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George Price studied evolutionary genetics for approximately seven years between 1967 and 1974. During
that brief period Price made three lasting contributions to evolutionary theory; these were: (i) the Price
Equation, a profound insight into the nature of selection and the basis for the modern theories of kin
and group selection; (ii) the theory of games and animal behavior, based on the concept of the
evolutionarily stable strategy; and (iii) the modern interpretation of Fisher’s fundamental theorem of
natural selection, Fisher’s theorem being perhaps the most cited and least understood idea in the history
of evolutionary genetics. This paper summarizes Price’s contributions and briefly outlines why, toward
the end of his painful intellectual journey, he chose to focus his deep humanistic feelings and sharp,
analytical mind on abstract problems in evolutionary theory.
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Introduction

At the age of 44, George Price quit his engineering job
at IBM and took up evolutionary genetics. Price
moved to the Galton Laboratories at London in 1967,
where C. A. B. Smith, Weldon Professor of Biometry,
provided him with space and encouragement. Price
made three lasting contributions to the conceptual
structure of evolutionary genetics during the brief
period between 1970 and 1973. He died in 1975.

(i) Price’s (1970, 1972a) first contribution was the
Price Equation, a formal method for the hierarchical
analysis of natural selection. Hamilton (1970) used this

equation in his later studies to construct the foundation

for modern analyses of kin selection and group
selection. The equation has also been used to clarify a
diverse array of conceptual issues, from quantitative

genetics to the abstract properties of natural selection.

(ii) Price was the first to show that many unsolved

puzzles in animal behavior could be understood by

applying the logic of game theory. Price’s work
stimulated Maynard Smith’s interest, which eventually
led Maynard Smith to develop his concept of the

Evolutionarily Stable Strategy (ESS; Maynard Smith

& Price, 1973) and to write the classic book Evolution

and the Theory of Games (Maynard Smith, 1982).

(iii) Price (1972b) was the first to crack the most
obscure and misunderstood of R. A. Fisher’s many
oracles: the fundamental theorem of natural selection.
This theorem is perhaps the most widely quoted result
in evolutionary theory, yet Price demonstrated
convincingly that the consensus interpretation of the
theorem strongly contradicts the lessons Fisher himself
drew from the theorem. Fisher stated on several
occasions that the average fitness of a population is a
meaningless quantity, and theories such as Wright’s
adaptive topography that emphasize average fitness
create a strongly misleading view of evolutionary

process.

Many biologists have heard of one or another of
these contributions. Few people are aware that each
was made by a single man. It must be unusual in the

history of science for someone, without professional

experience, to take up a field while in his forties
and make significant contributions to the theoretical
foundations of that field.

In the first sections of this paper I focus on
Price’s contributions to evolutionary genetics and the

study of natural selection. In the final section I provide

a few details about his life and the factors that
motivated him to choose particular problems in
evolutionary biology.
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The Price Equation

. . . a good notation has a subtlety and suggestiveness
which at times make it seem almost like a live teacher.
(Bertrand Russell)

The Price Equation was a new mathematical

formulation for evolutionary change (Price, 1970,

1972a). It may seem strange that one could write down

a truly new equation that describes evolution. After

all, evolution is simply the change over time in

some characteristics of a population. The brilliance

of the Price Equation is that it adds nothing to the

fundamental simplicity of evolutionary change but, by

making a few minor rearrangements and changes in

notation, the equation provides an easier and more

natural way to reason about complex problems.

The Price Equation relies on a degree of

mathematical abstraction that is rare in evolutionary

genetics. Indeed, Price believed that his work was an
important step toward a general theory of selec-
tion. He introduced his manuscript, ‘‘The Nature of
Selection,’’ (Price, 1995) with:

A model that unifies all types of selection (chemical,
sociological, genetical, and every other kind of
selection) may open the way to develop a general
‘Mathematical Theory of Selection’ analogous to
communication theory . . . Selection has been studied
mainly in genetics, but of course there is much more
to selection than just genetical selection . . . yet, despite
the pervading importance of selection in science and
life, there has been no abstraction and generalisation
from genetical selection to obtain a general selection
theory and general selection mathematics.

I begin with simple genetical applications that use a
reduced form of the equation and move slowly toward
the full equation. At the end of this section I discuss the
general properties of the equation and the idea that
there can be a theory of selection that unifies different
problems such as trial-and-error learning, chemical
crystallization, and linguistic evolution.

  

The reduced form of the equation that can be used

for many simple problems is

w̄Dz̄=Cov(w, z)=bwzVz , (1)

where w is fitness and z is a quantitative character. The

equation shows that the change in the average value
of a character, Dz̄, depends on the covariance between
the character and fitness or, equivalently, the

regression coefficient of fitness on the character

multiplied by the variance of the character. This
equation was discovered independently by Robertson
(1966), Li (1967) and Price (1970).

Because fitness itself is a quantitative character, one

can let the character z in eqn (1) be equivalent to fitness,

w. Then the regression, bww , is 1, and the variance, Vw ,

is the variance in fitness. Thus the equation shows that

the change in mean fitness, Dw̄, is proportional to the

variance in fitness,Vw . The fact that the change inmean

fitness depends on the variance in fitness is usually

called ‘‘Fisher’s fundamental theorem of natural

selection,’’ although that is not what Fisher (1958)

really meant. Price himself clarified Fisher’s theorem in

a fascinating paper that I shall discuss later (Price,

1972b).

Robertson (1968) named eqn (1) the ‘‘secondary

theorem of natural selection’’ as an extension to what

is usually called Fisher’s fundamental theorem. This

general covariance equation has an unspecified error

that can be influenced by nonlinear genetic interactions

(dominance, epistasis), the mating system, meiotic

drive and a variety of other factors. Crow & Nagylaki

(1976) provide an elegant summary of the relationship
between traditional population genetics and the
covariance equation. The full Price Equation
(described later) has an additional term that, together
with the covariance, always provides an exact and full
description for evolutionary change.

 

The Price Equation has played an important role
in work on kin selection (Hamilton, 1970, 1975; Wade,
1980; Seger, 1981; Uyenoyama, 1988). The equation
itself cannot reduce the inherent complexity of models,
but the simple covariance relationship between a
character and fitness provides a compact way to see the
essential features of social evolution. Recent papers
have summarized the importance of Price’s work in
this field (Grafen, 1985; Wade, 1985; Taylor, 1988a, b,
1989; Queller, 1992a), so I present here only a brief
example and a few historical comments.

I illustrate the problem by summarizing the first part
of Queller’s (1992a) model. I use the covariance

equation, w̄Dḡ=Cov(w, g), where g is the breeding
value that determines the level of altruism. One can
write the least-squares multiple regression that predicts

fitness, w, as

w=a+gbwg·g'+g'bwg'·g+e,

where g' is the average g value of an individual’s social
neighbors, a is a constant, and e is the residual which

is uncorrelated with g and g'. The b are partial
regression coefficients that elegantly summarize costs

and benefits: bwg·g' is the effect an individual’s breeding
value has on its own fitness in the presence of neighbors

g'—the cost of altruism, and bwg'·g is the effect of an
individual’s breeding value on the fitness of its

neighbors—the benefit of altruism. Substituting into
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the covariance equation and solving for the condition

under which w̄Dḡq0 yields Hamilton’s rule

bwg·g'+bg'gbwg'·gq0,

where bg'g is the regression coefficient of relatedness

(Hamilton, 1972). Thus Queller’s model shows that

the covariance equation provides a simple way to

reason about the effects of relatedness on social

behavior.

