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SUMMARY

We conduct high coverage (>303) whole-genome sequencing of 180 individuals from 12 indigenous African
populations. We identify millions of unreported variants, many predicted to be functionally important. We
observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG)
diverged from other populations >200 kya and maintained a large effective population size. We observe ev-
idence for ancient population structure in Africa and for multiple introgression events from ‘‘ghost’’ popula-
tions with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence
for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until
�12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height,
and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influ-
ences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.

INTRODUCTION

Africa is the continent where anatomically modern humans orig-

inated within the past 300 ky and is the source of migration of

anatomically modern humans out of Africa within the past 80

ky.1 Africa is also a continent of tremendous cultural, linguistic,

phenotypic, and genetic diversity.2,3 More than 2,000 ethnolin-

guistic groups have been identified in Africa, representing

around one-third of the world’s languages.3,4 These languages

are classified into four major phyla: Afroasiatic, Nilo-Saharan,

Niger-Congo, and Khoesan.5 The Afroasiatic phylum, consisting

of �400 languages, is mainly spoken by agro-pastoralist and

agriculturalist populations in northern and eastern Africa. The

Nilo-Saharan phylum, comprised of �206 languages forming
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�12 sub-families, is predominantly spoken by pastoralists in

central and eastern Africa. Genetic, linguistic, and archeological

data suggest a possible common ancestry of Nilo-Saharan-

speaking populations originating near the Ethiopian and Suda-

nese border within the past �10,500 years3,6 The Niger-Congo

phylum, consisting of �1,500 sub-languages, is the largest lan-

guage phylum in Africa.4 The largest sub-family of languages

are the Bantu languages, which originated near the border of

Cameroon and Nigeria. Bantu-speaking populations used iron

tool technology and slash-and-burn agriculture facilitating larger

population sizes and migration to eastern and southern Africa

beginning �5 kya (a.k.a, the ‘‘Bantu expansion’’).7 The Khoesan

languages, which are characterized by click consonants, are

mainly spoken by the San populations in southern Africa

and the Hadza and Sandawe in Tanzania, all of whom currently,

or until recently, practice hunting and gathering.5,8 Yet, the San,

Hadza, and Sandawe languages are highly divergent and

their classification as a single language family remains conten-

tious.9,10 Linguistic studies suggest that the Sandawe language

is more similar to that of the southern African San than that of the

Hadza.11 Additionally, African populations live in various environ-

ments including deserts, tropical rainforests, savannas,

swamps, and high-altitude mountains, and have adapted to

diverse selection pressures such as climate, diet, and pathogen

exposure, driving local adaptation.12,13

Despite the essential role that Africa has played in the origin

and evolution of anatomically modern humans, Africans are still

underrepresented in human genomic studies.14,15 People of

African ancestry in the US have a disproportionately higher

burden of common diseases, such as hypertension, diabetes,

and kidney failure, likely due to both environmental (including

sociodemographic, economic, and health access) and genetic

factors.15,16 Therefore, a lack of representation of African popu-

lations in genetic research not only hinders our understanding of

human evolutionary history, but also limits the development of

equitable precision medicine.15

While prior WGS studies in Africa focused on targeted

geographic regions17,18 or used 1 – 6 individuals from particular

ethnic groups,19–24 in this study, we generated high-coverage

whole-genome sequencing (WGS) of 180 individuals from 12

indigenous African populations (15 individuals per population):

the Amhara, Dizi, Chabu, and Mursi from Ethiopia, the Hadza

and Sandawe from Tanzania, the RHG (Baka and Bagyeli

merged into one population), Fulani, and Tikari from Cameroon,

and the Herero, Ju|’hoansi and !Xoo (the latter two collectively

referred to as ‘‘San’’) from Botswana (Figure 1A). These popula-

tions speak languages encompassing all four African language

phyla. The Hadza and San still practice traditional hunter-gath-

erer subsistence styles (though the San now receive food sub-

sidies), whereas the Sandawe have adopted agriculture and

herding within the past few hundred years.3 The RHG who,

based on their short stature, have been referred to as ‘‘Pygmies’’,

have lost their traditional language and now speak Bantu lan-

guages.3 Such language replacement also happened to the

Fulani, who are traditionally nomadic pastoralists living across

a broad range of Africa encompassing the Sudan, Central, and

western Africa.3 The Fulani now speak a Niger-Congo language

most similar to languages spoken on the west coast of Africa.25

The Chabu have a census population size of only 1,000–2,000 in-

dividuals,26 live in a mountainous region in southwestern

Ethiopia, and practice a foraging lifestyle. Their language is

considered a ‘‘language isolate’’ and one of the ‘‘severely endan-

gered languages’’ of the world. Linguistic studies suggest that

the proto-Chabu language may have originated as an early

branch of the Nilo-Saharan phylum.4,27

Across these populations, we characterized millions of

genomic variants, many of which were predicted to be functional

and of potential biomedical relevance. We used multiple ap-

proaches to reconstruct the phylogenetic relationship, admix-

ture events, and effective population sizes of these populations.

