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column j is denoted as Ajj. A vector is just a matrix with one column. To 

differentiate between matrices, vectors and scalars or numbers, in the Appendix, 
matrices and vectors are in bold. 

Matrix multiplication 

If A and B are two matrices, then the product of A and B is C = AB. For matrix 
multiplication, the number of columns of A must equal the number of rows of 

B. The element of matrix C in the it row and jth column, Cjj, is the product of 

the elements in row i of matrix A multiplied by the elements in column j of 
matrix B. 

24 6 8 

| ang B= 3 5 7 91}, then C= 

2 3 6 7 

For example, the third element in the second row of matrix C, equal to 95, 

is calculated as (4 x 6)+(5 x 7)+(6X6). The dimensions of matrix C are equal 
to the rows of matrix A and the columns of matrix B. Even when A and B are 
square matrices, the product AB does not always equal the product BA. 

l 
Ir A=| 

14 23 38 47 

4 5 6 35 59 95 119 

The inverse of a matrix 

Only square matrices can have an inverse, since the product of matrix A and its 
inverse 1s the identity matrix, such that 

AA | =A 'A=I 
where the identity matrix, I, is a square matrix, with ones on the diagonal and 
the off-diagonal elements are equal to zero. 

a b 
The inverse of the 2 x 2 matrix, ih iS 

Cc 

l d -b 

ad—bc|—-c a 

where (ad — bc) is the determinant of the matrix. If the determinant is zero, then 

the matrix has no inverse. Calculation of the inverse of matrices larger than 
2x2 matrices is generally performed using computer programs. 

  

Returning to the apple and oranges problem, the equations can be expressed 
in the form A x = y, where x is the vector representing the cost of oranges and 

oranges 158 
, y is the price of the two purchases, y = rig? and A Is 

the matrix of coefficients for the two purchases, with each row representing one 

apples, x = 
apples 

9 4 
purchase, with A = ; | such that
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9 4] oranges 158 

5 6]| apples 1118 

The inverse of A is 

| 6 4] [ 0.176 -0.118 

(9x6)-(4x5){-5 9] |-0.147 0.265 

Multiplying both sides of the equation by the inverse of the A matrix, we obtain 

oranges 14 

apples 18 

Obviously, the example is simple, but it clearly illustrates that solutions to 
equations can be determined through the use of matrices, particularly when there 
are a large number of equations and variables. 

  

  

Four other matrix terms need to be defined, which will be required for 

selection indices and the prediction of breeding values. 

Multiplying a matrix by a constant 

If matrix A is multiplied by a constant c, then all the elements of the matrix A 
are multiplied by c. 

Addition and subtraction of matrices 

Matrices can only be added or subtracted if the dimensions of the two matrices 

are equal. The element of (A + B) in the it® row and jt® column is Aij + Bij, 
such that A + B is equivalent to B + A. Similarly, the element of (A — B) in the 

ith row and jt column is Aij — Bi. 

Transpose of a matrix 

The transpose of matrix A, with R rows and C columns, is obtained by 
replacing the rows by the columns, such that the transpose has C rows and R 

columns. The element in the it) row and jth column of the transpose of A is 

equal to the element in the jth row and i) column of A. The transpose of matrix 
A is denoted by A’. 

The matrix A is symmetric if A = A’. 

Variance—covariance matrices 

If X,,Xp,...,X, are variables, with variances var(X,), var(X>),..., var(X,,) and 

covariances cov(X},X> ), cov(X1,X3),...,cov(Xp_1,Xn), then the variance— 

covariance matrix of Xj, X92, ..., Xp is a Square matrix, with the variances on 

the diagonal and the covariances on the off-diagonal:
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var(X;) covw(X1,X>) vee cov(X,,X,) 

cov(X1,X>) var(X> } oc cov(X7, Xn) 

cov(X;,X,) cov(X2,X,) <<: — var(X,) 

The element in the if) row and jth column of the variance—-covariance matrix is 

equal to the covariance between Xj and Xj. 

Example 

The variance of a linear combination variables can be represented easily 

using matrix algebra. If X,,X>,...,X, are variables with variance—covariance 

matrix A, and cj,C3,...,C, are constants represented by the vector c, then the 

variance of the linear combination 

var(cyX1 +c2X7 +...+¢,X,)=c' Ac 

For example, the variance of the linear combination is the sum of the elements 

of the symmetric matrix 

[¢? var(X;) CjCo cov(X,, Xz) CjC3 cow(X1,X3) C1C4 cov(X1,X4) | 

C3 var(X> } C7C3 cow Xo, X3) CyC4 cow(X>,X4) 

C8 var(X3) C3C4 cov(X3, X4) 

c4 var(X4)     
An example of a matrix representation of the variance of the linear 

combination is the variance of a sib mean, described in Chapter 5. If there are 

three sibs, then the phenotypic variance—-covariance matrix of the sibs is: 

63 top top 
top Op top 
2.2 2 

tOp tOp Op 

. . l l I . 
The variance of the sib mean, var( +X, +> Xo +X), is the sum of the 

elements of the matrix 

12 1,..2 1.2 
_ tos —to 

go 2 2 2 “tos —-o5 —to 

rn ne 2 1.2 2 
tos —-top —O 
g9 ~P g  P govP 

which is 

l 1+(n-I)t 
= [NP +n(n—- I)top | = ad
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Normal Distribution Tables 

Proportion 

selected, p 

    rT 
i w+Xop  U+iop 
<______> 

Selection differential 

If the proportion of animals selected, p, have measurements greater than the 

population mean by x standard deviations, then the mean of the selected animals 

will be greater than the population mean by i standard deviations. 

If the proportion of animals selected, p, is greater than 0.5, then use the 

tabulated values for 1 — p, multiply x by —1 and multiply i by (1 — p)/p. 

  

  

p X i p X 1 p X 1 

1 2.33 2.66 21 0.81 1.37 41 0.23 0.95 

2 2.05 2.42 22 0.77 1.35 42 0.20 0.93 

3 1.88 2.27 23 0.74 1.32 43 0.18 0.91 

4 1.75 2.15 24 0.71 1.30 44 0.15 0.90 

5 1.64 2.06 25 0.67 1.27 45 0.13 0.88 

6 1.56 1.98 26 0.64 1.25 46 0.10 0.86 

7 1.48 1.92 27 0.61 1.22 47 0.08 0.85 

8 1.40 1.86 28 0.58 1.20 48 0.05 0.83 

9 1.34 1.80 29 0.55 1.18 49 0.02 0.81 

10 1.28 1.76 30 0.52 1.16 50 0.00 0.80 

11 1.23 1.71 31 0.50 1.14 
12 1.18 1.67 32 0.47 1.12 
13 1.13 1.63 33 0.44 1.10 
14 1.08 1.59 34 0.41 1.08 
15 1.04 1.55 35 0.38 1.06 

16 0.99 1.52 36 0.36 1.04 
17 0.95 1.49 37 0.33 1.02 
18 0.92 1.46 38 0.30 1.00 

19 0.88 1.43 39 0.28 0.98 

20 0.84 1.40 40 0.25 0.97     
 



Questions 

Ql. 