Hamilton (1964a, b), in his original formulation of

kin selection, described genetic similarity in terms of

genes identical by descent. Hamilton (1970) reformu-

lated kin selection by explicit derivation from the Price

Equation; this derivation is often regarded as the first

modern theoretical treatment of inclusive fitness

(Grafen, 1985). Price’s covariance equation shows that

what matters is not common ancestry, but statistical

associations between the genotypes of donor and

recipient.
One interesting consequence of treating relatedness

as a statistical association is that relatedness can be

negative, leading to selection for spiteful behavior.

That new insight was a key point in Hamilton (1970:

1218):

Previously I showed that the average genetical
relatedness of interacting individuals is an important
factor in the evolution of social adaptations. In the
model, selfishness within certain limits was readily
accounted for; spite [harm to self in order to harm
another more] did not seem possible. But another line
of reasoning shows that spite can be selected [when
relatedness is negative]. Independently, using his new
formulation of natural selection in a more general
analysis, Dr G. R. Price reached the same conclusion.

Spite can be favored because the product of negative
relatedness and a negative benefit to a recipient (harm)
is positive, thus benefit multiplied by relatedness can
outweigh the cost.

One possible case of spite occurs in the flour
beetle Tribolium (Wade & Beeman, 1994). The Medea

allele in a heterozygous mother apparently stimulates

a mechanism that kills all offspring lacking a copy
of the allele. There are two possible explanations for
the maintenance of the Medea allele. First, the allele

may increase its number of copies in offspring by

killing competitors for limited resources. This
explanation requires that destroyed zygotes are
replaced with new, successful zygotes carrying the

allele. In this case the allele is ‘‘selfish’’ because it

enhances its own reproduction at the expense of a
competitor.

The second possibility is that there is no replacement

of killed zygotes and the number of copies of theMedea

allele does not increase by this mechanism. Medea can

still spread in this case because it reduces the number

of copies of the alternative allele, thereby increasing its

own frequency in the next generation. This is a form

of spite, where the Medea allele uses kin recognition

to destroy individuals that are negatively related to

itself. Hurst (1991) has discussed spite in systems of

cytoplasmic incompatibility which have properties

similar to the Medea allele.

The original formulation of kin selection relied on

the probability of identity by descent to derive the

degree of relatedness (Hamilton, 1964a, b). Price’s

covariance equation shows that what matters is not

common ancestry, but statistical associations between

the genotypes of donor and recipient. Those asso-

ciations often arise because individuals that live near

eachother tend tohave commonancestors. But natural

selection is indifferent to the cause of the statistical

associations, and negative statistical associations favor
spite. Covariance is the only proper way to think about
the role of genetic relatedness in evolutionary biology.
Price was the first to see this. His work provided the
basis for Hamilton’s (1970) reformulation of kin
selection in terms of covariance, which can properly be
called the modern theory of kin selection.

  

The covariance equation provides an approximate
description for evolutionary change that is useful for
many applications. That equation was discovered
independently by Robertson (1966), Li (1967) and
Price (1970). Price’s unique contribution is a more
general equation that is an exact, complete description
of evolutionary change under all conditions. The full
equation is not just a more accurate form of the
covariance equation. It adds considerable insight into
many evolutionary problems by partitioning selec-
tion into meaningful components. In this section I
derive the full equation, and in the following sections
summarize some applications.

Here is the derivation. Let there be a population (set)

where each element is labeled by an index i. The

frequency of elements with index i is qi , and each
element with index i has some character, zi . One can
think of elements with a common index as forming

a subpopulation that makes up a fraction qi of the total

population. No restrictions are placed on how

elements may be grouped.

A second (descendant) population has frequencies q'i
and characters z'i . The change in the average character
value, z̄, between the two populations is

Dz̄=Sq'i z'i −Sqizi . (2)

Note that this equation applies to anything that

evolves, since z may be defined in any way. For
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example, zi may be the gene frequency of entities i,

and thus z̄ is the average gene frequency in the

population, or zi may be the square of a quantitative

character, so that one can study the evolution of

variances of traits. Applications are not limited to

population genetics. For example, zi may be the

abundance of a particular chemical compound in

galaxy i.

The queerness of the Price Equation comes from the

way it associates entities from two populations, which

are typically called the ancestral and descendant

populations (see Fig. 1). The value of q'i is not obtained

from the frequency of elements with index i in the

descendant population, but from the proportion of the

descendant population that is derived from the

elements with index i in the parent population. If we

define the fitness of element i as wi , the contribution to

the descendant population from type i in the parent

population, then q'i =qiwi /w̄, where w̄ is the mean
fitness of the parent population.

The assignment of character values z'i also uses
indices of the parent population. The value of z'i is the

average character value of the descendants of index i.
Specifically, for an index i in the parent population, z'i
is obtained by weighting the character value of each
entity in the descendant population by the fraction of
the total fitness of i that it represents (Fig. 1). The
change in character value for descendants of i is defined
as Dzi=z'i −zi .

Equation (2) is true with these definitions for q'i and

z'i . We can proceed with the derivation by a few

substitutions and rearrangements:

Dz̄=Sqi (wi /w̄)(zi+Dzi )−Sqizi

=Sqi (wi /w̄−1)zi+Sqi (wi /w̄)Dzi

which, using standard definitions from statistics for

covariance (Cov) and expectation (E), yields the Price

Equation,

w̄Dz̄=Cov(wi , zi )+E(wiDzi ). (3)

The two terms may be thought of as changes due to

selection and transmission, respectively. The covari-

ance between fitness and character value gives the

change in the character caused by differential

reproductive success. The expectation term is a fitness
weighted measure of the change in character values
between ancestor and descendant. The full equation
describes both selective changes within a generation
and the response to selection (cf. Wade, 1985).

The covariance term in eqn (3) would normally be
written without subscripted variables as Cov(w, z).

The reason for the subscripts is additional clarity when
the equation is used to expand itself:

w̄Dz̄ = Cov(wi , zi ) + Ei{Covj (wj·i , zj·i ) + Ej (wj·iDzj·i )},

(4)

F. 1. Example of a selective system using the notation of the Price Equation. The initial population, the left column of beakers, is divided
into subpopulations indexed by i, where qi is the fraction of the total population in the i-th subpopulation. In this drawing, the two different
kinds of transmissible material, solid and striped, are in separate subpopulations initially, but that is not necessary. Each subpopulation
expresses a character value (phenotype), zi . Any arbitrary rule can be used to assign trait values. Selection describes the changes in the quantities
of the transmissible materials, where the primes on symbols denote the next time period. Thus q'i =qiwi /w̄ is the proportion of the descendant
population derived from the i-th subpopulation of the initial population. The transmissible material may be redistributed to new groupings
during or after the selective processes. The q'j·i are the fractions of the i-th parental subpopulation, after selection, that end up in the j-th
descendant subpopulation, thus Sjq'j·i=1. The new mixtures in the j-th descendant subpopulations express trait values yj according to whatever
arbitrary rules are in effect. This allows full context-dependence (non-additivity) in the phenotypic expression of the transmissible material.
Descendant trait values are assigned to the original subpopulations by weighting the contributions of those subpopulations, z'i =Sjq'j·iyj . Thus
the average trait value in the descendant population is z̄'=Siq'i z'i .
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where E and Cov are taken over their subscripts when

there is ambiguity, and j ·i are subsets of the group i

with members that have index j. The partition of i into

subgroups j is arbitrary. This recursive expansion of

the E term in eqn (3) shows that transmission is itself

an evolutionary event that can be partitioned into

selection among subgroups and transmission of those

subgroups. The expansion of the trailing expectation

term can continue until no change occurs during

transmission.