Moreover, we identified population-specific signals of positive

selection that may have contributed to local adaptation, and

we identified the functional impact of some of these variants

on adaptive phenotypes.

RESULTS

We generated high coverage (>303) WGS data from 15 individ-

uals per population from 12 African populations (180 individuals

total), representing the most diverse genetic ancestries in sub-

Saharan Africa based on prior admixture analyses (Figure 1A).3,32

After quality control (STAR Methods), we identified a total of

35,201,568 variants: 32,438,935 single nucleotide polymor-

phisms (SNPs) and 2,762,633 small insertions and deletions.

Further analyses were restricted to 32,044,896 biallelic SNPs.

The average number of SNPs varies greatly among populations

(Figure 1B). The San and RHG individuals have the greatest num-

ber of SNPs (Figure 1B) and the highest levels of genetic diversity

(Figure 1C), whereas individuals from populations that experi-

enced strong non-African admixture (e.g., Amhara from Ethiopia)

or small census sizes (e.g., Hadza or Chabu), carry the fewest

SNPs (Figure 1B) and have the lowest genetic diversity

(Figure 1C).

We identified 5,344,342 SNPs that are not reported in

dbSNP28 version 155 nor gnomAD29 version 2.1 (Figure 1D).

Around 78% of the unreported SNPs are population-specific,

15% are shared by populations in the same country, and 7%

are shared by populations residing in different countries (Fig-

ure 1E). Variants at unreported SNPs are significantly rarer

than those at previously reported SNPs (Wilcoxon rank-sum

test, p < 0.001). The Dizi, Ju|’hoansi and !Xoo have the greatest

numbers of population-specific unreported variants (Figure 1F),

and the Ju|’hoansi and !Xoo shared the greatest number of unre-

ported SNPs amongpopulations in the same country (Figure 1G).

Of the unreported variants shared between populations in

different countries (Figure 1H), most are shared between the

hunter-gatherer populations in southern (Ju|’hoansi and !Xoo)

and eastern (Hadza and Sandawe) Africa and between the

Hadza, Sandawe, and Ethiopian populations (Amhara, Dizi,

Mursi, and Chabu).

Among the unreported SNPs, we identified 28,901 and 499

causing amino acid changes or stop codon gain/loss, respec-

tively, as well as 95,844 in transcription factor binding site

(TFBS) regions, 253,334 in enhancers, and 47,777 located in

active promoter regions (Figure 1D), based on functional annota-

tions using ANNOVAR33. Further, 154 SNPs in our dataset were
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Figure 1. Geographic locations of the samples and summary of the variants identified in this study

(A) Points are populations, with color indicating language classification.

(B) Number of SNPs across populations compared to the human reference genome (hg19).

(C) Genetic diversity in terms of heterozygosity across populations.

(D) Number of unreported and known SNPs and their potentially functional impacts. Here, unreported SNPs were identified by comparison to the database for

SNPs (dbSNP)28 (version 155) and gnomAD29 (version 2.1) databases. Annotations of regulatory elements were generated by the Encode project30 based on

predicted chromatin state of lymphoblastoid cells from the ‘‘GM12878’’ sample as well as conserved transcription factor binding sites (TFBS). These annotations

were downloaded from the UCSC genome browser website.31

(E) Pattern of shared unreported SNPs in different populations.

(F) Number of population-specific unreported SNPs in each population.

(G) Number of unreported SNPs shared between populations in the same country.

(H) Number of unreported SNPs shared between populations in different countries. ‘‘All’’ corresponds to SNPs that were shared by all 12 populations.

RHG: rainforest hunter-gatherers.

