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Abstract

Cancer biology can be better understood by drawing upon methods and
concepts from evolutionary genetics. Cancer progression proceeds through
somatic evolution, being driven by selection on clonal lineages via the
differential survival and proliferation of cell lines. This within-patient
evolution can be modeled and analyzed using population genetic and
phylogenetic tools to identify mutations and genotypes that are under direc-
tional selection during tumor growth, spatial differentiation, and metastasis.
Evolutionary genetics can also explain the persistence of cancer within pop-
ulations. A minority of cancers are associated with inherited risk alleles,
which are maintained in populations through genetic drift or antagonistic
pleiotropy. Finally, cancer biology can be understood from a macroevolu-
tionary perspective as a case study of evolutionary cooperation and conflict
between different levels of biological organization.
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INTRODUCTION

Like most biological phenomena, cancer can be analyzed from the perspectives of both proximate
and ultimate causation (Mayr 1982). The proximate causes for cancer are case specific, contingent
upon dysregulation of particular genes, disruption of regulatory and signaling pathways, and
particular classes of mutations. Understanding the proximate, mechanistic causes of tumorigenesis
and cancer progression involves a systems analysis of the molecular mechanisms that regulate cell
growth, apoptosis, as well as cell adhesion and motility.

In contrast, evolutionary biology has informed the search for cancer’s ultimate causes and its
incidence in populations. For example, cancer has been conceptualized as a conflict between the
fitness of a multicellular organism and the fitness of its component cells (Burt & Trivers 2006,
Aktipis et al. 2015). The empirical and conceptual bridge between these proximate/functional
and ultimate/evolutionary explanations of cancer biology is through population and evolutionary
genomics. Mutational changes in individual cells drive the dysregulation of gene expression and
signaling pathways characteristic of cancer, and they also provide the raw material for natural
selection to act on clonal lineages of cells within an organism. Consequently, both the incidence
of cancer and the dynamics of cancer progression are the result of evolutionary processes (Cairns
1975, Greaves 2000, Crespi & Summers 2005, Merlo et al. 2006, Pepper et al. 2009, Thomas et al.
2013). Understanding these evolutionary dynamics will lead to novel approaches to characterizing
the genetic and cellular basis of cancers, as well as guiding the development of cancer treatments
that are attuned to genetic variation within tumors and their ability to adapt to the host
environment and to therapies. Conversely, cancer evolution, whether within affected individuals
or populations or over macroevolutionary time, can provide a valuable model system for better
understanding fundamental evolutionary principles in populations of clonally reproducing
organisms.

We begin with a brief review of the genetic mechanisms and cellular basis of cancer
(Hanahan & Weinberg 2000, 2011). We then describe evolutionary perspectives on cancer, start-
ing at small temporal and spatial scales (within-host dynamics) and moving up to larger scales of
host population genetics and ultimately macroevolution.

The Genetic and Cellular Hallmarks of Cancer

A unifying feature of cancer is the tendency of tumor cells to proliferate, either because of increased
cell division, reduced cell death, or differentiation. These are often the result of mutations that
(a) make cells insensitive to external signals inhibiting growth (e.g., contact inhibition), (b) induce
internal signaling pathways that drive autonomous cell division, or (c) immortalize cell lines by
preventing senescence and inhibiting apoptosis following cell damage. These characteristics confer
increased fitness of tumor cell lines (clonal lineages) relative to other cells in the nascent tumor or
to normal tissue cells.

The fitness of cancer cells also increases through their ability to modify their microenviron-
ments. Among these abilities is the induction of angiogenesis to provide oxygen and nutrients
to cells within large tumors, thus removing surface area/volume constraints on growth (Nishida
et al. 2006, Weis & Cheresh 2011). Changes to motility and adhesion allow cancer cells to disperse
(local invasion, metastasis) and to invade novel environments (Martin et al. 2000) in response to
selective pressures, analogous to the dispersal and subsequent niche construction in free-living
organisms. Tumor cells also suppress the host’s immune response (Seliger 2005) or alter the con-
figuration of their membrane protein antigens (Gajewski et al. 2013) to evade immune attack.
In this respect, cancer cells behave much like microbial pathogens and parasites that suppress or
evade the host immune system.
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The molecular bases of these traits are beyond the scope of this article, but it is important to
highlight several general classes of cancer-related mutations that influence evolutionary dynamics.
Cancer-causing mutations can be broadly subdivided into tumor suppressor genes and oncogenes.
However, for the purposes of evolutionary models of cancer, it is often of greater importance to
classify cancer-associated mutations according to additional criteria, such as their effects on the
survival and reproduction of cancer cells, whether the mutations are dominant or recessive, and
whether the mutations are somatic or in the germline.

Tumor suppressor genes have a negative, inhibitory role in the cell cycle. The function of most
tumor suppressors is to either arrest the cell cycle or induce apoptosis in damaged cells. Others
encode proteins that repair mutations or membrane adhesion proteins that inhibit cell growth
and invasive dispersal (Sherr 2004). Loss-of-function mutations in tumor suppressor genes drive
tumorigenesis. Such mutations are typically recessive, so mutations in both alleles of a tumor
suppressor gene are often necessary for tumorigenesis. For example, this two-hit model (Knudson
1971) has been demonstrated for initiation of retinoblastoma. Other examples of tumor suppressor
genes whose mutant forms are associated with multiple cancers include TP53 (tumor protein 53,
linked to cancer types including gliomas, cervical cancer, head and neck carcinomas, and breast
cancer), RB1 (retinoblastoma protein 1, associated with its namesake as well as sarcomas, lung, and
breast cancers), and BRCA (breast cancer genes, also linked to ovarian cancers); see the appendix
in Bunz (2008) for a summary.

In contrast, oncogenes initiate carcinogenesis through single gain-of-function mutations. The
protein products of proto-oncogenes (unmutated oncogenes) regulate the mitotic cycle. Most
proto-oncogenes encode proteins that act as receptors or transducers in signaling pathways
(Croce 2008), such as the RAS gene family, which regulates signal transduction in the mitogenic
RAS/RAF/MAPK kinase pathway (Malumbres & Barbacid 2003). Oncogenic mutations amplify-
ing activity in this pathway have been identified in the majority of common cancer types. Other
important proto-oncogenes occur in the WNT transduction pathway (Polakis 2012), which regu-
lates cell proliferation and migration. Mutations that increase telomerase activity can also promote
tumor progression by immortalizing cell lines ( Vinagre et al. 2013); however, these mutations are
not technically oncogenic because they do not dysregulate the cell cycle (Harley 2002).

CANCER AS A GENETIC DISEASE

Clonal Selection and the Multistage Model

The recognition by Boveri (1914) that tumors are derived from mutated normal cells led to our
current understanding of cancer as a genetic disease and of the fact that cancers are primarily the
consequence of spontaneous somatic mutations. This realization led to the multistage model of
carcinogenesis. Typically, although loss-of-functions in tumor suppressors or increases in onco-
gene activity may initiate a precancerous tumor, progression to cancer requires a sequence of
mutations. This process is accelerated through clonal expansion and positive selection on mutated
cell lines with high rates of proliferation and survival (Nowell 1976); Figure 1 illustrates this
process. Early mutations that initiate tumorigenesis are shared by cells throughout the tumor.
Later mutations can either sweep to fixation by replacing earlier clonal lineages or give rise to spa-
tially heterogeneous regions of the tumor characterized by distinct subclones defined by somatic
mutations at other loci.