Q2. 

Q3. 

Q4. 

Q5. 

Growth rates of pigs were recorded, with an equal number of animals in 
each litter. A balanced ANOVA table was calculated from the data: 

  

  

Source of variation DF Mean squares 

Between-sires 16 340.75 
Between-dams within-sires 51 175.75 
Between-progeny within-dams 136 92.5 
  

(a) How many sires, dams per sire and progeny per dam were there? 
(b) What are the expectations of the mean squares? 
(c) Calculate the variance components and the phenotypic variance for 

growth rate. 

Using the data in Question 1, calculate: 
(a) the variance of a sire family mean for growth rate; 
(b) the variance of a dam family mean for growth rate; 
(c) the half-sib and full-sib correlations for growth rate. 
(d) Determine whether the half-sib correlation is different from zero. 

Using the data in Question 1, calculate: 
(a) the half-sib heritability and its standard error; 
(b) the maternal half-sib heritability and its standard error; 
(c) the full-sib heritability and its standard error; 

(d) the maternal effect, c2, and its standard error. 

Calculate the standard error of a heritability estimated from half-sib data, 
when the true heritability is 0.25, the phenotypic variance is 144 and the 
number of sires and progeny per sire are 20 and 30, respectively. 

Litter size measurements for dams and the average of their daughters, with 
30 daughters per dam are as follows: 

176
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Q6. 

Q7. 

Q8. 

  

  

  

Pair 1 2 3 4 5 6 7 8 9 10 

Dam 11 9 13 10 9 8 10 11 10 «13 

Daughter 
average 10.0 9.7 10.2 9.9 9.8 9.8 10.0 10.1 9.8 10.4 

Calculate: 

(a) the regression equation for average daughter litter size on dam litter 

S1Ze; 

(b) the correlation between the dam and average daughter litter sizes; 

(c) the standard error of the regression coefficient and the 0.95 confidence 

interval of the correlation coefficient; 

(d) the heritability of litter size using the regression and correlation 

coefficients. 

A balanced analysis of covariance was calculated using data on growth rate 

and food conversion ratio, FCR, from animals in Question 1: 

  

  

Growth rate Mean cross- FCR 

Source of variation DF — mean squares products mean squares 

Between-sires 16 340.75 —431.5 1219.0 

Between-dams 51 175.75 —197.5 559.0 

Between-progeny 136 92.5 —121.0 325.0 
  

(a) Calculate the covariance components. 

(b) Calculate the phenotypic, genetic and environmental correlations, 

using half-sib heritability estimates. 

(c) Calculate the standard error of the genetic correlation. 

The litter weights of daughter's litters and dam's litters were measured in 

two experiments: 

Experiment 1: all litters were standardised at birth to eight progeny, by 

removing progeny in excess of eight or by fostering from other litters. 

Experiment 2: all mothers reared all their progeny. 

The regression coefficients of daughter's litter weight on their dam's litter 

weight were 0.049 and —0.028 in the two experiments and the 

repeatability, or correlation, of litter weights for full-sibs were 0.054 and 

0.081, respectively. 

Suggest reasons, other than sampling variation, which account for 

the differences between the heritability estimates. 

In a study of fertility in pigs, the same number of litter sizes was 

measured on each of 156 unrelated sows. The ANOVA table was as 

follows:
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Source of variation DF Mean squares 

Between-dams 155 25.56 
Within-dams 1404 3.23 

(a) Calculate the repeatability of litter size. 

(b) In the design of a breeding programme to improve fertility, a high 
heritability is desirable. By how much would the heritability of 
fertility be increased if fertility was defined as the mean of two, three 
or four litters? 

Q9. Calculate the expected response to selection for increased body weight, 
given a heritability of 0.26, a phenotypic variance of 10.6 and that the 
proportions of individuals selected are 0.25, 0.50 and 0.75. 

Calculate the expected responses if five measurements are made on 
each individual, and assume that the repeatability is equal to the 
heritability. 

Q10. Prove that 

R = ibasOg =itasO, = iO 5 

where A is the animal's true breeding value, A is the animal's predicted 
breeding value and S is the selection criterion. 

Ql1. The mean values of a trait for animals A and B are 520 and 500 kg, with 5 

and 15 measurements, respectively. The heritability of the trait is 0.2, the 

repeatability is 0.3, the phenotypic variance is 350 kg? and the mean 
value for the population is 420 kg. For animals A and B, calculate: 
(a) the predicted breeding values, BV; 
(b) the variance of the predicted BV; 
(c) the accuracy of the predicted BV; 
(d) the prediction error variance; 

(e) the 95% confidence interval of the BV. 

Q12. Average daily gain in pigs has a half-sib correlation of 0.1 and a full-sib 

correlation of 0.36. Calculate the regression coefficients, b ag and bag, 

for an individual given the following information on relatives: 
(a) the mean of five half-sibs, all from different dams, with the individual 

included in the mean; 
(b) the mean of five full-sibs, which includes the individual; 
(c) the mean of four full-sibs, which excludes the individual; 
(d) the individual's deviation from the mean of five full-sibs, which 

includes the individual. 

Q13. Calculate the rates of response, relative to selection on the individual's 
measurement only, for each situation in Question 12, ignoring differences 
in the selection intensity.
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Q14. 

Q15. 

Q16. 

Q17. 

Q18. 

Q19. 

Q20. 

Which of the two pigs, A or B, would be selected using the regression 
coefficients from Question 12, parts (b), (c) or (d), or if only the 

individual's measurement was used? 

  

  

Full-sib * Population mean 
Pig Growth rate mean growth rate (e/day) 

A 980 920 950 
B 970 990 
  

* Includes the individual's measurement. 

Which bull would be selected, given a heritability for milk yield of 0.25, 
a phenotypic standard deviation of 1400 kg and a population mean of 8000 
kg, when the mean progeny milk yields of bulls A and B are 8300 and 

8500 kg, for 50 and 10 progeny, respectively? 