See also Figure S1 and Table S1.
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reported as ‘‘Pathogenic’’ or ‘‘Likely Pathogenic’’ in the ClinVar

database34 (STAR Methods). Of these, 44 are at frequencies

higher than 0.05 in at least one of the populations from this

study but are either absent or at frequencies lower than 0.01 in

non-African populations in gnomAD (Table S1). For example,

rs74853476-C is a splice donor variant at dopamine beta-hy-

droxylase (DBH) associated with orthostatic hypotension 1 in

non-African samples.35 Although rs74853476-C is rare in all

super-populations in gnomAD, it reaches 13% frequency in the

Fulani (Figure S1A). Another example consists of three missense

mutations (Figures S1B–S1D), rs139426141-G, rs140482516-T,

and rs34097903-A, in peptidyl arginine deiminase 3 (PADI3), re-

ported to be associated with central centrifugal cicatricial alope-

cia in patients of African ancestry.36 Each of these variants is at a

high frequency in at least one of the studied populations

(Figures S1B–S1D) but is rare in the non-African super-popula-

tions in gnomAD. Thus, a number of variants that are labeled

by ClinVar as putatively pathogenic are seen at high frequencies

in one or more of our populations and, in fact, may be benign.

These observations emphasize a strong need to include ethni-

cally diverse populations in human genetic studies, especially

because rarity is used as a criterion for determining a variant’s

pathogenicity in clinical studies.15

Phylogenetic relationship of African populations in a
worldwide context
After merging our African WGS data with WGS data for Papuans

from the Simons Genome Diversity Project (SGDP)37 and the

northern and western Europeans from Utah, Tuscans, and Han

Chinese in Beijing from the 1000 Genomes Project (1KGP)38

(STAR Methods), we constructed a neighbor-joining phylogenic

tree using MEGA39, which neglects migration and recombina-

tion. Therefore, admixed populations may cluster near each

other. We observed that the Ju|’hoansi and !Xoo have the most

basal lineages of all modern humans, followed by the RHG (Fig-

ure 2). The remaining populations largely clustered by their cur-

rent geographical locations with a few exceptions. For example,

the Fulani from Cameroon clustered with Afroasiatic-speaking

populations in East Africa, suggesting common ancestry with

those populations and a language replacement during their

migration across the Sahel.3 Further, the Chabu clustered with

the Nilo-Saharan-speaking Mursi, consistent with the linguistic

classification of the Chabu language.27 The Hadza and Sandawe

clustered near each other, though they did not form a monophy-

letic group, possibly due to strong admixture between the San-

dawe and other East African populations (Figures 3E and S2).

Consistent with previous studies,3,20,40 the Fulani and two Ethio-

pian Afroasiatic-speaking populations, the Amhara and Dizi, are

genetically closest to non-African populations based on phylo-

genetic analysis. Yet, analysis with D-statistics41 based on

allele sharing suggests that the out-of-Africa source population

was ancestral to all non-RHG, non-San populations in our data-

set (Note S1). This suggests that the clustering of non-African

populations with the Fulani, Amhara, and Dizi in Figure 2 is due

to gene flow from non-Africans into these populations (directly

or indirectly), which we confirmed using D-statistics (Note S1).

Complex demographic history of African populations
Principal component analysis (PCA) of the current dataset

