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Prediction of response to marker-assisted and genomic
selection using selection index theory
J. C. M. Dekkers
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Introduction

The recent availability of high-density marker maps

and low costs of genotyping large numbers of mark-

ers using high-throughput genotyping methodology

has renewed interests in incorporating marker infor-

mation in programmes for genetic improvement of

livestock through the use of marker-assisted selec-

tion (MAS). Of particular interest is the use of geno-

mic selection, as proposed by Meuwissen et al.

(2001), which uses associations of large numbers of

markers across the genome with phenotypes, capital-

izing on linkage disequilibrium (LD) between mark-

ers and closely linked quantitative trait loci (QTL),

without prior screening of markers based on signifi-

cance of their associations with the phenotype.

The resulting predictions of the random effects of

marker haplotypes (Meuwissen et al. 2001), or of

alleles at each marker (Solberg et al. 2006), are then

used to predict breeding values for individuals based

on their genotype for all markers. By simultaneously

selecting on large numbers of markers, this is in con-

trast to most strategies for MAS that have been used

to date, which are based on a limited number of

markers or genes (see review by Dekkers 2004).

Before incorporating markers in breeding pro-

grammes, careful assessment is required of the

potential benefits of MAS and of the design of breed-

ing programmes to optimally capitalize on the bene-

fits of MAS. Neimann-Sorensen & Robertson (1961)

and Smith (1967) were the first to propose that

selection index theory can be used to incorporate
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Summary

Selection index methods can be used for deterministic assessment of the

potential benefit of including marker information in genetic improve-

ment programmes using marker-assisted selection (MAS). By specifying

estimates of breeding values derived from marker information (M-EBV)

as a correlated trait with heritability equal to 1, it was demonstrated that

marker information can be incorporated in standard software for selec-

tion index predictions of response and rates of inbreeding, which requires

specifying phenotypic traits and their genetic parameters. Path coeffi-

cient methods were used to derive genetic and phenotypic correlations

between M-EBV and the phenotypic data. Methods were extended to

multi-trait selection and to the case when M-EBV are based on high-

density marker genotype data, as in genomic selection. Methods were

applied to several example scenarios, which confirmed previous results

that MAS substantially increases response to selection but also demon-

strated that MAS can result in substantial reductions in the rates of

inbreeding. Although further validation by stochastic simulation is

required, the developed methodology provides an easy means of deter-

ministically evaluating the potential benefits of MAS and to optimize

selection strategies with availability of marker data.
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information on individual loci into selection strate-

gies. These selection index methods were later

extended by Lande & Thompson (1990). Most recent

work on evaluating the impact of information on

individual genes or markers has, however, been

based on stochastic rather than deterministic simula-

tions (e.g. Verrier 2001) because deterministic pre-

diction of response by selection index theory

requires multi-variate normality, which is violated

when genotypes of only a limited number of mark-

ers or genes are used in MAS (Lande & Thompson

1990). In addition, although methods to incorporate

changes in genetic variance through selection-

induced gametic phase disequilibrium (Bulmer effect

Falconer & Mackay 1996) have been developed

(Wray & Hill 1989; Villanueva et al. 1993), selection

index predictions ignore changes in genetic variances

that result from changes in allele frequencies, which

will be substantial when high selection emphasis is

placed on a limited number of loci. Assumptions of

multi-variate normality of breeding values derived

using genetic markers and small changes in gene fre-

quencies will, however, be more valid if MAS is

based on information from a large number of mark-

ers across the genome (Lande & Thompson 1990), as

would be the case with genomic selection. Thus, the

advent of genomic selection offers renewed opportu-

nities for the use of selection index theory to deter-

ministically evaluate and optimize the use of

markers in selection programmes. Deterministic

models have substantial advantages over stochastic

simulations because they require much less comput-

ing time and are more amenable to optimization.

The main purpose of this study was, therefore, to

formulate selection index methods for deterministic

prediction of the potential benefit of MAS on

response to selection and, in particular, to do this in

a manner that facilitates use of standard selection

index software that has been developed (e.g. Rutten

et al. 2002). Resulting methodology provides an

effective means for initial evaluation of MAS for

implementation in industry programmes. Methods

will be illustrated with examples that demonstrate

the potential benefit of genomic selection in a lim-

ited number of scenarios.

Methods

Single trait MAS index formulation

With the availability of LD markers (Dekkers 2004),

the total additive genetic value of an additive quanti-

tative trait (G) can be partitioned into genetic effects

that are correlated with markers through LD (Q) and

residual genetic effects (R) that are independent of

the markers. Note that, in addition to QTL that are

not in LD with the markers, R also includes effects

resulting from incomplete LD of QTL that are linked

to the markers. This partitioning results in the fol-

lowing model for the phenotypes,

P ¼ G þ E ¼ Qþ Rþ E

where E represents random environmental effects. A

path diagram of this model is in Figure 1. Note that

when markers used for marker-assisted genetic eval-

uation are randomly located across the genome, as

would be the case for genomic selection, effects

included in Q and R represent a random partitioning

of QTL effects into effects that are associated with

markers through LD (¼Q) and effects that are inde-

pendent of marker genotypes (¼R).

