
GENETICS | INVESTIGATION

Multi-trait Genomic Selection Methods for Crop
Improvement

Saba Moeinizade∗, Aaron Kusmec†, Guiping Hu∗,1, Lizhi Wang∗ and Patrick S. Schnable†

∗Department of Industrial and Manufacturing Systems Engineering, Iowa State University, †Department of Agronomy, Iowa State University

ABSTRACT Plant breeders make selection decisions based on multiple traits, such as yield, plant height, flowering time, and

disease resistance. A commonly used approach in multi-trait genomic selection is index selection, which assigns weights to

different traits relative to their economic importance. However, classical index selection only optimizes genetic gain in the next

generation, requires some experimentation to find weights that lead to desired outcomes, and has difficulty optimizing non-linear

breeding objectives. Multi-objective optimization has also been used to identify the Pareto frontier of selection decisions,

which represents different trade-offs across multiple traits. We propose a new approach, which maximizes certain traits while

keeping others within desirable ranges. Optimal selection decisions are made using a new version of the look-ahead selection

algorithm, which was recently proposed for single trait genomic selection and achieved superior performance with respect

to other state-of-the-art selection methods. To demonstrate the effectiveness of the new method a case study is developed

using a realistic data set where our method is compared with conventional index selection. Results suggest that the multi-trait

look-ahead selection is more effective at balancing multiple traits compared to index selection.
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1. Introduction1

Genomic selection (GS), which was initially proposed by2

Meuwissen et al. (2001), is a special form of marker assisted selec-3

tion (MAS) that simultaneously estimates the effects of genome-4

wide markers in a training population consisting of genotyped5

and phenotyped individuals. Selection decisions are based on6

genomic estimated breeding values (GEBVs) in a breeding pop-7

ulation, which are calculated as the sum of the estimated marker8

effects. The advantages of GS have been demonstrated by simu-9

lation and empirical studies (Meuwissen et al. 2001; Makowsky10

et al. 2011; Schaeffer 2006; Wang et al. 2018; Goddard 2009).11

Previous studies have mainly focused on the development12

of models to improve the accuracy of GEBV prediction. Un-13

til recently, few studies have considered alternatives to trun-14

cation selection on GEBVs followed by random mating of the15

selected individuals. These studies have focused on selecting16

the parents of the next generation by defining new quantitative17

selection metrics (Goddard 2009; Daetwyler et al. 2015; Goiffon18

et al. 2017; Moeinizade et al. 2020) or jointly considering selec-19

doi: 10.1534/genetics.XXX.XXXXXX

Manuscript compiled: Friday 29th May, 2020
1Corresponding author’s email address: gphu@iastate.edu.

tion and mating decisions (Moeinizade et al. 2019; Akdemir and 20

Sánchez 2016). The latter two methods are forms of mate selec- 21

tion (Kinghorn and R.K.Shepherd 1999) that optimize the con- 22

tributions of potential parents to the next generation based on 23

maximizing a desired breeding objective. Typically, the optimiza- 24

tion is performed with respect to the next generation (Kinghorn 25

and Kinghorn 2016; Akdemir and Sánchez 2016). Look-ahead 26

mate selection (LAMS) schemes that optimize parental contri- 27

butions with respect to grand-progeny (i.e., two generations in 28

the future) have also been proposed in the context of animal 29

breeding (Hayes et al. 1998; Shepherd and Kinghorn 1998; Hayes 30

et al. 2002). 31

Moeinizade et al. (2019) implemented a LAMS scheme –look- 32

ahead selection (LAS)– in a stochastic simulation framework that 33

seeks to optimize the performance of the best possible progeny 34

in an arbitrarily defined terminal generation. This strategy was 35

shown to outperform conventional genomic selection (Meuwis- 36

sen et al. 2016), optimal haploid value selection (Daetwyler et al. 37

2015), and optimal population value selection (Goiffon et al. 2017) 38

using empirical data from a population of maize inbred lines. 39

LAS outperformed previous approaches by achieving more ge- 40

netic gain and preserving more genetic diversity over the course 41

of a simulated breeding program. 42
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Although LAS presents a significant improvement over com-1

