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ABSTRACT: Best linear unbiased prediction (BLUP) is a method for
obtaining point estimates of a random effect in a mixed effect model.
Over the past decade it has been used extensively in ecology and
evolutionary biology to predict individual breeding values and re-
action norms. These predictions have been used to infer natural
selection, evolutionary change, spatial-genetic patterns, individual
reaction norms, and frailties. In this article we show analytically and
through simulation and example why BLUP often gives anticonser-
vative and biased estimates of evolutionary and ecological parame-
ters. Although some concerns with BLUP methodology have been
voiced before, the scale and breadth of the problems have probably
not been widely appreciated. Bias arises because BLUPs are often
used to estimate effects that are not explicitly accounted for in the
model used to make the predictions. In these cases, predicted breed-
ing values will often say more about phenotypic patterns than the
genetic patterns of interest. An additional problem is that BLUPs are
point estimates of quantities that are usually known with little cer-
tainty. Failure to account for this uncertainty in subsequent tests can
lead to both bias and extreme anticonservatism. We demonstrate that
restricted maximum likelihood and Bayesian solutions exist for these
problems and show how unbiased and powerful tests can be derived
that adequately quantify uncertainty. Of particular utility is a new
test for detecting evolutionary change that not only accounts for
prediction error in breeding values but also accounts for drift. To
illustrate the problem, we apply these tests to long-term data on the
Soay sheep (Ovis aries) and the great tit (Parus major) and show that
previously reported temporal trends in breeding values are not
supported.

Keywords: BLUP, breeding value, quantitative genetics, selection,
evolution.

Introduction

To state that BLUP is unbiased by changing the usual definition
of bias seems to be a rather liberal use of the language. Besides,
the term “best” is somewhat misleading. (Blasco 2001, p. 2027)
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Best linear unbiased prediction (BLUP) was largely de-
veloped by Henderson (e.g., Henderson 1950, 1976) in
order to predict the expected phenotype of an animal’s
offspring using an individual’s breeding value. This is
achieved by using phenotypic information collected both
on the individual and its relatives. By obtaining these pre-
dictions, animal breeders are able to select parents whose
offspring are expected to have desirable properties. Not
only does this yield a faster response than direct selection
on parental phenotype, but it also means that animal
breeders can apply selection even when phenotypic data
on the parents are unavailable. An extreme case is in sex-
limited traits, such as milk yield in dairy cattle. Because
the potential number of calves a bull can sire far exceeds
that which a cow can bear, selection is more efficient if
bulls as opposed to cows are selected as parents. Pheno-
typic selection in this case is not possible, because no bull
has a milk yield, but with BLUP the expected milk yield
of a bull’s daughter can be predicted using the milk yield
of that bull’s female relatives. Although developed in this
context, BLUP is, and is used as, a more general method
for predicting random effects in a variety of fields such as
geology and actuarial science (Robinson 1991).

The points that we develop in this article are concerns
about the serious problems that may arise when BLUP is
used to address questions for which it was not originally
intended. In evolutionary quantitative genetics, these ques-
tions have included inferring natural selection on breeding
value, spatial structuring of breeding values, and changes
in breeding value over time (see table 1 for a summary
of studies in wild and field populations, many involving
the authors of this article). It is in the context of these
questions that we will mainly develop our critique of
BLUP, although it should be understood that analogous
procedures, such as exploring individual effects (Martin
and Réale 2008; Moyes et al. 2009) and reaction norms
(Brommer et al. 2005; Nussey et al. 2005), suffer from the
same sort of problems.
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Table 1: Studies of wild or field populations that have used best linear unbiased prediction to answer questions regarding
evolutionary change (E) in breeding value, selection (S) on breeding value, genetic differences between groups (G) of individuals,
or genetic covariances (C)

Species Population Trait(s) Test Reference

Collared flycatcher Gotland, Sweden Condition E+S Merild et al. 20014

Collared flycatcher Gotland, Sweden Condition S Merild et al. 2001b

Collared flycatcher Gotland, Sweden Tarsus length S Kruuk et al. 2001

Collared flycatcher Gotland, Sweden Clutch size + laying E+ S+ G Sheldon et al. 2003

date
Collared flycatcher Gotland, Sweden Forehead + wing E+S Garant et al. 2004a
patch size

Red deer Rum, United Antler size E+S Kruuk et al. 2002
Kingdom

Red deer Rum, United Sex-specific fitness C Foerster et al. 2007
Kingdom

Wild radish New York >3 C Agrawal et al. 2002

Wild radish New York >3 S+C Agrawal et al. 2004

Bighorn sheep Ram Mountain, Horn length + body E+ S+ G Coltman et al. 2003
Canada weight

Red squirrel Kluane, Canada Parturition date E Réale et al. 2003

Great tit Wytham Woods, Body weight E+S Garant et al. 2004b
United Kingdom

Great tit Wytham Woods, Body weight E+S Garant et al. 2005
United Kingdom

Great tit Vieland, Netherlands Clutch size G Postma and van Noordwijk 2005

Great tit Vieland, Netherlands Clutch size E+G Postma et al. 2007

Great tit Hoge Veluwe, Laying date E+S Gienapp et al. 2006
Netherlands

Blue tit Corsica/La Rouviere, Tarsus length + body E + S Charmantier et al. 2004
France weight