Average daily gain in pigs has a half-sib correlation of 0.10 and a full-sib 
correlation of 0.36. Calculate selection criterion coefficients and the 
correlation between the selection criterion and the selection objective, 

given the following measurements: 
(a) the mean of five half-sibs with the individual excluded and the 

individual's measurement; 
(b) the mean of five half-sibs with the individual excluded and the 

deviation of the individual's measurement from the half-sib mean; 
(c) the individual's measurement and the mean of six half-sibs with the 

individual included. 
(d) Repeat parts (a), (b) and (c) with full-sibs. 

Calculate the selection criterion to improve average daily gain, ADG, and 

food conversion ratio, FCR, when each individual is measured: 

  

  

ADG FCR Op Economic value 

ADG 0.52 0.83 1.11 I 
FCR 0.71 0.40 2.48 5 
  

Heritabilities, in bold, are on the diagonal, the genetic correlation is below 
the diagonal and the phenotypic correlation is above the diagonal. 

Calculate the correlated responses in average daily gain and food 
conversion ratio to selection on the criterion in Question 17 and determine 

the correlation of each trait with the selection criterion. 

Calculate the heritability of the selection criterion in Question 17. 

Using the parameters in Question 17, determine the selection criterion to 

improve average daily gain only, when measurements are made on average
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Q21. 

Q2?2. 

Q23. 

Q24. 

daily gain and food conversion ratio. Calculate the correlated responses in 
average daily gain and food conversion ratio. 

Average daily gain, ADG, and carcass lean content, LEAN, are to be 
improved in a pig herd. Ultrasonic backfat depth, BFAT, and average daily 
gain are measured on each pig. Calculate the correlation between the 

selection criterion and the selection objective, when one, two, four or six 
backfat depth measurements are made on each pig. The genetic and 
phenotypic parameters are as follows: 

  

economic 

ADG BFAT LEAN Op value tFS 

ADG 0.46 0.06 0.102 980 0.29 
BFAT -—0.05 0.31 3.48 0.21 
LEAN 0.00 —0.60 0.45 4.0 60 

  

Heritabilities, in bold, are on the diagonal, genetic correlations are below 
the diagonal and phenotypic correlations are above the diagonal. 

The repeatability of ultrasonic backfat depth measurements is 0.70. 

As in Question 21, average daily gain, ADG, and carcass lean content, 
LEAN, are to be improved in a pig herd. Average daily gain and ultrasonic 
backfat depth, BFAT, are included in a selection criterion using the 
following parameters, with one ultrasonic backfat depth measurement for 
each individual: 

  

Economic 

ADG BFAT ADF LEAN Op value 
  

ADG 0.46 0.06 0.54 0.102 980 
BFAT —0.05 0.31 0.42 3.48 
ADF 0.58 0.54 0.34 0.221 
LEAN 0.00 -0.60 -—0.45 0.45 4.0 60 

Calculate the responses for all four traits when average daily food intake, 
ADF, is included or excluded from the selection criterion, which consists 
of average daily gain and ultrasonic backfat depth. 

Using the parameters in Question 22, calculate the restricted selection 
index, which will result in no genetic change in average daily food intake. 
Compare the correlation between the selection criterion in Question 22 
and the selection objective with the correlation for the restricted selection 
criterion. 

Average gaily gain, ADG, and carcass lean content, LEAN, are to be 
improved in a pig herd. Measurements for average daily gain and 
ultrasonic backfat depth, BFAT, are made on the individual and its sibs.
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Calculate the selection criterion coefficients and the correlation between 

the selection objective, when one, two, three or four full-sibs are 
measured. The individual's measurement is to be included in the full-sib 

mean. 

(Selection criterion = bapGind + bprarind + banc sib + bprarsib ) 

Use the parameters given in Question 21. 

Q25. Calculate the actual loss and the predicted gain in response by including 
trait X as well as trait Y in the selection criterion to improve trait Y, 
when the estimated genetic correlation between traits X and Y is equal to 

(a) 0.2 and (b) 0.5. 
The heritabilities of trait X and Y are 0.4 and 0.1, with the genetic 

and phenotypic correlations equal to 0.3 and 0.6, respectively. 

Q26. Which of the following breeding programmes has the greater annual rate 

of genetic improvement? 

  

  

Programme A Programme B 

Selection of males TTH 0.30 0.90 
Selected proportion Pp 0.02 0.10 
Generation interval L 2 years 7 years 
Selection of females IIH 0.60 0.65 

Selected proportion p 0.90 0.90 
Generation interval L 4 years 4 years 
  

Males in programme A were selected on the dam's predicted breeding 

values. The value of rj} for dams was 0.60. 

Q27. Predict the breeding values of the three animals, A, B and C, their 
prediction error variances and the values of ry, given repeated 

measurements on the animal, with one record on each of the animal's 

progeny and sire, as follows: 

  

  

Number of Number of Sire's 
Animal measurements Average progeny Average __ record 

A 3 50 30 30 -10 
B 4 —20 20 60 40 
C 5 70 10 20 30 
  

The average values are expressed as deviations from the population mean. 

The additive genetic variance, environmental variance and phenotypic 

variance are equal to 40, 40 and 100, respectively, and all progeny are half- 

sibs. 

Q28. The following measurements were made on five animals:
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Animal Measurements 

l One record = 20 
2 Record of sire of animal 2 = 30 

Animal 1 is the dam of animal 2 
3 Animal | is the dam of animal 3 

4 Average of 10 half-sib progeny of animal 4 = 19 
5 Average of 10 half-sibs of animal 5 = 19 

Animal 5 is the sire of animal 3 

Calculate the breeding values of the five animals, when the heritability is 

0.4 and the phenotypic variance is 200, given the above measurements, 
expressed as deviations from the population mean. 

Calculate the prediction error variances and the values of ry for 

animals 1 to 5 and the sire of animal 2. 

Q29. Write down the mixed model equations to obtain breeding values of the 
three sires, which have the following records on their progeny in three 
herds. Assume the sires are unrelated and that the heritability of protein 
yield is 0.4. 

Herd l l l 2 2 2 3 3 3 

Sire A B C A B B C C C 
Protein 210 160 120 180 115 125 120 #100 80 

If sire C is the son of sire B, who is a half-sib of sire A, then how would 
the mixed model equations change? 