peting methods, it is confined to single trait genomic selection2

(ST-GS). Generally, the productivity of a crop variety is depen-3

dent on multiple characteristics such as yield, grain quality, and4

disease resistance. Hence, selection and mating decisions should5

be based on several different characteristics with potentially dif-6

ferent breeding goals. Multi-trait selection poses difficulties for7

breeders because it often requires balancing competing breeding8

objectives. Four principle multi-trait genomic selection (MT-GS)9

strategies have been proposed in the literature: 1) tandem se-10

lection, whereby different traits are selected independently in11

different generations (Burgess and West 1993); 2) independent12

culling, whereby truncation selection is performed on multiple13

traits simultaneously with independent thresholds (Hazel 1943);14

3) index selection, whereby multiple traits are selected at the15

same time by constructing an index that is a linear combination16

of multiple traits (Hazel and Lush 1942; Hazel 1943); and 4) mate17

selection, whereby multiple traits are selected at the same time18

by finding Pareto optimal solutions of a mate selection index19

(Kinghorn and Kinghorn 2016).20

Tandem selection, by definition, is not capable of selecting21

multiple traits simultaneously and is most useful when some22

traits should be selected in earlier generations than others. Inde-23

pendent culling does perform simultaneous selection but is very24

sensitive to the truncation points for the different traits. Index25

selection has become an important method that has been widely26

used for the development of superior varieties in both animal27

and plant breeding (Villanueva and Woolliams 1997; Jannink28

et al. 2000; Ivkovich and Koshy 2002; Sharma and Duveiller 2003;29

Long et al. 2006; Yan and Frégeau-Reid 2008). This often takes the30

form of truncation selection on an index constructed by integrat-31

ing information on the economic values of the different traits and32

their phenotypic and additive genetic covariances. Brascamp33

(1984) provides a concise summary of different selection indices.34

Mate selection can consider different constraints and breeding35

goals for multiple traits and evaluates these criteria in the con-36

text of a proposed set of matings. Two recent studies in plants37

have evaluated the use of mate selection on long-term genetic38

gains (Cowling et al. 2019; Suontama et al. 2018). Additionally,39

Akdemir and Sánchez (2016) and Akdemir et al. (2019) have de-40

veloped new mate selection methods for single- and multi-trait41

scenarios, respectively, with an emphasis on application to plant42

breeding.43

An additional challenge in multi-trait selection is the defini-44

tion of breeding objectives for each trait. For example, a breeder45

wishing to maximize grain yield might also need to maintain46

minimum standards for standability and disease resistance and47

an acceptable range of plant heights. Kempthorne and Nord-48

skog (1959) proposed maintaining a trait at an optimal level by49

weighting its squared deviations from the optimum. Wilton50

et al. (1968) generalized this approach to include both squares51

and cross products of multiple traits. Moav and Hill (1966) de-52

veloped a graphical method to calculate explicitly non-linear53

indices on two traits. Later, iterative solutions were developed54

to identify the optimal weights for a non-linear index on an arbi-55

trary number of traits Itoh and Yamada (1988); Pasternak and56

Weller (1993). However, the general solution for the weights of57

a non-linear index is dependent on the population mean prior58

to selection and the intensity of selection (Weller et al. 1996).59

Therefore, the optimum selection index changes each generation60

and will be different from an index that maximizes gains over61

multiple generations.62

In this paper, we propose an extension of the single-trait 63

LAS method to multiple traits with different breeding objectives. 64

The method maximizes a single, main trait while constraining 65

other traits to fall within flexibly defined ranges. It retains the 66

advantages of single-trait LAS derived from considering the 67

impacts of selection, mating, and resource allocation decisions 68

on the performance of individuals in the terminal generation of 69

the breeding program. 70

2. Materials and Methods 71

2.1. Data sets 72

A dataset of 5,022 maize recombinant inbred lines (RILs) from 73

the US nested association mapping (US-NAM) (Yu et al. 2008) 74

and intermated B73xMo17 (IBM) (Lee et al. 2002) populations 75

was used in this study. Best linear unbiased predictors (BLUPs) 76

for total kernel weight were taken from Yang et al. (2018). BLUPs 77

for ear height were calculated from the phenotypic data in Kus- 78

mec et al. (2017) using a mixed model with genotype and envi- 79

ronment as random effects. The mixed model was implemented 80

in the R package lme4 (Bates et al. 2015). 81

SNPs from Kusmec et al. (2017) were thinned using PLINK 82

v1.90b (Chang et al. 2015) using the “indep-pairwise” function 83

with a window size of 250 kb, a step size of 50 SNPs, and an 84

LD threshold of 0.6. Thinned SNPs were imputed and phased 85

with Beagle v4.0 (Browning and Browning 2008) using default 86

parameters. This produced 359,826 imputed and phased SNPs. 87

SNP effects for each phenotype were estimated using the BayesB 88

algorithm (Meuwissen et al. 2001) implemented in GenSel4 (Fer- 89

nando and Garrick 2009). Recombination rates were estimated 90

using the genetic map for the US-NAM population (Yu et al. 91

2008) following the procedure outlined in Goiffon et al. (2017). 92

2.2. Simulation design 93

One hundred independent simulations of a ten-generation breed- 94

ing program were performed using a maize data set. An initial 95

population of 200 individuals was randomly selected from the 96

full data set, and in each generation, 20 individuals were se- 97

lected to make 10 crosses. More details on the simulation steps 98

are available in Goiffon et al. (2017) and Moeinizade et al. (2019). 99

2.3 Single-trait look-ahead selection 100

In this section, we review the look-ahead selection method 101

which was recently proposed for single-trait genomic selection 102

(Moeinizade et al. 2019). To make this algorithm more robust, 103

