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Abstract. This paper investigates the problem of how to conceive a robust
theory of phenotypic adaptation in non-trivial models of evolutionary biol-
ogy. A particular effort is made to develop a foundation of this theory in the
context of n-locus population genetics. Therefore, the evolution of phenotypic
traits is considered that are coded for by more than one gene. The potential for
epistatic gene interactions is not a priori excluded. Furthermore, emphasis is
laid on the intricacies of frequency-dependent selection. It is first discussed
how strongly the scope for phenotypic adaptation is restricted by the complex
nature of ‘reproduction mechanics’ in sexually reproducing diploid popula-
tions. This discussion shows that one can easily lose the traces of Darwinism
in n-locus models of population genetics. In order to retrieve these traces, the
outline of a new theory is given that I call ‘streetcar theory of evolution’. This
theory is based on the same models that geneticists have used in order to
demonstrate substantial problems with the ‘adaptationist programme’. How-
ever, these models are now analyzed differently by including thoughts about
the evolutionary removal of genetic constraints. This requires consideration of
a sufficiently wide range of potential mutant alleles and careful examination of
what to consider as a stable state of the evolutionary process. A particular
notion of stability is introduced in order to describe population states that are
phenotypically stable against the effects of all mutant alleles that are to be
expected in the long-run. Surprisingly, a long-term stable state can be charac-
terized at the phenotypic level as a fitness maximum, a Nash equilibrium or an
ESS. The paper presents these mathematical results and discusses — at unusual
length for a mathematical journal — their fundamental role in our current
understanding of evolution.

Key words: Adaptation — Optimality — Nash equilibrium — ESS — N-locus
genetics — Epistasis — Long-term evolution — Rationality paradox
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1 Introduction

If Charles Darwin could ask us today about modern variants of his concept of
evolutionary adaptation, what would we say? Population geneticists would
perhaps report the struggle they have had during the second half of this
century in order to make the idea of Darwinian adaptation precise in their
own theoretical framework. Part of this report would be that in populations
with sexual reproduction the mechanism of recombination acts as an undirec-
ted and potentially destructive evolutionary force which can strongly interfere
with directed selective forces at the phenotypic level. Therefore, from a
‘radical’ population geneticist’s point of view (e.g. Karlin 1975) it seems almost
necessary to include genetics in models of how evolution has molded traits in
animals and plants. Properties of the underlying genetics seem to have such
a strong influence on organismic design that ecological conditions and
phenotypic constraints appear to be insufficient to understand this design.
Organismic biologists, however, would hold against this view the overwhelm-
ing empirical success of purely phenotypic analysis (e.g. Maynard Smith 1978)
in their studies of evolutionary adaptation. They would emphasize that
a ‘reductionist’ interest in genetic detail might draw the researcher’s attention
too far away from the primary scene of selection that matters most if one
studies adaptive phenotypes.

Obviously, both views expressed in the preceeding paragraph make sense
despite their apparent incompatibility. This calls for a theory that unifies
phenotypic and genetic modelling approaches in evolutionary biology. Based
on previous work by Eshel and Feldman (1984), Liberman (1988), Eshel
(1991), and particularly on Hammerstein and Selten (1994), the present paper
presents a draft of such a theory and aims at bridging the gap between
population genetics and organismic biology. This reconciliatory mental exer-
cise I call the ‘streetcar theory’ of evolution. A streetcar comes to a halt at
various temporary stops before it reaches a final stop where it stays for much
longer. It will be shown in this paper that an evolving population resembles
a streetcar in the sense that it may reach several ‘temporary stops’ that depend
strongly on genetic detail before it reaches a ‘final stop’ which has higher
stability properties and is mainly determined by selective forces at the
phenotypic level. At such a final stop the ecology has left its strongest traces in
the genetic system. I argue that these are the traces of Darwinism that
sometimes seemed to be so invisible in the world of modern evolutionary
theory. It will be shown that population geneticists typically focus their
attention on what happens before a final stop is reached. They have good
reasons to defend this as their domain. In contrast, modest phenotypic
modellers who only ask for ‘final stops of the streetcar’ have good reasons not
to become explicit about genetics.

The streetcar theory is neither confined in scope to a single gene, nor is it
based on the strong assumptions made in the theory of quantitative genetics.
It deals with the rather untractable model world of explicit n-locus genetics

.
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and analyses these models by asking questions that differ in a subtle way from
those found in standard population genetics. As it often happened in theoret-
ical physics, complicated systems may turn out to have simple properties if
one learns to ask the appropriate questions. A major aim of the present paper
is to show that this is also true for the biological systems under investigation.
For the sake of a simple presentation of new concepts, theorems and proofs
are formulated for the case n"2. However, they can be generalized to more
than two loci (see Weissing 1995).

The paper is organized as if — in a fictitious theatre play — a population
geneticist and an organismic biologist tried, with some rivalry, to explain to
Darwin their ideas about evolutionary adaptation. It begins with a simple
one-locus example of why purely phenotypic considerations may not meet
biological facts. It then explains how Sewall Wright would have dealt success-
fully with this particular one-locus problem and how his idea of an adaptive
topography already breaks down in a similar two-locus model. This is the
point where the population geneticist loses confidence in the idea of evo-
lutionary optimization principles even with regard to models of frequency-
independent selection (i.e., models that were thought to be most favourable
to Darwinian adaptation).

If already the frequency-independent model does not ‘obey the logic
of Darwinian fitness’ the introduction of frequency-dependence can only
aggravate this problem. In the present study, the latter feature is added to the
basic selection model by assuming that (a) phenotypic interaction can be
described mathematically as a game and that (b) each genotype specifies
a probability distribution over strategies of this game. Without the help of the
streetcar approach, it would appear as if Maynard Smith’s (1982) phenotypic
notion of an evolutionarily stable strategy (ESS) was an inappropriate tool for
analysing such systems. It looks indeed at this stage of the presentation very
discouraging for any phenotypic concept of evolutionary adaptation. With
some bitterness the organismic biologist might now recall a paper by Gould
and Lewontin (1979) in which these authors ridiculed the ‘adaptationist
programme’.