In later sections I shall return to the general

properties of the equation itself. But first I show some

simple applications in evolutionary genetics.

    

The hierarchical expansion of the Price Equation

has been used to study group selection and sex ratio

(Hamilton, 1979; Nunney, 1985; Frank, 1986a,
1987a). The relationship between group selection and
kin selection has been a controversial aspect of this

field (Wilson, 1983; Grafen, 1984; Queller, 1991,

1992b). Here, I give a simple derivation of the standard
Local Mate Competition model (Hamilton, 1967) that

shows the equivalence of kin and group selection. My

derivation is somewhat more general than usual

because, by using the Price Equation, any pattern of

interaction among relatives (population structure) is

allowed rather than the standard sib-interaction

models.
Let the frequency of males produced by a mother be

r=g+ge, where g is the number of sex ratio alleles in
the mother each with additive effect e. The sex ratio
in the neighborhood in which mating and mate

competition occur is r'=g+g'e, where g' is the average
number of alleles with effect e among mothers when

weighted for each mother’s contribution to the

neighborhood.
The fitness (number of grandprogeny) of a female

with g sex ratio alleles is wg=r(1−r')/r'+(1−r), and
the fitness of a neighborhood with g' as its average
number of sex ratios alleles is wg'=2(1−r') (Hamilton,

1967).

Rewriting eqn (4) in the notation of this problem

w̄Dḡ=Cov(wg', g')+Eg'{Covg (wg , g ·g')}

=bwg'Vg'+bwg.g'Vg·g' ,

where Vg' is the genotypic variance among groups and
Vg·g' is the average genotypic variance within groups.
The term bwg' is the regression of fitness on group

genotype, and bwg·g' is the regression of fitness on
individual genotype given the group genotype, g'.

The standard method to find the Evolutionarily

Stable Strategy (ESS) sex ratio is to solve (dw̄Dḡ/

de)=0 when evaluated at e=0 (Hamilton, 1967;

Maynard Smith 1982). This yields the solution

(Hamilton, 1979)

r*=(1/2)(1−Vg'/Vg ),

where Vg=Vg'+Vg·g' is the total genotypic variance in

the population. This form shows that a bias away from

the Fisherian 1/2 occurs only when there is genetic

variance among neighborhoods, Vg'. This supports the

claim that group selection causes biased sex ratios in

structured populations. However, one can also write

Vg'

Vg

=
Cov(g', g')

Cov(g, g)
=

Cov(g, g')

Cov(g, g)
=bg'g ,

where bg'g is the regression coefficient of relatedness of

inclusive fitness theory. Thus the sex ratio bias is
caused by a nonzero average relatedness among
neighbors. The definitions of group and kin selection
given here are clearly equivalent. The regression
coefficient form has been particularly useful for solving
sex ratio and dispersal problems with complex
interactions among kin (Frank, 1986a, b, 1987a, b, c;
Taylor, 1988a, b, 1989). In fact, the Price Equation has
been the only general way to study sex ratio evolution
for arbitrary population structures. Traditional
population genetic methods require special, complex
equations for each particular set of assumptions about
how relatives interact.

 

In the next few sections I describe technical aspects
of the Price Equation. These issues are important for
understanding the role of the Price Equation in formal
evolutionary theory. Readers who are more interested
in Price’s contribution to particular biological
problems may wish to skip ahead to the section on ESS
theory.

Suppose we wish to study the evolution of a

character, z̄.We are given all of the information needed
to calculate the covariance and expectation in eqn (3).
Thus we know the average value, z̄, at the start, and

we can calculate the change in the average value after

one time period, Dz̄. There is a problem, however, if we

wish to study the continued evolution of this trait

through time. The Price Equation gives us back the
average character value in the next time period, but not
the information needed to calculate the covariance and

expectation term to apply the equation again.

We cannot follow the continued evolution of z̄

through time (Barton & Turelli, 1987) or, put another
way, we lack the information to achieve dynamic

sufficiency in our analysis (Lewontin, 1974). Several
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authors have noted this problem and have concluded

that the Price Equation lacks dynamic sufficiency,

whereas other methods of analysis achieve dynamic

sufficiency for the same problem (Crow & Nagylaki,

1976; Grafen, 1985; Queller, 1992a). This is a

confusing summary of the problem because it is partly

true and partly false.

The true part is that one can apply the Price

Equation to a problem that lacks dynamic sufficiency.

It is not true, however, that dynamic sufficiency is a

property that can be ascribed to the Price Equation—

this equation is simply a mathematical tautology for

the relationship among certain quantities of popu-

lations. Instead, dynamic sufficiency is a property of

the assumptions and information provided in a

particular problem, or added by additional assump-

tions contained within numerical techniques such as

diffusion analysis or applied quantitative genetics.
The conditions under which an evolutionary system

is dynamically sufficient can be seen from the Price

Equation. For convenience assume Dzi=0 so that only
the covariance term of eqn (3) need be examined.

Initially we require z̄, w̄, and wz to calculate Dz̄ because
Cov(w, z)=wz−w̄ z̄. We now have z̄ after one time
step, but to use the Price Equation again we also need

Cov(w, z) in the next time period. This requires
equations for the dynamics of w̄ and wz , which can be
obtained by substituting either w or wz for z in eqn (3);
recall that z can be used to represent any quantity, so
we can substitute fitness, w, or the product of fitness
and character value, wz, for z. If we ignore the

expectation term, the dynamics of wz are given by

w̄Dwz=Cov(w, wz)=w2z−w̄ wz .

Changes in the covariance over time depend on the

dynamics of wz , which in turn depends on w2z , which
depends on w3z , and so on. Similarly, the dynamics of
w̄ depend on w2, which depends on w3, and so on.
Dynamic sufficiency requires that higher moments can

be expressed in terms of the lower moments (Barton &

Turelli, 1987).

   

The full Price Equation, eqn (3), with both the
covariance and expectation terms, has been used often

to study the hierarchical decomposition of selection

within and among groups (e.g. Price, 1972a; Hamilton,

1975, 1979; Wade, 1980, 1985; Arnold & Fistrup, 1982;

Ohta, 1983; Frank, 1985, 1986a, b, c, 1987a, b, 1992,

1994a, b; Grafen, 1985; Nunney, 1985; Heisler &

Damuth, 1987; Breden, 1990; see the section above on

hierarchical analysis and sex ratio).

Hierarchical decomposition is clearly one important

use of the equation, but the equation itself is not limited

to these applications. Another interpretation of the

covariance and expectation terms in eqn (3) is a

partition between selection and transmission. I briefly

illustrate this point with a model that balances

selection among adults, the covariance term, against

mutational changes that occur during transmission,

the expectation term (Frank & Slatkin, 1990).

One useful aspect of the Price Equation in these

mutation-selection models is that any character value

can be analyzed. Instead of studying the change in a

character with value zi , we can transform the character

value and study, for example, the change in the n-th

power of the character, zn
i . The Price Equation then

gives the change in zn, which is the n-th non-central

moment

w̄Dzn=Cov(wi , zn
i )+E(wiDzn

i ).

This set of equations for the moments zn, n=1, 2, . . . ,
is a complete description for the evolutionary
dynamics of the character z for any system of
selection, mutation, mating and inheritance. The
most interesting aspect of the Price Equation is the way
in which mutation, non-random mating, dominance,
and epistasis come into the transmission (expectation)
term by changing Dzn

i , the phenotypic differences
between parent and offspring (Frank & Slatkin,
1990). At equilibrium all of the moments must be
related by

Cov(wi , zn
i )=−E(wiDzn

i ).