we present an equivalent reformulation of this method and then 104

discuss how this algorithm can be extended for multiple trait 105

settings in the next section. 106

The single-trait look-ahead selection (ST-LAS) method antici- 107

pates the consequences of selection and mating decisions over 108

several generations via simulation by quantitatively taking into 109

account recombination frequencies during meiosis. The ST-LAS 110

method has three major contributions to the literature: 1) time 111

management: ST-LAS is the only GS method that takes time con- 112

straints into account and is deadline sensitive; 2) mating strategy 113

optimization: the ST-LAS method not only makes the selection 114

decisions but also specifies how to pair the selected individu- 115

als for mating; and 3) resource allocation: this method uses a 116

heuristic strategy to allocate more progeny to crosses between 117

more diverse parents to increase the probability of producing 118

high performing individuals. 119

The cornerstone of this method is evaluating a given selection 120

and mating strategy by estimating the distribution of progeny 121
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GEBVs in the final generation. By simulating the GEBVs of a1

random sample of individuals in the final generation, a breeder2

can make better selection and mating decisions. This method can3

be formulated as the following optimization model (Moeinizade4

et al. 2019):5

max
x,y

f LAS(x, y, r, τ) (1)

s.t. ∑
N
n=1 xn = S (2)

xn ∈ {0, 1} ∀n ∈ {1, ..., N} (3)

xn = ∑
N
j=1 yn,j ∀n ∈ {1, ..., N} (4)

yi,j ∈ {0, 1} ∀i, j ∈ {1, ..., N} (5)

This optimization model has two decision variables: x, which6

represents the selection strategy, and y, which represents the7

mating strategy. Below is a detailed description of the objective8

as well as all variables and parameters used in this model:9

• f LAS: The expected GEBV of the best offspring in the termi-10

nal generation.11

• xn: A binary decision variable that shows whether individ-12

ual n is selected (xn = 1) or not (xn = 0).13

• yi,j: A binary variable that shows whether individual i is14

mated with individual j (yi,j = 1) or not (yi,j = 0).15

• r ∈ [0, 0.5]L−1: The recombination frequency vector.16

• τ: The remaining number of generations (τ = T− t where17

t is the current generation and T is the deadline generation18

number).19

• N: The number of individuals in the population.20

• S: The number of individuals that are to be selected out of21

the current population.22

As demonstrated in equation (1), the objective of the ST-LAS23

method is dependent on selection (x), mating (y), recombina-24

tion frequencies (r), and remaining number of generations (τ).25

Constraint (2) states that S individuals are selected from total26

N individuals in the population to make S/2 crosses (assuming27

that S is an even number) and constraint (3) ensures that the28

decision variable x, is binary. Constraint (4) ensures that each29

selected individual is mated once. Finally, constraint (5) states30

that the decision variable y is binary.31

In this model, evaluation of f LAS(x, y, r, T − t) is very chal-32

lenging because of the uncertainty involved due to recombina-33

tion frequencies (r) and also selection (x) and mating (y) deci-34

sions over T − t generations. To deal with these challenges, a35

simulation optimization algorithm was designed that estimates36

and maximizes the LAS objective function by exploring the se-37

lection and mating solution space efficiently.38

2.4 Equivalent formulation of single-trait look-ahead selection39

According to Moeinizade et al. (2019), the objective of ST-LAS40

is to maximize the expected GEBV of the best offspring in the41

terminal generation (equation (1)). The best offspring can be the42

individual with maximum expected GEBV in the final genera-43

tion; however, the maximum value does not necessarily repre-44

sent the whole distribution. To make the prediction more robust45

and reduce the influence of outliers, we present an equivalent re-46

formulation of the ST-LAS method (equations (6)-(8)) where the47

best offspring is defined as the 100γth percentile among predicted48

GEBVs of individuals in the terminal generation.49

max
x,y

φ (6)

s.t. Constraints (2), (3), (4), and (5) (7)

Pr[g1(x, y, r, τ) ≥ φ] ≥ 1− γ (8)

Here, φ is a threshold value, equivalent to the previous ob- 50

jective f LAS, which represents the expected GEBV of the best 51

offspring in the final generation where best is defined as the 52

100γth percentile of the simulated GEBV distribution. The new 53

variables and parameters are defined as follow: 54

• φ: The expected GEBV of the best offspring in the terminal 55

generation. 56

• g1(x, y, r, τ): The expected GEBV of a random progeny in 57

the terminal generation (for trait 1 which is the only trait in 58

the case of ST-LAS). 59

• γ: A parameter that defines which percentile of the GEBV 60

distribution is evaluated in the final generation. 61

In this model, constraint (8) states that for a random progeny 62

in the final generation, the probability of having an expected 63

GEBV at least equal to the threshold value is greater than or 64

equal to 1 − γ. For example, for a random sample of 1000 65

progeny, if γ = 0.98, then φ will evaluate the GEBV of the 66

top 2% of progeny. 67

2.5 Multi-trait look-ahead selection 68

In this section, we present a new approach for MT-GS prob- 69

lems to optimize the main goal of a breeding program while 70

keeping other traits within desired ranges. This new approach, 71

multi-trait look-ahead selection (MT-LAS), extends the ST-LAS 72

method to multiple trait settings. It should be noted that the 73

same resource allocation heuristic from Moeinizade et al. (2019) 74

is applied to MT-LAS. This resource allocation strategy aims 75

to preserve more genetic diversity by varying the number of 76

progeny produced from each cross relative to their breeding 77

parents genetic diversity. 78

Assume there exists J different traits of which one, j = 1 (e.g., 79

yield), should be maximized while the other traits, j ∈ {2, 3, ..., J} 80

(e.g., plant height, ear height, etc.), should satisfy certain criteria. 81

This problem can be formulated as an optimization model as 82

follows: 83

max
x,y

φ (9)

s.t. Constraints (2)-(5) (10)

