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their evolution and distinct traits
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INTRODUCTION: The ruminants are one of
the most successful mammalian lineages, exhib-
iting extensive morphological and ecological
diversity and containing several key livestock
species, such as cattle, buffalo, yak, sheep, and
goat. Ruminants have evolved several distinct
characteristics such as a multichambered stom-
ach, cranial appendages (headgear), special-

ized dentition, a highly cursorial locomotion,
and a wide range of body size variations. De-
spite their biological prominence and value
to human societies, the evolutionary history
of ruminants has not been fully resolved,
and the molecular mechanisms underlying
their particular characteristics remains largely
unknown.
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the species within same families and subfamilies collapsed. The ruminants have many textbook

examples of distinct traits. The four-chambered stomach with omasum chamber is a key innovation
evolved in pecoran ruminants. Headgear keratinous sheath only appear in Bovidae and Antilocapridae
lineages. Many ruminants have evolved high-crowned or hypsodont teethes. The Antilocapridae and

two bovid lineages are among the mammals with highest cursorial locomotion ability.
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RATIONALE: We seek to resolve the controver-
sies in the ruminant phylogeny and reveal the
genetic basis underpinning the evolutionary
innovations in ruminants. Here, we report the
newly sequenced genomes of 44 ruminant spe-
cies, covering about half the genera and all six
extant Ruminantia families. We included seven
published ruminant genomes (five bovids and
two cervids) to reconstruct the phylogenetic tree
by using improved time calibrations. We also
reconstructed the Pleistocene demographic his-
tories of these ruminant species using whole-

genome heterozygosity in-
formation. Together with
Read the full article  transcriptomic data of 516

samples from 68 tissues
of four species, we con-
ducted comparative ge-
nomic analyses to reveal
candidate genes and regulatory elements that
might have contributed to the evolution of the
distinct ruminant characteristics.

at http://dx.doi.
org/10.1126/
science.aav6202

RESULTS: Using whole-genome orthologous
sequences obtained from 51 ruminants, we have
produced a new well-supported ruminant phy-
logenetic tree. The new tree resolves previous
controversies over the deep branches of rumi-
nant families, as well as the highly radiated
Bovidae family. We estimated the emergence
of crown Ruminantia to the late Oligocene
(39.1 million to 32.3 million years ago) and that
of Pecora to the Neocene (23.3 million
to 20.8 million years ago). Investiga-
tions of demographic history revealed
massive population decline events that
occurred in most ruminant species,
starting from ~100,000 to 50,000 years
ago, which was temporally and spatially
concurrent with the increased human
activities on different continents during
this period. We further identified many
genomic changes that associate with
important evolutionary innovations,
such as the multichambered stomach,
headgear, body size variation, cursorial
locomotion, and dentition.

CONCLUSION: Our results demon-
strate the power of using comparative
phylogenomic approaches in resolving
the deep branches of phylogeny that
result from rapid radiations. The data
and results presented in this study pro-
vide valuable resources and insights
into the evolution of ruminant and
mammalian biology.
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The ruminants are one of the most successful mammalian lineages, exhibiting morphological
and habitat diversity and containing several key livestock species. To better understand
their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant
species, representing all six Ruminantia families. We used these genomes to create a time-
calibrated phylogeny to resolve topological controversies, overcoming the challenges

of incomplete lineage sorting. Population dynamic analyses show that population declines
commenced between 100,000 and 50,000 years ago, which is concomitant with expansion
in human populations. We also reveal genes and regulatory elements that possibly contribute
to the evolution of the digestive system, cranial appendages, immune system, metabolism,
body size, cursorial locomotion, and dentition of the ruminants.

uminantia is an important group of ter-
restrial herbivores, including at least 200
extant species (I) spanning six families:
Tragulidae, Antilocapridae, Giraffidae,
Moschidae, Cervidae, and Bovidae. The
most species-rich of these families is Bovidae,
which encompasses at least 143 species (2, 3),
including important livestock animals (such
as cattle, buffalo, yak, sheep, and goat) (4, 5).
Ruminants possess several distinct and charac-
teristic anatomical hallmarks, such as a multi-
chambered stomach and cranial appendages

(headgear). The acquisition of the rumen in the
ruminants and of the omasum in pecorans (all
ruminants except the Tragulidae) allow these
animals to use plant material with a higher ef-
ficiency than other herbivorous mammals, such
as equids (6-8). This effect is believed to be as-
sociated with the evolutionary success of these
animals in terms of diversity, abundance, and
geographic range (9). Ruminants have also evolved
extreme morphological diversity, ranging in body
weight from <2 kg to >1200 kg (10, 11), and a wide
variety of distinct behavioral and physiological

traits. Ultimately, these adaptations in ruminants
likely explain the remarkable abundance of these
animals among domestic animals.

Despite their biological prominence and value
to human civilization, much remains to be learned
about the ruminants. For example, the phylogeny
of ruminants is far from resolved, and inconsist-
encies remain even at the family level (12-15).
Moreover, the genetic basis underlying many
of their characteristic traits remains unknown.
To fill in our gaps in knowledge, we performed
de novo assembly of the genomes of 44 ruminant
species, representing 36 genera that span all
six families. In combination with five previously
published bovid genomes, two published cervid
genomes (16-22), and recently updated fossil in-
formation (15), we constructed a time-calibrated
phylogenetic tree of the group, analyzed species
population histories, and investigated the genomic
evolution of these species. Our results not only
provide data for understanding the origin and
evolution of this important mammalian group
and their particular traits but also have impli-
cations for placing ruminant livestock genomic
resources into an evolutionary context and for
conserving ruminant biodiversity.

Results
Genome sequencing, assembly,
and annotation

We used Illumina sequencing technology (23)
to generate more than 40 trillion base pairs
(Tbp) of raw data and then de novo assembled
genomes for 44 ruminant species (Table 1 and
tables S1and S2). Eleven of the species are listed
as “vulnerable” or worse on the International
Union for Conservation of Nature (IUCN) Red
List (table S1). Forty of the genomes were as-
sembled into large scaffolds (Table 1 and tables
S3 and S4) with a series of mate-paired large-
insert libraries, whereas four genomes—common
eland (Taurotragus oryx), mountain nyala
(Tragelaphus buxtoni), bongo (Tragelaphus
eurycerus), and oribi (Ourebia ourebi)—were
only assembled to the contig level becausse of
degenerated samples but still qualified for most
comparative genomic analyses (Table 1 and table
S4). In addition, we improved the quality of the
genome assembly of the black muntjac deer
(Muntiacus crinifrons; contig N50 = 2.4 Mbp)

ICenter for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China. ®Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi
Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China. *Department of Special Animal Nutrition and Feed Science, Institute of Special Animal
and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China. “Museum fir Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse

43, 10115 Berlin, Germany. ®State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China. ®Kunming Cell Bank, State Key Laboratory
of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. /State Key Laboratory of Genetic Resources and Evolution, Kunming
Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China. °Section for Computational and RNA Biology,
Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark. '°Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of
Copenhagen, Copenhagen, Denmark. 'College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, China. **Nowbio Biotechnology Company, Kunming 650201, China. *Key
Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
100101, China. “University of Chinese Academy of Sciences, Beijing 100049, China. “Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223,
China. *Copenhagen Zoo, Frederiksberg, Denmark. *’Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA. '8San Diego Zoo Institute for Conservation
Research, Escondido, CA 92027, USA. *®Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China. 2°State Key Laboratory for Conservation and Utilization of
Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China. 2!Department of Electrical and Computer Engineering, University of California at San Diego, 9500 Gilman Drive,
La Jolla, CA 92093, USA. *Evolution, Behavior, and Ecology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA. 2*EvoGenomics, Natural History Museum of
Denmark, University of Copenhagen, @ster Voldgade 5-7, 1350 Copenhagen, Denmark. 2*Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway.
2Department of Evolution and Ecology and the UC Davis Genome Center, University of California, Davis, CA, 95616, USA. 2°Section for Ecology and Evolution, Department of Biology, University

of Copenhagen, DK-2100 Copenhagen, Denmark.
*These authors contributed equally to this work.

tCorresponding author. E-mail: wwang@mail.kiz.ac.cn (W.W.); rheller@bio.ku.dk (R.H.); guojie.zhang@bio.ku.dk (G.Z.)

Chen et al., Science 364, eaav6202 (2019)

21 June 2019

1o0f 12

6T0Z ‘0Z aunc uo /b1o-Bewasusios aoualos)/:dny woiy papeojumod


http://science.sciencemag.org/

RESEARCH | RESEARCH ARTICLE | RUMINANT GENOMES

Killer whale

. Lesser mouse-deer

Okapi
Giraffe

Roedeer ------cuuuun.

./

Capreolinae Reindeer ------""""""¥Y
White-tailed deer--- - --- “

White-lipped deer
I Cervinae wile =
Chinese muntjac--.... 1 * )
Muntiacinae Indian muntjac-"""""""
L Black muntjac’ ™" """ Ty 7T

Family Forest musk deer
/ African buffalo. .. _.--

= Tragulidae Cattle

Antilocapridae Yak ‘cccceeeeeenn ”

= Giraffidae
Lesser kudu
== Cervidae

== Moschidae o
Bovinae Greater kudu 4
Bushbuck ---------=-

Sitatunga

1

== Bovidae

of

£ 0493 %4

Mountain nyala --------

Bongo

Aepyceroti Impala .- --cooonoaaaa,

Suni

Klipspringer:-----------

(‘C \
Royal antelope
Kirk's dik-dik==""""" " -
Steenbok ) \
Przewalski’s gazelle-- - - - - %
Antilopina Oribi
Thomson’s gazelle =~~~ - éﬂ o
Grant’s gazelle \
Gerenuk-----====------ - A .
{ Springbok : \
Maxwell’s duiker-------
Cephaloph Harvey’s duiker : m\
Common duiker---"""""" h ‘h

=

Bohor reedbuck

Redunci
- Defassa waterbuck -~~~

Hippotragi Gemsbok

Blue wildebeest

Alcelaphin Topi
Hartebeest -----------

Pantholopil Tibetan antelope ----- .. . v

Argali  -----eeeeeeans

Sheep

Barbary sheep .-----.
Capridae Blue sheep

IEEERENONGEEERE IMiSESREINNIIIN _ Quatemary \

40 30 20 10 P'i°°ene 0 Million years ago

Fig. 1. Phylogeny of ruminants. (A) The maximum likelihood phylogenetic tree from whole-genome sequences of 51 ruminant species and 13 fossil
calibrations. To compute the node supports, 200 bootstraps were used, and all nodes have 100% support. The origin and credit of the portraits
of different species are listed in table S54. (B) Prevalent discordance among 10,000 random WGTs was observed across different families of ruminant.
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using long reads generated from PacBio Single
Molecule, Real-Time (SMRT) sequencing. This
improved assembly of a Cervidae species facilitated
synteny and other comparative analyses within the
ruminants. Three genomes—reindeer (Rangifer
tarandus), milu deer (Elaphurus davidianus),
and Marco Polo sheep (Ovis ammon)—were re-
leased in data notes before this study (24-26).

To evaluate the quality of these genome assem-
blies (fig. S1 and tables S5 to S7), we performed
BUSCO and synteny analyses and observed high
BUSCO (27) scores (average 87%, from 75 to 93%)
(table S6) and synteny continuity (table S7), showing
that the majority of the assemblies were of high
quality for downstream comparative analyses.
The assembled genomes ranged in size from 2.52
to 3.25 Gbp, which was mostly consistent with the
cytological C values (28) and k-mer-based esti-
mations (table S5), indicating relatively complete
genome coverages for all species.

After masking repeats (table S8), we used both
de novo and homology-based gene prediction to
annotate the genomes. The protein sequences
of human (Ensembl 87 release), cattle (Ensembl
87release), and sheep (Ensembl 87 release) were
used as templates for homology-based gene pre-
diction. The final annotated gene numbers range
from 19,304 to 25,753 (table S9) among different
species, with variations driven primarily by the
quality of the assembled genomes. The gene length
and exon length distributions were similar to those
of other mammals (fig. S2 and table S9). We also
identified 221,166 ruminant-specific conserved
nonexonic elements (RSCNEs) by comparing all
the ruminant genomes to 12 mammalian outgroup

species (fig. S3 and table S10). These RSCNEs
occupy ~0.61% of the genomes (~16.5 Mbp) (table
S11) (23). A user-friendly, publicly available ge-
nome browser database was established (http://
animal.nwsuaf.edu.cn/code/index.php/Ruminantia)
for visualization of the genomic and transcrip-
tomic data presented in this study.

Resolving the ruminant phylogeny

The lack of a fully resolved phylogeny for rumi-
nants (712-15) still hinders an understanding of
the evolution of ruminant diverse phenotypes.
In particular, the phylogenetic positions of the
Antilocapridae and Moschidae families have been
strongly debated, and so have the relationships
among subfamilies within the diverse Bovidae
family [(72), review]. Furthermore, although “dwarf
antelopes” have previously been grouped in the
tribe Neotragini, recent molecular studies sug-
gest that these animals are polyphyletic (14, 15).
These controversies are probably attributable to
convergent evolution (challenging morphology-
based approaches) and incomplete lineage sort-
ing (ILS) in conjunction with the short internal
branches in the ruminant radiation (challenging
genetic inference) (12).

To resolve these phylogenetic challenges, we
first estimated a whole-genome phylogenetic tree
with ExaML under the GTR+GAMMA model (23)
using the killer whale genome (29) as an out-
group. In total, 373 Mbp of orthologous syntenic
sequences were obtained from whole-genome
alignment by using the goat as a reference genome
(19), yielding a whole-genome tree with 100%

bootstrap support for all nodes (Fig. 1A). We

also performed phylogenetic analyses with other
genome partitions, including 6406 orthologous
protein-coding genes identified in the 51 rumi-
nant species and the Killer whale, the fourfold
degenerate sites in these genes, conserved non-
exonic elements (CNEs), and complete mitochon-
drial genomes (mtDNA). With the exception of
the mtDNA tree, the topologies of all other trees
were identical with that of whole-genome tree
(Fig. 1A and figs. S4 to S10).