merged with a global WGS dataset from the SGDP reveals

both continental and population-specific patterns of genetic

variation. PC1 separates Africans and non-Africans, with the

exception of populations in North Africa and the Middle East,

consistent with prior studies (Figure 3A).3,20,46 PC2 distinguishes

the San from other Africans (Figure 3A). Subsequent principal

components differentiate the Hadza, Chabu, Dizi, and Mursi

from other populations along PC3 (Figure 3B), and RHG popula-

tions (Baka, Bagyeli, Bakola, Biaka, Bedzan and Mbuti) are

distinguished along PC4 (Figure 3C). Including 55 ancient

eastern and southern African samples dated from 10,000–160

years before present (YBP) in the PCA, we observed a wide

geographic distribution of Khoesan-related individuals in Africa

as previously noted (Figure 3D)42; 15 ancient samples either

overlap or fall onto a geographic cline between the present-

day eastern and southern African Khoesan-speaking hunter-

gatherer populations (Figure 3D). For example, Mota from

Ethiopia (4524–4418 YBP) and ancient foragers from Tanzania

and Kenya (4080–160 YBP) overlap in the PCAwith the Sandawe

and Hadza. Five ancient samples from South Africa (817–1069

YBP) either overlap or are close to the present-day southern Af-

rican San populations, consistent with prior studies.42

ADMIXTURE47 analysis of the merged dataset separated

African and non-African populations at K = 2 (Figure S2). At

K = 4, San ancestry (yellow) becomes distinct, which is also

common in the RHG, Sandawe, and Hadza. At K = 7, East Af-

rican populations (e.g., Hadza, Sandawe, Chabu, Dizi, Am-

hara, and Mursi) emerged as a cluster (teal). The Fulani formed

a distinct cluster at K = 8 (purple). The Hadza emerged as a

cluster at K = 10 (brown) and the RHG (dark purple), and

Chabu (light green) became distinct clusters at K = 12 (Fig-

ure S2). At K = 16 the Ju|’hoansi (dark green), who speak a

Figure 2. A neighbor-joining phylogeny of African and representa-
tive global individuals based on whole-genome sequence data

Numbers at each node indicate bootstrap values based on 100 bootstraps.

CEU: Northern Europeans from Utah. TSI: Toscani in Italy. CHB: Han Chinese

in Beijing, China are from the 1000 Genomes Project.38 Papuan samples were

sequenced by the SGDP.37
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northern Khoesan language, and the !Xoo and Khomani San

(yellow), who speak a southern Khoesan language, become

distinguished (Figure 3E). Additionally, Nilo-Saharan-speaking

populations (e.g., the Dinka, Mursi, and Sengwer) became a

single cluster (beige) at K = 16. Niger-Congo-related ancestry

(red) was inferred to be widely spread across sub-Saharan Af-

rica but was most common in western and Central African

Niger-Congo-speaking populations (e.g., Lemande and Tikari)

compared to eastern and southern Niger-Congo-speaking

populations that have admixed to varying degrees with neigh-

boring populations. The Herero, who speak a Bantu language,

have low levels of admixture with the San.3,48 Furthermore, the

Sandawe have high levels of Afroasiatic-related (light blue,

�50%) and Niger-Congo-related (red, �25%) ancestries, but

also low levels of ancestries related to the Hadza (brown)

and San (yellow/dark green), reflecting shared common

ancestry and/or ancient gene flow among southern and

eastern African hunter-gatherer populations.
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Figure 3. Population structural analyses based on PCA and ADMIXTURE

(A–C) Principal component analysis (PCA) of modern human populations from the present study with the SGDP.37

(D) Projection of ancient samples from previous studies42,43,44,45 onto PCs 1 and 2. Points are individuals and colors indicate language classification (purple,

Afroasiatic; brown, Nilo-Saharan; red, Niger-Congo; and yellow, Khoesan). Population labels are derived from the cited studies.

(E) ADMIXTURE result for K = 16. Bars are individuals and colors indicate ancestry proportions.

See also Figure S2.
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We modeled more complex demographic histories using

TreeMix49 and qpgraph41. When no admixture is allowed, the to-

pologies based on qpgraph (Figure 4A) and TreeMix (Figure S3A)

are consistent with the topology of the neighbor-joining tree (Fig-

ure 2), with the San as an outgroup to all other populations. How-

ever, the topologies of qpgraph (Figures 4B and S4) and TreeMix

(Figure S3) vary tremendously when allowing admixture among

populations. When modeling 10 admixture events, qpgraph esti-

mated that the East African Khoesan populations, the Hadza and

Sandawe, respectively derive 71% and 38% ancestry from a

population ancestral to the southern African Khoesan population

(consistent with migration events between the Hadza, Sandawe,

and San inferred from TreeMix with 9 migration events). These

populations, particularly the Sandawe (Figure 4B), also derive

ancestries from an Afroasiatic-like population, likely reflecting

recent Afroasiatic gene flow (Figure 3E), consistent with

TreeMix with 4 migration events (Figure S3E). We estimated

that the Ethiopian populations (Amhara, Dizi, Mursi, and Chabu)

derived 98% and 2% of their ancestries from a population

ancestral to the Hadza and a population ancestral to all modern

human populations, respectively (Figure 4B). The latter may

reflect Neanderthal introgression introduced into Ethiopians indi-

rectly due to high levels of non-African admixture (Figure 3E).50,51

Furthermore, 80% of the Omotic-speaking Dizi ancestry can be

Figure 4. Demographic history of African populations modeled by qpgraph and momi

(A) Demographic history without admixture inferred by qpgraph.41

(B) Demographic history with 10 admixture events inferred by qpgraph.41 Percentages on the dashed lines show ancestry proportions from the two source

populations. Numbers on solid lines are inferred drift lengths. The percentages of archaic ancestries are boxed and highlighted in gray.