If we normalize the population such that the
equilibrium mean, z̄, is zero, then this equilibrium
equation for n=2 describes how selection affects the
variance. If selection is stabilizing toward the
equilibrium mean of zero, then the covariance term
describes the rate at which the variance is reduced
because of the negative association between fitness and
the squared distance of character values from the

optimum. This reduction in the variance caused by
selection must be balanced by the rate at which
mutation adds variance to the population by

increasing, relative to the optimum, the squared

distance of the offspring relative to their parents. This
simple equation provides easy calculation for many
interesting mutation-selection problems, including

nonrandom mating and nonadditive genetics (Frank &

Slatkin, 1990).
The dynamics of genetic variability are difficult to

study for many assumptions. The problem with these

equations of mutation-selection dynamics is that the

changes in each moment, zn, depend on changes in

higher-order moments—the equations lack dynamic
sufficiency without additional assumptions (Barton &

Turelli, 1987). This lack of dynamic sufficiency is a
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property of mutation-selection dynamics and not of

the Price Equation (see above; Frank & Slatkin, 1990).

The value of the Price Equation is that, by adding

nothing except clear notation, the forces that act on

genetic variability are decomposed into natural

components and the underlying difficulties of the

analysis are made explicit. Different approaches may

provide better tools for numerical calculation in some

cases (Turelli & Barton, 1990).

 

The Price Equation is a very strange mathematical

relation when compared with other formalisms in

evolutionary biology. The equation is much more

abstract than the usual applied mathematics of

evolution; it simply suggests a way to map members of

one set to members of a second set. In this section I

speculate about why this minimalism seems so

powerful. My purpose is to call attention to what I

believe is a deep problem of a purer sort than is typical

in biology.
The Price Equation has been the only way to study

general problems of kin interactions. Other methods

require special assumptions about which relatives

interact. Why is Price’s simple mapping so successful

for kin selection problems? Kin selection requires that

one think of interactions between individuals as

interactions between sets of alleles, where there is some

statistical relation between the sets (relatedness). In

addition, groups of individuals may interact. The

consequences of group structure depend on the

statistical associations within the group compared

with the associations among the group means. The

Price Equation provides a natural way to think

about hierarchical decomposition (species, group,

individual, gene) and statistical association at various

hierarchical levels. Although most applications have

been to groups of relatives, species-level selection

(Arnold & Fistrup, 1982) and community-level selec-

tion (Frank, 1994a) can be studied in an elegant way.

The Price Equation also provides insight into
fundamental problems such as dynamic sufficiency

that require a minimal description of how selection

works. In the case of mutation-selection balance a

simple partition between selection among adults and

mutational changes in transmission must be analyzed.

This partition follows the natural separation between

selection and transmission in the two terms of the

equation.

There is a beauty in the equation’s spareness and

descriptive power. Claims for mathematical beauty

rarely impress biologists, however. I have sometimes

heard the question: What problems can the Price

equation solve that cannot be solved by other

methods? The answer is, of course, none, because the

Price Equation is derived from, and is no more than,

a set of notational conventions. It is a mathematical

tautology.

What is the practical value of the equation? The first

steps in using the equation are often quite difficult

because one has to match the problem to the strange

notation. This requires labeling individuals, genotypes

or groups in a nonstandard way. Once the right

structure is found, solving problems seems very natural

both algebraically and biologically. The gain is in

forcing one, right at the start, to look for the strange

twist that makes the solution inevitable. The Price

Equation works well because it provides nothing more

than a way to fit a problem to the fundamen-

tal properties of evolutionary change. Natural

selection is a statistical process, and the Price Equation

forces a statistical description of problems.

   

Price recognized that his equation was a step toward

a more general theory of selection. At the start of this

section I quoted part of the introduction to Price’s

(1995) manuscript ‘‘The Nature of Selection.’’ Here is

the full text of the opening paragraph from that

manuscript:

Selection has been studied mainly in genetics, but of
course there is much more to selection than just
genetical selection. In psychology, for example,
trial-and-error learning is simply learning by selection.
In chemistry, selection operates in a recrystallisation
under equilibrium conditions, with impure and
irregular crystals dissolving and pure, well-formed
crystals growing. In paleontology and archaeology,
selection especially favours stones, pottery, and teeth,
and greatly increases the frequency of mandibles
among the bones of hominid skeletons. In linguistics,
selection unceasingly shapes and reshapes phonetics,
grammar, and vocabulary. In history we see political
selection in the rise of Macedonia, Rome, and
Muscovy. Similarly, economic selection in private
enterprise systems causes the rise and fall of firms and
products. And science itself is shaped in part by
selection, with experimental tests and other criteria
selecting among rival hypotheses.

Price was not the first to note the generality of
selection. Karl Popper is the founder of modern

philosophical analyses of learning and knowledge as

extensions of the general properties of biological

selection. Donald Campbell has contributed substan-

tially to this philosophy during the past 20 years (e.g.

Campbell, 1974). This work was summarized in a

recent book by Plotkin (1993). The philosophical work

focuses mainly on the question of whether all

knowledge is necessarily the outcome of selective

processes, hence the label for this work of
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‘‘Evolutionary Epistemology’’ coined by Campbell

(1974).

Price was not particularly concerned with these

philosophical questions. Instead he sought a general

formulation of selection that could be applied to any

problem. He hoped that a formal theory would be

useful in other fields in the sameway thatmathematical

genetics became the foundation for analyses of

genetical selection. Here are the second and third

paragraphs from ‘‘The Nature of Selection’’:

And yet, despite the prevading importance of selection
in science and life, there has been no abstraction and
generalisation from genetical selection to obtain a
general selection theory and general selection
mathematics. Instead, particular selection problems
are treated in ways appropriate to particular fields of
science. Thus one might say that ‘selection theory’ is
a theory waiting to be born—much as communication
theory was fifty years ago. Probably the main lack that
has been holding back any development of a general
selection theory is lack of a clear concept of the general
nature or meaning of ‘selection’. That is what this
paper is about.

Let us pursue a little further the analogy with com-
municationtheory.Probably thesinglemost important
prerequisite for Shannon’s famous 1948 paper on ‘‘A
Mathematical Theory of Communication’’ was the
definitionof ‘information’ givenbyHartley in1928, for
it was impossible to have a successful mathematical
theory of communication without having a clear
concept of the commodity ‘information’ that a
communication system deals with. Hartley gave what
he described as a ‘‘physical as contrasted with
psychological’’ definition of information, which
omitted all considerations of the meaningfulness of
messagesbutmeasuredattributes relevant to thedesign
of communication systems. Similarly, for development
of a useful mathematical theory of selection, one needs
a physical rather than psychological definition of
selection, which excludes psychological factors of
preferences and decision making. It is my hope that the
concept of selection proposed in this paper will
contribute to the future development of ‘selection
theory’ as helpfully as Hartley’s concept of information
contributed to Shannon’s communication theory.

Price then describes abstract properties of selection
in terms of mappings between pre-selection and

post-selection sets (populations). [The full text of
Price’s The Nature of Selection is published as an

accompanying paper in this issue (Price, 1995)]. In my
opinion the Price Equation itself is the closest anyone

has come to a general, abstract theory of selection.
Price avoids formal theory in ‘‘The Nature of

Selection,’’ but clearly bases his presentation on
concepts that he learned while studying the Price

Equation. It remains for others to decide howmuch the
Price Equation can aid in building a general theory of

selection. I close by quoting Price’s first and last
paragraph from the final section of his paper.