Pr[g1(x, y, r, τ) ≥ φ|lj ≤ gj(x, y, r, τ) ≤ uj, (11)

∀j ∈ {2, 3, ..., J}]

≥ 1− γ

This model shares the same objective and constraints (2), 84

(3), (4), and (5) with the equivalent reformulation of ST-LAS. 85

However, constraint (11) is a modification of constraint (8) which 86

focuses on making sure that traits j ∈ {2, 3, ..., J} fall into desired 87

ranges by defining a conditional probability. Below is a detailed 88

description of all new variables and parameters: 89

• gj(x, y, r, τ): The expected GEBV of a random progeny in 90

the terminal generation for trait j where j ∈ {2, 3, ..., J}. 91

• lj: The lower value for trait j. 92

• uj: The upper value for trait j. 93

Multi-trait Look-ahead Selection 3



This model aims to maximize the expected GEBV of the top1

100(1− γ)% of offspring in the terminal generation for the trait2

of interest (e.g., yield) among offspring that also meet thresholds3

with respect to other traits (e.g., plant height, grain quality, etc.).4

Without loss of generality, lj = −∞ or uj = ∞ capture the cases5

when only a lower bound or upper bound should be consid-6

ered. Note that when only one trait (j = 1) is considered, this7

formulation is equivalent to ST-LAS.8

The ST-LAS optimization model was already challenging to9

solve and after adding a nonlinear and non-convex constraint10

(11), the computational complexity increases significantly. To11

overcome this challenge, we redefine constraint (11) by con-12

verting the conditional probability on l and u to a penalty that13

dynamically adjusts the objective function in response to vi-14

olations of the boundaries. The penalty allows violations of15

the boundaries that are offset by improvements in the objective16

function. Take, for example, the case that the decision maker17

wants to maximize yield while making sure that plant height18

does not exceed a certain value. What if we could improve yield19

by slightly violating the height constraint? We want the height20

constraint to be true, but not at the expense of losing the main21

objective.22

The following mathematical model formulates the problem:23

max
x,y

φ (12)

s.t. Constraints (2)-(5) (13)

θj = Pr[lj ≤ gj(x, y, r, τ) ≤ uj], ∀j ∈ {2, ..., J} (14)

∆ = max(gj(x, y, r, τ)− uj, lj − gj(x, y, r, τ), 0) (15)

Pr[h(x, y, r, τ) ≥ φ] ≥ 1− γ (16)

h(x, y, r, τ) = θ1g1(x, y, r, τ)−∑
J
j=2

(1−θj)
J−1 ∆ (17)

Here, θj is the probability that a random progeny is acceptable24

in the final generation with respect to trait j for j ∈ {2, 3, ..., J}25

and θ1 =
∑

J
j=2 θj

J−1 . The new function h(x, y, r, τ) is a linear com-26

bination of the expected GEBV of a random progeny for trait27

j = 1 and the penalty of violating the desired range for traits28

j ∈ {2, 3, ..., J}.29

Here are some properties of constraints (14)-(17) :30

• The term ∆ in equation (15) represents the penalty for vi-31

olating the upper or lower bounds for a random progeny32

in the terminal generation. As the magnitude of the viola-33

tion increases, the penalty term increases. In the case of no34

violation, the penalty becomes 0.35

• From equation (17), the term ∑
J
j=2

(1−θj)
J−1 ∆ is the weighted36

sum of penalties for all traits of j ∈ {2, 3, ..., J}. The weight37

(1− θj) is the probability that a random progeny violates38

the desired range.39

• When all the individuals with respect to traits j ∈ {2, 3, ..., J}40

(e.g., height) are acceptable, θ1 = 1 and the focus will be41

only on the trait of interest (e.g., yield).42

• The sum of all weights in equation (17) equals 1 (θ1 +43

∑
J
j=2

(1−θj)
J−1 =

∑
J
j=2 θj

J−1 + ∑
J
j=2

(1−θj)
J−1 = 1).44

• The larger that θ1 is, more weight is placed on the trait of45

interest (e.g., yield) in selection and mating decisions.46

After evaluation of the MT-LAS objective function, the next47

step is to optimize the model. A similar heuristic algorithm from48

Moeinizade et al. (2019) is used to optimize the MT-LAS model.49

This algorithm is defined as follows.50

Algorithm 1 Heuristic for optimizing the MT-LAS model

1: Select S random individuals from the population
2: Randomly mate selected individuals
3: Calculate φ (Vmax ← φ)
4: Set f ∈ {1, 2, ..., S} as list of positions to check
5: Set n f ∈ {1, 2, ..., S} as number of positions to check
6: while n f ≥ 0 do
7: Generate z ∈ [1, n f ] as a random integer
8: i← the zth value in f
9: j← index of the ith individual