(C) Divergence times and gene flow inferred by momi.56,57 The populations labeled as ‘‘unsampled’’ refer to ‘‘ghost’’ populations. Modeling San and RHG as a

sister clade consistently had the highest likelihood compared to other topologies.

(D) Summarization of the results of demographic analyses. Blue bars show inferred gene flow amongmodern human populations. OOA, out of Africa populations;

ghost, inferred introgression from an unsampled ‘‘ghost’’ population.We observe evidence of introgression from a deeply diverged population into the ancestor of

all modern human populations. In addition, the Bantu-speaking and RHG populations show some ancestry that is very old, possibly reflecting subsequent

introgression with a deeply diverged population.

See also Figures S3, S4, S5, and S6 and Table S2.
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traced back to a Chabu-related population and 20% to an Am-

hara-related population (consistent with TreeMix results with 7

migration events) (Figure S3H). In addition, qpgraph indicates

that the RHG derive 37% of their ancestry from a population

ancestral to the San and 63% of their ancestry from a Niger-

Congo-speaking population (Figure 4B) consistent with high

levels of Bantu gene-flow to the RHG.52–54 The relationship of

the Tikari and Herero with other populations is complex. They

could be modeled as having 23% ancestry related to an archaic

population that diverged prior to the divergence of all modern hu-

man populations (possibly reflecting introgression from an

archaic population into modern populations) and 77% ancestry

from a population related to the Nilo-Saharan-speaking Mursi.

A similar pattern was observed in the ADMIXTURE analyses at

K = 7–11 but with much lower inferred Nilo-Saharan-related an-

cestries in the Tikari and Herero (Figure S2). The TreeMix ana-

lyses showed evidence of gene flow between the Mursi and

the ancestors of the Tikari and Herero starting at 5 migration

events (Figure S3F). The results indicating archaic introgression

in a population ancestral to the Bantu-speaking lineage are

consistent with previous studies based on ancient African

samples which suggested that the West African Niger-Congo-

speaking populations carry lineages ancestral to all modern hu-

man lineages.55 However, time-resolved demographic history

models inferred using alternate methods (described below) sug-

gest that the ancestors of San and RHG may have been the first

to split from other modern human lineages.

Consistent with the ADMIXTURE results, TreeMix and qpgraph

analyses detected extensive recent gene flow among African

populations (Figures 4B, S3, and S4). For example, the Herero

derived 7% of their ancestries from the !Xoo (consistent with

TreeMix results with 10 migration events) (Figures 4B and

S3K).58–60 The Fulani derived 50% of their ancestry from a popu-

lation related to the Amhara and 50% from a population related

to the Tikari (consistent with TreeMix results with 3 migration

events) (Figure S3D). The latter results are consistent with the

ADMIXTURE analyses discussed above (Figures 3E and S2) and

previous studies based on nuclear genomic variation, suggesting

that the Fulani share ancestry with Afroasiatic-speaking popula-

tions and admixed with Niger-Congo-speaking populations as

they migrated across the Sahel.3,20,40,61 Using DATES62, which

uses the decay of ancestry covariance along the genome to

date recent gene flowevents,we estimated that the Fulani admix-

ture event occurred 90 ± 40 generations ago (1.4–3.8 kya,

assuming 29 years per generation), corresponding with later

Holocene expansion events of nomadic pastoralists.63,64

OurWGS data also enabled detailed analyses of demographic

history using two modeling approaches, MSMC65 and

momi56,57. Because MSMC analysis does not model gene

flow, it likely underestimates divergence times in highly admixed

populations. We began by investigating the population ancestral

to all modern populations. Using momi, we compared a model

where the populations split from a single panmictic source to a

model where the populations split from a structured population.

Across all pairs of populations, we inferred that all modern hu-

mans descend from deeply structured populations and that

they derive approximately 5%–15% of their ancestry from a line-

age that may have diverged as long ago as 1–3 mya (Figure 4C),

consistent with previous findings suggesting archaic introgres-

sion in some African populations.66,67 However, such a model

is also consistent with the population ancestral to modern hu-

mans being deeply structured.