When Shannon’s ‘‘Mathematical Theory of Com-
munication’’ appeared in 1948, many scientists must
have felt surprise to find that at so late a date there had
still remained an opportunity to develop so
fundamental a scientific area. Perhaps a similar
opportunity exists today in respect to ‘selection
theory’. If we compare the high level of communi-
cation technology reached fifty years ago [1922] with
the very disappointing results usually reached
nowadays in computer simulations of evolution (for
example, as described by Bossert [1967]), and if we
note the degree of understanding of communication
systems shown in the 1928 papers of Nyquist and
Hartley and then consider that it took another twenty
years before Shannon’s [1948] paper appeared, we can
reasonably predict that much difficult work will be
required before an interesting and useful ‘‘Mathemati-
cal Theory of Selection’’ can be developed. The
remainder of this paper contains suggestions for
readers who may wish to consider working on this
problem themselves . . .
Consideration of questions such as these, though in
terms of abstract models rather than genes or
continents, should lead to deepening understanding of
selection such that in time someone will have the
insight to take a very large step forward like that taken
by Shannon in 1948.

Game Theory and Evolutionarily Stable Strategies

(ESS)

Maynard Smith (1972: vii–viii) credits George Price

for introducing game theory analysis to the study of
animal behavior:

The essay on ‘Game theory and the evolution of
fighting’ was specially written for this book. I would
probably not have had the idea for this essay if I had
not seen an unpublished manuscript on the evolution
of fighting by Dr George Price, now working in the
Galton Laboratory at University College, London.
Unfortunately, Dr Price is better at having ideas than
at publishing them. The best I can do therefore is to
acknowledge that if there is anything in the idea, the
credit should go to Dr Price and not to me.

The above quote should not be taken too literally,

in that we clearly owe our current understanding of

evolution and the theory of games to Maynard Smith

(1982). The point is that George Price was not just
another person who happened to think about
evolution and game theory at the time when the field

was taking shape. Rather, he was one of the first to see

the theory in broad outline, and his ideas directly
influenced Maynard Smith and others who developed
the field. In this section I briefly summarize how ideas

changed from the late 1960s to the early 1970s, and

Price’s role in that change. I also mention the
contributions of John Price (not related), who in 1969
published the first clear description of how game

theory reasoning could be used to analyze ritualized

behavior.
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The puzzle is why animals often settle fights in a

ritualized way rather than inflicting serious or deadly

wounds. Maynard Smith & Price (1973) introduce the

problem with these examples:

. . . in many snake species the males fight each other by
wrestling without using their fangs. In mule deer
(Odocoileus hemionus) the bucks fight furiously but
harmlessly by crashing or pushing antlers against
antlers, while they refrain from attacking when an
opponent turns away, exposing the unprotected side of
its body. And in the Arabian oryx (Oryx leucoryx) the
extremely long, backward pointing horns are so
inefficient for combat that in order for two males to
fight they are forced to kneel down with their heads
between their knees to direct their horns forward . . .

The accepted explanations for the conventional nature
of contests is that if no conventional methods existed,
many individuals would be injured, and this would
militate against the survival of the species . . . The
difficultywith this type of explanation is that it appears
to assume the operation of ‘‘group selection’’.

Although group or species level selection was no
longer an acceptable explanation for behavioral
evolution in the late 1960s, no one had yet formulated
a successful theory of ‘‘limited war’’ based on
individual advantage. Hamilton (1971) had recognized
the problem and developed a game theory analysis to
explain ritualized settlement of conflict. However, his
emphasis was on the genetic relatedness of contestants
and the reduced conflict that may occur among kin.
Thus his explanation required that groups be
sufficiently genetically differentiated to favor kin-
selected altruism among group members, a condition
that often does not hold.

It is not clear whether George Price or John Price
was the first to develop a theory to explain ritualized
settlement of conflict based on a model of individual
selection. John Price laid out the problem and its
solution with admirable clarity in a paper published in

1969:

It is easy to see the advantage of yielding behaviour to
the species as a whole, but what is the advantage to the
individual who yields? Assuming the distribution of
yielding behaviour in the population to be continuous,
then it is likely that at one end of the distribution we
will find individuals who do not yield at all. These
non-yielders will win all their ritual agonistic
encounters with yielders, and since there is clear
biological advantage in being the victor in a ritual
agonistic encounter, we must explain why it is that
yielding behaviour has not been bred out of the
population, even if it managed to get established in the
first place. This is not likely to be a simple problem, but
some of the reasons may be briefly summarized as
follows:

(1) The disadvantage of being a yielder is counterbal-
anced by the likely mortality when two non-yielders

meet each other. Thus it is advantageous to be a yielder
when everyone else is a non-yielder, and to be a
non-yielder when everyone else is a yielder. This
dependence of the advantage of one’s phenotype on
the phenotypes of the rest of the population is
analogous to the situation with mimetic butterflies and
tends towards the maintenance of variation in the
population.

These quotes concisely summarize the main ideas

of evolutionary game theory. J. S. Price wrote

these lines in a paper that developed an evolutionary

theory of psychological depression (see also J. S.

Price, 1991). George Price had arrived at the same

solution. He wrote, in a grant proposal that I describe

later:

A paper entitled ‘‘Antlers, intraspecific combat, and
altruism’’ was accepted by Nature on 7 February 1969
(provided that it is shortened). This gives particular
attention to the problem, recognised by Darwin
(Descent, Chapt. 17), that deer antlers are developed
at great cost to the animal and yet are highly inefficient
weapons for inflicting injury on an opponent similarly
armed (since branching antlers are effective shields
against other branching antlers, though they would
not protect against unbranched antlers projecting
forward).

For some reason, Price never resubmitted the
manuscript. Fortunately, John Maynard Smith, who
refereed the paper for Nature, understood Price’s
insights and used them to develop evolutionary game
theory into an active field of research. It would be
interesting to read Price’s original thoughts on this
topic in his ‘‘Antlers’’ paper, but I have not been able
to find a copy of the manuscript.

It is always difficult, in retrospect, to see the
originality and insight of a simple idea. In this case
frequency-dependent individual advantage explained
what was, at that time, the long-standing puzzle of
ritualized settlement of conflict. Fisher had, in 1930,
used a frequency dependent model to explain the
evolution of the sex ratio. Hamilton’s (1967) sex ratio

model of local mate competition extended Fisher’s
approach, and introduced the first modern game
theory analysis of adaptation. In particular, Hamilton

developed the idea of an ‘‘unbeatable strategy’’, which,

if adopted by all members of the population, cannot be
beaten by any individual using a different strategy.
This provides a method for finding the frequency

dependent equilibrium, where the frequency depen-

dence is of the sort described in J. S. Price’s quote
above.

Although Hamilton (1967) had developed the
formal analysis of behavior with the game theory
methods that are still used today, he did not see

the application of these ideas to the problem of

ritualized behavior (Hamilton, 1971). In a recent letter
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Hamilton (personal communication) wrote:

J. S. Price is definitely quite a different person and
unrelated [to George Price]. I can remember George
talking about him from time to time. The Galton Lab
had contacts with the Maudsley psychiatric hospital in
South London and George may have visited there or
come in contact with John Price or the ‘‘other Price’’
as he sometimes called him. It may have been reading
that article by him [J. S. Price 1969] that startedGeorge
thinking about whether contact was really so
‘‘ritualised’’ and so ultimately to his ESS idea. I myself
was fairly happy with ‘‘ritualised submission’’ at the
time as my paper in the Man and Beast Symposium
shows [Hamilton 1971], andonly gradually came to see
under George’s reiteration what he was on about, and
there could be a resolution basically akin to my
‘‘unbeatable’’ sex ratio strategy.