Scarlet gilia Colorado >3 C Juenger et al. 2005

Mute swan Abbotsbury, United Laying date + clutch E Charmantier et al. 2006
Kingdom size

Soay sheep St Kilda, United Body size E Wilson et al. 2007
Kingdom

Side-blotched lizard California Clutch size S Sinervo and McAdam 2008

Red-billed gull Kaikoura, New Body size E Teplitsky et al. 2008
Zealand

Common evening

primrose Colorado >3 C Johnson et al. 20090
Common evening
primrose Colorado >3 S Johnson et al. 20094
Arabidopsis thaliana Rhode Island >3 S+C Stinchcombe et al. 2009

Note: Trait names have been omitted for studies that involve more than three traits. Table is updated from Postma (2006).

We identify three main properties of BLUP that have
led to inferential problems, and we present examples that
best exemplify each issue. Our first criticism is that the
desirable properties of BLUP hold only in the context of
predicting the mean of a single breeding value and that
these properties do not extend to other aspects of an in-
dividual’s breeding value (such as the squared deviation
from the population mean) and do not extend to higher-
level statistics summarizing the distribution of breeding
values in a population. Our second criticism is that BLUP

is an unbiased predictor of breeding value only when the
model used to make the predictions is the correct one (see
Postma 2006 for a useful discussion). Although the true
model is unknowable, it is often hoped that the model
used is close enough for robust conclusions to be drawn.
However, in evolutionary biology and ecology, BLUPs are
often used to test for patterns in breeding values that are
deemed too complicated to be captured in the model used
for prediction. In these instances, the distributions of
BLUP are biased toward a null model. Although it may
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be argued that such a test is conservative, it should be
borne in mind that the statistical null model is often dif-
ferent from what would be considered the biological or
scientific null model. In many instances the statistical null
model is that patterns at the genetic level follow patterns
at the phenotypic level, as would be observed if those
patterns were causally determined by phenotype. For ex-
ample, when differences between groups of individuals are
not explicitly modeled, tests of genetic differentiation using
differences in predicted breeding value are not biased to-
ward genetic homogeneity but toward finding genetic dif-
ferences even when only environmental differences exist.
Our third and final criticism is that the large amount of
prediction error and complicated patterns of dependence
in predicted breeding values are usually not accounted for
when quantifying uncertainty, and this can lead to extreme
anticonservatism. Some of these criticisms have a long
history in the animal breeding literature (e.g., Blasco
2001), and the first two criticisms have already been made
in the context of evolutionary biology (Postma 2006; Had-
field 2008; O’Hara et al. 2008). However, the weight of
these criticisms has not been widely appreciated, and in
conjunction with our final point, we discourage future use
of BLUP as an inferential tool in the fields of ecology and
evolutionary biology.

We illustrate our three criticisms with both toy and real
examples. We define a consistent model to be one in which
the BLUPs are predicted using a model that captures the
process that is to be explored, and we hold an inconsistent
model to be one in which the BLUPs are used to show a
pattern that is not explicitly formulated in the model. In
general, a consistent model can usually be constructed and
the hypothesis formulated directly from the estimated
(co)variance components. For example, the strength of
selection acting on breeding value (the genetic selection
gradient) is defined as the genetic covariance between the
trait and fitness divided by the genetic variance for the
trait. Using generalized linear mixed models, consistent
estimators of these (co)variances, and hence the genetic
selection gradient, can be obtained without the need to
use BLUPs (Hadfield 2008). One exception where it is
necessary to work with individual breeding values rather
than some higher-level model parameter (such as a vari-
ance) is when trying to detect change in breeding values
over the course of a study. However, even in these cases
we do not advocate the use of BLUP and strongly rec-
ommend using the complete posterior distribution of
breeding values from a Bayesian analysis (see Walsh and
Lynch 2009 for a review). We illustrate why, using data
from our previous studies of the Soay sheep (Ovis aries)
and the great tit (Parus major), in which BLUP method-
ology had suggested highly significant evolutionary change
(Garant et al. 2004b; Wilson et al. 2007). We show that

the significance of these trends had been overestimated by
several orders of magnitude.

A Consistent Model Resulting in Bias
Estimating Additive Genetic Variance

A well-known example (Henderson 1975), which has been
discussed in the context of evolutionary biology (Postma
2006; O’Hara et al. 2008), is the difference between the
variance in breeding value BLUPs and variance in true
breeding values (the additive genetic variance) that is
caused by prediction error. Although nobody would con-
sider using the variance in BLUPs as a measure of additive
genetic variance, the example does highlight one of the
properties of BLUPs that can cause problems when they
are misused. For example, when we fit a quantitative ge-
netic model using restricted maximum likelihood (REML),
we obtain asymptotically (with increasing sample size) un-
biased estimates of the additive genetic variance in the
base population (assuming the model is correct). This es-
timate, by its derivation, is an asymptotically unbiased
estimate of the variance in true breeding values in the base
population. However, it is well known that variance in
BLUP breeding values is consistently less than the variance
in true breeding values, even though they are predicted
from a model that is consistent. The reason for this is
simply prediction error around the true values. In figure
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Figure 1: The normal densities represent the distribution of three breed-
ing values known with uncertainty. The black dots represent the modes
of these distributions that are equal to the best linear unbiased prediction
breeding values, and the width of the distributions represents the degree
of error in their estimation. The gray dots represent three random draws
from the three normal densities and represent a single realization from
the distribution of true breeding values.