Although the phylogenetic tree constructed
with concatenated nuclear genome sequences
(nDNA tree) was highly supported, phylogenetic
discordance was pervasive across genomic re-
gions (Fig. 1B). To further assess genome-wide
tree discordance, 10,000 random genomic 1-Kbp
windows at least 50 Kbp distant from each other
were extracted. These 1-Kbp windows had enough
segregating sites to generate window-based gene
trees (WGTs) of high resolution (fig. S11). Although
all individual WGTs differed from the species-level
nDNA tree topology, 21.3% of WGTs exhibited
the same family-level topology as that of the con-
catenated nDNA tree (table S12). This type of tree
incongruence is usually caused by ILS, which has
been widely observed in phylogenies of many ani-
mal groups—such as African cichlids (30), birds
(31), and great apes (32, 33)—and is known to be
exacerbated by the effects of gene tree estima-
tion error (34, 35).

To ensure that the reconstructed phylogeny is
robust in the presence of ILS, we performed seve-
ral analyses with the coalescent-based phylogenetic
method ASTRAL (36) using the 10,000 WGTs.
We did not use entire genes as the unit of gene

Table 1. Assembly statistics of 44 ruminant species.

Scaffold N50 Contig N50

Scaffold N50 Contig N50

Species Common name (bp) (bp) Species Common name (bp) (bp)
Tragulus javanicus Lesser mouse-deer 243,250 6286 Redunca redunca Bohor reedbuck 438,845 17,874
Antilocapra americana Pronghorn 1,463,792 61,696 Syncerus caffer African buffalo 2,316,376 11,115
Okapia johnstoni Okapi 3,620,116 58,892 Gazella thomsoni Thomson gazelle 1,581,717 36,935
Giraffa camelopardalis Giraffe 3,197404 22,538 Tragelaphus strepsiceros Greater kudu 520,720 16,623
Muntiacus muntjak Indian muntjac 1,398,591 10,925 Nanger granti Grant's gazelle 520,131 6041
Muntiacus reevesi Chinese muntjac 1,253,719 68,151 Sylvicapra grimmia Common duiker 541,191 5209
Elaphurus davidianus Milu 3,040,530 32,708 Aepyceros melampus Impala 343,699 51,379
Rangifer tarandus Reindeer 1,059,113 91,805 Madoqua kirkii Kirk's dik-dik 489,835 26,372
Muntiacus crinifrons Black muntjac NA 1,458,913 Oreotragus oreotragus Klipspringer 340,335 13,019
Gervus albirostris White-lipped deer 3,567,448 22,599 Antidorcas marsupialis Springbok 698,575 10,778
Moschus chrysogaster Forest musk deer 2,509,225 57,721 Tragelaphus imberbis Lesser kudu 1,774,691 6545
Oryx gazella Gemsbok 1,583,972 18,132 Tragelaphus spekii Sitatunga 78,973 5410
Litocranius walleri Gerenuk 3,128,641 47546 Philantomba maxwellii Maxwell's duiker 390,552 4423
Damaliscus lunatus Topi 1,172,125 25,829 Raphicerus campestris Steenbok 474,033 5764
Ammotragus lervia Barbary sheep 1,263,981 18,541 Neotragus pygmaeus Royal antelope 365,736 5931
Pseudois nayaur Blue sheep 2,076,308 23,854 Alcelaphus buselaphus Hartebeest 11,258 4274
Ovis ammon Argali 5,734,776 45,638 Capra ibex Ibex 15,190,720 24,835
Kobus ellipsiprymnus Defassa waterbuck 782,102 20,722 Neotragus moschatus Suni 957,022 8233
Procapra przewalskii Przewalski's gazelle 5,152,914 20,018 Taurotragus oryx Common eland no scaffold 1262
Connochaetes taurinus Blue wildebeest 3,511,341 46,638 Tragelaphus buxtoni Mountain nyala no scaffold 1309
Cephalophus harveyi Harvey's duiker 365,462 39,715 Tragelaphus euryceros Bongo no scaffold 1980
Tragelaphus scriptus Bushbuck 890,554 9965 Ourebia ourebi Oribi no scaffold 1259
Chen et al., Science 364, eaav6202 (2019) 21 June 2019 3 of 12
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tree construction because genes can span over
several recombination blocks in the genome (37).
The topology of the obtained ASTRAL coalescent
tree (fig. S12) is identical to the nDNA tree (Fig. 1A).
We also used another coalescent-based phylo-
genetic method, MP-EST (38), to carry out ad-
ditional phylogenetic analyses using both the
10,000 windows as well as the 6406 orthologous
genes and obtained an identical topology as those
of the ASTRAL and nDNA trees (fig. S13), further
supporting the robustness of the inferred rumi-
nant phylogeny. To minimize negative impacts of
low tree resolution in the WGTs, we contracted
low-supported branches [below 3, 10, and 20%,
bootstrap support, as suggested in (36)] and still
observed the same topology as that of the nDNA
tree in all cases (fig. S14).

We further tested whether gene flow could
have contributed to the observed topological
discordances. The results from the ABBA-BABA
test (39), the Dyoyy, software (extend from 4 taxa

to 5 taxa) (40), and admixturegraph (41) con-
sistently suggested some possible ancient gene
flows among Giraffidae, Cervidae, Bovidae, and
Moschidae (fig. S15 and table S13). The stron-
gest gene flow signal between Giraffidae and
Cervidae-Bovidae-Moschidae coincides with an
overrepresentation of this topology in the WGTs
relative to the expectation of ILS, which requires
that for a set of four species trees, alternative two
phylogenetic topologies other than the species
tree have equal proportion (fig. S16). By contrast,
PhyloNet (42) and PhyloNetworks (43) were sensi-
tive to model and parameter choices and did not
generate consistent results (figs. S17 and S18). It
is plausible that the high parameter space of the
phylogenetic model precluded these methods from
performing complete explorations of the parameter
space in our large-time-scale phylogenomic data.

Our new ruminant tree supports a sister-group
relationship for Antilocapridae and Giraffidae,
representing the oldest branch among the ex-

tant pecoran families. This is different from the
mtDNA-based phylogenies, which placed Anti-
locapridae as an outgroup to all other pecorans
(figs. S9 and S10) (12, 14, 15). The sister relation-
ship of these two groups has been proposed be-
fore (44, 45) but now received 100% bootstrap
support by the nDNA tree and a local posterior
probability (46) of 1in the ASTRAL tree and had
23% higher frequency of WGTs than those of the
alternative topologies (fig. S16). Another con-
tentious issue is on the placement of Moschidae,
which was previously placed at the base of Pecora
(47-49) or as a sister group to Bovidae (50) from
morphological data. In some mtDNA studies,
Moschidae was proposed as a sister group of
Cervidae (51) or a sister taxon to Bovidae (14, 52, 53).
Our nDNA tree confirmed that Moschidae is a
sister group of Bovidae, and the frequency of
WGTs further support this conclusion (fig. S16).