Fortunately, the scientific story told in this paper has a more positive
end. The organismic biologist demonstrates how a modern adptationist
would define and successfully defend his programme. This adaptationist
is not the strawman built up Gould and Lewontin. He is well familiar
with all the problems mentioned so far and he knows the spandrels
of San Marco. His philosophy will be commented at the end. Perhaps
most important is the insight that the processes of non-trivial Darwinian
evolution in n-locus models and that of rational decision making (as
defined in economic theory) come to an important halt at very similar
solutions. I call this the ‘rationality paradox’ because it makes animal
behaviour looks as if it was based on rational decision making whereas
human behaviour often fails (e.g. Tyszka 1983) to follow the logic of decision
theory.

.
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2 How ‘well behaved’ are models of frequency-independent selection?

Behavioural ecologists study organismic design most commonly under
the assumption that evolution has a tendency to maximize expected fit-
ness. At the theoretical level this either leads into phenotypic optimization
theory or into phenotypic game theory. A lot can go wrong with this
approach. To illustrate this, let us suppose that a fictitious behavioural
ecologist did not know anything about the phenomenon of sickle cell anemia
(in practice every biologists knows it) and that he would undertake
a phenotypic analysis of this phenomenon at an African study site were
Malaria is prevalent.

The fictitious scientist would find organisms with three different blood
types and considerable differences in the average fitness of the three types.
This would look like a non-equilibrium phenomenon — one in which Dar-
winian selection is acting very strongly against the sickle cell disease. How-
ever, a long-term study would reveal that the proportion of sickle cell cases
does not diminish between generations. The reason for this is well known and
can be described in a one locus population genetics model with two alleles
A and B and genotype fitnesses

w (AA)(w (BB)(w (AB)

The failure of a purely phenotypic modelling approach is here due to
the heterozygote advantage and the fact that during meiosis this fa-
vourable type gets ‘ripped into pieces’. Wright (1932) has shown us a
way of how to find traces of Darwinian adaptation in this example.
Suppose we calculated in the one-locus model mean population fitness
as a function of the relative frequency of of allele A (with the help of
Hardy-Weinberg ratios). A plot of this function would give us a picture of how
mean population fitness depends on the genetic composition of the popula-
tion. This is Wright’s fitness landscape and we know that the genotype
frequency equilibrium is given for the frequency of A at which the landscape
has its peak.

Unfortunately, Wright’s way of characterizing genotype frequency equilib-
rium as a maximum of the fitness landscape cannot be extended to selection
models with two or more loci. Let us therefore take a short look at the two
locus case of a standard model for viability selection.

2.1 Two-locus model for viability selection — the case with constant fitness

The model describes an infinite population of diploid individuals with non-
overlapping generations, sexual reproduction, and random mating. Consider
in this population an evolving trait which is coded for by two genes A and
B (note the shift in notation from alleles to genes!). Suppose that there are
n alleles A

1
, . . . , A

n
of gene A, and m alleles B

1
, . . . , B

m
of gene B. A diploid
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genotype then looks as follows:

A
i

A
k

D D
B
+

B
l

It is assumed that recombination takes place at a fixed rate r, with 0(r61
2
.

Let us make a population census at each gametic state. Let x
ij

denote the
relative frequency of a gamete with haploid genotype A

i
B
j
. At the moment of

our census a population state x"(x
11

, . . . , x
ij
, . . . , x

nm
) can be conceived as

a frequency histogram for the population distribution of possible haploid
genotypes A

i
B
j
. Due to the assumption of random mating, the following

selection equation describes how this frequency histogram changes from one
generation to the next if each diploid genotype A

i
B
j
/A

k
B

l
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fitness w
ijkl

, with:
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for i"1, . . . , n and j"1, . . . , m. Here, wN is the mean fitness of the
population:

wN (t)"+
ijkl

w
ijkl

x
ij
(t)x

kl
(t)

This equation is based on the classical Mendelian laws of inheritance with
‘fair meiosis’ and it should be added here that we assume w

ijkl
"w

ilkj
"

w
kjil

"w
klij

. No exotic assumptions are made. Because of the constant fitness
of genotypes one would naively think that there are very good chances for
Darwinian adaptation to ‘take place’ in this model. However, it turns out that
this equation has fairly exotic properties. Moran (1964) was the first to show
that the trajectories of solutions of this equation may easily ignore Wright’s
fitness landscape in the sense that mean population fitness decreases over
time. In colloquial terms this means ‘survival of the less fit’. The genotype
frequency equilibrium may be located at a peak, a slope or at a valley of the
fitness landscape. In the latter two cases, Darwinism is facing a serious
problem. Let us illustrate this with one of Moran’s examples. Suppose there
are two loci A and B, and two alleles A

1
,A

2
and B

1
,B

2
at each locus. Let the

fitness of diploid genotypes be determined by the following fitness matrix:

B
1
,B

1
B
1
,B

2
B

2
,B

2

A
1
,A

1
1 1 0

A
1
,A

2
1 3 1

A
2
,A

2
0 1 1

This matrix describes a case with some similarity to the sickle cell example
because the double heterozygote has the highest fitness. However, unlike the
sickle cell example, mean population fitness is here not maximized at genotype
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Fig. 1. Frequency-independent selection with a decrease in mean population fitness. Moran
created this example in order to demonstrate that a population can move ‘downhill’ in
Wright’s fitness landscape if one considers a two-locus model

frequency equilibrium. Figure 1 demonstrates impressively how fitness can
decrease from generation to generation in this model.

Moran’s example may look somewhat artificial. Ewens (1968) and Karlim
(1975) showed that the problem raised by Moran is not confined to very
special cases. Even if the highest fitness could be achieved by a double
homozygote, equation 1 may have stable equilibrium states at which there is
no peak of the fitness landscape.