Because the multistage model requires multiple sequential mutations, it predicts that cancers
should be most prevalent in tissues with extensive cell division and hence more scope for somatic
mutation and subsequent clonal selection. This prediction is supported by a recent analysis by
Tomasetti & Vogelstein (2015) showing that the incidences of different cancer types are predicted
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Figure 1
Somatic mutation and clonal selection in cancer. In this hypothetical example, the germline genotype is
defined by alleles A,G,G at three sites. Two clonal lineages are initialized by a point mutation to C at the
first site (red) and to T at the third site (green). A third mutation (A to G at first site) occurs in a cell of the red
subclone genotype, defining the blue (third) subclonal lineage. The red and blue lineages both undergo
higher rates of clonal expansion than green subclone 2.

from the number of stem cell divisions in the source tissue. The lifetime incidence of melanoma
and colorectal cancer is ∼100-fold higher than for gliomas or cancers of the small intestine, because
the rate of cell replacement (and of somatic mutations) is much higher in the former than in the
latter tissues, supporting the hypothesis that the potential number of random somatic mutations
is a strong predictor of incidence among cancers.

The Multistage Model and Cancer Incidence

Normal cells accumulate somatic mutations during cell divisions (Martincorena et al. 2015). A
very small fraction of these mutations are loss-of-function mutations in tumor suppressor genes,
and a smaller fraction still are gain-of-function mutations in oncogenes. If initiation of a cancer
begins with an oncogenic mutation with instantaneous rate μ, the probability that at least one
such mutation is encountered in a population of N dividing cells at time t (scaled with cell division
rate) is, following Nowak (2006, chapter 12),

P (t) = 1 − e−μNt ≈ μNt. 1.

Assuming somatic selection deterministically drives such a mutation to high frequency, P(t) is the
probability of oncogene activation initiating a tumor.

In contrast, assuming a loss-of-function mutation in one allele of a tumor suppressor gene
is recessive, such mutations are often neutral and unaffected by somatic selection. The waiting
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time until the origin of a clonal lineage with loss-of-function in tumor suppression depends on
the rate for the first mutation, μ1, and the typically higher rate of mutation for the second, μ2

(i.e., a point mutation or indel is necessary for the first, and the second can occur through loss
of heterozygosity). The clonal lineage with the mutation must increase in frequency sufficiently
through genetic drift for the second mutation to occur. In the limit of long time intervals and a
small population of cells (e.g., colorectal crypt stem cells), Nowak et al. (2004) showed that the
approximate probability of having a cell with two loss-of-function mutations in a tumor suppressor
gene is approximately

P (t) ≈ 1 − e−μ1t ≈ μ1t. 2.

The fixation probability of the first mutation is 1/N, so that the waiting time until the first
mutation occurs and reaches a sufficiently high frequency is a rate-limiting step for this process.
For shorter time intervals and for larger populations of cells, both the first and second mutation
rates are rate limiting, and waiting times are exponential functions of both μ1 and μ2 (Nowak
et al. 2004). The scaling of (1) with N implies shorter waiting times until oncogene-driven cell
lineages become common. However, mutations are more likely to incur loss-of-function rather
than gain-of-function, so that μ1 � μ. If this inequality more than compensates for the effect of
N in (1), then loss of tumor suppressor gene function is more likely than oncogene activation.

The distribution of waiting times until mutation events can be used to parameterize and predict
cancer risk as a function of age or by tissue. Using the simplifying assumption of exponential waiting
times before each mutation in the multistage model, Armitage & Doll (1954) derived a power law
distribution of cancer incidence as a function of age. If k specific mutations are required for a
normal ancestral cell to progress to a malignant tumor cell, and λ � 1 is a somatic mutation rate
for the aggregate of precancer cells in the host organism (consistent with either μ or μN above),
the probability of a particular mutation occurring by time t is approximately λt. Assuming further
that the mutations are independent and equiprobable, the probability that at time t there are k
− 1 such mutations is approximately (λt)k−1. Therefore, the rate at which an individual becomes
cancerous, or the incidence of cancer for individuals at age t, is

I (t) ≈ C(λt)k−1, 3.

where C = λ if the order in which mutations occur is not significant and C = λ/(k − 1)! if,
more realistically, mutational order is assumed, so that later mutations are tumorigenic against
only preexisting mutational backgrounds. [See Frank (2004, 2007; chapter 6), and Bozic et al.
(2010) for generalizations of the multistage model that account for time heterogeneity due to
increasing densities of mutated cells due to clonal expansion.] Equation 3 provides a good fit to
data on lifetime cancer incidence, with the rate parameter λ being specific to cancer/tissue types
(larger values of λ are characteristic of high rates of stem cell division, and smaller values of k are
associated with genetic and/or environmental risk factors).

The implication of the multistage model is that all else being equal, larger, long-lived organisms
with more cell divisions should have a higher incidence of cancer, just as we expect a higher
incidence of cancer in tissue types with intrinsically higher rates of cell division.

Peto’s Paradox

Within species, there is some evidence of higher lifetime cancer incidence in individuals with
larger bodies, for example, a greater occurrence of cancer in large dog breeds (Greer et al. 2011)
and in tall people (Green et al. 2011). However, the predicted relationship between body size
and cancer incidence doesn’t hold across species, for example, large and long-lived elephants and
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whales have lower rates of cancer than smaller mammals (Caulin & Maley 2011). This rarity of
cancers in many large animals is known as Peto’s paradox (Peto 1977) and is a focus of comparative
cancer genomics studies seeking insight into evolved mechanisms of tumor suppression.

The proximate cause of cancer’s rarity in elephants, for example, is partly the duplication of
the tumor suppressor gene TP53 (Abegglen et al. 2015). In humans and most other mammals
TP53 exists as a single functional copy, but in elephants there are 20. As a result, the probability
of loss-of-function in TP53 through somatic mutation is negligible. Because elephants remain
fertile for the majority of their adult life span, there is strong selective pressure against genetic
disease (including cancer susceptibility) in older individuals, favoring the proliferation of tumor
suppressor paralogs. In contrast, selection on antioncogenic and tumor suppressive genotypes is
comparatively weak in organisms that are short lived or whose reproductive years are short relative
to their potential life span.

Another notable anomaly from the standpoint of life history and cancer biology is the naked
mole rat (Heterocephalus glaber). With a life span of >20 years, they are unusual among rodents
of the same size, whose life spans are typically <5 years. Simply by virtue of their long lives, one
would expect a very high cancer incidence in naked mole rats, as cancer is common in older mice
and rats. In fact, mole rats rarely develop cancer, apparently due to particularly sensitive contact
inhibition (the arrest of cell division at high local cell densities) as a consequence of high levels of
hyaluronic acid secretion by fibroblasts. Consequently, the TP53 and RB mediated pathways can
block RAS-activated tumor cells from proliferating (Seluanov et al. 2009). This characteristic may
have initially evolved to give these rodents a more flexible integument for their burrowing mode
of life. Cancer protection may have been a secondary consequence of this trait, enabling a longer
life span, long-term fertility, and perhaps facilitating their unique eusocial organization.

DRIVER MUTATIONS AND GENOMIC INSTABILITY

In cancer genomics, driver mutations are the somatic mutations that induce tumor progression
and are under positive selection. Subsequently, the tumor lineage may accumulate selectively
neutral passenger mutations that are a consequence rather than a cause of the cancer. Many
passenger mutations are the result of genetic hitchhiking (Maynard Smith & Haigh 1974). Clonal
reproduction of cancer cells creates complete linkage disequilibrium between a new mutation and
its genetic background. Consequently, if a driver somatic mutation undergoes a clonal expansion,
all other somatic mutations in its genome will do so as well (in the absence of loss of heterozygosity
through mitotic recombination and gene conversion).