Q30. Daily milk yield was recorded on several occasions during two months. 
The two animals, A and B, are half-sibs, the heritability of daily milk 
yield is 0.30, the repeatability is 0.50 and the phenotypic variance is 40. 

  

  

July August 

Animal A 18 20 20 19 
Animal B 21 22 22 20 19     

(a) Determine the elements of the mixed model equations required to 
predict breeding values of the two animals for daily milk yield. 

(b) Discuss the use of the two effects which are estimated for each animal. 
(c) Outline the procedure to determine the prediction error variances for the 

two animals and describe the uses of the prediction error variance.



  

Answers 

For further information, the numbers in [ ] brackets refer to the appropriate pages 

in the text. 

Ql. [13] 
(a) Formulae for calculating the degrees of freedom in the ANOVA table are: 

Between-sires (s—1) =16 s=number of sires = 17 

(b) 

(c) 

Q?2. 

(a) 

(b) 

(c) 

Between-dams s(d—1) =51 d=number of dams per sire =4 

Between-progeny sd(n—1) =136 n= number of progeny per dam = 3 

The expectations of the mean squares are: 

Between-sires oO: + no4 + ndoz = 2 + 307 + 1202 = MSs 

Between-dams oO: + no4 = oO: + 304 = MSd 

Between-progeny o2 =O 2 = MSe 

MSe = 92.5 = 62 | 
_ _ <2 2 2 _ 

MSd = 175.75 = O¢ +304 64 =(MSg-MS,)/3 = 27.75 

MSs = 340.75 = 02 +303 +1202 62 =(MS,-MS,)/12  =13.75 

The phenotypic variance, o5 = o2 + of + 02 , equals 134.0. 

[15] 
, . , _ 2,22 2g 

Variance of sire family mean = 0, + 0g /a + Oe /nd = 28.40. 

Variance of dam family mean = 4 + o2 /n + o2 = 72.33. 

Half-sib correlation: tys = o2 / oF = 0.103. 

Full-sib correlation: tps = (03 +04) /op = 0.310. 

183
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(d) 

Q3. 
(a) 

(b) 

(c) 

(d) 

Q4. 

The variance of the half-sib correlation can be calculated using the formula 
for the variance of the sire variance component and by treating the 
estimate of the phenotypic variance as a constant, such that 

2 

var(t,) = vf _ var( 5   

op) op 
The formula for the variance of the sire variance component is 

2 MSZ MS4 
242 + n-d“|(s—1)+2 s(d-1)+2 

such that the variance of the sire variance component is 97.7 and the 
standard error of the half-sib correlation is 0.074. 

The 0.95 confidence interval of the half-sib correlation is (—0.04, 

0.248), determined from ty>5 +1.96 s.e(tys), and as zero is contained 

within the 0.95 confidence interval, then the half-sib correlation is not 

significantly different from zero at the 0.05 level of significance. The 

degrees of freedom for the test statistic are the residual degrees of freedom 
in the ANOVA table. 

[15, 18-19] 

The half-sib heritability is 4ts, as the sire variance component is a quarter 

of the additive genetic variance. From Question 2(c), ts = 0.103 and the 
standard error of ts = 0.074. The half-sib heritability and its standard error 

are 0.41 and 0.30, respectively. 
The maternal half-sib heritability is 4tg, which is a biased estimate of the 

heritability, as the dam variance component includes the maternal 

variance, a quarter of the dominance variance and the common 
environmental variance. From Question 2(c), tq = 0.207, which has a 

standard error of 0.089, such that the maternal half-sib heritability is 0.83, 
with a standard error of 0.36. 

The full-sib heritability, 2(t, +tq), is also a biased estimate of the 

heritability. The standard error of the full-sib heritability is calculated 

from 24] var(o; + var( 04] / oO . The full-sib heritability and its standard 

error are 0.62 and 0.23. 

The maternal effect, c2, is ts — tq and the standard error is one half of the 

standard error of the full-sib heritability. The maternal effect and its 
standard error are 0.10 and 0.12. 

  

[19] 
The standard error of the heritability is estimated from the variance of the 
intra-sire correlation, equal to 

2(1- tus) (1 +(n- I)tys)” 

(s—1)n(n-1) 
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QS. 

(a) 

(b) 

(c) 

(d) 

Q6. 

(a) 

since the intra-sire correlation is 0.25h2. The standard error of the 
heritability estimated from data on half-sibs is 0.116. 

[22-27] | 
Let D denote the dam's litter size and d the average litter size of 30 
daughters. The sums of squares and cross-products are 

YD? =1106, ¥d*=994.43, and YDd=1039.8 

Estimates of variance and covariance components are 

1 6%, = 5|=D” ~(ZD)/10]=2.711 0G = 0.047 

and 

Spq =cov(D, d) = =[ZDd -(ZD)(X4)/10] = 0.324 

The regression coefficient bgp = Ogp / o4 = (0.12, and the intercept of 

a=d-—bD= —(z d—b> D] =8.72, indicate that the regression equation 

for the average litter size of 30 daughters on dam litter size is 
8.72 + 0.12 dam litter size. 

The correlation between dam litter size and average litter size of 30 

daughters is 

p=—Dd_ 09.91 
Opod 

The standard error of the regression coefficient is 0.019. The parameter z 
has a standard error of 0.378. Transformation of the confidence limits for z 
provides the 0.95 confidence interval of the correlation coefficient, of 

(0.65, 0.98). 
Calculation of the heritability from offspring—parent regression requires 
the covariance between offspring and parent. In the question, it was the 
average litter size of 30 daughters that was regressed on dam litter size. 
The covariance between the average litter size of 30 daughters and the 
dam's litter size is equal to the covariance between a daughter's litter size 
and the dam's litter size. The heritability is equal to twice the regression 

coefficient, which is 0.24. 
The variance of the average litter size of 30 daughters is equal to 1/30 

of the variance of a daughter's litter size, such that the variance of a 
daughter's litter size is 1.404. The correlation coefficient between daughter 

and dam litter sizes is 0.324 = 0.166. The heritability is twice 
11.404 x 2.711 

the correlation coefficient, which is 0.33. 

[28-29] 
The sire, dam and residual variance components for average daily gain are 
13.75, 27.75 and 92.5, with the corresponding variance components for 
food conversion ratio equal to 55.0, 78.0 and 325.0. The phenotypic
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(b) 

(c) 

Q7. 

variances for average daily gain and food conversion ratio are 134.0 and 
458.0. 

The sire, dam and residual covariance components are calculated in a 
similar manner to the variance components, with values equal to —19.5, 
—25.5 and —121.0, respectively. The phenotypic covariance is —166.0. 