3 Evolutionary games and frequency-dependent selection

In the theory of frequency-dependent selection it is well known that mean
population fitness is typically not maximized at evolutionary equilibrium.
Therefore, at first glance the results reported in the previous section do not
seem to contribute anything new in this context. However, this is not quite
correct. If a frequency-independent selection model does not follow the simple
logic of Darwinian fitness, then frequency-dependent variants of such a model
can easily have stable equilibrium states that fail to satisfy phenotypic condi-
tions for evolutionary stability, no matter how weak evolutionary stability is
defined. In the light of the previous section this is — roughly speaking — for the
following reason. If we were to take a ‘snapshot’ of an evolving population
together with its co-evolving fitness-landscape, the picture of the landscape
would not even reveal the instantaneous direction of evolutionary change at
the moment of the snapshot.

Let us nevertheless describe a class of frequency-dependent selection
models that are based on equation (1) and on a game-theoretic description of
the phenotypic world. Suppose that phenotypes interact pairwise and that
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pair formation is random with respect to genotypes. Let S be a finite set of
pure strategies and E(s, t) be a function which defines the expected change of
an individual’s fitness if this individual plays strategy s against an opponent
who plays t. Using some technical jargon from mathematical economics we
could then say that S and E define a symmetric 2-person game G"(S, E) in
strategic form. The Hawk-Dove game (Maynard Smith 1982) is the best
known biological textbook example of such a game. A mixed strategy is
a probability distribution over S. The payoff function E can be extended in the
usual way to pairs of mixed strategies (p, q). The extended payoff function is
bilinear.

Before we add genetics to the phenotypic game, let us see how economists
would analyze it in the context of decision theory. If a strategy r has the
property that for a fixed opponent-strategy q it maximizes the expected payoff
E( · , q), then r is called a best response to q. Furthermore, a pair of strategies
(p, q) is called a Nash equilibrium (Nash 1951) if p and q are best responses to
each other. A Nash equilibrium is called symmetric if it is of the form (p, p).
The Nash equilibrium concept plays a central role in non-cooperative game
theory (Fudenberg and Tirole 1991). Game theorists would solve a symmetric
game G by calculating its symmetric Nash equilibria. After this they would
perhaps engage in long philosophical debates about which of them to choose
(Harsanyi and Selten 1988). As we shall see in the streetcar theory (next
section), biologists have good reasons to follow economists at the first step of
this procedure. In order to show this we first have to connect the game with
the genetic selection model depicted by equation (1).

3.1 The two-locus model with phenotypic game interaction

Consider the two-locus model of Sect. 2. Suppose that a diploid genotype
A

i
B
j
/A

k
B
l

causes individuals to ‘play’ a mixed or pure strategy u
ijkl

of the
phenotypic game G. For biological reasons we must assume that
u
ijkl

"u
ilkj

"u
kjil

"u
klij

because the corresponding genotypes are function-
ally equivalent. The function u will be called the ‘phenotype specification’. If
one knows the relative frequencies of phenotypes in a population, one also
knows the relative frequencies of strategies with the help of u. This makes it
possible to calculate the mean population strategy at time t as

qN
t
(s)"+

ijkl

x
ij
(t)x

kl
(t)u

ijkl
(s) for all pure strategies s

The expected fitness of an individual with genotype A
i
B

j
/A

k
B
l
can now be

defined as

w
ijkl

(t)"w
0
#E(u

ijkl
, qN

t
) (2)

This means that an individual has a basic fitness expectation w
0

which is
changed by the game payoff E. We can now replace the constant fitness w

ijkl
in

equation (1) by expression (2) and get the frequency-dependent version of this
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model. For reasons outlined at the beginning of this section the new equation
will in general not take a population to a Nash equilibrium. At this stage of
the discussion economic reasoning and Maynard Smith’s biological theory of
evolutonarily stable strategies both seem to be fairly inconsistent with two-
locus population genetics.

4 The streetcar theory of evolution

Evolutionary theorists who base their thoughts on the principle of optimality
(in the case of frequency-independent selection) and on the game-theoretic
notion of a Nash-equilibrium (in the case of frequency independent selection)
are so successful in explaining facts that they have gained a considerable
amount of attention by empiricists in organismic biology. If genetic models of
evolution, such as the ones presented in Sects. 2 and 3, do not bear the
phenotypic approach, this calls for the construction of a theoretical roof under
which both phenotypic and genetic approaches to evolution can be housed in
peaceful coexistence. I shall sketch in the remainder the construction plan of
this roof — the streetcar theory of evolution.

Suppose that we are designing an evolutionary model in which we have
a set of phenotypes, such as the strategies of the game in Sect. 3. Let a fitness
function, e.g. the game payoff function E, define the ‘Darwinian success’ of
phenotypes. So far the model can be based on extensive empirical information
from organismic biology. However, when we try to introduce genetics in our
model we are stepping on very unsafe grounds because in almost all interest-
ing problems we simply do not know it well enough. The number of genes,
alleles, and — most important — the specification of the genotype-phenotype
relationship have to be made up artificially. Is it surprising that strange results
can emerge from such an arbitrary specification?

But how to be more biological? A little thought experiment may help to
answer this question. Suppose that in the spirit of the preceeding paragraph
selection leads the evolving population to a stable genotype frequency equilib-
rium at which phenotypes fail to satisfy the phenotypic criteria (optimality or
game equilibrium) of adaptation. Let us now take the idea serious that this
reflects the weakness of the modeller’s creativity more than the failure of
Darwinism. The modeller then can start a post hoc search for features that he
may have forgotten in the initial design of his model. In particular this leads to
the question of whether important alleles may have been left out in the
original setting. Perhaps a new allele can be added to the model so that the
current population state would be destabilized if we were to add this allele at
a low frequency to the equilibrium population. If one can mathematically
show the existence of such an allele and an appropriate extension of the
phenotype specification function, this allele can in theory be added to the
original model and extends it.

The destabilized population would now evolve further and may reach
another stable genotype frequency equilibrium. We may be able to go repeatedly
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Fig. 2. Course of an evolving population in phenotype space. The population stops at
a genotype frequency equilibrium. Temporary stops are then left after the population is
perturbed by an appropriate new mutant allele. A final stop is phenotypically stable against
genetic perturbation

through the same procedure. The evolutionary course of our population
would then resemble that of a streetcar which repeatedly comes to a halt at
temporary stops and starts moving after new passengers — new mutants — have
entered it (note here that the tracks of the streetcar are not part of the
paradigm).