Additionally, many somatic mutations in tumors are a secondary consequence of genetic
instability in cancer (Cahill et al. 1999). For example, aneuploidy, both partial and involving
entire chromosomes, is one of the characteristic features of cancer cells (Sen 2000); aneuploidiza-
tion plays a prominent role in the tumorigenesis of colorectal adenomas and other cancers
(Danielsen et al. 2015). Aneuploidy is self-perpetuating in cell lines: An aneuploid cell has a high
probability of gaining or losing additional chromosomes through nondisjunction in subsequent
cell divisions. Although gain and loss are equiprobable during cell division, human cancer cells
with >46 chromosomes predominate because cells without a complete chromosomal complement
are typically inviable.

Genetic instability also occurs at the level of sequence variation; often, much of the molecu-
lar machinery that minimizes the occurrence of point mutations is compromised in tumor cells,
along with the barriers to the propagation of mutated cells. Loss-of-function mutations in DNA
mismatch and excision repair genes increase the incidence of somatic mutations (λ in Equation 3),
resulting in passenger mutations. Several hereditary cancers are associated with germline
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mutations in DNA repair genes (e.g., melanoma susceptibility through XPC mutations), and
somatic mutations in repair genes are common in many cancer types.

Both chromosomal instability and increased sequence mutability have the similar consequence
of accelerating the rate of somatic evolution. As with any population of replicating organisms,
greater mutation rates have conflicting implications for cancer evolution. On the one hand, higher
mutation rates result in more genetic variations among cells, in other words, potentially more
mutations beneficial to the growing tumor. On the other hand, because beneficial mutations are
rarer than deleterious mutations, genomic instability increases the genetic load in the population
of tumor cells. Even though many loss-of-function mutations that are deleterious to normal cells
are neutral in cancer cells (e.g., loss of endocrine function in a pancreatic cell is deleterious to the
host, not the cancer), tumor cells must still maintain a broad range of housekeeping functions so
that housekeeping genes remain under purifying selection.

If the rate of deleterious mutation is sufficiently high, populations undergo error catastrophe
(Eigen 1971, Eigen & Schuster 1979), a monotonic decrease in mean population fitness, rather
than maintaining mutation–selection equilibrium. This decrease in fitness is a consequence of
deleterious mutations being introduced into a population at a higher rate than the rate at which they
are removed by natural selection. Indeed, many chemotherapies, such as temozolomide treatment
of gliomas (Hegi et al. 2005), are mutagenic and function by inducing error catastrophe in tumor
cells (Fox & Loeb 2010). In a small population of cells, lineages are also subject to Muller’s ratchet
(Muller 1964, Felsenstein 1974), in other words, the sequential loss of least mutated and most fit
genomes from a population through genetic drift in the absence of recombination. Bignold (2007)
has suggested that aneuploidization and mitotic recombination may counter Muller’s ratchet in
tumor cell populations. This proposal is consistent with the results of Mandegar & Otto (2007),
which showed that heterozygosity and gene conversion can accelerate the spread of beneficial
mutations and the elimination of deleterious mutations in asexual organisms.

Genomic instability in cancer cells raises the question of whether the mutability is itself an
outcome of selection. If higher mutation rates were unconditionally deleterious, we should expect
to find selection against aneuploidy and other sources of mutability. However, if mutation rates
are sufficiently low to avoid error catastrophe, selection can favor genomic instability (Breivik
2004, Cowperthwaite et al. 2006). In sexually reproducing organisms, a modifier that increases
the mutation rate cannot maintain linkage disequilibrium with beneficial mutations due to re-
combination with other genomes, in other words, a modifier found in the same genome as an
induced beneficial mutation in the current generation is most likely going to be associated with
deleterious mutations in the next. In contrast, modifiers that increase the mutation rate can be
selected in clonally reproducing organisms, because the modifier and any beneficial mutation it
induces are maintained in nearly complete linkage disequilibrium (Leigh 1973). Consequently, it
is possible that high mutation rates are actively maintained by selection in cancer cells, an example
of the evolution of evolvability (Dawkins 1989, Wagner & Altenberg 1996). Whether the genomic
instability is just a by-product of cancer biology, or whether the higher mutation rates are what
fundamentally drive the cancer progression, remains unknown. A high mutation rate in cancer
cells relative to normal tissue is not sufficient evidence for positive selection on mutation rates.
However, the elevated mutation rate is evidence that selection against frequent somatic mutations
is weak or absent in tumors.

SOMATIC SELECTION AND TUMOR HETEROGENEITY

Tumor cells experience numerous selective pressures, from selection on cell lines that establish
the tumor to selection on mutations that help cancer cells evade the host immune system and adapt
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to chemotherapies. Because the genes under strong selection are often those most physiologically
relevant to cancer progression, characterizing the genes and mutations under somatic selection is
a focus of cancer biology.

A conventional heuristic approach to identifying genes under selection has been to find highly
mutated genes, in other words, genes in which the relative frequency of nonsynonymous muta-
tions is significantly higher than in the genomic background. This is the basis for analyses using
tools such as MutSigCV (Lawrence et al. 2013), which has been the standard for identifying so-
called cancer genes in The Cancer Genome Atlas (TCGA 2012a–c) consortium analyses of cancer
mutational profiles.

There are several potential weaknesses to this method. A highly mutated gene may have many
mutations that are passengers rather than drivers (see previous section). Furthermore, identifi-
cation of highly mutated genes is more effective at discovering loss-of-function mutations (e.g.,
tumor suppressor genes) than gain-of-function mutations (e.g., oncogenes). This is because there
are many ways in which nonsynonymous mutations can cause loss-of-function in tumor sup-
pressors (e.g., frame-shift or premature stop codon mutations), whereas gain-of-function is often
site-specific. Consequently, many oncogenes won’t be highly mutated and will escape detection
when hypermutation is used as a criterion. Finally, tallying hypermutated genes cannot identify
functionally significant genes that are under purifying selection. These considerations suggest that
methods grounded in evolutionary models will provide more information-rich inferences of the
functional significance of genes and mutations.

Phylogenetic Approaches

Somatic evolution is a cumulative process: The earliest driver mutations that initiate tumorigenesis
are generally inherited by all tumor cells, and subsequent driver mutations increase the fitness
of tumor cells by enhancing proliferation, inducing angiogenesis, etc. Some of these mutations
contribute to genetic heterogeneity in the tumor (Burrell et al. 2013), whereas others increase in
frequency through selective sweeps and displace other clonal lineages. Later mutations facilitate
invasion of local tissues and metastasis, as metastatic cells have to adapt to new environments,
following the seed and soil models for metastatic invasion of new organs (Paget 1889, Langley &
Fidler 2011). Consequently, levels of genetic heterogeneity in precancerous tumors have proven
to be strong predictors of which nonmalignant tumors progress to cancer (Maley et al. 2006).

Genetic heterogeneity in tumors also provides the heritable variation that allows cancer
cells to evade chemotherapies, including evolved resistance to multidrug therapies that impose
simultaneous selection pressures on cancer cells by targeting different biochemical pathways
(Persidis 1999, Burrell & Swanton 2014). Consequently, recurrent tumors are often characterized
by evolved resistance to initial chemotherapies (Harris 1985, Luqmani 2005). Furthermore, hu-
man cancers experience extreme population bottlenecks following treatment (Tsao et al. 2000);
together with selective pressures, these population bottlenecks result in very different genetic
profiles in recurrent versus initial tumors.