The publication of Maynard Smith & Price (1973)

is the end of the story as far as George Price is

concerned. As Maynard Smith noted in the quote at
the top of this section, Price stimulated his interested
in the field (see also Maynard Smith, 1976). By 1973
Price had apparently lost interest in the subject and in
publishing his work. He had turned intensely religious,
and left his mark on Maynard Smith & Price (1973) by
insisting that, in the Hawk–Dove game, the word
‘‘dove’’ not be used because of its religious significance.
Thus that particular paper analyzes the Hawk–Mouse
game, the only instance of that game in the literature.

Fisher’s Fundamental Theorem Made Clear

Fisher’s Fundamental Theorem of Natural Selec-
tion is probably the most widely quoted theorem in
evolutionary genetics. Under the usual interpretation
the theorem is believed to say that the rate of increase
in the mean fitness of a population is equal to the
population’s additive genetic variance for fitness. Thus
natural selection causes a continual increase in the
mean fitness of a population.

This interpretation of the theorem is true only when
the population mates randomly and there is no

dominance or epistasis. This very limited scope

contrasts sharply with Fisher’s (1930, 1941, 1958)
claims that his theorem is exact for all conditions, that
it is similar in power to the second law of thermo-

dynamics, and that it holds the supreme position

among the biological sciences.
While most authors accepted the standard interpret-

ation and its many exceptions, others saw the

contradiction with Fisher’s bold claims and tried to get

at his meaning. For example, Kempthorne (1957),
Crow & Kimura (1970), and Turner (1970) all saw
something deeper in the theorem, but they could not

fathom Fisher’s derivation and meaning, and their

own equations fell far short of proving a result with the

generality or depth Fisher claimed. By 1970 all authors

had abandoned the theorem as Fisher had intended it,

except for Edwards (1967) who thought that Fisher’s

theorem may indeed be correct and important if only

we could understand what he meant (Edwards, 1994).

Price (1972b) solved the problem by proving the

theorem as Fisher intended. This is an entertaining

paper which can still be read with ease (see also Ewens,

1989; Frank & Slatkin, 1992; Edwards, 1994). Here I

briefly outline Price’s key insight, speculate as to why

Price succeeded where the best minds in population

genetics failed, andmentionwhere thework in this field

is currently heading.

Price noted that Fisher partitioned the total change

in fitness into two components. To show this I first

write the total change in fitness as

Dw̄=w̄'=E '−w̄ =E, (5)

where primes denote one time step or instant into the
future, w̄=E is mean fitness when measured in the

context of a particular environment, E, and Dw̄ is the
total change in fitness which everyone had assumed
was the object of Fisher’s analysis. However, Fisher’s
theorem is not concerned with the total evolutionary
change, which depends at least as much on changes in
the environment as it does on natural selection.
Instead, Fisher partitioned the total change into

Dw̄=(w̄'=E−w̄ =E)+(w̄'=E '−w̄'=E).

Fisher called the first term the change in fitness caused
by natural selection because there is a constant frame
of reference, the initial environmental state E. The
Fundamental Theorem states that the change in fitness
caused by natural selection is equal to the additive
variance in fitness. Fisher referred to the second term
as the change caused by the environment, or more
often, as the change caused by the deterioration of the
environment, to stress that this term is often negative
because natural selection increases fitness but the total

change in fitness is usually close to zero. Density
dependence is one simple way in which adaptive
improvements in organismal efficiency must be

balanced by greater competition for resources

(deterioration in the biotic environment). Thus, in one
model presented by Fisher (1941), ‘‘Intense selective
activity is shown to be compatible with an entire

absence of change in the average survival value of the

population’’.
Price showed that the Fundamental Theorem can be

proved if one adheres to Fisher’s rather queer

definitions. In particular, Fisher focused on the first

term of eqn (5), which Ewens (1989) has called the
partial change in fitness caused by natural selection.
This partial change uses Fisher’s measure for the
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average effect of a gene substitution while holding

all aspects of the environment, E, constant. The

environment includes the initial gene frequencies, thus

evolutionary change in fitness is measured while

holding gene frequencies constant. The effect of

changing gene frequency on fitness appears in the

second, environmental, term.

Why was Price able to see what Fisher meant where

others had failed? Part of the answer is certainly Price’s

great ability to describe deep and general properties of

natural selection with simple equations. In addition,

Price may have been predisposed by his earlier work

because Fisher’s view depended on two properties

shared with the Price Equation: a partition of total

change into components and strict use of unconven-

tional definitions.

Now that Price has shown us what Fisher really

meant, we can ask whether the theorem is as deep and

useful as Fisher claimed. Price’s own view was that the

theorem was interesting mathematically but of little

practical value. Ewens (1989) echoed this view after

givinga clearderivationof the theorembasedonPrice’s

paper. Perhaps the strongest case against the theorem

is that Fisher himself never seemed to use it beyond

developing some rather vague heuristical conclusions

about how competition causes the ‘‘environment’’ to

deteriorate (Frank & Slatkin, 1992).

The case against Fisher is not closed, however.

Ewens (1992) has recently shown a relationship

between the Fundamental Theorem and some

fairly deep optimization principles that have been

used successfully in mathematical genetics. Fisher’s

‘‘average effect of a gene substitution’’ provides the

key link between the Fundamental Theorem and the

optimality principle that ‘‘of all gene frequency

changes which lead to the same partial increase

in mean fitness as the natural selection gene

frequency changes, the natural selection values

minimize a generalized distance measure between

parent and daughter gene frequency values’’ (Ewens,

1992). This view fits nicely with Fisher’s writings

because Fisher repeatedly emphasized the import-

ance of average effects in both the Fundamental

Theorem and in general aspects of mathematical

genetics.

What was Price trying to do?

In this section I briefly summarize what is known of
Price’s life. I then return to the problem of how he came

to work on abstract properties of natural selection,

altruism and ritualized behavior.

Although I have come across some facts about
his life in the late 1960s and early 1970s from his

CV (Table 1), correspondence and unpublished

T 1
George Price’s Curriculum Vitae in 1974

Personal Data Age 51, divorced, U. S. citizen, admitted to permanent residence in the U.K. (work permit not needed).
Education S.B. in chemistry, University of Chicago, 1943 Ph.D. in chemistry, University of Chicago, 1946
Employment

1944–46 Manhattan Project (atom bomb project) research on uranium analysis at the University of Chicago.
1946–48 Instructor in chemistry at Harvard and consultant to Argonne National Laboratory.
1950–57 Research Associate in medicine, University of Minnesota, working on fluorescence microscopy, liver perfusion, etc.

1957–61 Trying to write book, NO EASY WAY, (first for Harper’s, later for Doubleday) on what the United States should
do about Russia and China, while supporting myself as a freelance magazine article writer and a subcontract technical
writer. (The book was never finished: the world kept changing faster than I could write about it!)

1961–62 Consultant to IBM on graphic data processing.
1962–67 IBM employee in Poughkeepsie and Kingston, New York. Started as a Market Planner helping in the design phase

of System/360. Final work was on mathematical optimisation carried out through simulation of private enterprise
market mechanisms. Programming was in FAP (Fortran Assembly Program) on the 7094.