A streetcar eventually comes to a halt at a final stop and so may our
evolving population. A final stop of an evolving population is a phenotypi-
cally stable genotype frequency equilibrium which has the property that the
above procedure cannot lead any more to phenotypic evolution because of the
non-existence of a new allele with destabilizing properties. Extensions of the
model via introduction of new alleles would in this case no longer help to keep
the streetcar running.

This thought experiment was meant to show a way of how one might
systematically think about innovative aspects of the evolutionary process —
a process that does not only shape phenotypes but also the underlying
genetics. The important question is now whether one can characterize final
stops by phenotypic optimality conditions or the Nash equilibrium property.
If this is indeed the case, we can answer Darwin’s fictitious question about the
modern theory of evolutionary adaptation by saying that it can best be
conceived as the theory of final stops of the streetcar. Sickle cell anemia would
not be such a stop because one could at least theoretically construct a new
allele that produces the same effect as the ‘classical’ heterozygote.
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5 A streetcar named ESS

It is easy to imagine a streetcar but less easy to make the formal structure of
the underlying theory precise for a class of models. This is particularly difficult
in the context of frequency-dependent selection. Eshel and Feldman (1984) did
the first analysis of frequency-dependent selection which in retrospect has the
flavour of the streetcar theory. They had the ingenious idea to look at the
external stability of genotype frequency equilibria by introducing new mutant
alleles. They showed that genotype frequency equilibria can be destabilized by
new mutant alleles if these equilibria are already in a neighbourhood of an
evolutionarily stable strategy. But what can be said if these equilibria are not
close to an ESS? Inspired by discussions with Ilan Eshel (see also Eshel 1991,
1995), Hammerstein and Selten (1994) dealt with this question and made an
attempt to clarify the conceptual background of the theory under discussion.
Also inspired by discussions with Franjo Weissing they introduced, in particu-
lar, a definition for ‘phenotypic stability against genetic perturbation’ that
helps to capture the essence of final stops.

We now follow these authors on their streetcar journey. Like many absent-
minded scientists they overlook all temporary stops, arrive at the final stop
and ask themselves ‘‘where are we?’’. Instead of watching out of the window
they theorize about properties of a final stop. This clearly requires a definition
first. All following definitions relate to the frequency-dependent version of the
selection model introduced in Sects. 2 and 3. Suppose therefore that there are
two loci A and B with alleles A

1
, . . . , A

n
and B

1
, . . . , B

m
. As explained before,

the genetic population state can be described as a frequency histogram
x"(x

ij
), where x

ij
is the frequency of the haploid genotype, A

i
B
j
. It will be

said that an initial genetic state x (0) generates a sequence p
0
, p

1
, . . . of mean

population strategies if strategy p
t
is the mean strategy of genetic state x (t) in

the solution sequence x (0), x (t) , . . . of the selection equation.
If we extend the model by introducing a new allele A

n`1
, we clearly have to

consider extended population states x"(x
11

, . . . , x
n`1,1

, . . . , x
n`1,m

). We
also have to extend the phenotype specification function u

ijkl
that describes

the genotype-phenotype relationship. Obviously, this can be done in many
ways and we shall talk here of the phenotypic specifications of A

n`1
. The

following definition by Hammerstein and Selten (1994) helps to get closer to
the idea of a final stop.

Definition of phenotypic stability against genetic perturbation
¸et x be a population state with population mean strategy p.¹his state is called
phenotypically stable against genetic perturbation if for every phenotypic speci-
fication of a new allele A

n`1
it has the following property: For every e'0

a d'0 can be found such that for every (extended) population state y
0

in the
d-neighbourhood of x the sequence of population mean strategies q

0
, q

1
, . . .

generated by y
0

satisfies

(i) Dq
i
!p D(e for t"0, 1, . . .
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and
(ii) lim

t?=

q
t
"p

In the explicit formulation of this definition, a genetic perturbation is
caused by a new mutant allele. However, implicitly this definition also cap-
tures perturbations that are caused by a slight change in the frequencies of
genotypes that already exist (to see this, look at an A

n`1
that coincides with an

existing allele as far as its phenotypic effects are concerned). In other words,
internal and external aspects of stability are here combined. This led me to
replace the term ‘‘phenotypic external stability’’ in Hammerstein and Selten
(1994) by the expression ‘‘phenotypic stability against genetic perturbation’’.
The new expression also makes it more transparent that even with regard to
a ‘truly new’ allele we are not discussing the problem of uninvadability. At
a phenotypically stable state, a new allele may indeed increase in frequency
and the new genetic state may not be the same as the unperturbed one.
Clearly, it then might occur in strange examples that the new genetic state is
phenotypically unstable against genetic perturbation. This is not a problem
for the streetcar theory as long as we are dealing with necessary conditions for
a final stop and it makes it possible to state the following fundamental
property of long-term evolution (Hammerstein and Selten 1994):

Theorem 1
Consider a genetic population state x in which alleles A

1
, . . . , A

n
and

B
1
, . . . , B

m
are present at loci A, B, respectively. ¸et the fitness effects of

phenotypic interaction be described by a finite game G in strategic form, so that
we consider selection equation (1) with frequency-dependent fitness (2). ¹he
following assertion holds:

If state x is phenotypically stable against genetic perturbation, then the
population mean strategy p of state x is a best response to p in the phenotypic
game G.

This theorem helps us to overcome Moran’s and Karlin’s criticism of
adaptationist thought and it shows that there is no final stop without economi-
cally well behaved phenotypes. In order to underline the parallels with eco-
nomic theory, the last part of Theorem 1 can be reformulated by saying: p must
have the property that (p, p) is a Nash equilibrium of the phenotypic game G.