Phylogenetic analysis allows us to reconstruct the genealogical history of tumor genotypes and
provides an approach to characterizing genetic heterogeneity within and among tumors based
on this history. One can identify genetic features of specific subclonal lineages and their point
of origin during the history of the primary tumor, as well as those of descendant metastases and
recurrent tumors. In solid tumors, reconstructing the phylogeny of subclones requires sampling
and sequencing a large number of small sectors from spatially distinct regions to capture the range
of clonal diversity. Including samples from metastatic and recurrent tumors in a phylogeny makes
it possible to identify mutations and genotypes in the primary tumor that seeded the metastatic cell
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lines and the lineages that survived drug and other standard therapies. For example, Johnson et al.
(2014) found that many of the characteristic mutations of the initial glioma tumor (e.g., mutations
in TP53, etc.) were absent in the recurrent tumor following temozolomide treatment. Similarly,
Gerlinger et al. (2012) reconstructed phylogenies of primary and metastatic clones of renal cell
carcinomas and found spatial heterogeneity within tumors with respect to mutations in mTOR,
which in turn predict which regions of the tumor will respond to chemotherapeutics that inhibit
mTOR pathway signaling. Such examples illustrate how phylogenetic analyses of clonal hetero-
geneity within tumors can be used to identify the molecular basis of response to therapies, both
as a prognostic tool and (potentially) for developing personalized therapies based on the profile
of somatic mutations in a patient’s tumor.

Owing to limited recombination, linked early neutral passenger mutations will also be among
the synapomorphies at basal nodes. However, because these passengers are random with respect to
tumor fitness, they are expected to be unique to individual tumors. In contrast, shared mutations
in unrelated individuals suggest similar selective pressures in common driver genes. Furthermore,
mutations that are synapomorphies of metastatic cell lines will potentially include genetic alter-
ations that facilitate invasion, metastasis, and local adaptation. Several phylogenetic analyses of
tumor subclones have leveraged this approach to identify genes and mutations that are character-
istic of metastasis (Yachida et al. 2010, Gerlinger et al. 2012, Gundem et al. 2015, M.H.K. Hong
et al. 2015, Schwarz et al. 2015).

Reconstructing the phylogeny of clonal lineages and mapping the distribution and order of mu-
tations pose additional technical challenges. In the absence of an exhaustive reconstruction of clonal
phylogeny within the primary tumor, it is often difficult to determine whether the metastatic sub-
clones represent a monophyletic or a polyphyletic lineage. Such information is necessary to deter-
mine whether the metastatic subclones are actually unique to the metastases, as opposed to having
been inherited from unsampled subclones in the primary tumor (Figure 2). If the metastatic sub-
clones have an evolutionary prehistory within the primary tumor, one cannot unambiguously infer
the functional role of these mutations in metastasis (Fidler & Kripke 1977, W.S. Hong et al. 2015).
Additionally, heterogeneity within primary tumors and linked passenger mutations may confound
efforts to use the order of mutations on a phylogeny to determine genomic markers of metastatic
tumors. Using data from different cancer types, Zhao et al. (2016) found that in some cases the
metastatic tumor subclones are more phylogenetically basal than dominant subclones in the pri-
mary tumor. Their results challenge the linear model of tumor progression in which metastatic
genotypes are assumed to be highly derived relative to primary tumor cells. In fact, in at least some
cases, phylogenetically basal primary tumor cells have the potential for invasion and metastasis,
consistent with the parallel model for metastatic progression (Turajlic & Swanton 2016).

Nevertheless, tree-based approaches to cancer gene identification have advantages over meth-
ods that simply identify the most highly mutated genes. These approaches provide a time dimen-
sion that is absent from mutation counts and frequencies and allow the application of comparative
methods (Felsenstein 1980) that distinguish covarying characteristics of tumor cells that are due
to relatedness among subclones from shared characteristics that are the consequence of common
selective pressures (Zhang et al. 2010). Furthermore, mapping the distribution of mutations onto
a phylogeny allows estimation of the order, direction, and number of mutational changes that
have occurred. Nielsen & Yang (2003) and Tamuri et al. (2012) used a Markov model of the
substitution rate of nucleotide i to j at site k under positive selection, in other words:

qij,k = μij
Si j,k

1 − Exp[−Si j,k]
, 4.

where μij is the mutation rate multiplied by the fixation probability of a beneficial allele (Sij,k is the
selection coefficient). The substitution rate qij,k is estimated from the substitution frequencies in
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Tumorigenic
mutations

A

Primary tumor

Normal

Metastatic

Metastatic
mutations

Figure 2
A phylogeny of primary and metastatic tumor subclones. Tumorigenic mutations are among the
synapomorphies defining the most basal node of the tumor phylogeny with respect to an outgroup of normal
cells, whereas other mutations are unique (autapomorphic) to individual subclones within the primary
tumor. If we assume that specific mutations are necessary to allow metastasis, such mutations are
synapomorphies of the metastatic lineage subtree. Note that in spite of this scenario being otherwise
consistent with a linear model of tumor progression, subclone A in the primary tumor is more closely related
to the metastatic lineage than it is to the remaining subclones within the primary tumor.

the coding regions of cancer cell exomes, whereas the background mutation rate μij is approximated
from background substitution frequencies in noncoding regions. Their models allow a maximum
likelihood estimator for S to be computed for each site. A similar approach, albeit with mutation
rates estimated without a phylogeny, was used by Foo et al. (2015) to distinguish driver mutations
from linked neutral passengers in colorectal cancer genomes.

Mutation Counts and Parallel Mutation

Another approach to identifying cancer drivers is to compare the frequencies of silent versus
nonsynonymous somatic mutations in a gene (Nei & Gojobori 1986) by estimating the parameter
ω = dN/dS, where dN is the fraction of nonsynonymous mutations relative to the number of
nonsynonymous sites in a gene and dS is the relative fraction of synonymous (silent) mutations.
The Nei-Gojobori test for selection has been applied in recent publications (Ostrow et al. 2014,
Shpak et al. 2015) to identify genes under directional selection in tumors. A similar method,
comparing intron/exon junction sites (Chen et al. 2015) has also been used to identify selection on
splice sites in cancer genomes. When human sequences are compared with mammalian outgroups,
most genes were found to be under strong purifying selection (ω � 1) in the germline, whereas
the same genes in cancer cells have ω close to 1. A small number of the genes have statistically
significant ω > 1, indicating positive selection. For the majority, however, the ω values indicate
that purifying selection is relaxed in cancer genomes for all but a small fraction of mutated genes, in
other words, many genes that are under negative selection in the germline are evolving neutrally in
cancer. The Nei-Gojobori method also identifies a small subset of genes that are under significant
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purifying selection in tumors, potentially indicating tumor-specific function when the purifying
selection is stronger in cancer genomes than in the germline.

Comparisons of ω between tumors also have the potential to identify specific selection pres-
sures. For example, observing ω � 1 for certain genes in recurrent (post-chemotherapy) tumors
that are close to or less than 1 in the initial tumor may be indicative of genes under directional
selection in response to treatment. Similarly, finding ω � 1 in metastatic tumors but not in a
primary tumor may provide a method of identifying genes related to invasion, metastasis, and
adaptation to new tissue environments.