The phenotypic correlation is | 008 — = —0.670. 
134.0 x 458.0 

The additive genetic variances and covariance are four times the 
corresponding sire variances and covariance, such that the genetic 
correlation is 

|_=78.0__ = —(.709. 
55.0 x 220.0 

The environmental correlation can be derived using the formula for the 
expectation of the phenotypic correlation: 

[Ip = Tahyhy + re,|(1 — hx \(1 — hy | 

The environmental correlation is —0.641. 

The formula for the standard error of the genetic correlation is given in the 
text. The heritability of average daily gain and its standard error were 
determined in Question 3, and were equal to 0.412 and 0.312. For food 
conversion ratio the heritability and its standard error were 0.480 and 
0.324. The standard error of the genetic correlation is 0.251. 

  

[18] 
In large litters there will be a larger number of animals competing for 
limited nutrients than in smaller litters, such that animals born into a 

large litter may be smaller than animals born into a small litter. 
Secondly, if smaller females have lower ovulation rate than larger 
females, then smaller females may have smaller litters than larger 
females. Therefore, females reared in larger litters may be smaller and 
subsequently have smaller litters than females reared in smaller litters. 

The full-sib correlation in experiment 1, 0.054, is considerably lower 
than in experiment 2, 0.081, as standardisation of litter size will have 
reduced the similarity between full-sibs from larger litters, due to some 
litter mates being reared in different litters. 

In experiment 2, the daughter—-dam regression was substantially lower 
than the full-sib correlation, —0.028 versus 0.081, which suggests that 
the negative maternal environmental effect, of a daughter from a large 
litter having a small litter, was larger than the common environmental 
effect. 

The full-sib correlation in experiment 1 was similar to the daughter— 
dam regression, 0.054 versus 0.049, which suggests that the common 
environmental effect was small.
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Q8. [10, 31-32] 
(a) The within-sow variance is the within-sow mean square of 3.23 and the 

between-sow variance 1s 

Of = (MSp — MSw )/n = (25.56 — 3.23)/10 = 2.23 
o2 

The repeatability r, =—5—2- = 0.41. 
Op +Ow 

(b) The heritability for the mean of n measurements is 
h 

re + (1 —Te ) / n 

For n = 2, 3 and 4, the proportional increase in the heritability 1s 0.42, 

0.65 and 0.80. 

Q9. [39-41] 
(a and b) 

Response, 

. ih*o P 
Proportion Response, ; 5 
selected Selection differential ih?op | h* + (1 —h / n 

0.25 1.27 1.08 1.68 
0.50 0.80 0.68 1.06 

; (1 — 0.75) 
0.424 =1 —___— 0.75 (1-0.75) 0.75. 0.36 0.56 

With five measurements per animal, the response was increased to 1.56 
times the response with one measurement per animal. 

Q10. [39-41] 

The response R = ibasOg =1 CAS Og = 1 OAS Oa =ifasOa 
Os Osa 

; .bas O . basO 
The response R = iryso, =i—A2—4AS-o, =i—AS AS 

A 
| bas SA0s basOs 

Since basgOag is the variance of the predicted breeding value, o% , and 

basOg is the standard deviation of the predicted breeding value, then 

R=i0;. 

A second derivation sets basO,s equal to the covariance between the 

true and predicted breeding values, such that 

R=i-AA =i" MAG. 
O- ox A 

A A 

=1b, 40% =10 5
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Qll. 

(a) 

(b) 

(c) 

(d) 

(e) 

Q12. 

(a) 

(b) 

because the regression of true breeding value on predicted breeding value is 
one, as the covariance between the true and predicted breeding values is the 
variance of the predicted breeding value. 

[38-42] 
The predicted breeding values, 

~ nh _ 8 
A= Para — Prop) 

of animals A and B are 45.45 and 46.15. Although the average value for 
animal A is higher than that for animal B, the predicted breeding value for 

animal B is higher than that for animal A, as the smaller number of 

records for animal A result in a lower regression coefficient (0.454 versus 
0.577). 

nh* 

1+(n-1)r 
€ 

The variances of the predicted breeding values, var( A] = oO, 

of animals A and B are 31.82 and 40.38. 
The accuracies of the predicted breeding values, 

—— nh? 

AA V14+(n—-1)r, 
: 2 _ _ 

of animals A and B are 0.67 and 0.76. Note that r AA = Dap: 

The prediction error variances, PEV = (1 _ rm A Joa. of animals A and B 

are 38.18 and 29.62. The prediction error variance is another measure of 
the precision with which the breeding value is predicted, and so a small 
predicted error variance is desirable. 

The 95% confidence intervals of the predicted breeding values, 

A+1.96./PEV , for animals A and B are (33.44, 57.56) and (35.48, 

56.82). 

[44-48] 

Selection is on between-family deviations, as the individual is included in 
the sib mean, so the regression coefficient is calculated from 

1+(n-I)r |, 2 
bb. =|-————_ jh 
AP ae) 

where r =0.25 as the animals are half-sibs and t=0.10. The heritability is 
four times the half-sib correlation. The regression coefficient is 0.571 and 
the predicted breeding value of each of the five half-sibs is 

0.571(F — Ppop ). 
The same equation applies for the regression coefficient as in part (a), but 
with r = 0.5 as the animals are full-sibs and t = 0.36. The regression 
coefficient is 0.492.
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(c) 

(d) 

Q13. 

(a) 

(b) 

(c) 

(d) 

Selection is on sib information, as the individual is excluded from the sib 
mean, so the regression coefficient is calculated from 

8 nrh? 

AS“ 14+(n-1)t 

where r = 0.5, t = 0.36 and n = 4. The regression coefficient is 0.385 and 

the predicted breeding value of the individual is 0.385(S - Prop }: 

Selection is on within-family deviations, so the regression coefficient is 

(=r) calculated from Gay? The regression coefficient is 0.312 and the 

predicted breeding value of an individual is 0.3 12(P - F). 