1, three normal densities have been plotted. Each curve
represents our state of knowledge about three individuals’
breeding value. The peaks of each curve are the most likely
value for each breeding value (black dots) and represent
the BLUPs. The widths of the curves are related to how
certain we are in each breeding value. The gray dots are
random draws from these distributions and represent one
possible configuration of true breeding values. Because of
the uncertainty around each peak, the peaks of the curves
tend to be more clustered (have less variance) than possible
configurations of true breeding values, and this is why the
variance in BLUPs is always less than the additive genetic
variance.

The problem becomes even more apparent if we con-
sider an extreme example where the three individuals had
no relatives in the sample and had missing phenotype
records. In this instance all three curves would be identical,
with a mean of 0 and a variance equal to the additive
genetic variance. As before, random possible configura-
tions of true breeding values from these distributions
would have a variance equal to the additive genetic var-
iance, but the variance in BLUPs would be 0. In summary,
although the breeding values have been predicted using a
consistent model, the variance in BLUPs are a downward-
biased estimator of the variance in true breeding values.

An Inconsistent Model Resulting in Bias
Estimating Selection on Genotype

One use of BLUPs is to estimate selection on breeding
values (Rausher 1992). The genetic selection gradient
(Bg) is defined as the genetic covariance between the trait
and fitness divided by the additive genetic variance in the
trait

By = v W)

0,

a

where a is breeding value and w is fitness. Several studies
have estimated selection by using BLUPs (4) in place of a,

p O—&,W
Bs =" 2
05

by regressing individual fitnesses on the BLUPs. Postma
(2006) pointed out that because the variance in BLUPs
(07) is a downward-biased estimator of the additive genet-
ic variance (07) for reasons discussed above, 3 is an
upward-biased estimator of ;. Hadfield (2008) pointed
out that o, is also strongly biased but in a way that
depends on the phenotypic selection gradient. This occurs
because the BLUPs are predicted using a model that does
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not explicitly account for any genetic covariance between
the trait and fitness. In extreme cases the genetic selection
gradient estimated in this way can even have the wrong
sign if the environmental covariance between the trait and
fitness is large and opposite in sign to the genetic covari-
ance. The solution is to fit a bivariate model of fitness and
the trait and estimate the selection gradient directly from
the estimated (co)variances (i.e., B; = 0, ,/02) without
ever touching the BLUPs. In the appendix in the online
edition of the American Naturalist we provide example
code to show how such an analysis could be performed.

This type of model has been used by Etterson and Shaw
(2001) to estimate genetic selection differentials for an
annual legume, and a few studies have reported genetic
correlations between a trait and fitness, also estimated us-
ing bivariate models (Kruuk et al. 2002; Sinervo and
McAdam 2008). Closer scrutiny of these latter two results
are indicative of the problem. For example, using BLUP,
Kruuk et al. (2002) estimated the genetic selection differ-
ential on antler size to be 0.158, and yet the genetic cor-
relation between antler size and lifetime reproductive suc-
cess was estimated to be —0.254. Since the genetic
correlation is defined as the genetic selection differential
multiplied by (62/07)"?, the two quantities should have the
same sign given the variances have to be positive. The
different signs arise because the BLUP-based estimate is
biased toward the phenotypic selection differential of
0.449.

Estimating Genetic-Spatial Structuring

In a similar fashion, breeding values predicted using spatially
naive models have been used as a test for spatial variation
in true breeding values. To show how biases arise that are
analogous to the biases caused when using BLUP to obtain
genetic selection gradients, we use simple simulations in
which a population is subdivided into two interbreeding
subpopulations. For ease, we use the Soay sheep pedigree
from Wilson et al. (2007), which was collected over a 25-
year period (1980-2004) on a feral population living on the
islands of St Kilda, northwest Scotland (Clutton-Brock and
Pemberton 2004). For each cohort in the pedigree we ran-
domly assigned half of the individuals to either subpopu-
lation A or B. In the first set of simulations, we simulated
the scenario in which the mean phenotype of the two sub-
populations differed but only because of environmental dif-
ferences. This was achieved by simulating breeding values
down the pedigree assuming an additive genetic variance
of 1 but no genetic differences between the groups. Envi-
ronmental deviations were then added to the breeding val-
ues, and these had a variance of 1 for each group, but the
mean for group A was —0.5, and the mean for group B
was 0.5. A simple animal model was fitted using the program
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Figure 2: Mean breeding value best linear unbiased predictions (BLUPs)
for two populations calculated for 1,000 simulated data sets. The true
underlying mean breeding values did not differ and had an expectation
of 0 (vertical line).