A related method for identifying driver mutations is to tally recurrently mutated genes or sites
across samples (Mwenifumbo & Marra 2013). If a mutation is a secondary consequence of linkage
to a driver or a high mutation rate, it is likely to be unique to a single tumor, because fixation
of a variant at the same site in multiple tumors is unlikely in the absence of similar selection
pressures. Furthermore, identification of mutational recurrence can be applied both at the level of
mutated genes/coding sequences and to specific mutated sites. The latter provides the potential
to identify specific mutations in driver genes, especially specific gain-of-function mutations in
oncogenes that are not otherwise highly mutated. For example, Melton et al. (2015) and Smith
et al. (2015) identified recurrent mutations in the regulatory regions of several cancers, including
the promoter regions of the telomerase TERT and in various oncogenes. A similar approach was
used in analyses of somatic mutations in the exomes of several cancer types, including breast cancer
(Ellis et al. 2012, Shah et al. 2012), melanoma (Berger et al. 2011), and glioma (Shpak et al. 2015).
The joint occurrence of multiple site-specific mutations allows the classification of tumors within
a cancer type into subclasses with characteristic mutational profiles, analogous to the classification
of subtypes based on expression profiles.

The frequency at which a recurrent mutation occurs across samples can be used as an estimator
of fixation probability and of the scaled selection coefficient s (from a modified version of Equation 9
below). Likelihood-based methods for estimating selection coefficients from recurrent mutations
in a single population were discussed in Ezawa et al. (2013), and similar methods may be applied
to recurrent mutations in different populations, such as recurrent mutations in unrelated tumors.
Quantifying the direction and strength of selection on specific sites has the potential to identify
functionally significant regions of cancer genes and their proteins, providing a novel approach for
the discovery of therapeutic targets.

Genetic Heterogeneity and Coalescent Theory

The utility of ω as an estimate of selection is undermined by polymorphism (Kryazhimskiy &
Plotkin 2008) and codon usage bias (Spielman & Wilke 2015). Additionally, tests based on com-
parisons of silent versus nonsynonymous mutations fail to leverage allele or haplotype frequencies
and reference explicit models of neutral evolution as null hypotheses.

Genetic variation within tumors is partitioned among mutational subclones, so that segregating
variation (polymorphism) at a site/locus within a tumor means that some cells in the tumor have
germline genotypes at the variable sites, whereas others have a copy of the somatic mutation.
Somatic mutations are fixed in the tumor when all cells inherit the somatic mutation (regardless of
homo- or heterozygosity). Sampling and sequencing spatially distinct sectors of a solid tumor allow
one to estimate the number of segregating sites, average genetic distances between polymorphic
genes/regions within a tumor, and compute mutation clone frequency spectra, in other words, the
number of mutations that are represented by k−tuples (k = 1 . . . n) in a sample of n tumor sectors.
These observations can then be compared with expected observations under neutral evolutionary
models to determine the extent to which genetic heterogeneity within tumors is driven by selection
versus random genetic drift.
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Under a neutral coalescent model, we expect the clonal genealogy to have a topology consistent
with an exponential distribution of waiting times between coalescent events—in other words, under
a Wright-Fisher model of genetic drift, the expected coalescent time is equal to the effective
number of cells Ne in a population (even though the cells are diploid, there is no segregation of
chromosomes, so there are effectively N rather than 2N genotypes). Consequently, the expected
pairwise distance between genotypes is θ = 2Neμ for mutation rate μ (defined with respect to a
single gene, a chromosomal region, or the entire genome). The expected number of segregating
sites will also be proportional to θ . A number of tests for selection, such as Tajima’s D (Tajima
1989, Korneliussen et al. 2013), compare estimates of θ based on the number of variant sites to
the value estimated from pairwise differences. A related approach to evaluating neutrality is to
consider the spectrum of allele or haplotype frequencies in a population. Under a neutral model,
the number of mutations ηi represented by i in a sample of n cells is E[ηi] = θ/i. In other words, we
expect there to be θ variants represented by a single individual, θ/2 represented by 2 in the sample,
etc. (e.g., Durrett 2008). Significant deviations from these expected frequency spectra reflect the
effects of clonal selection.

There are several potential challenges with direct application of these neutral models to cancer
genomic data. The assumption of constant population size is not a good model for the demography
of tumor cells, because tumors grow. As a first approximation, it is reasonable to assume exponential
growth in the number of cells, even though the number of dividing cells in a tumor probably
increases at a slower than exponential rate due to necrosis and other factors. Population growth
leads to longer branch lengths near the tips and shorter branch lengths near the root, so that
the expected number of mutations ηi represented by i in a sample of n cells given an exponential
growth rate r is:

E[ηi ] ≈ μ

r
n

i (i − 1)
for 2 ≤ i < n 5.

(Durrett 2013), and the mutation clone frequency spectra can be estimated numerically for other
models of cell growth. In a recent analysis, Ling et al. (2015) compared mutation clone spectra from
hepatocellular carcinoma using Equation 5 and under slower (power-law) models of population
growth and found that the observed numbers of mutation clones out of 289 samples were consistent
(based on goodness of fit) with a neutral model. Specifically, allelic diversity in the hepatocarcinoma
was higher than would be expected under purifying selection or recent selective sweeps.

Ling et al.’s (2015) work is one of the few applications of coalescent theory to test for selection
in tumors, and its use of nonequilibrium population models represents a major advance over naı̈ve
applications of models with constant population size. However, these methods ignore another im-
portant complication of neutral theory in tumor biology: namely, the spatial partitioning of clonal
diversity. Neutral theory assumes a fully mixed population with randomly distributed genomes,
so that any two individuals can coalesce to a common ancestor in the previous generation. In most
solid tumors, cell migration is limited, so to a first approximation, only adjacent cells are likely
to have shared a common ancestor in the previous generation. A recent simulation-based study
by Waclaw et al. (2015) showed that spatial constraints on the coalescent lead to lower predicted
genetic heterogeneity than in an unconstrained model.

To see how the constraints of spatial proximity affect coalescent times, consider a population
of N cells on a line (Figure 3), with the constraint that only neighboring cells can coalesce in the
previous generation (to avoid endpoint effects, assume the first and last cell can coalesce, as on a
ring). If we impose a Moran-like model in which one cell is selected to die and a distance = 1
neighbor is selected to reproduce per generation, the probability of a pair of cells coalescing one
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t = 0

t = 1

t = 2

1 2 3 4 5

Figure 3
A simple illustration of why spatial structure constrains coalescent events. Assume that in every generation,
one cell is selected to die and one of its d = 1 neighbors is selected to reproduce (allowing cells 1 and 5 to be
neighbors to avoid edge effects). If a cell in position 2 dies at time t = 1 and is replaced by one of the two
descendants of cell 3 while other cells persist (solid lines), it is impossible for cell 1 to share a common
ancestor with cells 2 or 3 at t = 2, regardless of whether a cell at position 1 or 2 dies t = 2 time steps ago
(dashed crosses represent hypothetical cell deaths and dashed lines represent hypothetical descendant cells
under the two scenarios). In contrast, this type of interference is absent without spatial constraints. In other
words, in a mixed population, any pair of cells can have a common ancestor at time t = 2 regardless of cell
death or replacement at t = 1.

generation ago is the same as for an unstructured population. In other words:

Pc (t = 1) = 2
N (N − 1)

. 6.

However, the probability that two randomly selected cells share a common ancestor exactly two
generations ago is

Pc (t = 2) = N − 2
N 2

2
N − 1

+ 2
N 2

F (N ), 7.

for F(N) = 2/(N − 1) for N > 5, 2/N for N = 5, and 2(N − 2)/(N − 1) for N = 4 (M. Shpak,
unpublished material). In contrast, using an unstructured Moran model (e.g., Durrett 2008), the
probability of a randomly selected pair coalescing in exactly two time steps is

Pc (t = 2) = 2
N (N − 1)

(
1 − 2

N (N − 1)

)
. 8.