Let h2 denote the total heritability for the trait,

and q2 the proportion of genetic variance contrib-

uted by Q. Proportion q2 depends on the genetic var-

iance contributed by QTL that are in LD with

markers and the extent of LD between markers and

QTL. For an individual QTL linked to a single mar-

ker, q2 is equal to the product of LD between the

marker and the QTL, as measured by r2 (Hill & Rob-

ertson 1968), and the proportion of total genetic var-

iance that is contributed by the QTL. When the QTL

is in LD with multiple markers, q2 will depend on

the r2 of the QTL with any of its surrounding mark-

ers and on the structure of LD around the QTL or on

the r2 of the QTL with multi-marker haplotypes (e.g.

Hayes et al. 2006).

When individuals are genotyped for markers that

are in LD with QTL across the population (LD mark-

P, phenotype;

G, total genetic value;

E, environmental component of P;

Q, component of G that is associated with markers;

R, component of G that is independent of markers;

Q̂, estimated breeding value (EBV) for Q based on marker data;

e, prediction error of Q̂;

h2, heritability of P;

q2, proportion of genetic variance associated with markers;

rQ̂, accuracy of Q̂ as a predictor of Q;

rMG, accuracy of Q̂ as a predictor of G.

Figure 1 Path coefficient diagram illustrating the relationships among

components contributing to phenotype with marker-assisted selection

for a single trait.
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ers), marker effects can be estimated across families

from an analysis of phenotype and marker genotype

data obtained from the population. Here, it will be

assumed that estimates are obtained from fitting

markers or haplotypes as random rather than fixed

effects, i.e. they represent estimates of breeding val-

ues with the properties of Best Linear Unbiased Pre-

diction (BLUP: Henderson 1984), similar to BLUP

estimated breeding values (EBV) derived from phe-

notypes. Such a model with markers as random

effects was described by Meuwissen et al. (2001) for

genomic selection, with estimates of marker effects

derived from phenotypic data and high-density sin-

gle nucleotide polymorphism (SNP) genotypes in

one generation, which were then used to obtain

marker-based EBV (M-EBV) of individuals based on

their marker genotypes for several subsequent gen-

erations. When based on multiple regions of the

genome, or on all regions of the genome, as with

genomic selection, the M-EBV of an individual can

be computed as the sum of estimates across alleles or

haplotypes for each genomic region j as:

Q̂ ¼
X

j

ðĝpatj þ ĝmat
j Þ

where ĝpatj and ĝmat
j are the BLUP estimates of the

effects of the paternal and maternal marker alleles or

marker haplotypes for interval j.

M-EBV, Q̂, are estimates of genetic effects Q. Using

properties of BLUP EBV (Henderson 1984), the rela-

tionship between M-EBV and Q can be modeled as:

Q ¼ Q̂ þ e, where e represents the (unknown) pre-

diction error for an individual’s M-EBV (Figure 1).

The model for the phenotype can then be expanded

as:

P ¼ Q̂þ e þ Rþ E:

Note that the use of BLUP to estimate M-EBV

results in a zero correlation between Q̂ and its pre-

diction error e (Henderson 1984), as reflected in

Figure 1.

Let rQ̂ denote the accuracy of Q̂ as a predictor Q,

i.e. the correlation between Q and Q̂. Then, path

coefficients associating Q, Q̂ and the prediction error

e can be derived and are presented in Figure 1. The

correlation of Q̂ with G is equal to rMG ¼ qrQ̂. This

correlation represents the accuracy of the M-EBV as

a predictor of the total genetic value G, and repre-

sents the accuracies of M-EBV for genomic selection

that were obtained by Meuwissen et al. (2001). The

proportion of genetic variance that is explained by

the M-EBV then is equal to r2MG, which is equivalent

to parameter p defined by Lande & Thompson

(1990).

Unless all QTL that affect the trait have been iden-

tified, selection on M-EBV must be combined with

selection on any available phenotypic information,

to ensure simultaneous improvement of both Q

and R. To accommodate this and following Nei-

mann-Sorensen & Robertson (1961), Smith (1967),

and Lande & Thompson (1990), marker and pheno-

typic information can be combined in an index of

the following form:

I ¼ b
0
X ¼ b

0
Q; b

0
P

h i

XQ

XP

� �

where XQ is a vector with M-EBV on the individual

itself and/or its relatives, XP is a vector with pheno-

typic records on the individual itself and/or its rela-

tives, and bQ and bP are vectors of index weights.