Let us now consider the special class of phenotypically monomorphic final
stops in which the phenotype specification assigns the same strategy to all
genotypes that do not contain the new mutant allele A

n`1
. We are talking

here about phenotypically monomorphic states without assuming that all
alleles are fixed. This means that by ‘throwing’ A

n`1
into the population we

may generate more than one new strategy. In this context we cannot reduce
the problem of invasion by a new mutant allele to the one-locus case as it
would be possible with fixed alleles. The following definition and Theorem 2
are based on Hammerstein and Selten (1994).
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Definition of phenotypic monomorphism and its stability properties
Consider the frequency-dependent selection model with alleles A

1
, . . . , A

n
and B

1
, . . . , B

m
for loci A, B, respectively. Suppose that all genotypes

that can be formed with these alleles specify the same pure or mixed strategy
p of the finite game G in strategic form. ¸et us call such a specification
of the selection model a phenotypic monomorphism. ¼e say that the mono-
morphism is phenotypically stable against genetic perturbation if all its genetic
states have this stability property. ¼e also need a partial version of this
definition. ¹he monomorphism is called phenotypically stable against a new
mutant allele if it is phenotypically stable against perturbations caused by this
particular allele. Furthermore, the monomorphism is called invasion stable
against the new mutant allele if the frequency of this allele converges to zero in
all solution sequences that start with a sufficiently small population frequency of
this allel.

Definition of a mutant allele that cannot generate a given strategy
¸et p be a strategy of the phenotypic game. Consider a new mutant allele A

n`1
and the set of strategies that are specified by genotypes containing one allele
A

n`1
. If p is not an element of the convex hull of this strategy set, we say that the

new mutant allele cannot generate p in heterozygous condition. ¹his
has the following biological interpretation: Firstly, diploid genotypes with A

n`1
-

heterozygotes do not code for p and, secondly, a mixed population of these
genotypes cannot have p as its mean strategy.

Theorem 2
Consider a phenotypic monomorphism in which all genotypes code for the same
strategy p of the finite phenotypic game G. ¹he following two assertions hold:

(i) If the monomorphism is phenotypically stable against genetic perturba-
tion, then p is an evolutionarily stable strategy of G.

(ii) If p is an evolutionarily stable strategy of G, then the monomorphism is
phenotypically stable and invasion stable against every new mutant allele that
cannot generate p in heterozygous condition.

In this theorem we use the definition of evolutionary stability by Maynard
Smith and Price (1973). A strategy p is called evolutionarily stable if (p, p)
is a symmetric Nash equilibrium with the additional property that
E(p, q)'E (q, q) for all other strategies q that are also best responses to p (see
Sect. 3). Theorem 2 shows that important properties of monomorphic final
stops are surprisingly well described by the original ESS definition. Most
likely one can get an even stronger result. Hammerstein and Selten (1994) had
already formulated a version of this theorem, in which the ESS property was
thought to be sufficient for phenotypic stability against unrestricted genetic
perturbation. Very recently, however, Weissing (1995) has discovered a gap in
our original proof. Probably, this gap can be bridged without resorting to
strong additional assumptions.
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6 Why final stops have Darwinian properties

This section contains proofs of the two theorems about final stops and a more
precise description of the formal background of these theorems. The key idea
that helps to reveal the Nash equilibrium property as a necessary condition
for phenotypic stability against genetic perturbation should be stated before
we ‘dive into formal detail’: if genetic constraints keep a population away from
a phenotypically adaptive state, there is a possibility for a new mutant allele to
code for phenotypes that perform better than the population mean, with
a phenotype specification that is particularly resistant to the disruptive forces
of recombination. This resistance can be achieved if the new allele codes for
the better phenotype independent of the genetic context. Therefore, the proof
of the important Theorem 1 is almost trivial. This is perhaps why it took
evolutionary biologists so long to discover it, since nobody expected a truly
fundamental theorem of natural selection to be so obvious. Theorem 2 re-
quires considerably more thought.

Before we begin with the actual proofs it will be helpful to give a complete
picture of the class of selection models that was gradually built up in Sects. 2
and 3. A model M of this class is specified by the following components:

(a) the phenotypic game G (as defined in Sect. 3)
(b) the number of alleles, n, m for locus A, B, respectively
(c) the phenotype specification function u which assigns a pure or mixed

strategy u
ijkl

to every index combination with 16i, k6n and 16j, l6m
(d) the recombination rate r with 0(r61/2

We shall speak here of the model M"(G, n, m, u, r). During the thought
experiment of a ‘streetcar journey’ we keep G and r constant. — not because
G and r never change in evolution but because we do not need their change in
order to overcome genetic constraints. If we ask for long-term stability against
a particular new mutant allele A

n`1
, we look at a modified model

MK "(G, n#1, m, uL , r), where uL is an extension of u. We call MK a one-allele
extension of M. The ‘specification of a new allele A

n`1
’ is a specification of

a one-allele extension of M.
For a given selection model M we conceive a genetic state as a matrix

x"(x
ij
) of relative population frequencies at which haploid genotypes occur

in gametes. We obviously require that 06x
ij
61 for all index combinations.

It is also obvious what it means to speak in sloppy language of the ‘same
genetic state’ when we make a one step extension of a model M. A given
selection model M specifies the selection equation that results from linking
Sects. 2 and 3 were the underlying assumptions are described:

x
ij
(t#1)"

1

wN (t)C(1!r) +
kl

w
ijkl

(t)x
ij
(t)x

kl
(t)#r +

kl

w
ilkj

(t)x
il
(t)x

kj
(t)D (3)

for i"1, . . . , n and j"1, . . . , m.

with wN (t)"+
ijkl

w
ijkl

(t)x
ij
(t)x

kl
(t) (4)
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w
ijkl

(t)"w
0
#E(u

ijkl
, qN

t
) (5)

qN
t
(s)"+

ijkl

x
ij
(t)x

kl
(t)u

ijkl
(s) for all pure strategies s (6)

Proof of Theorem 1
Assume that (p, p) is not a Nash equilibrium of the phenotypic game G. This
means that p is not a best response to p. Another strategy s must then exist
which is a better response to p, so that E (s, p)'E(p, p). Now, the central idea
of the proof is to introduce a new mutant allele A

n`1
which in all genotypic

combinations specifies this strategy s at the phenotypic level. The allele A
n`1

then dominates the rest of the genotype. A
n`1

will be used in order to perturb
a genetic population state with mean strategy p. We shall see that after a small
perturbation this allele will cause the population mean strategy to evolve
away from p. For the biological interpretation of this proof it is important to
state that there will always be an s with the above property which differs only
slightly from p and, therefore, is no macro-mutation. In order to construct
such an s, consider a pure strategy n which is best response to p. We know
from game theory (Fudenberg and Tirole, 1991) that such a n exists. Let s be
that strategy that plays like p with probability 1!e and n with probability e.
In comparison with p this strategy s assigns a higher probability to n and,
therefore, must be a better reply to p than p itself.