This is the result of an interference effect. For example, if two cells coalesce with their neighbor
to the left t generations ago, that precludes one of them coalescing with a rightside neighbor t + 1
generations ago. This result leads to longer expected branch lengths and greater pairwise genetic
distances in a structured model. Similar constraints apply to more realistic 2- and 3-dimensional
spatial arrangements of cells. Coalescent models of neutral genetic variation in solid tumors will
have to consider these spatial effects to identify deviations from neutrality caused by selection.

GERMLINE MUTATIONS: CANCER RISK ALLELES

In addition to clonal somatic evolution described above, evolution within populations affects the
incidence of certain cancers. The discovery of inherited cancer risk through pedigree analyses
led epidemiologists and oncologists to propose that some cancers are Mendelian genetic diseases
(e.g., Carter et al. 1992). Hereditary cancers are associated with one or a small number of inherited
germline mutations that predispose individuals to cancer, and these cancers account for a minority
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of cases in comparison with sporadic cancers. For example, <10% of breast and ovarian cancers
are due to hereditary incidence (Andersen 1992).

Cancer risk alleles typically have incomplete penetrance because multistage progression re-
quires several mutational changes. A single risk allele is almost always insufficient for cancer to
occur; however, inherited mutations substantially increase the lifetime risk of cancer. Using the
Armitage-Doll model (Equation 3) with a constant transition rate λ from i − 1 to i mutations, the
expected ratio of relative incidence in those with a single inherited risk mutation at age t compared
with those without the inherited risk is ∼1/λ, which for small λ leads to lifetime incidence orders
of magnitude higher than in the background population and a younger expected age of onset.

Among the best-documented examples of inherited cancer risk are hereditary retinoblastoma,
breast cancer, and ovarian cancer. Individuals with a single mutant copy of the RB1 gene often
develop pediatric retinoblastoma, because they need only a single loss-of-function somatic mu-
tation, as opposed to two mutations for noncarriers. Similarly, women who inherit a mutation
in the BRCA1 or BRCA2 genes have a 5-fold higher lifetime incidence of breast cancer and 10-
to 20-fold higher incidence of ovarian cancers than BRCA− individuals (Petrucelli et al. 1998);
inherited loss-of-function mutations are associated with a 40–85% lifetime risk of breast cancer
and a 16–64% lifetime risk of ovarian cancer, versus approximately 12% and 1.2% lifetime risks
for the background population, respectively. As with RB1, the BRCA genes are tumor suppressors,
so that the high incidence of breast and ovarian cancer among BRCA+ carriers is also due to the
necessity of only one mutation to inactivate the gene. As predicted, carriers of mutations in BRCA
and RB1 also develop cancers at much younger ages. For example, RB1+ carriers develop pediatric
retinoblastoma, versus adult-onset spontaneous incidence, and the median age of onset for BRCA+
sporadic breast cancers is 42, versus 66 for BRCA− sporadic breast cancers (Litton et al. 2012).

Inherited oncogenic mutations are much less common and tend to occur at very low frequencies.
Examples include EGFR mutations in hereditary lung cancers (Gazdar et al. 2014), gliomas (Wang
et al. 2015), and gastric cancers (Torres-Jasso et al. 2015); RET mutations in endocrine neoplasia
(Margraf et al. 2009); and P16/CDK4 mutations in hereditary melanomas ( Jenkins et al. 2013).

The Population Genetics of Cancer Risk Alleles

To account for the incidence and persistence of cancer risk alleles described above, we can apply
population genetic models describing the dynamics of deleterious alleles in finite populations.
Consider a population with diploid effective population size Ne, where the initial frequency of the
cancer risk allele a is p and the fitness of genotypes are Waa = 1 − s, WAa = 1 − hs, WAA = 1.
The probability that the risk allele becomes fixed in the population, U(p), is

U (p) = 1 − e4N e hs p/
1 − e4N e hs , 9.

whereas the probability of eventual loss of a (ignoring recurrent mutations) from the population
is 1 − U(p ). Fixation probabilities for completely recessive (h = 0) mutations can be similarly
estimated from diffusion models (Kimura 1964). The fixation probability of a deleterious (cancer-
causing) allele increases with small population size and/or s � 1, so that in the limit of a selectively
neutral allele (s = 0), we have U(p) = p. This is also the approximate fixation probability when
s <1/2Ne. The value of h depends on the gene and mutation. For example, oncogene activations
are typically dominant (h ≈ 1), so they are less likely to reach high frequencies. The value of s
depends on the penetrance of the cancer risk, in other words, the probability that an individual
inheriting the allele actually develops cancer, and on the expected age of onset. The selection
coefficient approaches s = 1 with early onset and high penetrance and 0 with late onset and/or
low penetrance.
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The three population genetic scenarios we consider for the incidence and persistence of cancer
risk alleles in a population are: (a) unconditionally deleterious alleles, (b) effectively neutral alleles,
and (c) antagonistic pleiotropy.

Unconditionally Deleterious Risk Alleles

Some cancer risk alleles have high penetrance because the total number of additional mutations
necessary to transition from normal cells to malignant tumors is comparatively low in certain
cancers, (e.g., many pediatric cancers, which often have fewer somatic mutations than adult cancers;
Radtke et al. 2009). Even with low penetrance, alleles that have no fitness benefit to individuals
while conferring the cancer risk (to reproductive/prereproductive individuals) are unconditionally
deleterious, and it follows from Equation 9 that the probability of eventual loss is close to 1 in a
large population, although for weak selection, the time until loss can be quite long, for example,
of the order t ∼ 2ln(2N) − ln(2Ns) generations for a recessive allele (Kimura & Ohta 1969).
Furthermore, many cancer risk alleles are associated with genetic diseases other than cancer,
leading to still stronger negative selection. For example, mutations in NF1 that disrupt the Ras
signaling pathway are linked to neurofibromatosis as well as to various cancers of the nervous
system, and Li-Fraumeni syndrome is linked to germline mutations in TP53 (Bunz 2008).

Deleterious cancer risk alleles are expected to have population dynamics resembling those of
recessive lethal genetic disease traits such as hemophilia, so most hereditary cancer risk alleles
occur at frequencies �1 in the general population. Even with survival times prolonged by modern
medicine, we should not expect unconditionally deleterious risk alleles to reach high frequencies in
large populations. Therefore, the long-term persistence of deleterious mutations is a consequence
of mutation-selection equilibrium rather than neutral drift. If wild-type alleles mutate to risk
alleles at rate μ per generation, the equilibrium frequency of a recessive deleterious allele with
selection coefficient s will be p̂ = √

μ/s , versus the smaller μ/s for dominant risk alleles, which
explains why most hereditary cancers associated with typically recessive tumor suppressor genes
are more common than those with typically dominant oncogene mutations.

There are exceptions to the expected low frequency of risk alleles, such as the high incidence of
BRCA1+ alleles among Ashkenazi Jews (8–10% versus ∼4% frequency in Caucasians generally).
This may be a consequence of founder effects and genetic bottlenecks where Ne is very small
(Levy-Lahad et al. 1997) and in which even deleterious alleles can reach high frequency. Alterna-
tively, the high incidence of these risk alleles, which are expected to be under purifying selection
due to breast cancer onset among some reproductive individuals, may in fact be maintained by
antagonistic pleiotropy (see section on Antagonistic Pleiotrophy below).

Senescence and Neutral Evolution

Purifying selection on risk alleles is nearly absent if the cancer onset is in a postreproductive indi-
vidual, regardless of high penetrance. The alleles may increase the risk of cancer incidence I(t) by a
factor ∼1/λ, but if the values of I(t) remain close to 0 for young individuals carrying the risk allele,
the mutation is effectively neutral. This follows from our understanding of the evolution of senes-
cence through the accumulation of mutations that increase the probability of death or morbidity
in older individuals while having no deleterious effect on the young. Senescence-associated muta-
tions are not negatively selected, because pathological phenotypes in postreproductive individuals
do not contribute to the fitness of an organism.