Lande & Thompson (1990) showed that index

weights could be derived by standard selection index

methodology (Hazel 1943) for predicting the overall

genetic value G, using

b ¼
bQ

bP

� �

¼ P
�1
G

¼
VarðXQÞ CovðXQ;X

0
PÞ

CovðXP;X
0
QÞ VarðXPÞ

" #�1

CovðXQ;GÞ

CovðXP;GÞ

� �

and the corresponding accuracy of selection as:

rG;I ¼
ffiffiffiffiffiffi

b
0
G

r2
G

q

, which can then be used to predict

response to selection with intensity i based on i

rG,IrG (Falconer & Mackay 1996). Following Lande &

Thompson (1990) and using the property of BLUP

that the covariance of BLUP EBV with true breeding

values is equal to the variance of BLUP EBV (Hen-

derson 1984), elements ij of all matrices and vectors

involving XQ are equal to aijr
2

MGr
2

G, where aij is the

additive genetic relationship between individuals or

groups represented by column i and row j. Matrices

and vectors that do not involve XQ are obtained by

using standard quantitative genetics theory based on

phenotypic data (Falconer & Mackay 1996). These

methods can also be extended to include data on

multiple traits and multiple trait breeding goals, as

demonstrated by Lande & Thompson (1990).

Implementation of MAS indexes

Selection index methods for MAS proposed by Lande

& Thompson (1990) are not immediately in a form

that is suitable for use in standard selection index

procedures, such as the program SelAction (Rutten
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et al. 2002), which require specification of pheno-

typic traits with their heritabilities, standard devia-

tions and phenotypic and genetic correlations

as input parameters. It is, however, possible to

accommodate marker information in these programs

by specifying M-EBV as a correlated trait with heri-

tability equal to 1 and using appropriate correlations

between the original trait and the trait M-EBV, as

will be demonstrated in the following. Inclusion of

QTL information in SelAction as a trait with unit

heritability was also used by Schrooten et al. (2005)

but only for a single-trait situation and is further jus-

tified in the discussion. Methods similar to those

described here were recently also used to evaluate

MAS for commercial crossbred performance (Dek-

kers, 2007).

Using the path coefficient diagram in Figure 1, the

following correlations that are required for inclusion

of M-EBV as a trait in selection index calculations

can be derived [see Lynch & Walsh (1998) for a

recent description of path coefficient theory]. The

genetic correlation between the original trait and the

trait M-EBV is: rGQ̂ ¼ qrQ̂ ¼ rMG. The corresponding

phenotypic correlation is: rPQ̂ ¼ hqrQ̂ ¼ hrMG.

Together with a heritability of the trait M-EBV of 1

and a phenotypic (and therefore genetic) standard

deviation of M-EBV of rMGrG, these parameters

result in variances and covariances that are identical

to the elements in matrix P and vector G of the

Lande & Thompson (1990) derivation. For example,

the covariance of the ‘phenotype’ for M-EBV of indi-

vidual or group i with phenotype for the original

trait of the individual or the group j (¼element of

matrix P) is equal to the genetic covariance between

these variables (¼element of vector G), because a

heritability of 1 is used for M-EBV and can be

derived using standard quantitative genetics the-

ory for covariances between observations on corre-

lated traits (Falconer & Mackay 1996), as:

CovðQ̂i; PjÞ ¼ CovðQ̂i;GjÞ ¼ aijCovðQ̂;GÞ ¼ aijrGQ̂rGrMGrG ¼

aijr
2

MGr
2

G. Thus, this formulation of marker information

allows parameters to be entered in a trait-based form

into standard selection index procedures and software.

Extension to multiple traits

The purpose of this section is to extend the devel-

oped methodology to multiple traits by deriving

appropriate correlations between the traits involved,

i.e. phenotype-based traits and marker-EBV-based

traits. The general theory that will be developed

also applies to cases in which a selected group of

markers is used for selection, e.g., as determined

based on prior QTL studies. Use of genomic selec-

tion will, however, result in several simplifying

assumptions because of the random associations of

markers with QTL across the genome, and this will

be presented as a special case throughout the fol-

lowing.

Let qG12
, qR12

, and qQ12
be the genetic correlations

between traits 1 and 2 for the genetic components

G, R, and Q. The partitioning of genetic effects into Q

and R results in Q1 to be uncorrelated to R1 and Q2

uncorrelated to R2. Genetic correlations between Q1

and Q2 and between R1 and R2 are expected to be

equal to the genetic correlation between G1 and G2

(E(qR12
) ¼ E(qQ12

) ¼ qG12
) if the same markers are

used for MA-genetic evaluation for both traits and if

markers have not been pre-selected based on associ-

ations with the phenotype. This is expected to hold

for genomic selection because genetic effects associ-

ated with markers will then be comprised of a ran-

dom proportion of genetic effects that contribute to

each trait. For other cases, these correlations need to

be estimated. The correlation between environmen-

tal components contributing to traits 1 and 2 is

denoted by qE12
.