Our results also resolved some controver-
sial subfamily relations in Bovidae, such as the
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placement of the Reduncinae (12). With the
whole-genome tree, Reduncinae were confirmed
to be a sister group to the ancestral lineage of
Caprinae, Alcelaphinae, and Hippotraginae. This
topology is also supported by the ASTRAL tree
and has a slightly higher WGT frequency than
those of alternatives (fig. S19). We further con-
firmed the previously ambiguous sister-group re-
lationship between impala (Aepyceros melampus)
and suni (Neotragus moschatus) (54, 55) and found
no phylogenetic support for the “waste-bucket”
Neotragini tribe (56). These findings mostly agree
with the topology from Decker et al. (57), which
used single-nucleotide polymorphism (SNP) chip
data but lacked samples from Moschidae and
Tragulidae. Furthermore, our results provided
higher bootstrap supports for the deep nodes
and also refined some species positions within
Bovidae—the position of bushbuck (7ragelaphus
scriptus) and mountain nyala (Tragelaphus
buxtoni).

Using fossil calibrations (tables S14-and S15)
(15), we estimated the emergence of crown Ru-
minantia at 39.1 million to 32.3 million years ago
(late Oligocene), and the emergence of Pecora at
23.3 million to 20.8 million years ago (Neocene)
(Fig. 1A and figs. S20 to S27). The evolutionary
rate in the ancestral ruminant lineage was ~1.5 x
1072, which was significantly higher than that in
other mammals (Student’s ¢ test, P < 0.01) (fig.
S$28). Among the ruminant families, Tragulidae
had the highest evolutionary rate, and Giraffidae
had the lowest evolutionary rate (fig. S28). We
found a significant negative correlation between
evolutionary rate and log body size (fig. S29).

Pleistocene population dynamics
in ruminants

We used our whole-genome dataset to investigate
the demographic histories of different ruminant
species using the pairwise sequentially Markovian
coalescent (PSMC) method (58), which can infer
changes in the effective population size (IV,) over
the Pleistocene (figs. S30 and S31 and table S16).
The analyses produced a species-specific demo-
graphic pattern with no clear grouping of patterns
according to their habitat types or feeding types
(fig. S32). This might imply that the ruminant
species responded differentially to biotic and
abiotic pressures associated with their differ-
ent ecological niches (59). However, we found
population declines for many species (25 out of
the 40 species with scaffolded genome assem-
blies) starting from ~100,000 to 50,000 years ago
(Fig. 2A), which suggests that late Pleistocene
large mammal declines were much more severe
than previously suspected, involving major de-
clines in the populations of most species along
with the mass extinction of large mammals at
this time (60). We speculate that this community-
wide decline might be at least partially attrib-
utable to human activities. This is supported by
ruminant population declines coinciding with
increasing human effective population size after
the dispersal out of Africa during this period
(Fig. 2A) (61). Intriguingly, the onset of ruminant
decline coincided with the sequential population
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expansion of humans on different continents
in this period (Fig. 2B), which would not be
expected if the decline signal was a structural
artefact. By contrast, ruminant population size
dynamics showed no apparent correlation with
the climatic changes dominated by serial glaci-
ations during the Pleistocene (figs. S30 and S31).
Taken together, these results highlight a possi-
ble role for humans in the massive decline of
mammalian species in the late Pleistocene (60).

Structure and evolution of
ruminant genomes
Synteny

‘We explored the general architecture of ruminant
genomes through comparison with other high-
quality mammalian genomes (23). Specifically,
we compared the syntenic relationship between
the goat (the most well-assembled ruminant
genome) (19) and human (Primates) (62), dog
(Carnivora) (63), horse (Perissodactyla) (64), pig
(Suina) (65), camel (Tylopoda) (66), Killer whale
(Cetacea) (29), and black muntjac (Cervidae of
Ruminantia). The high-quality assembly of the
black muntjac (Table 1) by use of PacBio reads
allowed us to assess the within-ruminant synteny
by including both a Cervidae representative as
well as the high-quality Bovidae representative
(goat). We found that Primates and Perissodactyla
have more prevalent genome rearrangements
(>200 rearrangements per million base pairs)
compared with that of Ruminantia (Fig. 3A and
table S17). Within the Cetartiodactyla, pig (2n = 18,
Suina) and camel (2n = 74, Tylopoda) experienced
more genome rearrangements (~120 rearrange-
ments per million base pairs) than the killer whale
(2n = 44, Cetacea). Thus, the greater level of con-
served synteny between Cetacea and Ruminantia
(68 rearrangements per million base pairs) is con-
sistent with their sister relationship within the
Cetartiodactyla. Few rearrangements (19 rear-
rangements per million base pairs) were observed
between the black muntjac (2n = 8/9) and the
goat (2n = 58), suggesting that synteny has been
conserved among different lineages of Ruminantia,
despite large variation in chromosome numbers
(table S18).

Genome size

Our ruminant genome assembly sizes ranged
from 2.52 Gbp [oribi (Qurebia ourebi)] to 3.25 Gbp
[Klipspringer (Oreotragus oreotragus)] (table S5).
The average assembled genome size of rumi-
nants was (2.7 Gbp), which is larger than Car-
nivora (~2.3 Gbp), Perissodactyla (~2.4 Gbp),
Suina (~2.5 Gbp), Tylopoda (~2.0 Gbp), and
Cetacea (~2.4 Gbp) and smaller than Primates
(~3.0 Gbp) (Fig. 3B). Analyses (23) confirm that
transposable element (TE) content is the major
cause of genome size variation (Fig. 3, B and C,
and table S19).

When comparing the goat genome with the
human, horse, pig, and Kkiller whale genomes, we
also observed and validated (23) large insertions
and deletions (over 50 kbp in length) in ruminants
(table S20). The largest insertion from segmental
duplication in the goat contains a cluster of PAG

(pregnancy-associated glycoprotein) genes, with
36 coding sequences and 32 pseudogenes (Fig. 3D).
The main functions of PAGs are immune regu-
lation and maintenance of pregnancy (67). We
also found other insertions with important gene
annotations in ruminants, including interferon
and olfactory receptors (fig. S33 and table S21).

Evolution of genes and gene families
in Ruminants

‘We obtained a high-confidence orthologous gene
set for the full set of 51 ruminant species using
camel, cat, dog, horse, human, minke whale, killer
whale, and pig as outgroups (23). Using the re-
solved phylogeny of Ruminantia, we identified
rapidly evolving genes (REGs), positively selected
genes (PSGs), and newly evolved genes (Fig. 4A
and tables S22 to S25) (23).