10: Swap j with every unselected individual from population
11: Calculate φw for every possible swap w
12: VmaxN ← max(φw)
13: if VmaxN ≤ Vmax then
14: Reject the swap and keep j
15: Remove the zthposition from f
16: else
17: Accept the swap
18: Vmax = VmaxN
19: f ∈ {1, 2, ..., S} \ i
20: n f = S− 1

21: end
22: end

2.6 Example with illustration 51

In this section, we illustrate the MT-LAS method with an ex- 52

ample to provide a more intuitive description. Assume that 53

the goal is maximizing yield (trait 1) while ensuring that plant 54

height (trait 2) falls within a desired range. For a given selection 55

and mating strategy at the current generation (t), the look-ahead 56

stochastic simulation predicts the GEBV of individuals in the 57

final generation (T) with respect to both traits as illustrated in 58

Figure 1. 59

In this example, 20 random progeny are produced in the 60

final generation. The GEBVs of these progeny for both traits 61

are approximated with the look-ahead algorithm. In Figure 1, 62

the green and blue bars represent the GEBVs for each progeny 63

with respect to traits 1 and 2 (i.e., g1(x, y, r, τ) and g2(x, y, r, τ), 64

respectively). GEBVs for plant height are constrained to fall 65

between 15 and 35. Hence, among all progeny, lines 1, 6, 7, 8, 9, 66

12, 13, 15, 19, and 20 are not acceptable for plant height. These 67

progeny are distinguished from progeny that meet the height 68

requirements with a cross mark. Because 10 out of 20 individ- 69

uals meet the height criterion, θ1 and θ2 are both 0.5. Finally, 70

the penalty (∆) and penalized GEBVs for each progeny are cal- 71

culated using equations (15) and (17), respectively. Penalized 72

GEBVs are plotted as the purple bars in Figure 1. 73

After sorting the progeny with respect to penalized GEBVs, 74

we can calculate the objective φ. Let’s assume γ = 0.90. The 90th
75

percentile among 20 individuals is the third best individual and 76

according to Figure 1, line 14 is the third best individual. Hence 77

we have φ = 21 which is the value of h(x, y, r, τ) for line 14. 78

2.7 Data availability 79

Data are available at Figshare (DOI: 10.25380/iastate.12145752). 80
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Figure 1 The look-ahead simulation illustration for MT-LAS method. In this example, the population consists of 16 individuals.
In generation t, 8 individuals are selected from the population and mated accordingly to make 4 crosses. Each breeding parent
produces one progeny in generation t + 1 and from generation t + 1 to T− 1 all progeny are crossed with each other in the same gen-
eration, each producing one progeny. Then, the look-ahead objective can be approximated by taking a random sample of progeny
in generation T. In this example, 20 lines are produced and the GEBV of each individual with respect to traits 1 and 2 are measured
and visualized with green and blue bars respectively. Our goal is to maximize trait 1 after T − t generations while making sure
that trait 2 does not exceed a certain value of u = 35 and is not less than l = 15. We observe that 10 individuals among 20 are not
acceptable. The progeny with acceptable values for bounded trait are distinguished with check marks. The penalized GEBVs are
calculated and represented as purple bars and calculation of the objective φ is demonstrated for a given γ.
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3. Results1