We next dated the divergence times between modern human

populations. To interrogate the oldest population splits, we used

momi to infer a time-resolved demographic model relating the

San (Ju|’hoansi), East African Khoesan (Hadza), RHG (Baka),

and Bantu-speaking (Tikari) populations. We tested models with

RHG as an outgroup, with the San populations as outgroups,

and with the RHG and San as a sister clade derived from a popu-

lation ancestral to all other populations. Themodelswhich had the

San and RHG as a sister clade consistently had the highest likeli-

hood (Figure S5), indicating that the oldest split between these

populationsseparated theSanandRHGfromtheHadzaandTikari

as early as 285 kya (Figure 4C). Similarly, when comparing either

San or RHG to any other African population, the MSMC ‘‘cross-

coalescence rate’’ curves (CCR) donot reachhigher than90%un-

til 150kya tomore than200kya (FigureS6). Together, these results

indicate that the oldest split separated the San and RHG from all

other populations, and that this split occurred at least 150 kya

and may have occurred as many as 285 kya.

All other pairs of populations were inferred to split more

recently, with momi inferring divergence times less than 68 kya

and MSMC CCRs reaching 50% before 42 kya (Figures S6D–

S6F). In particular, despite speaking language isolates contro-

versially placed within the Khoesan family, we inferred more

recent divergence times between the Hadza, Sandawe, and

non-San/non-RHG populations relative to divergence times be-

tween San, RHG, and other populations. When comparing the

Hadza to non-San/non-RHG populations, momi inferred diver-

gence times between 25 and 60 kya and MSMC inferred a

50% CCR between 29 and 42 kya (Figure S6G). Similarly, for

the Sandawe, momi inferred divergence times between 25 and

45 kya, and MSMC inferred a 50% CCR between 23 and 30

kya (Figure S6H). We estimated divergence times between

Afroasiatic-speaking and Nilo-Saharan-speaking populations

to be around 22–35 kya using momi and MSMC (Figure S6E).

Even within language groups, we observed evidence of

ancient population structure. For example, between the Bantu-

speaking Tikari and Herero, momi inferred a divergence time of

20 kya and the MSMC CCR reaches 50% at 11 kya (Figure S6I).

We estimated that the divergence times between the Khoesan-

speaking Ju|’hoansi and !Xoo are 18 kya and 24 kya using

momi andMSMC, respectively (Figure S6J), consistent with prior

estimates.8 Additionally, the East African Khoesan-speaking

Hadza and Sandawe were inferred to have diverged �23 and

25 kya using MSMC and momi, respectively. The Afroasiatic-

speaking Amhara and Dizi were inferred to have diverged 30

kya using momi and 22 kya using MSMC (Figure S6E). Finally,

the Nilo-Saharan-speaking Chabu and Mursi were inferred to

have diverged 22 kya using momi and 17 kya using MSMC (Fig-

ure S6E). All pairwisemomi results are presented in Table S2 and

are based on the models in Figure S7.

Temporal dynamics of effective population size in Africa
Using PSMC68 and SMC++69, we observed the emergence of

effective population size (Ne) differences as early as �200 kya
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(Figure 5). From 200 to 50 kya, the RHG and San had greater Ne

compared to other populations (Figure 5A). The Amhara and Dizi

have the lowest Ne compared to other African populations (Fig-

ure 5A). Four populations, including Hadza, Chabu, Herero, and

Fulani, experienced dramatic population size declines 1–10 kya

(Figure 5B). In particular, the Ne of both the Hadza and Chabu

dropped from�10,000 to�200 (Figure 5B), consistent with their

current census sizes of �1,000.

Local adaptation in Africans
To identify candidate loci that may play a role in local adaptation

to diverse environments and diets, we identified loci that

have highly differentiated allele frequencies in each population

compared to other African populations using the Di statistic70.

We calculated a Di value for each SNP and defined outliers falling

in the 99.9th percentile as Di-SNPs. The functional impact of

genes near Di-SNPs was inferred using GREAT71 (Table S3).

We also identified Di-SNPs that overlap significant SNPs from

genome-wide association studies (GWASs) in populations with

African ancestry using the National Human Genome Research

Institute (NHGRI)-European Bioinformatics Institute (EBI)

GWAS catalog and studies using United Kingdom biobank

(UKBB) samples.72,73We observed evidence for local adaptation

for different traits in diverse populations (Figure 6).