Using the path coefficient diagram in Figure 2, the

following phenotypic and genetic correlations

between the phenotypic and the marker-based traits

that are necessary for derivation of selection indices

can then be determined:

rGiQ̂j
¼ qirQ̂i

rQ̂iQ̂j
þ qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂i

q

rQ̂j
ei ¼ qirQ̂i

rQ̂i
rQ̂j

qQ12

þ qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂i

q

rQ̂i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂i

q

qQ12
¼ qirQ̂j

qQ12
;

rPiQ̂j
¼ hirGiQ̂j

¼ hiqirQ̂i
qQ12

:

With random allocation of markers, the proportion

of genetic variance that is associated with markers,

q2i , is expected to be equal for both traits, in which

case correlations simplify to:

rGiQ̂j
¼ rMGj

qQ12
;

rPiQ̂j
¼ hirMGj

qQ12
:

Correlations can be further simplified by replacing

qQ12
by qG12

. These parameters and their simplifica-

tions under genomic selection are summarized in

Table 1. Note that the accuracy of M-EBV as a pre-

dictor of Qi, and therefore also the accuracy of M-

EBV as a predictor of Gi (rMGi
¼ qirQ̂i

), can differ
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between traits because not only does it depend on

the amount of phenotypic data but also on the accu-

racy, i.e. heritability, of the phenotypic data that is

available to estimate marker effects.

The final correlation that is needed for multiple-

trait selection on M-EBV is the correlation between

the M-EBV for the two traits. Based on the assump-

tion that phenotypic data that contribute to Q̂1 and

Q̂2 are independent, which will underestimate the

correlation if traits 1 and 2 are measured on the

same animals but will approximately be true if suffi-

cient data are used to estimate marker effects, these

correlations can be derived to be equal to:

rQ̂1Q̂2
¼

CovðQ̂1; Q̂2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðQ̂1ÞVarðQ̂2Þ
q ¼

r2
Q̂1

r2
Q̂2

qQ12

rQ̂1
rQ̂2

¼ rQ̂1
rQ̂2

qQ12

Pi, phenotype for trait i;

Gi, total genetic component of Pi;

Ei, environmental component of Pi;

Qi, component of Gi that is associated with markers;

Ri, component of Gi that is independent of markers;

Q̂i, EBV for Qi based on marker data;

ei, prediction error of Q̂i;

h2i , heritability of Pi;

q2i , proportion of genetic variance associated

with markers for trait i;

rQ̂i
, accuracy of Q̂i as a predictor of Qi;

rMGi
, accuracy of Q̂i as a predictor of Gi;

qG12
, genetic correlation between traits 1 and 2;

qP12
, phenotypic correlation between traits 1 and 2;

qQ12
, correlation between Q1 and Q2;

qR12
, correlation between residual genetic effects for traits 1 (R1) and 2

(R2).

Figure 2 Path coefficient diagram illustrating the relationships among traits and genetic components with multi-trait marker-assisted selection.

Table 1 Genetic parameters1 for four traits

considered for derivation of selection crite-

ria: phenotype for trait 1 (P1) and trait 2

(P2), and marker-based estimated breeding

values (EBV) for trait 1 (Q̂1) and trait 2 (Q̂2)

P1 P2 Q̂1 Q̂2

P1 h21 qP12
h1q1rQ̂1

¼2 h1rMG1
h1q1rQ̂2

qQ12
¼ h1rMG2

qG12

P2 qG12
h22 h2q2rQ̂1

qQ12
¼ h2rMG1

qG12
h2q2rQ̂2

Q̂1 q1rQ̂1
¼ rMG1

q2rQ̂1
qQ12

¼ rMG1
qG12

1 rQ̂1
rQ̂2

qQ12
¼ rQ̂1

rQ̂2
qG12

Q̂2 q1rQ̂2
qQ12

¼ rMG2
qG12

q2rQ̂2
¼ rMG2

rQ̂1
rQ̂2

qQ12
¼ rQ̂1

rQ̂2
qG12

1

1h2i , heritability of the phenotype for trait i;

q2i , proportion of genetic variance associated with the markers for trait i;

rQ̂i
, accuracy of Q̂i as a predictor of marker-associated genetic effects, Qi;

rMGi
, accuracy of Q̂i as a predictor of the total genetic value, Gi;

qG12
, genetic correlation between traits 1 and 2;

qP12
, phenotypic correlation between traits 1 and 2;

qQ12
, correlation between Q1 and Q2;

qR12
, correlation between residual genetic effects for traits 1 (R1) and 2 (R2).

2Results after the equality signs apply to genomic selection and assume q1 ¼ q2 and qG12
¼

qQ12
¼ qR12

, and use qirQ̂i
¼ rMGi

.
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This correlation cannot be further simplified to

depend only on rMG and qQ12
.