This original heuristic argument (Medawar 1952) was formalized (Hamilton 1966) by defining
the Malthusian parameter r (instantaneous growth rate) as a function of the age-specific survival
rates: bi (probability of surviving from ith to i + 1 age class) and the expected number of offspring
at age i, fi. If a mutation decreases bi or fi in reproductive and prereproductive ages, we have
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∂r/∂bi and ∂r/∂ fi < 0 and negative selection coefficients on the risk allele. In postreproductive
individuals, fi is near 0, therefore ∂r/∂bi ≈ 0, so that cancer risk alleles are effectively neutral
(s ≈ 0), even if the mutation causes bi to be 0 for postreproductive i. With effectively neutral
selection coefficients s < 1/2Ne, even risk alleles that occasionally cause cancer at reproductive
ages will not be under purifying selection with sufficiently low occurrence among the young.

Even though such inherited cancer risk is deleterious from the standpoint of human health,
it is neutral with respect to natural selection, so that the dynamics of risk alleles will be driven
by random genetic drift rather than selection. Unlike deleterious risk alleles associated with early
onset, we expect to observe such risk alleles at appreciable frequencies in populations, and the
probability of such a risk allele’s fixation is equal to its initial frequency p. The low incidence
of cancer in large, long-lived organisms that remain fertile through most of their lives, such
as elephants (see above discussion of Peto’s paradox), illustrates an opposite scenario of strong
selection against late-onset cancers.

Weak selection may also explain the high frequencies of alleles predictive of cancer risk in
genome-wide association (GWAS) studies. For example, the GWAS analyses of gliomas (Wrensch
et al. 2009, Melin et al. 2013) identified risk alleles linked to RTEL (a telomerase) and to CDKN2B
that had background frequencies in the general population ranging from 0.10 to 0.40. These
high frequencies can be explained by the fact that their associated risk odds ratios are typically of
the order 1.2–1.5 for the risk alleles individually, in spite of a high familial incidence of glioma
when multiple risk alleles co-occur. The appropriate population genetic model for the dynamics of
multiple low-risk alleles is selection on a polygenic phenotypic trait. The polygenic model accounts
for many familial cancers that don’t show Mendelian patterns of inheritance but nevertheless
correlate with an individual’s genetic background.

In polygenic traits in which the contributions of individual loci are small, selection at each locus
will be weak. For a quantitative trait with phenotypic variance V under directional selection with
coefficient S, the strength of selection on an allele at locus i contributing gi to the phenotype is
si = Sgi/V, assuming that the contribution of each locus is additive and statistically independent
(Kimura & Crow 1978, Lynch 1984). Consequently, if all gi of all alleles contributing to cancer
risk are small, the strength of selection on each allele will be negligible. The strength of selection
will be weaker still if the contribution of the alleles at each site is conditional on a particular genetic
background, in other words, if the alleles predispose to cancer only in the presence of other risk
alleles. Therefore, the risk alleles individually will often be effectively neutral with respect to
purifying selection.

The existence of weakly predictive risk alleles suggests that a fixed multi-hit model for each
cancer type is an oversimplification. For most cancers, there are multiple mutational paths that can
lead to malignant phenotypes. Indeed, surveys of the TCGA (2012a–c) data for somatic mutations
in breast, colorectal, and squamous cell lung cancers have revealed that individual tumors within
subtypes of each cancer (defined by common histology, clinical properties, and gene expression
profiles) can nevertheless have very different somatic mutation profiles. The implication is that
there are many mutations, both somatic and germline, that are neither necessary nor sufficient
for progression to cancer but that potentially enhance the probability of carcinogenesis given a
background set of mutations, consistent with risk alleles with individually weak effects.

Antagonistic Pleiotropy

Although neutral evolution may account for the high frequency of cancer risk alleles with low
penetrance or late age of onset, a more interesting scenario occurs if an allele that increases the
risk of cancer also has pleiotropic fitness benefit to the organism. Such instances of antagonistic
pleiotropy have been invoked as an alternative to the neutral model of aging, for example, a
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mutation that increases survival and fecundity coefficients bi or fi while decreasing bj or fj, (typically
for ages j > i), such that r increases despite the trade-off. In contrast to the selectively neutral r
scenarios, j need not be in a postreproductive age class for the antagonistic effect to increase fitness
(Williams 1957).

Antagonistic pleiotropy has been proposed as the mechanism maintaining a high frequency
of cancer risk mutations such as BRCA1 in some populations. To account for the persistence of
BRCA1/2+ alleles at comparatively high frequencies in some populations, French et al. (2006)
proposed that BRCA1 mutations lead to longer telomeres and argued that this enhances oocyte
production and female fertility. If true, the high incidence of breast and ovarian cancer in BRCA+
women is potentially a pleiotropic by-product of selection for higher fertility. Some natural fertility
studies of BRCA+ families (Kwiatkowski et al. 2015) have supported this hypothesis, although
other analyses have challenged it (Smith et al. 2013) and argued that BRCA+ mutations may in
fact diminish fertility due to a failure of DNA repair mechanisms.

Mutations enhancing the expression and action of growth factors such as IGF-1 also result in
increased cancer incidence. The fitness advantages of greater IGF activity are manifold, from a
more effective ability to extract maternal resources in the placenta (Constancia 2000) to the fitness
benefits of larger body size in many mammals. However, mutations upregulating IGF are known
to be associated with sarcomas and other cancers in humans (Arnaldez & Helman 2012, O’Neill
et al. 2013) and other animals. One of the reasons for shorter life spans in large dog breeds is a
greater predisposition to cancer (Greer et al. 2011).

Selection on telomerases may also lead to increased cancer risk. The shortening of telomeres
through multiple generations of meiosis is thought to be one of the underlying causes of cell death
and tissue aging (Hornsby 2007). Natural selection favors telomere elongation to counter the
effects of aging; in other words, telomerase upregulation can extend the life span of cell lines by
preventing their senescence. One of the characteristics of cancer cells is their stem cell–like immor-
tality due to telomere elongation. Consequently, positive selection for germline mutations that
upregulate telomerase may increase cancer risk, accounting for the high frequency of telomerase
mutations identified in GWAS studies of various cancer types (Keefe & Liu 2009).

Unconditionally deleterious and neutral cancer risk alleles are easily distinguished, because
only the latter can reach high frequencies in a population. In contrast, both genetic drift of
selectively neutral alleles and antagonistic pleiotropy can maintain risk alleles at high frequencies.
The effects of selection can be disentangled from those of genetic drift using statistical tests that
compare observed haplotype and allele frequencies with those predicted by neutral models (e.g.,
Fay & Wu 2001, Nielsen 2001). For example, Cheng et al. (2014) analyzed evidence of germline
selection in glioma-associated genes by comparing synonymous versus nonsynonymous sites and
found that genes linked to cancer experience strong purifying selection in the germline relative to
background exome regions.

CANCER AND MULTILEVEL SELECTION

The evolution of life on Earth has been characterized by increases in biological complexity through
the aggregation of replicating entities at one level of organization into higher-level replicating
entities. The outcomes of such cooperative associations include the origin of eukaryotic cells
through endosymbiosis, the origin of multicellular organisms from colonies of unicellular eu-
karyotes, and the origin of complex social organizations from groups of multicellular organisms
(Buss 1988, Maynard Smith & Szathmary 1995). Conflicts occur between higher-level replicators
and the nested lower-level replicators whenever both have the ability to mutate and reproduce.
For example, clonal lineages of cells evolve through somatic selection because cancer cells, like
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individual organisms, are self-replicating and because somatic mutations provide a source for her-
itable variation in cell phenotype and fitness. The proliferation of so-called selfish cancer cells
typically reduces the fitness of the host multicellular organism.