[49] 
The response with family information relative to selection on the 
individual's measurement, ignoring differences in the selection intensity, 

  

  

b,= O= 
is AR. —F 

h Op 

Dar OF Relative 

h? Op response 

B famil 1+(n-1)r it 
etween-family Talal — 

half-sib 1+(n—I)t yon 
1.428 0.529 0.756 

Between-family 
full-sib 1.230 | 0.698 0.859 

nT 1-t 
Sib information 1+(n—1t t+ —_ 

0.962 0.721 0.693 

1 —fT l 

Within-family Tt (1 - *\( —t) 

0.781 0.716 0.559 
  

In each case, individual selection had a relatively larger response, ignoring 
differences in the selection intensities.
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Q14. [44-48] 

  

Predicted 
breeding value Calculation of breeding 

Selection method A B Select value for animal A 
  

(b) 

(c) 

(d) 

Between-family 
with full-sibs —14.75 19.67 B 0.492 (920-950) 

Sib information -—17.31 17.31 B 0.385 (905-950) 
Full-sib mean excluding 

the individual = 905 

Within-family 18.75 -6.25 A 0.312 (980-920) 

Individual only 12.00 8.00 A h* (980-950) 
  

Q15. 

Q16. 
(a) 

(b) 

Animal B was selected, with selection on between-family deviations or 
selection on sib information as the full-sib mean of animal B was larger 

than the full-sib mean of animal A. In contrast, animal A had a larger 
within-family deviation than animal B. 

[SO] 
2nh? 

44+(n—1)h? 
are 461.5 and 400.0. The progeny mean of bull B is regressed back to the 
population mean to a greater extent than the progeny mean of bull A, due 

to the lower number of progeny. 

The predicted breeding values, (P - Prop); of bulls A and B 

[68-71] 
The heritability of average daily gain is four times the half-sib correlation, 
which equals 0.4. The value of r is 0.25, the genetic relationship between 
the individual and its half-sibs. The a matrix is equal to one and the C 
matrix is the genetic variance, as the trait in the selection criterion is the 
same as in the selection objective. The P and G matrices are 

0.10 0.28 0.10 

b= 0.378 

~ 10.222 |" 
An animal's predicted breeding value is 

1.00 0.10) 0.40), . , , 
Op and Op, with selection criterion coefficients of 

A = 0.378(P — Ppop ) + 0.222(S — Prop | 

b Pb , 1S 0.658. 
a 

  The accuracy of predicted genetic merit, ry = 

The phenotypic variance of the individual's deviation from the mean of its 
sibs, when the individual is excluded from the sib mean, 1s
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(c) 

(d) 

var(ind - S} = var(ind) —2 cov(ind, S) + var(S] = f —2t+t+ =" 163 

The phenotypic covariance between the individual's deviation from the 
mean of its sibs and the sib mean is 

cov(ind ~ 8,5) = cov{ind,3)- var(S) =|1-(++ =") bop 
The genetic covariance between the individual and the individual's 

deviation from the mean of its sibs is h*—rh*, and the genetic 

covariance between the individual and the mean of its sibs is rh2. 

h P d G tri Pp d Pp 9 ith the 

0.18 0.28 0.10 

0.378 

0.600 | 

The accuracy of a predicted breeding value is 0.658. 
The phenotypic covariance of the individual's measurement and the family 
mean is the variance of the family mean, as 

cov(ind, F) = * [var(ind) + (n-1)cov(ind, sib)] = + + - “lo 
n n 

selection criterion coefficients equal to b = 

  

Similarly, the genetic covariance of the individual's measurement and the 

n—-1 
  family mean is 4 hop. The P and G matrices are 

n n 

1.00 0.25] » 0.40}, . , . 
Op and Op, with selection criterion coefficients of 

0.25 0.25 0.15 

0.333 
b= , 

0.267 

The accuracy of a predicted breeding value is 0.658. 
A point worth noting regarding parts (a), (b) and (c) of the question is 

that the selection criteria use the same information, which is the reason 

for the same accuracies of the predicted breeding values. 

In part (a) the selection criterion is b,ind+bS and in part (b) the 

selection criterion is 

b3(ind — S) + b4S = byind + (by — b3)S 
In particular, the selection criterion coefficient for the sib mean in part (a) 
is the difference between the two selection criterion coefficients in part (b). 

In part (c), the selection criterion is bsind + b¢ (ind + 5S) /6 which is 

equal to (bs + bg /6)ind + (5b¢/6)S, such that bs and b¢ are functions of 
b, and bg, with b; + by = bs + de. 
The selection criterion coefficients are 0.344 and 0.156 for part (a), 0.344 

and 0.500 for part (b) and 0.312 and 0.188 for part (c).
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QI7. 

Q18. 

Q19. 

Q20. 

[72] 
The phenotypic and genetic variance—covariance matrices, P and G, are 

oss 530 ot 0.891 
a 2285 6.150 0.891 2.46 of with selection criterion coefficients 

1.954 

selection criterion is 0.514 ADG+1.954 FCR. For selection purposes, 

the mean values for ADG and FCR need not be subtracted from the 

measurements, but the predicted breeding values are determined from 

0.5 14(ADG - ADG] +1 954(FCR - FCR) 

0.514] | i, l 
of b= , given the vector of economic weights, a= 5 | The 

[63-64] 
b'G; 

The equation for the correlated responses is i J , where i is the 
4 P Jb Pb 

  

standardised selection differential and Gj is the jth column of matrix G, 

sot 

0.891 

The correlated responses in average daily gain and food conversion ratio 
are 0.3881 and 0.9881. The equation for the correlation between a trait in 

bG; 
the selection objective with the selection criterion is —————, where 

,|b' Pb.C ij 

corresponding to trait j. For average daily gain, the vector Gj is 

Cjj 1s the variance of trait j. The correlations for average daily gain and 

food conversion ratio with the selection criterion are 0.486 and 0.630. 

[61] 
The phenotypic variance of the selection criterion is b'Pb and the genetic 
variance of the selection criterion is b'Gb. The heritability of the selection 
criterion is 0.40. 

[73] 
The P matrix is the same as in Question 17, but the G matrix is replaced 

by the column of G in Question 17 corresponding to average daily gain, 

0.641 0.808 
and the 

0.891 —0.155 

correlated responses in average daily gain and food conversion ratio are 
0.6161 and 0.550i, respectively. 

The selection criterion coefficients and correlated responses to 
selection could have been obtained by using the P and G matrices in 
Question 17, but changing the economic value of food conversion ratio to 

} The selection criterion coefficients are b -| 

1 
zero, such that a = A
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Q21. 

The response to selection on average daily gain would be 

ih?op = 0.5771, so inclusion of food conversion ratio in the selection 

criterion only improved the response in average daily gain by 7%. 