For the multiple-trait case, it should also be

noted that, although the use of BLUP to estimate

M-EBV results in a zero correlation between the

M-EBV for a trait, Q̂i, and its prediction error, ei,

when M-EBV are obtained from single-trait proce-

dures, which is what is assumed here, prediction

errors of an individual’s M-EBV for trait 1 (2) will

be correlated to prediction errors of its M-EBV for

trait 2 (1).

In addition, prediction errors for M-EBV for trait 1

(2) will also be correlated with the M-EBV for trait 2

(1). Using the previously derived correlations, these

correlations can be found to equal:

rQ̂1e2
¼

CovðQ̂1;Q2 � Q̂2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðQ̂1ÞVarðe2Þ
q ¼

CovðQ̂1;Q2Þ � CovðQ̂1; Q̂2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðQ̂1ÞVarðe2Þ
q

¼
r2
Q̂1

qQ12
� r2

Q̂1

r2
Q̂2

qQ12

rQ̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂2

q ¼ rQ̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂1

q

qQ12
;

rQ̂1e1
¼ rQ̂2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂1

q

qQ12
;

re1e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂2

q

qQ12
:

Note that, using path diagram theory (Lynch &

Walsh 1998) and the path diagram in Table 2, these

correlations result in the correct correlation between

Q1 and Q2:

rQ1Q2
¼ rQ̂1

rQ̂1Q̂2

rQ̂2

þ rQ̂1

rQ̂1e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂1

q

rQ̂2e1
rQ̂2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂1

q

re1e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Q̂2

q

;

which, when substituting the previous equations for

correlations among EBV and prediction errors, sim-

plifies to qQ12
.

Incorporating the Bulmer effect and predicting rates

of inbreeding

Reparameterizing the model by specifying M-EBV

as correlated traits with heritability equal to 1, in

principle allows methods that have been developed

for predicting response to selection for polygenic

traits to be applied to MAS. This includes pseudo-

BLUP selection index methods for deterministic

modelling of selection on Animal Model BLUP EBV

(Wray & Hill 1989), incorporation of the effects of

selection on variance-covariance structures through

the Bulmer effect (Wray & Hill 1989; Villanueva

et al. 1993) and effects of co-selection of relatives

on selection intensities (Meuwissen 1991). In addi-

tion, methods developed for prediction of rates of

inbreeding based on long-term contribution theory

(Woolliams & Bijma 2000) can be used. Such

methods have been implemented in the selection

index software package SelAction (Rutten et al.

2002) and this software will be used in the follow-

ing to demonstrate use of the model to predict

potential benefits of MAS. When applying these

methods and this software it must, however, be

realized that use of a trait with heritability equal to

1 may push the validity of the developed methods

and that all predictions are based on multi-variate

normality and the infinitesimal model and, there-

fore, do not account for changes in gene frequen-

cies. In addition, using M-EBV as a genetic trait in

these methods assumes that the same estimates of

marker or haplotype effects are used over genera-

tions, such that the composition of the M-EBV

remains constant.

Examples of MAS index predictions

To illustrate the use of the developed methodology to

predict the potential benefit of MAS, markers used

were assumed to be randomly allocated across the

genome, reflecting genomic selection, thus qR12
¼

qQ12
¼ qG12

. This same assumption also causes the

expected proportion of genetic variance that is associ-

ated with markers to be equal for all traits, thus q1 ¼

q2, which leads to qirQ̂i
¼ qjrQ̂j

¼ rMG, which is the

accuracy of the M-EBV as a predictor of the total

genetic value. Under these assumptions and using

rMG as an input parameter, phenotypic and genetic

correlations between phenotypes and marker-based

EBV depend only on rMG, and not on its partition into

q and rQ̂.This makes the results more general and

applicable to different combinations of q and rQ̂ for a

given level of accuracy of M-EBV (rMG). The correla-

tion between M-EBV (rQ̂1Q̂2
¼ rQ̂1

rQ̂2
qQ̂12

) does depend

on rQ̂i
.

All calculations were performed using the program

SelAction (Rutten et al. 2002) using pseudo-BLUP

selection index procedures. Asymptotic responses to

selection after reaching equilibrium values for vari-

ances and covariances based on the Bulmer effect

are reported. Predictions of rates of inbreeding were

as implemented in the program SelAction based on

long-term contribution theory.

Selection index theory for genomic selection J. C. M. Dekkers

ª 2007 The Author

336 Journal compilation ª 2007 Blackwell Verlag, Berlin • J. Anim. Breed. Genet. 124 (2007) 331–341



Results

Single trait MAS

Figures 1 and 2 show the impact of marker informa-

tion on asymptotic response to selection for single-

trait selection in a simplified pig breeding programme

as a function of the accuracy of M-EBV (rMG ranging

from 0 to 1). Each generation, 20 males were

selected. Each male was mated to three selected

females, which each produced eight offspring (four

males, four females). Heritability of the phenotypic

trait was 0.4 (Figure 1) or 0.1 (Figure 2) and selec-

tion was on BLUP EBV based on phenotypic and/or

marker data. The base scenario was a trait with phe-

notype recorded on all individuals prior to selection.