ASReml-R (Gilmour et al. 2002) with an intercept, an an-
imal effect (breeding value), and a residual term. This was
repeated for 1,000 simulated data sets, and the mean BLUP
for the two subpopulations was calculated. Although the
two subpopulations are genetically identical, the BLUPs
suggest that there are strong genetic differences between
the two subpopulations, with an average difference in mean
BLUP (A — B) of —0.392 + 0.001 (see fig. 2). A simple
solution is to fit population as a fixed effect. This captures
the environmental differences between the two groups, and
the difference in mean BLUP between the two subpopu-
lations for this model is close to being unbiased
(0.0008 =+ 0.0004).

If there were genetic differences between the subpop-
ulations, however, then fitting such a model is still inap-
propriate because the BLUPs are predicted under the as-
sumption that no genetic differences exist. For example,
we could imagine a situation where genetic and environ-
mental differences between the two populations cancel out
to give the same mean phenotype—a phenomenon known
as countergradient variation (Conover and Schultz 1995).
To capture this scenario, we simulated data in the same
way as before except the breeding values of animals in the
base population were sampled from a normal distribution
with unit variance and means of 0.5 (group A) or —0.5
(group B), rather than a common mean of 0. Two models
were fitted to the data: one in which population is fitted
as a fixed effect and one where population is fitted as both
a fixed effect and a genetic group. Genetic groups do not

seem to have been used outside of animal breeding but
provide a way of modeling genetic structure in the base
population (Robinson 1986; Westell et al. 1988). When
genetic groups are fitted, all base individuals are assigned
to a subpopulation that may differ in mean breeding value.
Normal patterns of additive genetic inheritance are still
assumed, such that the expected breeding value of an in-
dividual with both parents from population A would be
0.5 but an individual with one parent from population A
and one from population B would have an expected breed-
ing value of 0. As with fixed effects, the mean breeding
value for each subpopulation cannot be uniquely esti-
mated, but differences between them can be estimated
when pedigree links exist between them (Quaas 1988). In
this example the difference in breeding values between the
two populations (A — B) has an expectation of 1, and we
obtain estimates of this quantity by (a) comparing the
mean BLUP of individuals from the two populations pre-
dicted using a model without genetic groups and (b) di-
rectly from the genetic group estimates themselves.

In figure 3 the results are shown for the two models. The
histogram on the left is the difference between the mean
BLUPs in the standard animal model (with group as a fixed
effect) for the 1,000s simulations. These are significantly
different from 0, indicating that the BLUPs are on average
predicted to be different (—0.067 £ 0.0004). However, the
difference has the wrong sign—the data were simulated so
that group A’s breeding values were a unit higher, although
this spatially naive model suggests that group A’s breeding
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Figure 3: Difference between mean breeding value best linear unbiased
predictions (BLUPs) for the two populations where genetic structuring
of the base population was not explicitly modeled (left-hand distribution)
and where genetic groups were fitted (right-hand distribution). The true
underlying difference between the mean breeding values was 1 (vertical
line).



values are actually smaller. The histogram on the right is
the difference between the predictions for the two genetic
groups, which gives unbiased estimates of the difference
(1.002 £ 0.002).

A Consistent Model without Bias but
Strongly Anticonservative

Estimating Evolutionary Change

In the previous sections we demonstrate that BLUP can
be misleading because it gives biased parameter estimates.
However, additional problems also arise with hypothesis
testing and confidence interval estimation because BLUPs
are often treated as independent. For instance, in the pre-
vious spatial example, where differences between subpop-
ulations were entirely environmental, BLUPs from a model
that had subpopulation as a fixed effect had very little bias.
However, in this example, significance testing is actually
conservative, with only 1 out of the 1,000 simulations
being significant at the 5% level if each BLUP is treated
as independent. However, in these simulations, individuals
were assigned to a subpopulation randomly, and under
more realistic scenarios where related individuals are more
likely to be from the same subpopulation, these tests will
generally be anticonservative. For example, we can rerun
the above simulations but give offspring an 83% chance
(as opposed to 50%) of belonging to the same population
as their parents when both parents come from the same
population. Here, 93 of the 1,000 simulations were sig-
nificant at the 5% level, and presumably this anticonser-
vatism would become worse under assortative mating.

Below, we show how this anticonservatism can become
extreme when testing for evolutionary change, either as a
response to artificial selection or as a response to natural
selection. In order to distinguish between a genetic trend
and a phenotypic trend caused by some concurrent en-
vironmental change, it is necessary to ask whether breeding
values have changed over the course of the study. This is
usually achieved by taking the mean BLUP breeding value
for each cohort and seeing whether these means increase
or decrease over time. When the effects of selection on
the data are ignorable (sensu Rubin 1976), then the cohort
mean BLUPs have the same expectation as the cohort
means of the true breeding values, and the test is unbiased
(see Im et al. 1989 for technical details). However, cohort
mean BLUPs have less variance than the cohort means of
the true breeding values because of prediction error, as
discussed above. Moreover, because the prediction errors
of relatives are usually positively correlated, there is usually
more positive temporal autocorrelation in BLUPs than in
true breeding values.