1967–68 Reading and writing in London on evolutionary biology, while living on savings.
1968–74 Research in mathematical genetics, on academic staff of University College London (under Professor Cedric Smith

in the Department of Human Genetics and Biometry). Final position was Associate Research Fellow. The research
involved much FORTRAN programming (both IBM/360 Mod 65 and CDC 6600) plus some PL/I and FORMAC.
(Left because I felt that the sort of theoretical mathematical genetics I was doing wasn’t very relevant to human
problems, and I wanted to change to economics.)

1974 Worked June 14th to August 17th as a night office cleaner for a contract cleaning firm. (This work was undertaken
for reasons having something to do with Christianity. I was considered to be slow but unusually dependable, so that
after a while the supervisor did not bother to inspect my work. Left because my reason for wanting a night job no
longer held.)

1975 [From a brief article in a January 15, 1975 edition of Sennet (Careers Supplement), a London student’s newspaper,
entitled Jesus ‘hot-line’]: A prominent genetics researcher at University College Hospital gave up everything,
including his life for his religious beliefs St. Pancras Coroner’s Court was told last week. Dr. George Price gave away
all his money, clothes and possessions to homeless alcoholics and left his flat in Bloomsbury to live as a squatter
in Drummond Street, Kentish Town. It was there that he was found dead. A respected scientific researcher, Dr. Price
was convinced that he had a ‘‘hot line to Jesus’’.
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manuscripts, I do not have a clear impression of the

man. He ended in great sadness and poverty, confident

in the clarity of his mind and his insights in biology, but

tormented by the feeling that he had failed to

contribute in any significant way to easing human

suffering.Hewas increasingly religious toward the end,

when he gave all his money and possessions to

homeless alcoholics andwent to live among the poorest

squatters of London. But he continued to work and

write with clarity. His last plans were to take up

economics, because he hoped to find in economics a

better way to match his analytical power to problems

of humanity.

In Price’s last years he also wrote a detailed analysis

of theapparent contradictions in thegospelsof theNew

Testament. This is a subject with a long history of

biblical scholarship,where the goal is to resolve contra-

dictions about the timing of the crucifixion and resur-

rectionofJesus.Price’sworkonthis subject ispresented

in an unpublished manuscript ‘‘The twelve days of

Easter’’. I cannot judge the quality of his scholarship,

but this paper is written with the same clarity and

precision of his work in evolutionary biology.
I return now to the limited goal of understand-

ing Price’s contributions to evolutionary genetics.

Specifically, why was he interested in abstract prop-

erties of natural selection? How was that interest

associated with his contributions to problems of

combat, altruism and game theory?
I have found only limited clues. Price wrote a

thoughtful review of the relation between science and

supernatural phenomena in the mid 1950s (Price, 1955,

1956). This work shows his keen analytical mind and

his interest in fundamental processes. His interest here

may also reflect a tension between his restless search for

meaning, in terms of human interests and values, and

his tenacious belief that all hypotheses must be

subjected to cold, analytic scrutiny.
The next major project that I know of is his

interest in the arms race and the cold war in the late

1950s (see Table 1). This interest may have set the stage

for his later work on game theory and the resolution

of conflict by ritualized behavior.
The hints from his pre-genetics work provide only

vague clues about Price’s goals in evolutionary

biology. The best evidencewehave comes fromhis own

grant proposal to the Science Research Council of

Great Britain. The proposal was written in 1969, after

Price had spent approximately two years studying

evolution. In the remainder of this section I briefly

summarize the contents of that proposal. I list each of

the ten topic headings in the proposal, with a concise

description of the main points. Generally, I will avoid

commentary; the purpose is to make available this

information in the hope that someone will look more

deeply into his life and his work.

  

I quote the first section in full.

The main purpose of the work is to develop improved
techniques for making inferences about hominid
evolution in the Pleistocene going beyond what is
directly shown by fossils and artifacts. It is felt that the
most fruitful way to begin is by developing (a) new
mathematical treatments of evolution under con-
ditions of complex social interactions, and (b) more
simple and transparent mathematical genetics models
that can provide rules-of-thumb for qualitative or
semi-quantitative reasoning. One important benefit
from emphasizing a mathematical approach is that
this should help to protect against biasing effects of
emotional prejudices about human nature and human
ancestry. Also, a mathematical approach gives an
advantage in exposition; to cite Haldane: when one is
faced with a difficulty or controversy in science, ‘‘an
ounce of algebra is worth of a ton of verbal argument’’
(obituary by Maynard Smith, Nature, 206, 239
(1965)).

As these mathematical tools become available, they
will be applied to specific problems of human
evolution—though in the early stages of work,
emphasis will be on development rather than
application. In addition, since it is likely that much of
the mathematical work will also have broad
applicability to evolutionary biology (especially in
relation to social animals), it is planned to apply the
mathematical models to some ethological problems.

 

Price introduces the idea of evolutionary stability of
behavior in the context of alternative hypoth-
eses about the mating system of Pleistocene humans.

As I discussed in the earlier section on Evolu-

tionarily Stable Strategies, Price’s genetical approach
to the evolutionary stability of behavioral systems was

a novel way to think about the problem. Price
summarized the approach in this way:

We now concentrate attention on behaviour. A system
of behaviour that is close to a selective maximum will
be called a genetically optimal behaviour system
(‘‘optimal’’ in the sense of maximizing the frequency
of an individual’s genes in the next few generations of
the local population). For a genetically optimal
behaviour system to be stable, the main requirement
is that children should tend to behave like their
parents. Even though we have little knowledge of how
cultural and genetical inheritance interacted in
Pleistocene hominids, let us assume that this condition
of parent-child resemblance held. Then a sudden large
saltation in behaviour was comparatively improbable
during that period (though such have occurred in
historical times), and small changesmoving away from
the peak tended to be corrected against because they
were disadvantageous.
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The point is that we can reject any hypothesis for a

mating system if it does not satisfy the condition of

being locally stable against invasion by slightly

different individual behaviors. Price also noticed that

all the complexities of genetic and cultural inheri-

tance may often be reduced to the issue of

parent–offspring correlation when one is trying to

analyze the evolutionary stability of a behavioral

system.

Price then suggested two alternative hypotheses

about Pleistocene mating systems to illustrate his

method of reasoning. These alternatives were not

meant to be a list of plausible hypotheses, but were

presented to ‘‘save space’’ in the context of a grant

proposal.

System I is one of total cooperation, with

promiscuous, non-competitive mating and coopera-

tive rearing of the young. Price concluded that: ‘‘This
will be a genetically optimal system under the
condition that any deficiency in cooperation is
retaliated against by physical punishment and/or
withholding benefits. Then an individual would
increase his or her fitness both by cooperating with
others and thereby avoiding punishment, and by
helping to punish others who are deficient in
cooperation and thereby causing them to cooperate.’’

System II is one of group cooperation principally in
hunting by adult males, and of individual or family
action in most other behaviours. Cooperation in group
hunting was maintained by reciprocal exchange of
food among males and punishment of significant
non-cooperation, as in System I. After hunting spoils
were divided among men, the distribution of food to
women and children was a matter of individual choice
by each man.

Price concluded, after further commentary, that
System II is probably near to the truth, with each male
usually having a single wife. This justifies, later in the
proposal, the need to study more fully sexual selection

in monogamous mating systems.

  

Price provided in this section an outline of theor-

etical work needed to create a foundation for
evolutionary analyses of human behavior. Most of the

important theoretical advances in the study of social
behavior are foreshadowed here. A complete grasp of

the fundamental problems listed here remains well
beyond current understanding. I quote the section in

full.