Results show that using markers alone will require

accuracies of M-EBV of at least 0.75 when heritabil-

ity of the trait is 0.4 (Figure 1) and of at least 0.55

when trait heritability is 0.1 (Figure 2). These are for

cases when phenotype is recorded on all individuals

prior to selection. Combined selection, using both

phenotypic and marker data, resulted in substantial

extra responses over phenotype-based selection, in

particular for the trait with low heritability and

when phenotypes were recorded on females only.

Figures 1 and 2 also show that genotyping males

only reduced extra responses from including marker

data by 30–40%.

Although M-EBV was modeled as a trait with her-

itability equal to 1 and does, therefore, not benefit

from including information on relatives, not includ-

ing M-EBV data of relatives in the selection index

did reduce overall response, as demonstrated in Fig-

ures 3 and 4. The reason is that M-EBV of relatives

contribute to the evaluation of residual genetic

effects, as was also demonstrated by Lande &

Thompson (1990).

Figures 5 and 6 show the impact of including mar-

ker information on rates of inbreeding. Results show

that selection on marker information alone can dra-

matically reduce rates of inbreeding, from 2% to

over 3% per generation with phenotypic selection,

to less than 1% per generation with selection on M-

EBV alone. The reason for this is that markers pro-

vide information on the Mendelian sampling terms

received by the individual and reduces the impact of

pedigree information, which increases probabilities

of co-selection of relatives. Thus, with use of marker

information, emphasis is moved from between-

family selection to within-family selection. When

selecting on a combination of phenotypic and mar-

ker data, the impact of including marker information

on reducing rates of inbreeding depends on the

emphasis that is placed on the M-EBV and, there-

fore, on its accuracy, rMG. When only males are

genotyped, rates of inbreeding were substantially

higher compared with genotyping all individuals

(Figures 5 and 6).
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Figure 3 Effect of the accuracy of marker-based estimated breeding

values (M-EBV) (rMG) on extra response to selection (% over selection

based on phenotypic data alone) for a trait with heritability equal to

0.4. Cases represented are selection on M-EBV alone (M-all) and com-

bined selection on M-EBV and phenotype, with genotypes available on

all individuals (M-all), the selection candidate alone (M-own), or males

alone (M-males), and phenotypes available on all individuals (P-all) or

only females (P-female).
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Figure 4 Effect of the accuracy of marker-based estimated breeding

values EBV (M-EBV) (rMG) on extra response to selection (% over selec-

tion based on phenotypic data alone) for a trait with heritability equal

to 0.1. Cases represented are selection on M-EBV alone (M-all) and

combined selection on M-EBV and phenotype, with genotypes avail-

able on all individuals (M-all), the selection candidate alone (M-own),

or males alone (M-males), and phenotypes available on all individuals

(P-all) or only females (P-female).
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Multiple trait MAS

Table 2 shows results for an example of multiple

trait selection for a breeding goal with two nega-

tively correlated traits. The structure of the popula-

tion was the same as used in the single-trait

example. All individuals were assumed to be pheno-

typed for the trait prior to selection. Trait 1 had

moderate heritability (0.3) and was negatively corre-

lated to trait 2, which had low heritability (0.1).

Thus, this example could represent combined selec-

tion for growth and health or reproduction. Pheno-

typic and genetic correlations of phenotypic and

M-EBV traits were based on equations in Table 1,

assuming genomic selection with an accuracy of

rMG ¼ 0.8 and that markers explain 62.4% of the

genetic variance for each trait (q2 ¼ 0.624). The lat-

ter percentage is required only to compute the corre-

lation between M-EBV for the two traits (Table 1).

Selection on markers alone resulted in 8.5%

greater response in the breeding goal than selection

on phenotype only (Table 2). Most of the extra gain

resulted from a 66% greater response in the less

heritable trait, which was difficult to improve by

phenotypic selection because of its negative correla-

tion with the more heritable trait. Selecting on the

combination of phenotypic and marker data resulted

in 21.2% greater gain in the breeding goal than phe-

notypic selection and in 80.5% greater response in

the low heritable trait. Rates of inbreeding were

reduced by nearly 50% with combined selection and

even more with marker-only selection.

Discussion

The main purpose of this work was to present a for-

mulation for data obtained from markers in a breed-

ing programme that allows for the evaluation of the

incorporation of marker information in selection
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Figure 5 Effect of the accuracy of marker-based estimated breeding

values EBV (M-EBV) (rMG) on rates of inbreeding per generation for a

trait with heritability 0.4. Cases represented are selection on pheno-

type alone, on M-EBV alone (M-all), and combined selection on M-EBV

and phenotype, with genotypes available on all individuals (M-all) or

on males alone (M-males), and phenotypes available on all individuals

(P-all) or only females (P-female).
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Figure 6 Effect of the accuracy of marker-based estimated breeding

values EBV (M-EBV) (rMG) on rates of inbreeding per generation for a

trait with heritability 0.1. Cases represented are selection on pheno-

type alone, on M-EBV alone (M-all), and combined selection on M-EBV

and phenotype, with genotypes available on all individuals (M-all) or

on males alone (M-males), and phenotypes available on all individuals

(P-all) or only females (P-female).