The expected variance and temporal autocorrelation in
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true breeding values depends on whether we are trying to
say something about change in the actual sample means
or to generalize from the sample means to what would
happen under conceptual repetitions of the same “exper-
iment.” The distinction between these two levels of infer-
ence is illustrated in the two questions: Has the mean
breeding value in the population changed? And has the
mean breeding value in the population changed more than
we expect by chance (drift; Hill 1971)? For the second and
more interesting question, the variance of the cohort mean
breeding values would vary due to changes in population
size and will show temporal autocorrelation when indi-
viduals have relatives in cohorts other than their own.
However, this question is often addressed by regressing
the cohort mean BLUPs on some measure of time and
testing for a significant slope under the assumption that
the residuals are independent and identically distributed.
This test is very anticonservative and will often reject the
null hypothesis (no change) even when there is little evi-
dence that mean breeding values have changed at all, sig-
nificantly or not.

To understand the problem completely we need to work
with three subtly different quantities: cohort means of the
BLUPs (a), cohort means of the actual unobserved breed-
ing values (a), and cohort means of breeding values gen-
erated under hypothetical repeat sampling of the “exper-
iment” under drift (a).

If we assume that all variance components are known
without error, then the actual cohort mean breeding values
have the same expectation as the BLUP estimates, with
some variation due to sampling error (M):

a~ NG M), (3)

and the distribution of hypothetical breeding values have
an expectation of 0 (in _the absence of selection) but some
variance due to drift (G):

i~ N, G). @)

The key question is whether the change in cohort means
of true breeding values (a) has been more extreme than
what we would observe under drift (i.e., from random
fluctuations in a). This is usually tested by fitting a simple
linear regression under the assumption that cohort mean
BLUPs (a) are identical and independently distributed af-
ter taking into account the time trend:

a~ N(XB, o21), (5)

where X is a design matrix with U’s in the first column
and some continuous measure of time in the second col-
umn. The associated parameter vector § is the intercept
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Figure 4: Sampling correlation between successive cohort mean breeding
values due to correlated prediction error (solid lines) and finite sampling/
drift (dashed lines) for body weight in the Soay sheep (Wilson 2007).
The black lines are the posterior prediction error correlations between
cohort means due to all model parameter uncertainty. The gray lines are
the posterior prediction error correlations between cohort means when
the variances are fixed at the posterior mode.

and slope of this regression; o; is the residual variance

around the regression, and the identity matrix I implies
that the residuals are expected to be independent and have
equal variance. In part, the validity of this test relies on
both prediction error and drift causing independent fluc-
tuations in (predicted) breeding values between genera-
tions, such that both G and M are close to identity ma-
trices. The term M can be derived analytically using
well-known results for the prediction error (co)variances
of BLUP (e.g., Mrode 1996), and G can be obtained using
results from Sorensen and Kennedy (1983). The full der-
ivation of these matrices is given in the appendix (see also
Walsh and Lynch 2009), but the key point is that sampling
error induces positive correlations between cohort mean
BLUPs and drift induces positive correlations between co-
hort mean breeding values, and so the assumption of in-
dependent residuals is never met.

As an example of these issues, we repeated the quan-
titative genetic analyses of body weight in Soay sheep
(model 1 in Wilson et al. 2007) for which evidence of
evolutionary change had been found in the form of a
significant trend in predicted breeding values. In figure 4,
the solid black line represents the expected correlation in
prediction error between cohort mean breeding values in
successive years, and the dashed black line represents the
expected correlation between cohort mean breeding values
in successive years due to drift. (i.e., the subdiagonals of

M and G rescaled to a correlation matrix). Under inde-
pendence these correlations should be 0.

In reality, the variance components are never known
exactly, especially in studies of wild populations where data
sets tend to be quite small. If they are not known exactly,
then this can induce further sampling correlations in the
predicted breeding values (Sorensen and Kennedy 1984).
However, the distribution of cohort mean breeding values
in this instance is not in any recognizable form, and M
cannot be obtained analytically. However, using Markov
chain Monte Carlo (MCMC), the full posterior distribu-
tion of cohort mean breeding values is easy to obtain
(Sorensen et al. 1994). Using MCMCglmm (J. D. Hadfield,
unpublished manuscript), we fitted the same model to the
sheep data (model 1 in Wilson et al. 2007) and obtained
1,000 samples of the joint posterior distribution of breed-
ing values (see appendix). The correlation between suc-
cessive cohort mean breeding values across the 1,000 sam-
ples is plotted as a solid gray line in figure 4. This represents
the degree of prediction error correlation in breeding val-
ues including that induced by uncertainty in the variance
components.