In this section, we present a case study with real data. Without2

loss of generality, two traits—total kernel weight (TKW) and ear3

height (EHT)—are used in this case study. Our objective is to4

maximize TKW given a constraint on EHT.5

We first present the performance of ST-LAS where the goal is6

to maximize TKW only. In this way, we can observe the behavior7

of EHT versus TKW in the absence of any constraints on EHT.8

Then, we investigate truncation selection on a selection index for9

TKW and EHT with different choices of weights. However, this10

does not allow keeping a trait within a specified range. Hence,11

we define a penalized index by assigning a negative weight on12

the absolute deviations from the specified range. The penalized13

index is used as a benchmark against the performance of MT-14

LAS. Finally, we present the MT-LAS results and compare the15

effectiveness of MT-LAS to that of the penalized index.16

Single-trait look-ahead selection - Maximizing TKW17

In this section, we investigate the behavior of EHT over ten18

generations when the objective is to maximize TKW and there is19

no constraint on EHT. This will help provide reasonable bounds20

for EHT when testing the MT-LAS algorithm.21

Figure 2 (A) presents the total kernal weight and ear height22

GEBVs over ten generations for a single simulation when se-23

lection is only on TKW. Over ten generations the mean GEBV24

of TKW increases from 2.78 to 40.25 with a maximum of 47.09.25

For EHT, the range of GEBVs changes from [−21.87,25.42] to26

[−1.68,14.77]. Figure 2 (B) presents the minimum, mean, and27

maximum GEBVs of both traits over ten generations averaged28

over 100 simulation replicates. On average, the GEBVs of EHT29

fall in a range of [−2.73, 16.54] in the final generation.30

Index selection - Maximizing TKW and EHT with assigned31

weights32

A selection index is a linear combination of traits according to33

some weighting scheme. Typically, truncation selection is ap-34

plied to the index. Here, we construct an index for TKW and35

EHT where the index is the weighted sum of the GEBVs for36

each trait (WTKWGEBVTKW + WEHTGEBVEHT) and truncation37

selection is applied to the index. Let WTKW and WEHT be the38

weights placed on the GEBVs for total kernel weight and ear39

height, respectively. Weights are chosen from the real numbers40

between -1 and 1. It should be noted that, in this scheme, we41

are selecting for larger values of both TKW and EHT. Placing42

a negative weight on a trait selects for smaller values and pro-43

duces progress in the opposite direction to that under strictly44

positive weights. Figure 3 presents the average GEBVs over ten45

generations averaged over 100 replicate simulations under index46

selection with varying weights, including the case where the47

weight on EHT is negative.48

As expected, increased weight for EHT (positive or nega-49

tive) negatively impacts the efficiency of selection for TKW. The50

mean GEBVs for both traits change in the direction of their51

assigned weights over time, indicating the lack of strong ge-52

netic correlations between TKW and EHT. The highest mean53

GEBV for TKW (34.67) is achieved by selection solely on TKW54

(WTKW = 1, WEHT = 0). Table 1 provides the minimum, mean,55

and maximum GEBVs for TKW in the final generation under the56

different choices for weights. It should be noted that the maxi-57

mum GEBV for TKW achieved after 10 generations of selection58

is less than that achieved using ST-LAS (36.05 vs. 44.51). This59

considerable impact on response is due to the fact that the look- 60

ahead selection focuses on maximizing the expected GEBV of 61

the best offspring in the terminal generation, considering uncer- 62

tainty in recombination in each generation whereas truncation 63

selection on GEBVs focuses on maximizing the genetic gain in 64

the next generation. Additionally, look-ahead selection selects 65

pairs of individuals as a group and recognizes the importance of 66

mating. 67

Table 1 Summary statistics of population GEBV values in
generation 10 averaged over 100 replicate simulations for
TKW using conventional genomic selection with different
weights (index selection). These results are based on simula-
tions in Figure 3.