Functional enrichment analyses of the PSGs
(tables S26 and S27), the REGs (table S28), and
expanded gene families (table S29) in the ances-
tral ruminant branch all exhibit enrichment in
immune functions. As many as 20 PSGs and 12
REGs are involved in the crossing of blood vessels
by leukocytes, which respectively constitutes 17.9
and 10.7% of this key pathway in active immuni-
zation (Fig. 4B and tables S30 and S31) (68, 69).
‘We also observed gene family expansions in the
ruminant ancestor (table S32), including the in-
terferon family (IFNs) (figs. S34 to S36), PAG fam-
ily (fig. S34,), and cathelicidin and serpin peptidase
inhibitor families (figs. S34, S37, and S38), which
are all involved in immune system pathways. In ad-
dition, we identified a rumen-specifically expressed
newly evolved gene, ENSBTAG00000038127
(23), which contains an immunoglobulin V-set
domain, usually involved in mimicking the anti-
body variable domain of several diverse protein
families (70). Although rapid evolution of immune
genes was found in a wide range of animals, the
number of PSGs from the leukocyte transendo-
thelial pathway is highest in Ruminantia and
could suggest a key role of this pathway in the
evolution of ruminant immune system (table S33).

In addition to immune system-related genes,
we also observed a series of PSGs, REGs, and
expanded gene families in ruminants involved
in lipid metabolism, glycolysis, oxidative phos-
phorylation, and amino acid metabolism (Fig. 4,
Cand D, and table S34) (23). Ruminants have a
distinct digestive system, in which the main
source of energy comes from volatile fatty acids
(VFAs) and the rate of glycolysis is low (71). The
genomic changes associated with metabolism
may reflect the adaptation of the digestive sys-
tem in ruminants and may therefore have played
important parts in the success of the ruminants.

Genomic variations related to ruminant
morphological characteristics

We were able to leverage our phylogenetic tree
and genomic data to conduct evolutionary ge-
nomic analyses aimed at identifying genomic
variations correlated with particular ruminant
characteristics. Specifically, we investigated the
evolution of the multichambered stomach, head-
gear, body size, cursorial locomotion, and dentition.
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Evolution of the multichambered stomach
Whereas pecoran ruminants have a four-
chambered stomach composed of the rumen,
reticulum, omasum, and abomasum, the basal
group of Ruminantia, the Tragulidae, lacks the
omasum (72).

Using a transcriptomic dataset from 516 sam-
ples covering 50 tissues of sheep (table S35) (23),
we found that the gene expression profiles of
rumen, reticulum, and omasum are closest to that
of esophagus (Fig. 5A), implying that the three
stomach chambers might have originated from
the esophagus, as suggested by Warner (73) and

Xiang et al. (74). Regarding the distinct rumen
organ, we found that several newly evolved genes
played arole in its function. Among the 295 newly
evolved genes identified in the ancestor of rumi-
nants (Fig. 4A and fig. S39), seven were highly
or specifically expressed in the rumen (fig. S40).
Two genes, PRD-SPRRII and TCHHL2, are im-
portant structural genes in the rumen (I6). Three
newly evolved serpin genes may have inhibitory
functions of different proteases or through anti-
inflammatory functions (75, 76), and two KRT6A
genes are likely involved in the activation of
follicular keratinocytes (77, 78).

Although the abomasum is analogous to the
true stomach in other mammals, it is hypothe-
sized that the ruminant abomasum has evolved
particular adaptations to digest the microbe-rich
content from upstream chambers (72). The lyso-
zyme ¢ family, which degrades bacterial and mi-
crobial cells as members enter the abomasum to
extract nutrients (79), has expanded to 10 or more
copies in ruminants, whereas other mammals
have only one or a few copies of this gene fam-
ily (79). Our comparative genomics analyses re-
vealed that the duplication of lysozyme c genes
began in the ancestors of Ruminantia, continued to
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Fig. 3. Structural characteristics and evolution of ruminant genomes.
(A) Goat (19) was used to represent Ruminantia-specific genomic
rearrangements in comparisons with Primates (human), Perissodactyla
(horse), Suina (pig), Tylopoda (camel), and Cetacea (Killer whale).
Syntenic blocks are linked between genomes in a circos plot. The red
number beside each circos quantifies the occurrences of rearrangement
events per aligned megabase (Mb) sequence. The high-quality de novo
assembly of the black muntjac was included for within-ruminant synteny
inference. (B) The average genome sizes, TE sizes, and contents of different
TE types of Primates (human, chimpanzee, gorilla, and orangutan), Carnivora
(dog, cheetah, and polar bear), Perissodactyla (horse, przewalski's horse,
and rhinoceros), Tylopoda (dromedary camel, bactrian camel, and alpaca),
Suina (pig), and Cetacea (minke whale, killer whale, beluga whale, sperm
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whale, and yangtze finless porpoise). Overall, the average genome size of
Ruminantia is significantly (Student's t test, P < 0.01) larger than those

of Canivora, Perissodactyla, Tylopoda, Suina, and Cetacea. Tragulidae

is marked with dashed lines because the genome assembly contains more
gaps, which hindered the annotation of TEs. The proportions of LINE,
SINE, LTR, and DNA transposons are presented in the stacked bar plot. LINE/
BovB and LINE/LL are highlighted here to present their dynamic changes
among ruminants. ***P < 0.01. (C) The average contents of different SINE
types are plotted in the stacked bar plot across mammalian orders and
suborders of Cetartiodactyla, with different colors. (D) A large fragment
insertion of 3,396,232 bp is observed in the goat genome, which is also
validated in other ruminant families, containing a cluster of PAG genes,
specifically containing 36 coding genes and 32 pseudogenes in goat.
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expand along the diversification of pecoran families,
and eventually culminated with the highest copy
numbers in Bovidae (Fig. 4D). This accumulated
evolution of lysozyme c gene copy number in rumi-
nants may be associated with an improved harvest-
ing of nutrients from the rumen microbiome.

As a newly evolved organ in the pecorans, the
omasum is adjacent to the reticulum, whereas its
expression profile is closest to that of the rumen.
This expression overlap may be linked to the
resemblance in structure and function of the
rumen and omasum, which are both involved in
the absorption of water, minerals, electrolytes,
and VFAs, whereas the reticulum mainly has a
different function as a filter for the fermenta-
tion products from the rumen (6). Anatomically,
the omasum is composed of the same stratified
squamous epithelium of mucosal-layered tissue
as the rumen and reticulum, which is different
from the abomasum and intestines (6). To fur-
ther reveal the genetic basis underlying the evo-
lution of the omasum in pecorans, we identified
75 genes that were specifically highly expressed
in the omasum compared with other organs
(fig. S41). Among these, one gene was newly
evolved (LOC101107119), and another (SCNN1D)
exhibited pecoran-specific amino acid changes
relative to Tragulidae and Killer whale genomes
(fig. S42). LOC101107119 is annotated as a pros-
taglandin F synthase 1-like gene and might have
a similar function to that of the prostaglandin
F synthase 1 (PGDF1), which is involved in ke-
tone metabolism (80). SCNNI1D encodes the &
subunit of the epithelial sodium channel, which
mediates Na* reabsorption and water absorption
in the digestive tract (81).