We can also regress each posterior sample of cohort
mean breeding value on year to obtain the distribution of
the slope coefficient for the genetic trend. This results in
1,000 samples from the posterior distribution of evolu-
tionary change (see fig. 5). The Bayesian posterior mean
of the slope and the standard BLUP analysis give identical
answers regarding the rate of evolutionary change (0.0026
kg/year). However, the probability that breeding values
were actually decreasing during the course of the study

100
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Figure 5: Posterior distribution for change in breeding value over time
for body weight in Soay sheep (kg/year). The smooth line represents the
estimate and sampling error derived from the standard best linear un-
biased prediction model where the data were treated as independent.



was 0.283 from the Bayesian analysis. This is in direct
contrast to the conclusions that were drawn form the stan-
dard BLUP analysis which suggested a significant (P <
.0001) increase. To demonstrate that this level of anticon-
servatism is not specific to the particular data set we used,
we also refitted the model used by Garant (20044). In this
article, a significant (P << .0001) increase in breeding value
(0.0020 g/year) was reported for fledgling condition in a
population of great tits using data collected over a 36-year
period (1965-2000) in Wytham Woods, United Kingdom
(Perrins 1979). As with the sheep analysis, the Bayesian
mean estimate was identical to the published REML es-
timate, but the significance of the trend was greatly re-
duced, with the probability of breeding values actually
decreasing to 0.045.

These two analyses demonstrate that the P values from
regression of mean BLUP are very anticonservative. Fur-
thermore, as formulated above, we are testing only whether
the mean breeding value in the population changed after
accounting for prediction error. If we want to test for a
deterministic response, we need to ask whether this change
is more than we expect by chance, by taking into account
the variance in breeding values expected under drift (G).
In the appendix, we provide an analytical test that is valid
when the variance components are known without error.
However, because this is rarely the case, we propose a test
based on posterior predictive simulation. The concept is
fairly simple: for each posterior sample we get an estimate
of the additive genetic variance that we use to simulate
replicated breeding values (a) down the pedigree. Using
these replicated breeding values we calculate a regression
slope for evolutionary change, which has an expectation
of 0 since we have not imposed selection in the simulation
but some variation due to drift. We then calculate the
proportion of iterations for which the slope calculated
from the posterior sample of the actual breeding values
exceeds that of the replicate breeding values. This pro-
portion is the probability that the trend could not be due
to drift. More formally, we evaluate the posterior predictive
test:

J Pr [T(4|0,y)] > Pr[T(4]0,y)]d0, ©)

where the test statistic T is the regression coefficient, and
integration is performed over the joint distribution of the
remaining model parameters such as the fixed effects and
variance components (). Not surprisingly, the probability
that the reported positive evolutionary change is in fact
negative increases when we also take into account drift.
For the sheep the probability increased to 0.357, and for
the tits the probability increased to 0.127. In reality this
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should not be too surprising given that the magnitude of
the change (as measured in phenotypic standard devia-
tions) was small in each case (0.0008 for adult weight in
sheep and 0.002 for fledgling condition in the tits).

Summary

BLUP is used extensively in the agricultural sciences to
predict which individuals should produce the best off-
spring. It was in this context that BLUP was developed,
and for this purpose it performs well under a broad range
of circumstances (Mrode 1996). More recently, BLUP has
been used to answer a wide range of exciting questions in
evolutionary biology and ecology (Postma 2006). We do
not intend to diminish the importance of these questions,
but we do wish to make the point that BLUP does not
give satisfactory answers in these contexts. For many types
of problem patterns in breeding values predicted using
BLUP have been interpreted as genetic patterns, although
the nature of the bias means that many of these patterns
may actually be environmental in origin. More impor-
tantly, we demonstrate that alternative methods exist for
answering most of these questions and that these methods
are more powerful and less biased and measure uncertainty
more accurately. For most types of analysis, this involves
fitting a model that answers the question directly, for ex-
ample, by specifying genetic groups or by formulating the
test in terms of estimated variances and covariances. One
consequence of fitting these models correctly will be to
reveal the power issues that surround such analyses. Given
this, we suggest the real difficulty will be to collect enough
relevant data to say something substantive regarding pro-
cesses that are inherently difficult to measure. If we assume
a generation time of about 2 years for both species that
we studied, then the rate of change as measured in hal-
danes was in both cases reasonably close to the median
estimates of phenotypic evolutionary change (0.006) com-
piled by Kinnison and Hendry (2001). However, it should
be recognized that on the timescale of most studies this
rate of change is negligible. Unfortunately, the use of BLUP
methodology has resulted in erroneously high levels of
statistical significance, and this has been taken to imply
biological significance despite very small effect sizes. We
concur with Gienapp et al. (2006) that in most cases the
power to reject neutral processes underlying genetic
change is limited, especially in long-lived species with small
population sizes.

Acknowledgments

We thank S. Brotherstone, B. Hill, D. Nussey, J. Pem-
berton, A. Phillimore, J. Stinchcombe, and B. Walsh for
discussion and comments on an earlier version of this



124  The American Naturalist

manuscript. J.D.H. and A.J.W. are funded by the Nat-
ural Environment Research Council (United Kingdom)
and L.E.BK. by a Royal Society University Research
Fellowship.

Literature Cited

Agrawal, A. A., J. K. Conner, M. T. J. Johnson, and R. Wallsgrove.
2002. Ecological genetics of an induced plant defense against her-
bivores: additive genetic variance and costs of phenotypic plasticity.
Evolution 56:2206-2213.

Agrawal, A. A.,J. K. Conner, and J. R. Stinchcombe. 2004. Evolution
of plant resistance and tolerance to frost damage. Ecology Letters
7:1199-1208.