[86-89] 
When there are several traits, setting up the phenotypic and genetic 
(co)variance matrices can be very time consuming if each element is 
calculated separately. Matrix multiplication can be used to generate the 
phenotypic and genetic (co)variance matrices. For example, the 
phenotypic covariance between traits XK and Y is 

covp(X, Y) =1pOxOy =O xrpOy and, similarly, the genetic covariance 

can be written as cov,(X,Y)=rahyhyoxoy =Oxhyr,ahyoy. 

Therefore, if S 1s a diagonal matrix, consisting of the phenotypic standard 
deviations of each trait, H is a diagonal matrix consisting of the square 
root of the heritability for each trait, and Rp and Rag are the phenotypic 

and genetic correlation matrices, then the phenotypic and genetic 
(co)variance matrices can be written as SRpS and SHRAHS, respectively. 

0.102 0 0 1.0 0.06 0 
The matrices are S=}| O 348 OO], Rp={|0.06 10 O 

0 O 4.0 0 oO 1.0 

10 -0.05 0 40.46 0 0 
R, =|-0.05 10 -O06/andH=/} 0 0.31 0 |, and the 

0 06 1.0 0 0 0.45 

0.048  -0.0067 0.0 

genetic (co)variance matrix is |—0.0067 3.754 —-3.119]|. The P, G 

0.0 —3.119 7.200 

and C matrices are just submatrices of the phenotypic and genetic 
(co)variances. For example, the P and G matrices with one backfat 
measurement are 

ADG_ BFAT ADG - LEAN 

P={|ADG 0.0104 0.0213) and G=|ADG_ 0.048 0.0 

BFAT 0.0213 12.110 BFAT -—0.0067 -3.119 

The element of P corresponding to the variance of the repeated backfat 

; l—-r, ; 
depth measurements is r +18 lobrar The correlations between the 

selection objectives and the selection criteria are 0.426, 0.449, 0.463 and 
0.468, when the mean of one, two, four and six backfat measurements are 
included in the selection criterion. The increase in the correlation is due to 
the reduction in the variance of the mean backfat measurement.
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Q22. 

Q23. 

[72] 
The phenotypic and genetic (co)variance matrices can be calculated using 
the procedure outlined in the answer to Question 21, such that with the 
selection criterion consisting of ADG, BFAT and ADG 

0.0104 0.0213 0.0122 0.0048 0.0 

P=/ 0.0213 12.110 0.323 and G =| -0.0067 -3.119 

0.0122 0.323 0.0488 0.0052 —0.156 

for the selection objective consisting of ADG and LEAN. 
The selection criterion is 680 ADG —12.6 BFAT —174 ADF. 

The correlated responses in each trait are obtained from i Te Pp :   

where i is the standardised selection differential and Gj is the jth column 

of the genetic (co)variance matrix, which corresponds to trait j, after 
omitting the row for carcass lean content, which is not included in the 
selection criterion. For example, transpose of the vector Gj for ADF is 

(0.0052 0.1348 0.0166]. The correlated responses are 31 g/day, —0.94 

mm, —13 g/day and 8.3 g/kg for average daily gain, backfat depth, daily 
food intake and carcass lean content, per standardised selection differential. 

Question 21 refers to when average daily food intake was not included 
in the selection criterion. 

The selection criterion is 485 ADG —16.8 BFAT and the correlated 
responses, per standardised selection differential, are 33 g/day, -O0.89 mm, 
3 g/day and 7.1 g/kg for average daily gain, backfat depth, daily food 
intake and carcass lean content. The economic value of the response, per 
standardised selection differential, of 74.4, is lower than 79.8, when 

average daily food intake was included in the selection criterion. 

[75-78] 

GaApF 
Gapr 9 

row and column of the G matrix, which corresponds to daily food intake 
and setting the remaining diagonal term of NP to zero. The new G matrix, 

The new P matrix, equal to | is obtained by adding the 

Ai is obtained by adding a row of zeros, 0 

The selection criterion is 710 ADG —11.93 BFAT —124 ADF. 
The correlated responses, per standardised selection differential, are 36 

g/day, —0.84 mm, O g/day and 7.2 g/kg for average daily gain, backfat 
depth, daily food intake and carcass lean content. 

The correlation between the selection objective and criterion, when 
the response in daily food intake is constrained to zero, is 0.450, which is 
marginally lower than the correlation of 0.457, when no restriction was 
imposed on the response in daily food intake. The economic value of the 
response, per standardised selection differential, is 78.6, which is similar 
to when no restriction was placed on the response in daily food intake.
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Q24. [87-89] 
For one trait, the phenotypic covariance between the individual's 
measurement and the sib mean is equal to the variance of the sib mean, as 

cov(ind, sib) -1 [ var(ind) + (n —1)cov(ind, sib)| = t [1+(n- I)t]o5 
n n 

The phenotypic covariance between the individual's measurement for ADG 

and BFAT is 

. — 1 1 
cov(ind pg» SibBFAT ) = —|tp + (n _ l)5 rahapGhBrat |capcOprar 

which has the same structure as the phenotypic covariance between the 

individual's measurement and the sib mean for the same trait, but with t 

l . . 
replaced by > tah ADGHpraT> assuming that the common environmental 

covariance between traits is zero. The genetic covariances between sib 
mean for average daily gain with the individual's genetic merit for ADG 

and LEAN are 

] 1,2 2 
“(l+(n -1)+hApe }OADs 

l ] 
“(1 + (n — l)> r~AhapGM LEAN Jo ADGOLEAN 

with corresponding values for the sib mean for backfat depth. 

With measurements on the individual and three full-sibs, the P and G 

matrices are 
0.0104 0.0213 0.0049 0.0028 0.0048 0.0 
0.0213 12.110 0.0028 4.9350 0.0067 -3.1194 

“10.0049 0.0028 0.0049 0.0028 ~~ | 0.0030 0.0 
0.0028 4.9350 0.0028 4.9350 0.0042 -1.9497 

Note that the P matrix consists of three identical 2 x 2 submatrices, since 

the covariance between the individual's measurement and the full-sib mean 

is the variance of the full-sib mean, when the individual is included in the 

full-sib mean. 

The selection criterion coefficients and the accuracy of selection for 

different numbers of full-sibs are as follows: 
  

Number of full-sibs 
(excluding the individual) 
  

  

Individual 1 2 3 4 

Accuracy TJH 0.43 0.44 #0.45 0.45 0.46 

Selection growth 485 354 354 354 354 

criterion _ 

coefficients growth 197 236 263 ~~» 281 

backfat —16.8 -11.0 -11.0 -11.0 —-11.0 

backfat —-9.5 -12.0 -13.8 —15.3



196 Answers 

  

Q25. 