Table 2 Genetic parameters for selection on a breeding goal of two

traits (P1 and P2) with and without marker information and resulting

responses to selection in individual traits and the breeding goal (DH)

and rates of inbreeding (DF). Marker-based estimated breeding values

(EBV) (Q̂1 and Q̂2) have accuracies of 0.8, based on markers explaining

62.4% of the genetic variance

Correlations1 P1 P2 Q̂1 Q̂2 DH DF(%)

P1 – )0.5 0.438 )0.131

P2 )0.3 – )0.076 0.253

Q̂1 0.8 )0.24 – )0.243

Q̂2 )0.24 0.8 )0.243 –

Heritability 0.3 0.1 1 1

Phenotypic SD 1 1 0.8 0.8

Economic value 1 1 0 0

Response to selection

Phenotype only 0.408 0.041 0.394 0.052 0.448 2.36

Markers only 0.418 0.068 0.655 0.167 0.486 0.94

Combined 0.469 0.074 0.582 0.148 0.543 1.29

1Phenotypic correlations above the diagonal; genetic correlations

below the diagonal SD, standard deviation.
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strategies using pseudo-BLUP selection index theory

and inbreeding prediction methodology. This was

achieved by reparameterizing the selection index

theory that was developed for MAS by Lande &

Thompson (1990) by modelling M-EBV as a separate

trait with heritability equal to 1. Methods and theo-

ries associated with BLUP prediction of breeding val-

ues and path coefficient theory were then used to

derive the associated variances and covariances

needed for trait-based selection indexes. This formu-

lation provides a convenient basis for including mar-

ker information as a correlated trait in selection

index calculations. The resulting methodology allows

marker information to be included in standard selec-

tion index software such as SelAction (Rutten et al.

2002), as was also demonstrated by Schrooten et al.

(2005) for single-trait selection. While methods pre-

sented can be used to model MAS on any set of

markers of genes, several assumptions that are

expected to be approximately valid with genomic

selection were capitalized on to derive fairly straight-

forward formulations of correlations between pheno-

typic data and M-EBV for implementation in

standard selection index programmes.

Formulating M-EBV as a trait with heritability one

also allowed marker information from relatives to be

incorporated in a natural way, which is needed to

investigate the impact of not genotyping all individ-

uals. With heritability equal to 1, correlations

between M-EBV on relatives will be equal to the

additive genetic relationship between relatives. Addi-

tive genetic relationships quantify the correlation

between additive effects of relatives for single and

multiple loci (Falconer & Mackay 1996) and can,

therefore, also be used to model correlations of M-

EBV between relatives, and to predict M-EBV of an

individual based on the M-EBV of relatives.

Potential benefits from MAS

For illustration purposes, methods were applied to

several examples, using the program SelAction

(Rutten et al. 2002). Results demonstrated the

increased genetic gains that can be achieved with

availability of M-EBV but that, unless M-EBV have

high accuracy, they should be used in conjunction

with available phenotypic data. Similar to what has

been demonstrated in numerous other simulation

studies (see e.g. Dekkers & Hospital 2002), extra

gains from MAS were greatest for cases where phe-

notypic data provides limited accuracy of selection,

including sex-limited traits and traits with low heri-

tability. The example of multi-trait selection demon-

strated that MAS will be particularly beneficial for

increasing response for economic traits for which

responses are low in current phenotype-based selec-

tion programmes, because of limited accuracy of

EBV or undesirable correlations with other economic

traits with higher heritability. Similar results were

observed by Verrier (2001) using stochastic simula-

tion with a single QTL. Results also showed that

MAS can result in substantial reductions in rates of

inbreeding because of the increased emphasis on

own rather than family information.

Only one-stage selection programmes were inves-

tigated here. Several studies have, however, shown

that marker information is particularly beneficial in

multi-stage selection programmes, where marker

data is used in early stages when limited phenotypic

data is available. This includes pre-selection of young

bulls in dairy cattle for entry into progeny testing

programmes, as was investigated by Kashi et al.

(1990). Schaeffer (2006) proposed that, with geno-

mic selection, early selection on M-EBV could

remove the need for progeny testing in dairy cattle,

thereby reducing generation intervals as well as

costs. Methods described here for incorporating M-

EBV could also be used to investigate such multiple-

stage selection strategies.