Blasco, A. 2001. The Bayesian controversy in animal breeding. Journal
of Animal Science 79:2023-2046.

Brommer, J. E., J. Meril4, B. C. Sheldon, and L. Gustafsson. 2005.
Natural selection and genetic variation for reproductive reaction
norms in a wild bird population. Evolution 59:1362-1371.

Charmantier, A., L. E. B. Kruuk, J. Blondel, and M. M. Lambrechts.
2004. Testing for microevolution in body size in three blue tit
populations. Journal of Evolutionary Biology 17:732-743.

Charmantier, A., C. Perrins, R. H. McCleery, and B. C. Sheldon.
2006. Evolutionary response to selection on clutch size in a long-
term study of the mute swan. American Naturalist 167:453—465.

Clutton-Brock, T. H., and J. M. Pemberton, eds. 2004. Soay sheep:
dynamics and selection in an island population. Cambridge Uni-
versity Press, New York.

Coltman, D. W., P. O’'Donoghue, J. T. Jorgenson, J. T. Hogg, C.
Strobeck, and M. Festa-Bianchet. 2003. Undesirable evolutionary
consequences of trophy hunting. Nature 426:655-658.

Conover, D. O., and E. T. Schultz. 1995. Phenotypic similarity and
the evolutionary significance of countergradient variation. Trends
in Ecology & Evolution 10:248-252.

Etterson, J. R., and R. G. Shaw. 2001. Constraint to adaptive evolution
in response to global warming. Science 294:151-154.

Foerster, K., T. Coulson, B. C. Sheldon, J. M. Pemberton, T. H.
Clutton-Brock, and L. E. B. Kruuk. 2007. Sexually antagonistic
genetic variation for fitness in red deer. Nature 447:1107-1110.

Garant, D., B. C. Sheldon, and L. Gustafsson. 20044. Climatic and
temporal effects on the expression of secondary sexual characters:
genetic and environmental components. Evolution 58:634-644.

Garant, D., L. E. B. Kruuk, R. H. McCleery, and B. C. Sheldon.
2004b. Evolution in a changing environment: a case study with
great tit edging mass. American Naturalist 164:E115-E129.

Garant, D., L. E. B. Kruuk, T. A. Wilkin, R. H. McCleery, and B. C.
Sheldon. 2005. Evolution driven by differential dispersal within a
wild bird population. Nature 433:60-65.

Gienapp, P., E. Postma, and M. E. Visser. 2006. Why breeding time
has not responded to selection for earlier breeding in a songbird
population. Evolution 60:2381-2388.

Gilmour, A. R, B.J. Gogel, B. R. Cullis, S. J. Welham, and R. Thomp-
son. 2002. ASReml user guide, release 1.0. http://www.vsn-intl
.com.

Hadfield, J. D. 2008. Estimating evolutionary parameters when vi-
ability selection is operating. Proceedings of the Royal Society B:
Biological Sciences 275:723-734.

Henderson, C. R. 1950. Estimation of genetic parameters. Annals of
Mathematical Statistics 21:309-310.

. 1975. Best linear unbiased estimation and prediction under

a selection model. Biometrics 31:423—447.

. 1976. Simple method for computing inverse of a numerator
relationship matrix used in prediction of breeding values. Bio-
metrics 32:69-83.

Hill, W. G. 1971. Design and efficiency of selection experiments for
estimating genetic parameters. Biometrics 27:293-311.

Im, S., R. L. Fernando, and D. Gianola. 1989. Likelihood inferences
in animal breeding under selection: a missing-data theory view
point. Genetics Selection Evolution 21:399-414.

Johnson, M. T. J., M. Vellend, and J. R. Stinchcombe. 20094. Evo-
lution in plant populations as a driver of ecological changes in
arthropod communities. Philosophical Transactions of the Royal
Society B: Biological Sciences 364:1593-1605.

Johnson, M. T. J., A. A. Agrawal, J. L. Maron, and J. P. Salminen.
2009b. Heritability, covariation and natural selection on 24 traits
of common evening primrose (Oenothera biennis) from a field
experiment. Journal of Evolutionary Biology 22:1295-1307.

Juenger, T., T. C. Morton, R. E. Miller, and J. Bergelson. 2005. Scarlet
gilia resistance to insect herbivory: the effects of early season
browsing, plant apparency, and phytochemistry on patterns of seed
fly attack. Evolutionary Ecology 19:79-101.

Kinnison, M. T., and A. P. Hendry. 2001. The pace of modern life.
II. From rates of contemporary microevolution to pattern and
process. Genetica 112:145-164.

Kruuk, L. E. B., J. Merild, and B. C. Sheldon. 2001. Phenotypic
selection on a heritable size trait revisited. American Naturalist
158:557-571.

Kruuk, L. E. B., J. Slate, J. M. Pemberton, S. Brotherstone, F. Guin-
ness, and T. Clutton-Brock. 2002. Antler size in red deer: herita-
bility and selection but no evolution. Evolution 56:1683-1695.