Technically speaking we construct the above new allele A
n`1

by extending
the phenotype specification function u to an index range that includes n#1:

u
n`1,jkl

"s for k"1, . . . , n#1, j, l"1, . . . , m

For haploid genotypes with allele A
n`1

the equation (3) then looks as follows:

x
n`1,j

(t#1)"
w
0
#E(s, qN

t
)

w
0
#E(qN

t
, qN

t
)
+
kl

[rx
n`1, l

(t)x
kj
(t)#(1!r)x

n`1,j
(t)x

kl
(t)] (7)

for j"1, . . . , m.
When we make our population census at gametic stage we can look at two

kinds of haploid genotypes, namely those with A
n`1

and those without it. Let
b denote the relative frequency of haploid genotypes with A

n`1
. At generation

t this frequency is

b(t)"
m
+
j/1

x
n`1,j

(t) (8)

From (7) and (8) we get the following expression for how b (t) changes between
generations:

b (t#1)"
w
0
#E (s, qN

t
)

w
0
#E (qN

t
, qN

t
)
b(t) (9)

We finally use the property that s is a better response to p than p is to itself.
This means that E (s, p)'E(p, p). In view of the continuity of E ( . , . ) we can
find an e'0 and a constant c'0 such that E (s, q)!E(q, q)'c holds for all
strategies q with Dp!q D(e. Consider now an arbitrary population state x (0)
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with b (0)'0 in the e-neighbourhood of p. We take this state as the initial
value for solution x (t) of equation (3). This solution generates the sequence
qN
t
of population mean strategies. It will now be shown that the sequence qN

t
cannot remain in the e-neighbourhood of p.

Define a new constant as c @"
c

max[w
0
#E ( . , .)]

. Then c @'0 and

w
0
#E (s, qN

t
)

w
0
#E(qN

t
, qN

t
)
'1#c @ (10)

holds for Dq
t
!p D(e. Therefore, as long as the population mean strategy q

t
remains in this e-neighbourhood of p the between generation change in
relative frequency of haploid genotypes with allele A

n`1
must satisfy the

following inequality:

b (t#1)'(1#c @ )b(t) (11)

We conclude from (11) that eventually q
t
must leave the e-neighbourhood of p.

This shows that for the e under consideration no d can be found which satisfies
the requirement of the definition of phenotypic stability against genetic
perturbation.

Proof of Theorem 2
Consider alleles A

1
, . . . , A

n
and B

1
, . . . , B

m
. Assume that all genotypes that

can be formed with these alleles specify the same phenotypic strategy p.
Technically speaking this means that we consider a selection model
M"(G, n, m, u, r) with the phenotype specification function u

ijkl
"p for

i, k"1, . . . , n, j, l"1, . . . , m. We call such a model ‘p-monomorphic’ or
a ‘p-monomorphic specification of equation (3)’. Theorem 2 addresses
p-monomorphic models and their one-allele extensions. Although only one
allele is added, these extensions can be highly polymorphic!

We first prove the following assertion 1:
If strategy p is an ESS of the phenotypic game G, then every population state
of the p-monomorphic specification of equation (3) is phenotypically stable
against every new mutant allele for which p is outside the convex hull of the set
containing strategies u

n`1, jkl
, k9n#1. Furthermore, if the initial frequency

of the new mutant allele is small enough, its frequency will converge to zero in
solution sequences of the selection equation.

For generation t let a (t) denote the relative population frequency of
haploid genotypes that do not contain the new allele A

n`1
. Let b(t) denote the

complementary frequency of those with A
n`1

. Our aim is now to find
a suitable expression for the difference equation that describes how a (t#1)
depends on a (t). This requires some thought. We shall first calculate various
genotype frequencies and average strategies. For the haploid genotype classes
with and without allele A

n`1
the genotype frequencies (t) and a (t) are:

a(t)"
n
+
i/1

m
+
j/1

x
ij
(t) and b(t)"

m
+
j/1

x
n`1,j

(t) (12)
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Table 1. Genotype classes and their average phenotypes

Class of diploid Relative Average strategy of a class
genotypes of frequency of
generation t class genotypes

Without allele A
n`1

a2 (t) p

With one allele A
n`1

2a(t)b (t) uN
t
"

1

a (t)b(t)

m
+
j/1

n
+
k/1

m
+
l/1

x
n`1, j

(t)x
kl
(t)u

n`1,jkl

With two alleles A
n`1

b2 (t) vN
t
"

1

b2(t)

m
+
j/1

m
+
l/1

x
n`1,j

(t)x
n`1, l

(t)u
n`1,j,n`1, l

All genotypes 1 qN
t
"a2 (t)p#2a (t)b(t)uN

t
#b2(t)vN

t

We now consider diploid genotypes that are produced by gametes of
generation t. With the help of (12) and using Hardy-Weinberg ratios we can
calculate for different classes of diploid genotypes their relative frequency in
the population. This in turn makes it possible to calculate the average strategy
of a genotype class with the help of the genotype specification function u.
Table 1 contains the results of these calculations and the definition of the
important expressions uN

t
and vN

t
. The way to read Table 1 is column by column

in a ‘top down’ fashion because cell entries depend on each other.
It is useful to also consider for generation t the average strategy of classes

of alleles. Let aN
t
denote the average strategy of all alleles A

1
, . . . , A

n
. Let

bM
t
denote the average strategy of A

n`1
. With the help of Table I we get

aN
t
"a (t)p#b (t)uN

t
and bM

t
"a (t)uN

t
#b (t) vN

t
(13)

An allele A
i
with i(n#1 occurs in genotypes without A

n`1
at frequency a (t)

and in those with A
n`1

at frequency b (t). Therefore, the mean strategy qN
t
of the

population satisfies the following equation:

qN
t
"a (t)aN

t
#b (t)b1

t
(14)