Transcriptional factors and regulatory ele-
ments may have played important roles in the
evolution of the omasum by changing the expres-
sion patterns of their host genes to be recruited
in omasum functions. We found four genes with
pecoran-specific CNEs within their immediate
upstream/downstream 10-kbp regions (SIM2,
PAX9, KCNK5, and DENND2C) (table S36), of
which PAX9 and SIM2 are important transcrip-
tional factors. PAX9 regulates squamous cell dif-
ferentiation in the esophageal epithelium (82). A
CNE with two pecoran-specific mutations was
found at the 5’ upstream of PAX9 in pecorans,
which might play a role in regulating PAX9 ex-
pression in the omasum. SIM2 is highly expressed
in the omasum but inactive in the rumen [frag-
ments per kilobase of exon per million fragments
mapped (FPKM) < 1], and it works as a suppres-
sor of cell proliferation in the epithelium (83, 84).
The differential expression patterns of SIM2 in
the omasum and rumen is consistent with the
epithelial cells in the omasum not being com-
pletely renewed, as is the case in the rumen (85).

Evolution of headgear

The ruminant families exhibit spectacular vari-
ation in headgear morphology (86). To reveal the
genetic basis of headgear origin in ruminants, its
secondary loss in two independent lineages and
the biologically exceptional, rapid regeneration
ability of cervid antlers, we performed large-
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scale comparative transcriptomics and functional
experiments in an accompanying paper (87).
Substantial similarities in the transcriptome profiling
of different headgear types (87) are consistent with
a single origin of headgear in the pecoran ancestor.
This ancestral headgear subsequently diversified
into horns, antlers, ossicones, and pronghorns in
the different pecoran families and was lost inde-
pendently in the lineages of Moschidae and
Hydropotinae perhaps because of the convergent
pseudogenization of the horn-development RXFP2
gene (87). These complex patterns, along with the
lack of a well-resolved phylogeny, have confounded
a synthesis of headgear evolution.

We further examined the 201 highly expressed
genes in the headgear of both bovids and cervids
(87) and identified 36 of these genes harboring
pecoran-specific CNEs (table S36). Nine genes
(ALX1, VCAN, COL1A1, SATB2, RUNX2, POSTN,
SP7, TNC, and COL4A2) were classified in Gene
Ontology (GO) categories related to bone devel-
opment. RUNX2 is a key transcriptional factor
in the regulation of bone development (88) and
has four pecoran-specific CNEs in its intronic
regions (fig. S43A and table S36), potentially
causing high RUNX2 expression in the headgear
sprouts. SP7 encodes an important regulatory
factor of the biomineralization and formation
of bones (89) and has specific mutations in the
pecoran 3’ untranslated region, one of which was
located in the binding region of the microRNA
bta-mir-145 (fig. S43B). These genes were possi-
bly rewired for the formation of bony headgears
of ruminants, laying out a hypothesis that can be
tested experimentally in the future.

In addition, we explored the genetic basis of
the keratinous sheath found convergently in
Bovidae and Antilocapridae headgear (Fig. 5B).
Transcriptomic data from horn sprouts of sheep
and goat (87), both of which belong to Bovidae,
identified seven highly expressed keratin genes:
KRT1,KRT2, KRT3, KRT5, KRT10, KRT14,and
KRT84 (fig. S44.A). Except for KRT10 and KRT14,
the above keratin genes encode Type II a-keratin
proteins, suggesting an essential role for Type II
a-keratin genes in the formation of the kerat-
inous sheath of bovids. We further examined
convergent amino acid substitutions between the
pronghorn (Antilocapra americana) and bovids.
Using the 12 mammalian species and other
ruminant species as outgroups, we identified
106 proteins (table S37) that contain at least two
convergent amino acid changes in these two
ruminant families (23). Among these proteins, a
horn-specific Type II a-keratin protein, KRT82,
contained two convergently changed amino acid
sites, Ala®?Thr and Ser®®Ala, of which the Ala®?Thr
is located in the Keratin head domain (Fig. 5B and
fig. S44B). This suggests that Type II a-keratin
may be important in forming the keratinous
sheath that evolved convergently in Bovidae and
Antilocapridae.

Evolution of body size in ruminants

Ruminants, especially bovids, encompass a wide
body size range that spans four orders of magni-
tude, from as little as 2 kg to as high as 1200 kg

(Fig. 5C) (10, 11). We retrieved 642 genes related
to the development of body size and estimated
the ratios between the nonsynonymous substi-
tution rate (dN) and synonymous substitution
rate (dS) of these genes on branches that exhibit
substantially increased body sizes and on branches
that exhibit decreased body sizes (fig. S45). Com-
pared with the background, these genes showed
significantly higher dV/dS ratios in branches with
large-sized and small-sized species (Student’s
t test, P < 0.01) but similar ratios in branches
with medium-sized species (Fig. 5D). We ob-
served six genes (CXCL13, RNF115, NPNT, KL,
SLC9A3RI, and MSTN) that had significantly
elevated dNN/dS ratios along with the increasing
of body size (Student’s ¢ test, P < 0.01) (table S38),
and SLC9A3RI and MSTN have dN/dS values > 1,
an indication of positive selection. SLC9A3RI1
affects osteogenesis by mineralizing osteoblasts,
and disrupting this gene resulted in reduced body
weights in mice (90). MSTN is an important gene
in the regulation of muscle cell growth and dif-
ferentiation (91), and mutations in MSTN affect
the muscle mass of goat (92), sheep (93), and
cattle (94, 95) as well as other mammals (96, 97).
These results indicate that SLC9A3RI and MSTN
might be targets of natural selection favoring
increased body sizes (fig. S45) by regulating the
development of bone and muscle. In reduced
body size branches, five genes (SBDS, BMP3,
LRRN3, NFATC3, and SMARCALTI) had signifi-
cantly elevated dN/dS ratios (table S38), and the
dN/dS ratio of SBDS was larger than 1. SBDS is
an important gene in cell proliferation and is the
causal gene of Shwachman-Diamond syndrome
in humans, which is characterized by skeletal
abnormalities and short stature (98). BMP3is a
well-known gene involved in the regulation of
osteogenesis in mammals (99). The genes men-
tioned above may therefore explain the body size
variation in ruminants and may be relevant to
livestock breeding application.