Q26. 

Q27. 

There is little gain, in this instance, from including full-sib information 
in the selection criterion. If there is no extra cost in obtaining the full-sib 
measurements, then the additional measurements should be used to predict 
the individual's breeding value. Note that when the individual's 
measurements are included in the full-sib mean, then the selection 
criterion coefficients corresponding to the individual's measurements are 
constant, irrespective of the number of full-sibs. 

[94-95] 
When rahyx =rphy, then the response, R, in trait Y with selection on 

traits X and Y is proportional to he, but the actual response, R’, is 

4 21242 
, h a~hxh , ; 

proportional to ———“——.,, where A = A, given that the selection 
yhy +A 1—Tp 

criterion was determined using the estimate of the genetic correlation, 

r, +. The predicted response, R, is proportional to yhy +A. 

  

  

  

Actual loss, Predicted gain, 

0 A << (%) ~— (%) 

—0.1 0.000625 2.98 3.08 
0.2 0.0025 10.56 11.80 
  

The actual loss in response is essentially equal to the predicted gain from 
including information on trait X in the selection criterion. Note that the 
above equations are valid only when rahy =rphy. 

[98-99] 

(imnn,, +iptn, } 
Lu + Lr 

IM = 2.421 and ip = 0.195, such that R =0.1410,, while in Programme 

B, im = 1.755 and R=0.1550,. The longer generation interval of 

Programme B is compensated for by the higher accuracy of selection, 
relative to Programme A. 

  Annual rate of response (R) = O,. In Programme A 

[118-120] 

The three animals, A, B and C, are unrelated, so the P matrix consists of 

nine 3 xX 3 diagonal submatrices. The phenotypic variances for 

; ; 1. l-r, 
measurements on the animal, its progeny and its sire are |r + < |c3. 

n 

  

1-t , ; ; 
[ + al and o3, respectively. The phenotypic covariance between 

n
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Q28. 

the animal and the mean measurement of its progeny and with its sire's 

measurement Is 0.5h703, while the phenotypic covariance between the 

animal's sire and the mean measurement of the animal's progeny is 

0.25h703. Similarly, the G matrix consists of three diagonal 3x3 

submatrices, with elements o4, 0.50% and 0.504, respectively. The 

"selection criterion" for the predicted breeding value of animal B is 

0.286 animal + 0.952 progeny + 0.048 sire 

The predicted breeding values for animals A, B and C are 45.7, 53.3 and 
41.4, with prediction error variances of 7.1, 8.6 and 10.9 and accuracies of 

0.91, 0.89 and 0.85, respectively. 
Predicted breeding values can be determined separately for each 

animal, since animals A, B and C are unrelated. The P and G matrices for 

70 20 # 20 40 

animal B are} 20 14.5 10 | and | 20}. 

20 10 100 20 

[118-120] 

Calculation of the relationships between animals is required to determine 
the P matrix, for animals with measurements, and the G matrix, for 

animals with and without measurements: 

6 1 5——~S5y5 4 

2 3 4 Progeny 

a , 1 ; 
Each of the lines in the diagram represents =h’op, except for the line 

between animal 5 and its half-sibs, which is equal to 7 h?op. The P 

matrix represents animal 1, the progeny of animal 4, animal 5's half-sibs 
and animal 6. The off-diagonal elements of P are equal to zero and the 

~ 1-t a 
diagonal elements of P are f t+ tt a5. The G matrix is 

the covariance between animals with measurement and all animals in the 
pedigree, with 

    

1 4 5 6 2 3 

1 1 O 0 0 05 0.5 

G=| 4sprogeny 0 05 O O O 0 o% 

Sshalf-sibs O O 025 0 OO 0.125 

i 6 0 0 0 105 O |
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The predicted breeding values, their accuracies and prediction error 
variances for the six animals are as follows: 

Animal l 2 3 4 5 6 

Predicted 

breeding value 8 10 2 20 10 12 
Prediction error 48 64 69.37 37.89 69.47 48 

variance 

Accuracy 0.63 0.45 0.36 0.72 0.36 0.63 

The prediction error variances and accuracies reflect the amount of 
information available on each animal. Animals | and 6 each have one 

record. Information from the half-sibs of animal 5 is used for animals 3 

and 5, but there is also information from animal 1 for animal 3. Animal 4 

has the most information, with ten progeny. 

Q29. [125-127] 

Information on the number of observations in each herd and for each sire 

is given in the X'X and the Z'Z diagonal matrices, the diagonals of which 

are [3 3 3] and [2 3 4]. The X'Z matrix describes the number of 

observation per herd—sire class, 

1 1 1 

1 2 O 

0 0 3 

The sum of observations is 490, 420 and 300 for herds and 390, 400 and 
420, respectively. The sires are unrelated, so the numerator relationship 
matrix is equal to the identity matrix. Given a heritability of 0.4 and 

  measurements on progeny, then A= — = 9. The mixed model 

equations are 

30011 0 | 490 | 

03 012 0 420 

0 0 3 1 0 3]6] | 300 
1 1 1.9 0 Offa} {390 
12009 0]  |400 
0 0 3 0 0 9 420         

When the relationships between sires are accounted for, the numerator 
relationship matrix, A, 1s 

I 0.25 0.125 

0.25 1 0.5 

0.125 05 1
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and the 3 x 3 submatrix with diagonal elements equal to 9, is replaced by 

MAT, 

Q30. [130-133] 

l-r 
  

  

(a) For a heritability of 0.3 and a repeatability of 0.5, A= n2 = 1.67 and 

y= _ 5 = 2.5. The mixed model equations are 
Te — 

S 0 3 2 3 2) 101 | 

0 4 ] 3 ] 3 Ir % 80 

3 1 6733 -0.267 4 Of. 77 

2 3 -0.267 7.733 0 51].4] |104 
3 1 4 0 65 ob Tl 177 
2 3 0 5 0 7.5] | 104 |         

(b) | For each animal, two effects are estimated, ua and u,;, which provide 

information on the animal's genetic merit, ua, and the animal's future 

performance ua, +U,. 

(c) Prediction error variances of predicted breeding values are the diagonal 

elements of Cc” (1 —Te op submatrix, determined from the inverse of the 

left-hand side matrix (LHS) in the mixed model equations, with LHS"! 
equal to 

cll ci c}3 

Cc?! C22 C23 

Cc! C32 C33 

Prediction error variances are used to calculate the accuracy and variance of 
a predicted breeding value and the effective number of records on animals.
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