WTKW WEHT Min Mean Max

0 ±1 0.22 2.81 5.41

0.1 ±0.9 1.86 4.63 7.53

0.2 ±0.8 4.23 7.08 9.86

0.3 ±0.7 7.21 10.28 13.3

0.4 ±0.6 12.07 15.30 18.43

0.5 ±0.5 18.53 21.68 24.69

0.6 ±0.4 25.86 28.77 31.6

0.7 ±0.3 30.21 32.57 34.85

0.8 ±0.2 32.00 33.81 35.49

0.9 ±0.1 32.69 34.11 35.48

1 0 33.29 34.67 36.05

Penalized index selection - Maximizing TKW with a constraint 68

on EHT 69

In this section, we reformulate the index selection to be able 70

to specify a desired range for the secondary trait. This enables 71

a direct comparison to the MT-LAS method. After applying 72

ST-LAS to TKW, the GEBVs for EHT in the final generation fell 73

between −2.73 and 16.54. We subsequently investigated three 74

cases where EHT is constrained to fall outside this range of 75

variation. The three cases are as follows: 76

• Case 1: l = 20, u = 30 77

• Case 2: l = −15, u = −5 78

• Case 3: l = 45, u = +∞ 79

Similar to the use of a quadratic index to approach an opti- 80

mum phenotype (Kempthorne and Nordskog 1959; Wilton et al. 81

1968), we define an index that penalizes the absolute deviations 82

from a desired range. The constructed index is formulated as 83

WTKWGEBVTKW −WEHT max(l − GEBVEHT, 0, GEBVEHT − u). 84

Weights are chosen from the real numbers between 0 and 1, con- 85

strained to sum to unity. Figure 4 presents the average GEBVs 86

over ten generations averaged over 100 replicate simulations 87

under penalized index selection for three different cases. These 88

results are compared against the index selection without penal- 89

ization from Figure 3. We observe that the non-penalized index 90

selection cannot satisfy the ear height criterion. As expected, 91

over multiple generations of selection the GEBV of TKW in- 92

creases and the penalty term accommodates keeping EHT within 93

6 Moeinizade et al.



Figure 2 (A) Population GEBVs of EHT versus TKW for one simulation replicate over ten generations when selection and mating
decisions are optimized using ST-LAS algorithm with an objective of maximizing TKW. Each generation includes 200 individuals
represented by stars and different colors are distinguishing between generations. The final generation has a minimum, mean, and
maximum of 34.36, 40.25, 47.09 for TKW and −1.68, 7.17, 14.77 for EHT respectively. (B) Minimum, mean and maximum GEBVs of
TKW and EHT over ten generations averaged over 100 simulation replicates. Selection and mating decisions are optimized using
ST-LAS algorithm with an objective of maximizing TKW. The final generation has a minimum, mean, and maximum of 33.30, 39.04,
44.51 for TKW and −2.73, 7.00, 16.54 for EHT respectively.
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Figure 3 Index selection considering different weights for TKW and EHT averaged over 100 simulation replicates. The mean GEBV
of individuals over ten generation are calculated given a pair of weights for two traits. The absolute values of the weights add up to
1. Each curve demonstrates the mean GEBV of individuals (represented by markers) over ten generations for assigned weights.
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the specified range. For case 1 and case 2, the EHT criterion is1