As the tallest terrestrial animal, giraffes have
a distinct stature and body morphology, which
likely are adaptions to their savanna habitat (00).
Among the 366 genes related to bone develop-
ment in the KEGG annotation, 115 genes had
giraffe-specific mutations (table S39), including
genes in the transforming growth factor- (TGF- B),
Hedgehog, Notch, Wnt, and FGF signaling path-
ways. Eleven genes with more than four non-
synonymous mutations may be related to the
extreme elongation of body structures in giraffe
because they are part of bone development path-
ways: TGF-B (CHRD and LTBPI), Wnt (APC, APC2,
and CREBBP), Notch (NOTCHI1, NOTCH3, and
NOTCH4), Hedgehog (GLI2 and GLI3), and FGF
(FGFRLI) (Fig. 5C). Three such genes (FGFRLI,
NOTCH4, and CREBBP) had been identified in
a previous comparative study by using a low-
coverage genome assembly of giraffe (Giraffa
camelopardalis) (table S39) (100).

Adaptations to cursorial locomotion

Although early ruminants were probably forest-
dwelling (10I), many lineages have adapted to
open habitats by adopting more cursorial body
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plans designed for rapid and/or sustained move-
ment in an open habitat (102). These include
adaptations in limb morphology (103) and possi-
bly also physiology. The pronghorn (Antilocapra
americana) and members of Antilopinae such
as the springbok (Antidorcas marsupialis) are
among the fastest-running animals on Earth
(104). Both lineages exhibit strong selection in
their mitochondrial electron transport chains,

between these species. In Antilopinae, two genes,
SUOX (sulfite oxidase) and NLN (neurolysin),
were under positive selection (x2 test, P < 0.05)
(table S24). In the pronghorn, two mitochon-
drial electron transport chain enzyme encoding
genes [COX5A (cytochrome c oxidase subunit
5A) and PPOX (protoporphyrinogen oxidase)]
were subjected to positive selection (X2 test,
P value < 0.05) (table S24). In addition, four

chain—NDUFA10 (reduced nicotinamide ade-
nine dinucleotide dehydrogenase 1 o subcomplex
subunit 10), SDHB (succinate dehydrogenase
iron-sulfur subunit), UQCRC2 (cytochrome b-cl1
complex subunit 2), and ATP5B (adenosine 5'-
triphosphate synthase subunit ), functioning in
oxidative phosphorylation—exhibited convergent
amino acid changes (Fig. 5E and tables S40 and
S41). Furthermore, all species of the bovid tribe

although the targeted genes of selection differ
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proteins in the mitochondrial electron transport

Alcelaphini, which are adapted to open and seasonal

Pathogens
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Leukocyte transendothelial migration
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cD99 HuAM3 HJAM3
CLDN23
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Transendothelialg . — |- —
mlgrallon
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molecules  CLDN15 A
I
1
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1
1
1
1
1
1
1
= Direct interaction MYL2
- = Indirect interaction MYL10
=) Positive regulation
—] Negtive regulation
Pri -— -
(Human) vearss Lyx CPSF6
Perissodactyla ¢=—d=- 4=
(Horse) YEATss Lyz CPSF6
Suina —¢= «
(Pig) YEATsa Lyz CPSF6
Cet: A; A; &
«
(Killer whale) YEATs4 Lyz CPSF6
Tragulidae
(Lesser mouse-deer) YEATS4 Lyz1 Lyz4 Lyz10 CPSF6
Antilocapridae ¢—@—)— —————a)——
(Pronghorn) YEATS4 Lyz1 Lyz2 Lyz3 Lyzd  Lyz5 Lyz6 Lyz7 Lyz10 CPSF6
Giraffidae —_—
(Giraffe) YEATSS Lyzt Lyz2  Lyz3 Lyz4  Lyz5 Lyz6 Lyz7 Lyz8 Lyz9 Lyz10 CPSF6
Cervidae —_—
(Black muntjac) YEATS4 Lyz1  Lyz2 Lyz3 lyzd  Lyz5 Lyz6 Lyz7 Lyz8 Lyz10 CPSF6

Moschidae @—@—a)— ———0)——

(Forest musk deer) YEATS4 Lyz1  Lyz2  Lyz3 Lyz4  Lyz5 Lyz6 Lyz7 Lyz8 Gap Lyz10 CPSF6
Bovidae - -
(Cattle) YEATS4 Lyz1 Lyzza Lyz3a " lyz3c i lyz4 Lyz5 Lyz6 Lyz7 Lyz8 Lyz9 Lyz10 CPSF6
Lyz3b  Lyz2c

rectangles represent the REGs. The solid lines represent direct interaction,
and the dotted lines represent indirect interactions. (C) Diagram of nutrient
metabolism evolution in Ruminantia displaying genes involved in nutrition
metabolism. Expanded gene families are marked red, PSGs are marked
yellow, and REGs are marked blue in (C) and (D). (D) Expansion of the
lysozyme ¢ gene family throughout the Ruminantia. The different expanded
copies are presented with colors. Each line corresponds to the order or
family in (A), and we chose the best assembled species genome sequences
to draw the region. The slashes on each line indicate the ends of scaffolds
in the assembled genomes.
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grasslands and have cursorial locomotion, shared
three specific mutations (Tyr*"Phe, GIn*®'Arg, and
Glu®*Ala) in the ACE (angiotensin I converting
enzyme) gene (fig. S46) and one specific muta-
tion (Glu”’Asp) in the EPO (erythropoietin) gene

(fig. S47), both of which are important for endurance
(105, 106). These observations imply that shared
or distinct molecular pathways might have
played roles in convergent phenotypic evolu-
tion during the radiation of ruminants.

Evolution of dentition

Ruminants have specialized dentition patterns,
lacking upper incisors and having a high prev-
alence of high-crowned or hypsodont teeth—a
likely adaptation to abrasive diets such as grass or
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4 > 305
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: . 0Ll
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............................................. Large size |
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........................................ Medium Size ||
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e/ope SG"dee
Sheath & j E
::' Antilocapridae Complex | Complex Il Complex Il Complex IV Complex V
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L T )]
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Giraffe RAGAT AGGSSS < Antilopinae “
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Fig. 5. Genomic features related to ruminant characteristics. (A) Pairwise
Spearman correlations of gene expressions indicated that the omasum,
rumen, and reticulum evolved as an extension of the esophagus, whereas
the abomasum evolved as an extension of the duodenum. Although it is
anatomically closer to the reticulum, the omasum has a more similar gene
expression atlas with that of the rumen than the reticulum, which mirrors the
similar functions between them. (B) Diagram of the convergent feature of
keratinous sheath in the Bovidae and Antilocapridae. The two red amino acids
indicate convergent mutations of the KRT82 between Antilocapridae and
Bovidae, and the red dots indicate the included species of Antilocapridae and
Bovidae. (C) Body size contrast among ruminants and 11 genes related with
bone development that have at least four specific mutations in giraffe and

Chen et al., Science 364, eaav6202 (2019) 21 June 2019

are involved in TGF-B, Hedgehog, Notch, Wnt, and FGF pathways. (D) A total
of 642 genes in GO related to the development of body size are retrieved,
and we calculated the dN/dS ratios on the branches, leading to large,
medium, and small body sizes, under the two-ratio branch model (model 2)
of PAML. Background dN/dS ratios are calculated under one-ratio branch
model (model 1) of PAML. The distribution densities of the dN/dS values are
shown. A box plot of dN/dS values in different body size categories is
shown. The mean dN/dS values at the branches of large body size and
small body size are significantly larger than background. ***P < 0.01.