Aiming now at the relationship between a(t) and a (t#1), we first calculate
a(t#1) with the help of (3) and (12):
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w
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#E (p, qN

t
)
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t
)]x
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][w
0
#E(u

ij,n`1, l
, qN

t
)]x

ij
(t)x

n`1, l
(t)]

Using Table I, it is easy to see that this equation is equivalent with

a (t#1)"
1

w
0
#E (qN

t
, qN

t
)
Ma2 (t) [w

0
#E (p, qN

t
)]#a (t)b (t) [w

0
#E(uN

t
, qN

t
)]N
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In view of the definition (13) of aN
t
this yields:

a (t#1)"
w

0
#E (aN

t
, qN

t
)

w
0
#E (qN

t
, qN

t
)
a (t)

It follows by (14) that we have

w
0
#E(aN

t
, qN

t
)

w
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t
, qN

t
)
"1#

E (aN
t
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t
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t
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w
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t
, qN

t
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t
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w
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This yields

a (t#1)"C1#(1!a (t))
E (aN

t
, qN

t
)!E (bM

t
, qN

t
)

w
0
#E(qN

t
, qN

t
) D a(t) (15)

Since 06a(t)61, the difference E (aN
t
, qN

t
)!E (bM

t
, qN

t
) is decisive for the move-

ment of a(t). It is easy to show that this difference can be rewritten in the
following way (dropping t):

E (aN , qN )!E(bM , qN )"a3[E (p, p)!E (uN , p)]

#a2bM2[E (p, uN )!E(uN , uN )]#E (uN , p)!E(v6 , p)N

#ab2M2[E(uN , uN )!E (v6 , uN )]#E(p, v6 )!E(uN , v6 )N

#b3[E (uN , v6 )!E (v6 , v6 )] (16)

Let us for a moment replace uN and v6 in (16) by time-independent strategies
u and v. Consider the set S

1
of strategies that are specified by genotypes

containing exactly one allele A
n`1

. The convex hull of S
1

will be denoted by
h(S

1
). We now show that for every strategy u3h (S

1
), a value d

u
'0 can be

found so that for all 0(b(d
u
and for every strategy v the expression (16) is

positive. Clearly, the latter expression would vanish for u"v"p. However,
we know that u9p because A

n`1
cannot generate p in heterozygous condi-

tion. This statement could not be made in the proof by Hammerstein and
Selten (1994) and it helps here to avoid the gap in our original proof described
by Weissing (1995). If u is not a best reply to p, then the first term in (16) is
positive. If u is a best reply to p with u9p, then the first term in (16) is zero
and the second one is positive. With the help of these results, it is easy to show
that a continuous d

u
'0 with the required property can be found. Let d be the

minimum of d
u
with respect to the compact set h(S

1
). Obviously, d'0.

In order to complete the proof of assertion 1, consider a sequence
x(0), x (1), . . . generated in the one-allele extension model. Assume that the
quantity b (0) associated with x (0) is smaller than d, then b(t)"1!a (t) is
decreasing. The sequence of population mean strategies qN

0
, qN

1
, . . . therefore

remains in an e-neighbourhood of p if b(0) is sufficiently small. Furthermore,
the sequence a(t) must converge to a value a

0
because it is increasing and has

the upper bound 1. The corresponding sequence qN
0
, qN

1
, . . . must have an

accumulation point q. We now show that a
0
"1 and therefore q"p. Suppose

that a
0
(1. In view of (15) and the results about (16), a positive constant

c must then exist so that for all qN
t

that are sufficiently close to q we get
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a(t#1)'(1#c)a(t). This means an increase of the underlying frequency a (t)
of haploid genotypes without the new mutant allele: Clearly, this is impossible
since the sequence a(t) cannot decrease otherwise for any t and, therefore,
would grow beyond one. We now have shown assertion 1.

In the remainder of the proof we show that the following assertion 2 holds:
If every population state of the p-monomorphic specification of equation (3) is
phenotypically stable against genetic perturbation, then p is an ESS of the
phenotypic game G.

We know from Theorem 1 that if a population state x of a p-monomorphic
specification of equation (3) is phenotypically stable, then (p, p) is a Nash
equilibrium of the phenotypic game G, i.e. E(p, p)7E (s, p) for all strategies
s of G. It remains to show that p also satisfies the second ESS condition,
namely that for all other strategies s with E (s, p)7E (p, p) we have
E(p, s)7E (s, s).

Going the indirect way, let us assume that p is a strategy that satisfies the
Nash equilibrium condition but fails to satisfy the second ESS condition.
A strategy v must then exist for which the following statements (a) and (b) are
true:

(a) v is a best response to p
(b) E(p, v)6E(v, v) .

Let us now consider the following one-allele extension of the p-monomorphic
selection model.

u
n`1, jkl

"p for j, l"1, . . . , m and k"1, . . . , n

u
n`1,j,n`1, l

"v for j, l"1, . . . , m

We examine a sequence x (0), x (1), . . . generated by this selection model. The
mean strategies uN

t
and v6

t
(defined in Table 1) do not depend on t and we always

have uN
t
"p and v6

t
"v. Now, if we study the case E(p, v)(E(v, v), expression

(15) shows that E(aN
t
, qN

t
)!E (bM

t
, qN

t
) is always negative. From (15) we then

conclude that the sequence a (t) always converges to 0 as long as we start
with an a (0)(1. In the remaining case E(p, v)"E(v, v) the difference
E(aN

t
, qN

t
)!E (bM

t
, qN

t
) always vanishes and we have qN

t
"[1!b2(0)]p#b2(0)v

for t"0, 1, . . . In both cases the sequence qN
0
, qN

1
, . . . of the population mean

strategies does not converge to p if we start with b(0)'0. Therefore,
a p-monomorphic state is not phenotypically stable against genetic
perturbation.