Consequently, cancer has been characterized by many evolutionary biologists as a case study
in conflict between two classes of replicating entities—cells and organisms (Burt & Trivers 2006,
chapter 11)—and the various mechanisms that reduce genetic variation among cells limit the
potential for somatic selection. The strongest constraint on somatic evolution is the result of
somatic tissue in most multicellular organisms being derived from a single fertilized zygote, so
that the cells are genetically identical apart from somatic mutations. Furthermore, following
Weissman (1893), animal germline cells are separated from somatic tissue during early ontogenesis,
so that somatic mutations are not transmitted to offspring. The limited genetic variation among
cells creates a greater genetic incentive via kin selection for cells to cooperate and fewer genetic
incentives for defection. Multicellular organisms also have numerous cellular fail-safe mechanisms
that reduce the chances of cells with somatic mutations progressing to tumors, and many selective
pressures maintain fidelity of DNA replication. DNA repair ensures a comparatively low frequency
of somatic mutations, even in cancer cells. Surveys of cancer genomes by the TCGA (2012a–c)
consortium have typically found ∼100 unique somatic point mutations in the exomes of breast
cancer, lung cancers, and gliomas. Contact inhibition of cell proliferation via tumor suppressor
genes further restricts the potential for clonal selection. Finally, the number of actively dividing
(stem) cells in any tissue that can potentially progress to cancer is much lower than the census
population size of cells, which limits the potential for somatic mutations to occur in most tissues
(Cairns 2002).

Frequently in the cancer literature (e.g., Aktipis et al. 2015), analogies are made between
the mechanisms that multicellular organisms use to repress cancers and the means that social
groups have of preventing or punishing noncooperative defectors (such as inhibition of worker
reproduction by queen wasps). However, there is an important difference between the evolutionary
conflict of cells versus organism caused by cancer and actual instances of multilevel selection in
other biological systems. Reducing the fitness of one class of replicators through selection on
replicators at another level of organization is not sufficient for multilevel selection per se. In
true multilevel selection, the lower-level replicator has to have the potential to contribute to
the genotype or phenotype of the next generation (with respect to the higher-level replicator’s
generation time). This includes the potential to drive genotype frequencies in opposite directions
across generations. In fact, somatic mutations are an evolutionary dead end across generations, so
that multilevel selection (sensu stricto) on cancer cells is rarely possible (Gardner 2015).

To see that this is formally the case, consider Price’s equation (Price 1970, Frank 1995), a
mathematical representation of multilevel selection on a trait value x (which can be an allele
frequency, a quantitative trait, etc.):

�x̄ = Cov(W , x) + E[W�x]
W

, 10.

where �x is the change in mean genotype or phenotype value across generations of a biological
replicator, such as a multicellular organism; W is the fitness effect of the trait for the organism (W
is the mean population fitness); and �x represents the deviation in trait value due to selection at
some other level of organization, such as meiotic drive, transposon replication, etc. For example,
if x is the number of transposable elements in the germline genome, natural selection acting on
organisms may favor smaller genomes [i.e., Cov(W, x) < 0], whereas replication of transposons
within the genome tends to bloat genome size [i.e., E(w�x) > 0]. Replicated transposons within
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the genome are transmitted to the next generation when the organism reproduces, while selection
on organisms preferentially removes genomes with a high transposon load.

In contrast, consider the case where x represent the presence or absence of a mutation asso-
ciated with a cancer cell line and x is its frequency among organisms in the population. Because
somatic mutations aren’t typically transmitted to offspring, positive somatic selection still results
in E(w�x) = 0 for x between generations. Therefore, describing cancer as an instance of multi-
level selection is misleading, except in the rare cases of transmissible sarcomas in certain animals
or of heritable tumorigenic mutations in plants that lack germline segregation.

Among the known transmissible cancers are canine transmissible venereal sarcoma in dogs,
transmissible facial sarcoma in Tasmanian devils (Sarcophilus harrisii) (Murchison 2009, Welsh
2011), and a transmissible leukemia in Mya arenaria clams (Metzger et al. 2015). The contagious-
ness of these cancers was originally believed to be from the transmission of an oncogenic virus
(such as cervical cancer induced by human papilloma virus). In fact, analyses of the cancers of re-
cently infected animals indicated that the genomes of the tumor cells were related to those of prior
hosts rather than to the genomes of the current hosts—clear evidence that the tumor cells are able
to infect new host animals directly. These analyses showed that the canine sarcoma cancer cells are
transmitted sexually, the Tasmanian devil facial sarcomas are spread from one animal to another
by biting, and the cancer cells in the clams disperse into seawater to infect host siphons. From the
standpoint of epidemiology, such cancer cells all behave as infectious unicellular parasites.

DISCUSSION AND FUTURE DIRECTIONS

Evolutionary theory’s potential to inform basic and applied cancer research has only recently be-
gun to be tapped. In particular, the use of phylogenies and tests for selection based on neutral
models offer a potentially great advance over simple tallying of mutations as a means of identify-
ing cancer drivers. Similarly, advances in evolutionary genomics will continue to provide insights
into the genetic basis of cancer progression and other aspects of oncobiology, including clini-
cally relevant characteristics such as evasion of host immune response and adaptive resistance to
chemotherapies. Cancer therapies will increasingly leverage data on tumor genetic heterogeneity
and adaptive evolution in cancer cells to create somatic genotype-specific targeted treatments (e.g.,
Jamal-Hanjani et al. 2014) and multidrug therapies that circumvent the ability of tumor cell pop-
ulations to evolve resistance to single drugs (Burrell & Swanton 2014).

To effectively identify targets of selection in cancer genomes, it will be necessary to develop
population genetic models that take into consideration the particular characteristics of tumors,
including the constraints imposed by spatial structure, genome-wide linkage disequilibria due
to clonal selection, and deviations from equilibrium models due to cell population dynamics.
Otherwise, direct application of existing population genetic theory to identify loci under selection
or estimates of the strength and direction of selection will provide crude approximations at best and
misleading results at worst. This is particularly true of any methods that construct null hypotheses
under the assumptions of neutral coalescent models.

Studies of how neoplasms evolve in response to their host environments and therapies also
offer researchers an in situ model system of evolution on human timescales (like microbial model
systems and unlike most animal and plant models). Just as evolutionary theory can inform our
understanding of cancer biology, advances in cancer biology may offer insights into evolution the-
ory. For example, although this review focused specifically on mutation-driven cancer evolution,
recent advances in evolutionary epigenetics have also informed our understanding of adaptation in
cancer cells. Organisms adapt to their environment not only through genomic mutation followed
by Darwinian selection but also through epigenetic changes (i.e., phenotypic plasticity). Much
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of the dysregulation in gene expression found in cancer cells is the consequence of epigenetics
rather than of mutation, in other words, differential gene expression arising from methylation pat-
terns and disruptions of the various signaling pathways by which cells respond to environmental
stress. Brock et al. (2009) proposed a genetic assimilation model in which tumor cells show cancer
phenotypes through epigenetic effects and phenotype plasticity that are later canalized through
mutation. This example illustrates how cancer biology may prove to be a useful model system for
integrating systems biology and epigenetics with evolutionary theory.
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