From the example [of human mating systems] it can be
seen that mathematical understanding of several types
of biological phenomena would be useful. First, since
early man presumably lived in groups, and because of

the importance of understanding the relative signifi-
cance of individual and group selection in human
descent, better understanding of group selection
would be desirable. (Even merely for the purpose of
rejecting group selection as an explanatory mechan-
ism, it would be helpful to understand it better. But it
seems likely that group selection should not be entirely
rejected as a factor in human evolution.) A second
need is to work out details of reciprocity and
punishment systems that make it individually
advantageous to act in group- and species-benefiting
ways, bymeans of transfers of benefit andharmamong
individuals on a basis of degree of cooperation. A third
need is better understanding of nepotism effects,
assortative mating, and other behaviour involving
transfer of benefit or harm among individuals on a
basis of degree of genetical similarity. A fourth need
is investigation of the mathematics of sexual selection
under the postulated conditions of individual families
with permanent mating. A fifth need is work on the
interactions of cultural and genetical inheritance—
since the period under consideration was one of major
cultural advances. A sixth need is better understanding
of conditions for stability in evolutionary trends. A
seventh need is simplemathematicalmodels relating to
such basic matters as the speed of evolutionary
changes.

These needs lead to the specific plans to be discussed
in the sections that follow.

     

This is standard population genetics. Price cites
Kimura, Wright and others on drift-migration

dynamics.

    

Price noted that a different kind of group selection
from that traditionally studied by population

geneticists may be important in evolutionary studies of

behavior. He cited Hamilton’s analysis of meiotic drive

of the Y against the X. A gene enhancing drive of the

Y spreads in the population, but causes an excess of

males and a decline in the population size because

females become rare. Thus selection against drive

occurs at the group level. He also mentioned different

systems of territoriality that could be genetically stable

(roughly, an ESS) within populations but that would

have different consequences for the success of the

group. If the observed state corresponds to the stable

state with higher group productivity, then Price

suggested that group selection may partly explain the

observed pattern.

    

 

HerePrice talks about hiswork that eventually led to

the theory of Evolutionarily Stable Strategies (ESS, see

above). First he noted that cooperative behavior can

be maintained if group members tend to punish
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uncooperative individuals, thereby making coopera-

tive behaviour individually advantageous. He then

discussed his paper that addressed apparently

group-benefiting behaviors in terms of individual

advantage:

A paper entitled ‘‘Antlers, intraspecific combat, and
altruism’’ was accepted by Nature on 7 February 1969
(provided that it is shortened). This gives particular
attention to the problem, recognised by Darwin
(Descent, Chapt. 17), that deer antlers are developed
at great cost to the animal and yet are highly inefficient
weapons for inflicting injury on an opponent similarly
armed (since branching antlers are effective shields
against other branching antlers, though they would
not protect against unbranched antlers projecting
forward). Also the paper gives briefer treatment to
several other problems, such as the remarkable
cooperative behaviour of the African hunting dogs.

Price then mentioned some references from
anthropology and sociology, and that his specific
theory has much in common with game theory models
of limited war strategy. (The Nature paper was never
published. See the section above on 

 .)

     

 

Price followed Darwin in citing the probable

importance of sexual selection in human evolution.
Issues concern ‘‘attractiveness’’, ‘‘fashion’’, and the
relation between resources (e.g. food) and the genetical
evolution of the mating system. But Price was mainly
concerned with showing, formally, how sexual
selection could have affected the evolution of humans
because, as Price states, ‘‘Many critics, beginning with
Wallace even before the Descent was finished (letter to

Darwin, 29 May 1864), have questioned whether
sexual selection could occur under known or assumed
conditions of primitive human life.’’

Price described in some detail how he planned to

study a formal model of sexual selection. His model
had characters for behavior or anatomy, preferences
for the opposite sex, a paternal rating for each male

based onhis character values, and amaternal rating for

each female based on her character values. Ratings are
based on utilitarian characters rather than those that
merely affect appearance. He recognized the import-

ance of sex-limited expression, suggesting an example

model with characters that vary in their expression in
males and females.

 — 

Price noted that his previous model, in which

preferences are rigidly related to characters, would
probably lead to a Fisher runaway process. But

Fisher’s process runs away only in its intermediate

stages. It is slow when getting started and toward

the end when natural selection begins effectively to

slow sexual selection (Price cites O’Donald’s 1969

simulations).

These rate changes in character evolution suggested

to Price that females might compare old and young

males to determine which traits are changing most

rapidly and, therefore, are most strongly correlated

with fitness. If females chose the most rapidly changing

traits in this way, they would be preferring what is

coming into fashion, a strategy similar to economic

speculation.

I don’t know of any work that has followed this

line of thought, and probably for good reason. The

idea may work formally, but whether females could

actually assess rate of character change in a useful way

seems doubtful.

    

The work Price eventually published on the Price
Equation and Fisher’s fundamental theorem are
described in full detail.

 

I quote the final paragraphs in full.

This completes the discussion of contemplated
projectswhere plans are sufficientlywell-formulated to
permit detailed explanation. Other areas where it is
hoped to accomplish something useful include the
problem of the interaction of cultural and genetical
inheritance (which on page 4 was treated in a quite
crude, inadequate way). Also it is hoped that the
investigations of social interaction effects may lead to
the finding of very broad generalizations. For
example, the cases discussedwhere individual selection
decreases group fitness are closely and deeply
analogous to economic effects recently discussed by
Hardin in a paper entitled ‘‘The tragedy of the
commons’’ (Science, 162, 1243 (1968)); and the same
general types of mechanisms can be used in biological
systems and in human economic systems to make it
advantageous to the individual (in a genetical sense or
in an economic sense) to act in a way that benefits the
group. It is hoped that other parallels between
economics and genetics can be found.

To sum up: The general plan of the work is that
mathematical tools will be developed specifically in
order to handle problems of human evolution, but
when developed they will be applied to both human
and animal evolution problems. Initially emphasis will
be on developing the tools; later it will increasingly be
on applying them.

Conclusions

George Price had original, fundamental insights into

evolutionary biology. The Price Equation had a direct
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and profound influence on W. D. Hamilton’s work on

kin selection and on the subsequent theor-

etical development of social evolution. Price was the

first to see that ritualized behavior, game theory

and evolutionary genetics belonged together in a

coherent vision of behavioral evolution. Price’s vision

started Maynard Smith’s work on evolution and the

theory of games, which is among the most influential

developments of the past few decades.

These past achievements are sufficient reasons to

studyPrice’s life andwork.Butmyown curiosity about

Price’s work is kept alive by the Price Equation. In

evolutionary genetics, the equation continues to

provide fresh insight into many difficult problems. And

the future may show that this rich and poorly

understood equation is indeed the key to a broader

theory of selection that transcends population genetics.

W. D. Hamilton has, over the past 15 years, helped me in
many ways to understand more about evolutionary genetics
and about George Price. Warren Ewens changed this paper
from a vague idea to an actual manuscript by his steady
encouragement and his insight into the esoteric details of
Fisher’s fundamental theorem. Jon Seger made characteristi-
cally insightful suggestions for revision. I received helpful
comments from N. H. Barton, R. M. Bush, J. F. Crow, T.
Nusbaum, M. Ridley, P. D. Taylor and M. J. Wade. I owe
special thanks to L. D. Hurst for his editorial assistance and
for his infective enthusiasm about George Price.
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