7 Concluding remarks on the ‘streetcar’ philosophy’

In biology it is often the case that phenotypic aspects of an evolutionary
problem are empirically far more accessible than the underlying genetics.
Even if one uses the most modern technical equipment in order to sequence
strands of DNA completely for their molecular structure, this does not yet
reveal how genotypes and phenotypes relate to each other. For a theoretician
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it is therefore tempting to study the evolution of phenotypic traits in purely
phenotypic models. Admittedly, this approach has the important drawback
that it ignores how severely the genetic system can constrain phenotypic
evolution (as shown in Sects. 2, 3). However, it also seems inappropriate to
place too much emphasis on the role of genetic constraints in evolution
because the genetic system as such is subject to evolution. The streetcar theory
hinges on the idea that evolution has a tendency to change genetic arrange-
ments when genetic constraints become a strong impediment to phenotypic
adaptation.

In our models, the evolution of genetics is made possible by taking
a particularly wide range of potential mutant alleles into account. This is
indeed what makes the course of the evolving population look like the journey
of a streetcar. Sooner or later, an appropriate allele will destabilize
a phenotypically maladaptive state. This allele enters the streetcar like a new
passenger and the streetcar starts moving. In other words, the population
begins to evolve away from its phenotypic rest point. The biological streetcar
may again come to a halt where there is another passenger, etc. At a final stop,
no such passenger exists. Here, it must be emphasized that ‘final’ means the
end of the process of successive removal of genetic constraints in our theory
about adaptation but it does not mean that in reality evolution would stand
still forever. A change of the environment might lead to new evolution as well
as a number of molecular processes (e.g. meiotic drive, segregation distortion,
molecular drive) that disturb the picture of Mendelian genetics. At present, the
streetcar theory only analyzes how this ‘clean’ Mendelian genetics affects
phenotypic evolution. It would be a desirable extension of this theory to
answer the question of what keeps genetics so clean and why the scope for
selfish genetic elements is so limited.

What are the properties of final stops? If the phenotypic scenario is
depicted by a game in strategic form we learn from Theorem 1 that the
population mean strategy p corresponds to a Nash equilibrium. This property
happens to be the most important criterion for a solution of such a game in
economic decision theory. Thus we are dealing here with an economic prop-
erty of the final stop. The important interdisciplinary message behind this
result is that the evolutionary process and the process of rational economic
decision making both come to an important halt at the same point. This can
be taken as an indication that major parts of economic theory are relevant to
biological evolution and perhaps even more relevant to biology than to
human economics.

Rationality paradox: Humans typically claim a ‘monopoly’ on rational deci-
sion making when they compare themselves with the animal world. However,
from recent literature in social psychology and experimental economics we
know that actual human decision processes deviate systematically from the
principles of economic rationality. Paradoxically we learn from contemporary
biology that animals often behave as if they had taken a course in rational
economic decision making.
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‘Streetcar Theorem l’ helps us indeed to understand this paradoxical
aspect of the animal world. The empirically documented ‘quasi-rationality’ of
animal behaviour creates some confidence in the importance of Theorem 1 for
evolutionary biology. Despite its simple proof, this theorem seems to support
more biological facts than Fisher’s fundamental theorem of natural selection
or Wright’s adaptive topography in its classical form. We have seen in Sects. 2
and 3 how the latter principles fail to operate if one only changes from
one-locus to two-locus population genetics. Theorem 1 also shows that
a naive interpretation of the idea of the ‘selfish gene’ (Dawkins 1976) can easily
direct our attention to an inappropriate level of biological organisation (genes
instead of phenotypes). This is so because in the n-locus case of our selection
model the genetic scene can only be described as an ‘incredible mess’ although
very clear economic principles hold — in the long run — at the phenotypic level.

Are there results stronger than Theorem 1? If we try to characterize in
general all those final stops that are phenotypically polymorphic (i.e. stops in
which different genotypes occur that have different phenotypic specifications),
then Theorem 1 is the best we can hope for. A stronger result can be achieved
if one focuses attention on phenotypically monomorphic stops in which all
genotypes play the same strategy. From ‘streetcar Theorem 2’ we learn the
following. If these stops are final stops, the population mean strategy is an
evolutionarily stable strategy as defined by Maynard Smith and Price (1973).
Conversely, if the population mean strategy is an ESS, a monomorphic stop is
long-term stable against mutant alleles that cannot generate the ESS in
heterozygous condition. It is not astonishing that the streetcar theory lends its
best support to the monomorphic case since the ESS-concept was originally
developed with the intuitive picture of a monomorphic population in mind.
Note here once again that ‘monomorphic’ does not mean fixed alleles for all
relevant loci, nor does it mean that all animals act alike as if they were chorus
girls on a Broadway stage. A strategy is after all a programme that specifies
how animals ‘translate’ the information about their individual situation into
action patterns.

One further theorem about streetcars should be mentioned here which was
not stated explicitly in the present paper. If selection is frequency-independent,
the final stops of the streetcar are those at which expected fitness of pheno-
types is maximized. This criterion is much simpler than the complex optimiza-
tion criterion of the Nash equilibrium. Altogether the streetcar theory follows
the conceptual recipe often used in theoretical physics: ‘define stable equilib-
rium in an appropriate way and characterize it afterwards by appropriate
optimality conditions’.

The discussion of final stops would be incomplete without mentioning the
possibility that there may not exist a final stop for an evolving population.
Furthermore, there may not be enough time for evolution to reach a final stop
before dramatic changes occur in the environment. Needless to say that the
latter problem is very likely to occur in the evolution of human behaviour
because of a quickly changing cultural background. Therefore, the streetcar
theory reveals the fragile theoretical ground on which human sociobiology is
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built rather than providing strong support for this biological excursion into
human affairs. Similarly, one would expect in host-parasite coevolution that
parasites evolve too quickly for their hosts to reach a final stop. Probably it is
more than just a coincidence that the best known example of a temporary stop
with heterozygote advantage is that of sickle cell anemia.

It would indeed mean to throw out the baby with the bathwater if we
ignored the biological relevance of temporary stops. These are the halting
points of evolutionary processes that definitely require proper treatment in
the explicit framework of population genetics. However, unless there are
strong hints in favour of temporary stops or of non-Mendelian genetic effects,
researchers in evolutionary biology are well advised to use the modern theory
of phenotypic adaptation when they build their first working hypotheses.
Charles Darwin would be pleased to see how well this modern theory has
maintained the flavour of Darwinism.
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