Martin, J. G. A., and D. Réale. 2008. Temperament, risk assessment
and habituation to novelty in eastern chipmunks, Tamias striatus.
Animal Behaviour 75:309-318.

Merilg, J., L. E. B. Kruuk, and B. C. Sheldon. 2001a. Cryptic evolution
in a wild bird population. Nature 412:76-79.

. 2001b. Natural selection on the genetical component of
variance in body condition in a wild bird population. Journal of
Evolutionary Biology 14:918-929.

Moyes, K., B. J. T. Morgan, A. Morris, S. J. Morris, T. H. Clutton-
Brock, and T. Coulson. 2009. Exploring individual quality in a
wild population of red deer. Journal of Animal Ecology 78:406—
413.

Mrode, R. A. 1996. Linear models for the prediction of animal breed-
ing values. CAB International, Wallingford.

Nussey, D. H., E. Postma, P. Gienapp, and M. E. Visser. 2005. Se-
lection on heritable phenotypic plasticity in a wild bird population.
Science 310:304-306.

O’Hara, R. B,, J. M. Cano, O. Ovaskainen, C. Teplitsky, and J. S.
Alho. 2008. Bayesian approaches in evolutionary quantitative ge-
netics. Journal of Evolutionary Biology 21:949-957.

Perrins, C. M. 1979. British tits. Collins, Glasgow.

Postma, E. 2006. Implications of the difference between true and
predicted breeding values for the study of natural selection and
micro-evolution. Journal of Evolutionary Biology 19:309-320.

Postma, E., and A. J. van Noordwijk. 2005. Gene flow maintains a
large genetic difference in clutch size at a small spatial scale. Nature
433:65-68.

Postma, E., ]. Visser, and A. J. Van Noordwijk. 2007. Strong artificial



selection in the wild results in predicted small evolutionary change.
Journal of Evolutionary Biology 20:1823-1832.

Quaas, R. L. 1988. Additive genetic model with groups and rela-
tionships. Journal of Dairy Science 71:1338-1345.

Rausher, M. D. 1992. The measurement of selection on quantitative
traits biases due to environmental covariances between traits and
fitness. Evolution 46:616—626.

Réale, D., A. G. McAdam, S. Boutin, and D. Berteaux. 2003. Genetic
and plastic responses of a northern mammal to climate change.
Proceedings of the Royal Society B: Biological Sciences 270:591—
596.

Robinson, G. K. 1986. Group effects and computing strategies for
models for estimating breeding values. Journal of Dairy Science
69:3106-3111.

. 1991. That BLUP is a good thing: the estimation of random
effects. Statistical Science 6:15-32.

Rubin, D. B. 1976. Inference and missing data. Biometrika 63:581—
590.

Sheldon, B. C., L. E. B. Kruuk, and J. Merild. 2003. Natural selection
and inheritance of breeding time and clutch size in the collared
flycatcher. Evolution 57:406—420.

Sinervo, B., and A. G. McAdam. 2008. Maturational costs of repro-
duction due to clutch size and ontogenetic conflict as revealed in
the invisible fraction. Proceedings of the Royal Society B: Biological
Sciences 275:629-638.

Sorensen, D. A., and B. W. Kennedy. 1983. The use of the relationship
matrix to account for genetic drift variance in the analysis of
genetic experiments. Theoretical and Applied Genetics 66:217-220.

The Misuse of BLUP 125

. 1984. Estimation of response to selection using least-squares
and mixed model methodology. Journal of Animal Science 58:
1097-1106.

Sorensen, D. A,, C. S. Wang, J. Jensen, and D. Gianola. 1994. Bayesian
analysis of genetic change due to selection using Gibbs sampling.
Genetics Selection Evolution 26:333-360.

Stinchcombe, J. R., C. Weinig, K. D. Heath, M. T. Brock, and J.
Schmitt. 2009. Polymorphic genes of major effect: consequences
for variation, selection, and evolution in Arabidopsis thaliana. Ge-
netics 182:911-922.

Teplitsky, C., J. A. Mills, J. S. Alho, J. W. Yarrall, and J. Merild. 2008.
Bergmann’s rule and climate change revisited: disentangling en-
vironmental and genetic responses in a wild bird population. Pro-
ceedings of the National Academy of Sciences of the USA 105:
13492-13496.

Walsh, B., and M. Lynch. 2009. Evolution and selection of quanti-
tative traits. http://nitro.biosci.arizona.edu/zbook/NewVolume_2/
newvol2.html.

Westell, R. A., R. L. Quaas, and L. D. Vanvleck. 1988. Genetic groups
in an animal-model. Journal of Dairy Science 71:1310-1318.

Wilson, A. J., J. M. Pemberton, J. G. Pilkington, T. H. Clutton-Brock,
D. W. Coltman, and L. E. B. Kruuk. 2007. Quantitative genetics
of growth and cryptic evolution of body size in an island popu-
lation. Evolutionary Ecology 21:337-356.

Associate Editor and Editor: Ruth G. Shaw

Appearance of the prong-horn antelope in August, the horns being perfect. From The Prong-Horn Antelope by W. J. Hays (American Naturalist,

1868, 3:131-133).