(E) Antilocapridae and Antilopinae species are among the most mobile
land mammals, and both of them have specific mutations in several genes
of the mitochondrial electron transport chain.
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feeding under abrasive conditions, as encountered
in dry habitats (107). The distinct dentition is
believed to have contributed to the evolutionary
success of the ruminants by expanding their food
sources (108). We observed that 11 genes related
to dentition had RSCNEs in the 10-kbp down-
stream or upstream or in introns (table S42).
Among these genes, ENAM functions in the min-
eralization and structural organization of enamel
(109) and is possibly associated with enamel thick-
ness in humans (710). Furthermore, ENAM is an
important factor in the adaptation of dentition
to specific diets (117). We observed seven RSCNEs
in this gene region (fig. S48A). In addition to
these RSCNEs, ENAM had a two-amino acid
insertion and several mutations that were spe-
cific to ruminants (fig. S48, B and C). A genome-
wide association analysis using the hypsodonty
index of ruminants [data from (772)] identified
one SNP significantly associated (Fisher’s exact
test, P < 0.01) with the hypsodonty index located
in the binding site of the EBFI transcription fac-
tor in the intron of FGFI4 (fig. S49), an important
factor controlling tooth development (113). These
genes provide candidates for future experimental
studies on mammal dentition.

Conclusion

A well-resolved phylogeny of Ruminantia with
full genome data provides an opportunity to
understand the evolutionary processes and
genetic basis of the distinct structure and evo-
lutionary patterns of ruminants. Our compre-
hensive evolutionary and comparative analyses
have revealed numerous genetic variations cor-
related with specific traits in ruminants. This
study provides valuable genomic resources as
well as insights into not only the evolution and
diversification of ruminants but also our under-
standing of mammalian biology.

Materials and methods

We sequenced and assembled 44 ruminant
genomes using Illumina reads, with the black
muntjac (Muntiacus crinifrons) further se-
quenced with PacBio SMART long reads. The
assemblies were performed with SOAPdenovo
v1.05 (114), Platanus v1.2.4: (115), and Supernova
assembler (116), and some contigs were further
scaffolded with SSPACE v3.0 (117) and “cross_
genome” commands in the Phusion2 package
(118). Repeat elements were annotated by com-
bining results of Tandem Repeat Finder v4.07b
(119), RepeatMasker v4.0.5 (120), RepeatModeller
v1.0.4(120), and LTR_FINDER v1.0.6 (121). Genes
were annotated with homologous TBLASTN (722)
protein searches of human (Ensembl 87 release),
cattle (Ensembl 87 release), and sheep (Ensembl
87 release), combining de novo prediction of
SNAP (123), GENSCAN V1.0 (124), glimmerHMM
v3.0.3 (125), and AUGUSTUS v2.5.5 (126). Whole-
genome alignments were constructed with LAST
v885 (127) and MULTIZ v11.2 (128), using goat as
the reference. The maximum likelihood phylo-
genic trees were constructed with RAXML v8.2.9
(129) and ExaML v3.0.17 (130) by using a gene-
ral time-reversible model (“GTR+GAMMA”).
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ASTRALIII v5.1.1 (36) and MP-EST v2.0 (38) were
used to perform coalescent species tree estima-
tions. DiscoVista v1.0 (131) was used to quantify
and visualize gene tree discordance for alterna-
tive topologies. Gene flows among ruminant fami-
lies were performed with ABBA-BABA test (39),
Drory, (40), admixturegraph v1.0.2 (1), PhyloNet
v3.6.9 (42), and PhyloNetworks v0.9.0 (43). Time
calibration was conducted with r8s v1.70 (132),
BEAST v1.8.4 (133), MCMCTREE in PAML v4.8
(134), and Multidivtime (735). Demographic his-
tory reconstruction was carried out by means
of PSMC analysis (56). PhyloFit v1.4 (136) and
phastCons v1.4 (137) were used to infer conserved
nonexonic elements in ruminants. PSGs and
REGs were identified by use of branch and branch-
site models in PAML v4.8 (134). The gene family
expansion or contraction analysis was performed
by using CAFE v4.7 (138). In-house scripts and
pipelines are deposited in Zenodo (https://zenodo.
org/record/2549147). Detailed methods and mate-
rials are described in the supplementary mate-
rials (23).
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Large-scale ruminant genome sequencing provides insights into their evolution and distinct
traits
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Phylogeny and characteristics of ruminants

Ruminants are a diverse group of mammals that includes families containing well-known taxa such as deer, cows,
and goats. However, their evolutionary relationships have been contentious, as have the origins of their distinctive
digestive systems and headgear, including antlers and horns (see the Perspective by Ker and Yang). To understand the
relationships among ruminants, L. Chen et al. sequenced 44 species representing 6 families and performed a
phylogenetic analysis. From this analysis, they were able to resolve the phylogeny of many genera and document
incomplete lineage sorting among major clades. Interestingly, they found evidence for large population reductions among
many taxa starting at approximately 100,000 years ago, coinciding with the migration of humans out of Africa. Examining
the bony appendages on the head ——the so-called headgear——Wang et al. describe specific evolutionary changes in the
ruminants and identify selection on cancer-related genes that may function in antler development in deer. Finally, Lin et
al. take a close look at the reindeer genome and identify the genetic basis of adaptations that allow reindeer to survive in
the harsh conditions of the Arctic.

Science, this issue p. eaav6202, p. eaav6335, p. eaav6312; see also p. 1130

ARTICLE TOOLS http://science.sciencemag.org/content/364/6446/eaav6202

alz\ﬁFE’%'\\"LESNTARY http://science.sciencemag.org/content/suppl/2019/06/19/364.6446.eaav6202.DC1
RELATED . i i i

CONTENT http://science.sciencemag.org/content/sci/364/6446/1150.full

http://science.sciencemag.org/content/sci/364/6446/eaav6335.full
http://science.sciencemag.org/content/sci/364/6446/eaav6312.full

REFERENCES This article cites 193 articles, 39 of which you can access for free
http://science.sciencemag.org/content/364/6446/eaav6202#BIBL

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title
Science is a registered trademark of AAAS.

6T0Z ‘0z aung uo /B10°Bewsousios aouslds//:dny Wwoiy papeojumod


http://science.sciencemag.org/content/364/6446/eaav6202
http://science.sciencemag.org/content/suppl/2019/06/19/364.6446.eaav6202.DC1
http://science.sciencemag.org/content/sci/364/6446/1150.full
http://science.sciencemag.org/content/sci/364/6446/eaav6335.full
http://science.sciencemag.org/content/sci/364/6446/eaav6312.full
http://science.sciencemag.org/content/364/6446/eaav6202#BIBL
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title
Science is a registered trademark of AAAS.

6T0Z ‘0z aung uo /B10°Bewsousios aouslds//:dny Wwoiy papeojumod


http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