satisfied when WEHT ≥ 0.3. However, for case 3, the criterion2

cannot be satisfied even with the penalized index selection be-3

cause the bound represents an extreme case. The behavior of4

case 3 is very similar to the index selection without penalization.5

Multi-trait look-ahead selection - Maximizing TKW with a con-6

straint on EHT7

The MT-LAS method aims to maximize genetic gain in a tar-8

get trait while ensuring that one or more secondary traits fall9

within specified boundaries. Here, we maximize TKW subject10

to constraints on EHT for three different cases.11

Population GEBVs over ten generations for one simulation12

replicate are presented in Figure 5 (A) and the average of 10013

simulation replicates are presented in Figure 5 (B). For cases 114

and 2, the GEBVs for EHT of ∼ 90% of the individuals in the15

final generation fall within the specified boundaries. For case 3,16

only a lower bound on EHT GEBV was specified. This bound17

represents an extreme case where index selection is unable to18

achieve the lower bound even when selecting solely on EHT.19

However, MT-LAS is able to exceed the bound with ∼ 50% of20

the population falling into the acceptable range.21

Comparison - Performance of MT-LAS against penalized index22

selection23

Figure 6 compares the performance of MT-LAS with the results24

of non-penalized and penalized index selection using weights25

that produced results satisfying the desired ranges for 3 cases.26

We also show that ST-LAS for TKW exceeds the performance of27

truncation selection on TKW alone (WTKW = 1, WEHT = 0). For28

both cases 1 and 2, MT-LAS is able to produce populations that29

surpass the performance of the comparable index selection sce-30

narios with respect to TKW and also keep almost all individuals31

within the specified boundaries for EHT. For case 3, the highest32

EHT achieved by index selection with or without penalization33

cannot satisfy the desired range criterion. However, MT-LAS34

not only achieves the expected EHT, but also improves the TKW35

considerably.36

Overall, using MT-LAS with optimization of selection and37

mating decisions and a soft penalty on ear height improves the38

response. It should be noted that the distributions of look-ahead39

methods are quite different from index selection. As shown in40

Figure 6 the look-ahead methods achieve wider distributions in41

the terminal generation.42

Figures 7 and 8 display the standard deviation of population43

GEBVs over ten generations for 100 simulation replicates and44

compare the performance of MT-LAS/ST-LAS with index selec-45

tion. As expected, look-ahead methods maintain more genetic46

variance than index selection indicating that there is greater47

room for population improvement after 10 generations. Further-48

more, the genetic correlations between two traits are presented49

over time for one simulation replicate which indicate the lack50

of strong correlation between TKW and EHT (see Figure 9 in51

Appendix).52

Discussion53

The production of a crop variety depends on multiple character-54

istics such as grain quality, yield, and drought resistance which55

are subject to different breeding objectives. In this study, we56

proposed a new multi-trait selection approach using genomic57

information that maximizes genetic gain with respect to a focal58

trait while controlling the variation in multiple secondary traits.59

To demonstrate the effectiveness of the proposed method, we 60

conducted a case study using real data where MT-LAS is com- 61

pared with index selection with varying weights. In this case 62

study, the goal was to maximize total kernel weight while con- 63

straining ear height. Three different cases with varying bounds 64

were investigated, and the results suggested that MT-LAS was 65

more effective at balancing multiple traits than index selection. 66

Fundamentally, the MT-LAS algorithm surpassed conven- 67

tional index selection because of four reasons. The first reason 68

is the satisfiability of this method. MT-LAS automatically and 69

dynamically balances multiple traits and is able to optimize 70

selection and mating decisions in a way that satisfies the con- 71

straints for bounded traits while simultaneously maximizing 72

the main trait of interest in the terminal generation. For two of 73

our three scenarios, the penalized index was able to satisfy the 74

constraints on the bounded trait but at the cost of reduced per- 75

formance in the maximized trait. Moreover, with index selection, 76

it may not be possible to achieve some values for the bounded 77

traits without mate selection. For example, in case 3, we inves- 78

tigate the performance of MT-LAS with a lower bound of 45 79

which is not reached with either non-penalized or penalized 80

index selection (Figures 3 and 4). 81

The second advantage of MT-LAS is its dynamic adjustabil- 82

ity. The MT-LAS method places more emphasis on feasibility re- 83

quirements (having individuals that meet the thresholds for the 84

bounded traits) when most of the individuals are not predicted 85

to fall within the bounds for the bounded traits in the terminal 86

generation. On the other hand, this algorithm focuses on the 87

main trait when most of the individuals become acceptable for 88

the bounded trait. Overall, selection and mating decisions are 89

dynamically adjusted in every generation by making a trade 90

off between optimizing the main goal and reaching the desired 91

range for the bounded traits. 92

A third benefit of MT-LAS is its interpretability. By defining 93

the weights in terms of bounds on the desired values of the 94

trait, MT-LAS provides an intuitive description of the breeding 95

objective on the original measurement scale. 96

A fourth benefit of MT-LAS is its time-awareness. As op- 97

posed to classical index selection, which maximizes genetic merit 98

in the next generation, MT-LAS maximizes genetic merit in an 99

arbitrary terminal generation. This is similar to work on look- 100

ahead mate selection in animal breeding (Hayes et al. 1998; Shep- 101

herd and Kinghorn 1998; Hayes et al. 2002) where the quantity to 102

be maximized is the genetic merit of grand-progeny. Addition- 103

ally, this shift alleviates the difficulties posed by the dependence 104

of classical non-linear indices on the current generation mean 105

and intensity of selection which can cause such an index to be 106

non-optimal over multiple generations (Weller et al. 1996). 107

The main contribution of MT-LAS is constraints (14), (16), 108

and (17), which allow the algorithm to dynamically adjust the 109

objective function according to the progress of the current pop- 110

ulation. Future research is needed to more fully characterize 111

the MT-LAS algorithm and address the limitations of this study. 112

First, the current paper only considers two traits, although the 113

model is formulated for J traits. Further simulations to explore 114

the behavior of the algorithm when constraining >1 trait are 115

desirable. Second, the hyper-parameter γ plays a crucial role 116

in identifying the optimal selection and mating decisions. In 117

this study we selected γ after experimenting with several values. 118

Future work is needed to design systematic methods for opti- 119

mizing this parameter. Third, the objective of the look-ahead 120

selection relates to the final generation and future research can 121

8 Moeinizade et al.



Figure 4 Penalized index selection considering different weights for TKW and EHT averaged over 100 simulation replicates for
three different cases. Each curve demonstrates the mean GEBV of individuals (represented by markers) over ten generations for
assigned weights. The transparent curves in the background present the index selection results without penalization and the red
dashed lines are the decision boundaries.

focus on designing new selection methods that also consider1

intermediate generations in the objective. Finally, we based our2

simulations on a single data set from a single crop organism.3

Further simulations considering more diverse populations are4

necessary to demonstrate the general applicability of MT-LAS.5
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Figure 5 (A) GEBVs of individuals over ten generations for one simulation replicate. Optimal selection and mating decisions were
made using the MT-LAS method in all three cases. Generations are distinguished with different colors. Over multiple generations
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Figure 6 Comparison of MT-LAS, ST-LAS and Index selection methods. The mean GEBVs of population over ten generations are
averaged over 100 simulation replicates and represented for two traits. Furthermore, the minimum and maximum GEBVs in the
final generation are demonstrated using the cross marks. The green bar specifies the boundaries.
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Figure 7 Standard deviations of total kernel weight GEBVs over time averaged for 100 simulation replicates.
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Figure 8 Standard deviations of ear height GEBVs over time averaged for 100 simulation replicates.
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Appendix1

Genetic correlations2

Figure 9 demonstrates population GEBVs for one simulation replicate over ten generations for different methods. The standard3

deviation of population GEBVs for TKW and EHT are presented over time. It is observed that almost in every generation the4

population has higher genetic variation for both traits when selection and mating decisions are optimized using look-ahead methods.5

Furthermore, the genetic correlations between two traits are presented over time which shows these two traits are correlated with a6

low degree.7

Figure 9 Comparison of the population performance for MT-LAS, ST-LAS and index selection methods over ten generations for one
simulation replicate. The gray bars specify boundaries. Each box has three numbers including standard deviation of population
GEBVs for trait 1 and trait 2 as well as the correlation between two traits from top to bottom respectively.

Repeatability of the results8

The simulations are stochastic because they model stochastic recombination events. Figure 10 (Right) depicts the distribution of9

breeding values in the final generation for 100 simulations using the same starting population but different random seeds. The left10

panels provide a closer look at the first 10 simulations. As expected, there is variation around the average performance across all11

simulations. The average of the first 10 simulations is similar to the average of all 100 simulations, suggesting that the results are12

repeatable.13

14 Moeinizade et al.



Figure 10 Population GEBV box-plots for 10 and 100 independent simulations ((Left) and (Right) respectively). Selection and
mating decisions are optimized using MT-LAS method (with an objective of maximizing TKW and having a constraint on EHT
(lower-bound 20 and upper-bound 30, similar to case 1)). The purple dashed line demonstrates the average of GEBVs across all
simulations.
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