Model assumptions

Selection index methods are based on several

assumptions that are required for selection index pre-

dictions of responses to be valid. The most important

one is the assumption of multivariate normality of

M-EBV. It should be noted that the derivation of

selection index weights does not require this assump-

tion and can be applied even to MAS with one QTL

or gene (e.g. Dekkers & Settar 2003). However, the

use of selection index methods to predict response to

selection and inbreeding does rely on the fundamen-

tal assumption of multivariate normality.

The multi-variate normal assumption will be

approximately valid if M-EBV are based on a sub-

stantial number of markers or QTL regions (Lande &

Thompson 1990), in which case the Central Limit

theorem dictates an approximate normal distribution

of M-EBV, thereby allowing them to be modelled as

a polygenic trait. Although the validity of this

assumption depends on the number of markers

included in the M-EBV and on the distribution of

the marker effects, it will be approximately valid for

genomic selection. When based on multiple regions

of the genome, or on all regions of the genome, as

with genomic selection, the M-EBV of a progeny can
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be computed as the sum of estimates of effects on

phenotype of alleles or haplotypes for each geno-

mic region j as: Q̂progeny ¼
P

j

ðĝpatj þ ĝmat
j ), as dem-

onstrated previously. When the same estimates of

allele or haplotype effects are used for several gener-

ations, the M-EBV of a progeny can also be written

as the average of the M-EBV of its parents plus the

sum of deviations for alleles or haplotypes that are

transmitted to the progeny:

Q̂progeny¼ð1=2ÞQ̂sireþð1=2ÞQ̂damþ

�

X

j

ĝ
pat
ij �ð1=2ÞQ̂sire

�

þ

�

X

j

ĝmat
ij �ð1=2ÞQ̂dam

�

:

Note that this is equivalent to the Mendelian

genetic model that is assumed for polygenic breeding

values, with the latter two terms representing the

Mendelian sampling terms. When based on multiple

QTL regions and markers, these Mendelian sampling

terms will approximately follow a normal distribu-

tion, which is what is assumed for polygenic traits.

Further, because an individual’s M-EBV is fixed con-

ditional on marker genotypes and previously derived

estimates of marker effects, it has no residual term.

Thus, it can be observed without error based on the

individual’s marker genotypes and two individuals

with the same marker genotypes will have the same

M-EBV, hence the assumption of heritability equal

to 1. Note that this does assume that (if needed)

parental origin of alleles or haplotypes can be deter-

mined without error and that estimates of marker or

haplotype effects remain consistent across several

generations. Thus, although M-EBV represent esti-

mates, they can be viewed and modeled as a genetic

trait that is inherited in a polygenic manner and that

can be observed on individuals without error (i.e. no

environmental effect).

The model used for selection index predictions

also assumed that the accuracy of M-EBV remains

constant over generations, apart from the impact of

the Bulmer effect on variances and covariances.

If LD between markers is not complete, gene

frequencies change substantially, or if dominance

and epistatic effects play a role, marker-effects will

need to be re-estimated on a regular basis to main-

tain accuracy. Using updated estimates of marker

effect estimates, however, violates the assumption of

M-EBV being a consistent trait across generations.

The model also assumed that marker effects were

estimated on phenotypic data that were independent

of the phenotypic data that were used for pheno-

type-based EBV. This will be approximately true

when using LD markers because marker effects will

be estimated from a sample across families, thereby

limiting the impact of individual families on marker

estimates.

It is clear that, ultimately, the deterministic selec-

tion index predictions developed here must be vali-

dated by stochastic simulation. This was, however,

beyond the scope of the present study because of

the complexity of the simulation and genetic evalua-

tion models that would be required but is the subject

of ongoing research. Nevertheless, the developed

models are based on the established theory that was

validated under the infinitesimal model and should

also apply with the use of M-EBV under the

assumption of normality. The developed models,

therefore, allow an initial assessment of the benefit

of marker information and can provide the basis for

further development of deterministic models for

MAS that allow rapid assessment of alternate strate-

gies of selection.

Correlations between phenotypic data and M-EBV

that are required for incorporation of marker infor-

mation were shown to only depend on the accuracy

of the marker-based EBV, rMG, which was used as

an input parameter in the examples used here to

illustrate methodology. Accuracy rMG depends on

the proportion of genetic variance explained by

markers (q2) and the accuracy of estimates of marker

effects that are in LD with QTL, rQ̂. Both of these

parameters are to some extent under the control of

the breeder. With genomic selection, parameter q2

depends on marker density and on the extent and

pattern of LD that exists in the population. Parame-

ter rQ̂ depends on the amount and accuracy of data

available to estimate marker effects and on the effi-

cacy of the statistical methods used for estimation or

prediction. Deterministic methods to predict rMG for

a given marker density, LD structure, and amount of

phenotypic information have not yet been devel-

oped, but they can be derived by stochastic simula-

tion, as in Meuwissen et al. (2001). For the purposes

of the work presented herein, rMG was used as an

input parameter and the effect of different levels of

rMG on responses was evaluated.
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