We found that the San, who have lighter skin than other African

populations,74 have enrichment for Di-SNPs near genes involved

in skin pigmentation (e.g., OCA2, TYRP1, SLC24A5, and MITF)

and other skin phenotypes, including keratin loci (e.g., KRT25,

KRT27, and KRT71) (Table S3). Previous studies show that mu-

tations in OCA2, TYRP1, SLC24A5, and MITF can cause ocular

albinism type 2, type 3, and type 6, as well as Tietz albinism-

A

B

Figure 5. Inferred effective population sizes

(A) The results of PSMC.68

(B) The results from SMC++,69 plotting effective

population size against time, assuming a per-

nucleotide, per-generation mutation rate of 1.25 3

10�8 and generation time of 29 years.

deafness syndrome.75,76 In the gene

body of OCA2, we identified 112 Di-

SNPs, including one synonymous, one

nonsynonymous, and 110 intronic muta-

tions. Although the nonsynonymous

variant (rs1800417) at OCA2 was previ-

ously reported to not be associated with

skin pigmentation variation in the San,77

rs1800404, a synonymous variant in exon

10, is associated with skin pigmentation

and eye color variation across multiple

ethnicities.74,78,79 The light-pigmentation

associated allele rs1800404-T, which is a

splicing quantitative trait locus (QTL) of

OCA2,74,80 is most frequent in the San

(83%) compared to all other populations

in the present study and gnomAD, except

for the Finnish population (frequency of

84%; Table S4).

We also observed 22 Di-SNPs in the San within the gene body

of PDPK1 (Figure 7A). PDPK1 is an important regulator of mela-

nocyte proliferation and loss of PDPK1 reduces skin pigmenta-

tion in mice.81 Interestingly, one Di-SNP, rs77665059, overlaps

a melanocyte-specific open chromatin region in the intron of

PDPK1 (Figure 7A). The ancestral allele, rs77665059-C, shows

higher frequencies in the Ju|’hoansi (0.67) and !Xoo (0.83)

compared with other populations (average frequency of 0.14

and 0.03 in the non-San populations of the present study and

the global populations in gnomAD, respectively) (Figure 7B).

Chromatin immunoprecipitation sequencing (ChIP-seq) data re-

vealed that this region is enriched for H3K27ac and H3K4me1

signals in melanocytes, and binding sites for the transcription

factors MITF, SOX10 (involved in melanocyte development and

expression of pigmentation genes82,83), and SMARCA4 (chro-

matin remodeler) (Figure 7A). Based on luciferase reporter as-

says in two melanoma cell lines, MNT-1 (highly pigmented) and

WM88 (lightly pigmented), we observed that the ancestral C

allele is associated with increased enhancer activity compared

to the derived A allele in both cell lines (Figure 7C), consistent

with the C allele being associated with lower expression of

PDPK1 in fibroblasts in GTEx (Figure 7D).80 Individuals with the

C allele have lighter skin pigmentation compared to individuals

with the A allele in the San (Figure 7E). Furthermore, CRISPR in-

hibition of this enhancer causes significantly reduced expression

of PDPK1 and melanin levels in MNT-1 cells (p value < 0.001,

one-way ANOVA post hoc test) (Figure 7F). These observations

indicate that SNP rs77665059 is within an enhancer active inme-

lanocytes that impacts pigmentation in vitro and may influence

skin color in the San by regulating the enhancer activity and

gene expression of PDPK1.
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We also observed enrichment for Di-SNPs in the San near

genes involved in hair follicle development and ‘‘narrow eye

opening’’ in mice (Table S3). This observation is consistent

with descriptions of unique hair follicle morphology (tightly spi-

raled) and narrow eye morphology in the San.84,85 One SNP of

particular interest is a nonsynonymous variant, rs111298318,

in KRT74. Mutations at KRT74 are known to cause a ‘‘wooly

hair’’ phenotype in humans.86 The rs111298318-C variant is

at > 0.73 frequency in the San, is < 0.05 frequency in other

African populations in the present study and is almost absent

in non-African super-populations in gnomAD.

In the RHG we found enrichment for Di-SNPs near genes

involved in bitter taste receptor activity (e.g., TAS2R1,

TAS2R10) and immune response (e.g., HLA-DOA, IL2, and

IL4R) consistent with previous studies.22,53 Additionally, we

observed enrichment for Di-SNPs near genes involved in

bone growth and chondrocyte differentiation (Table S3) inclu-

ding CISH/DOCK3/MAPKAPK3, GHR, IGF1, BMP4, BMP6,

ANKRD11, TRPS1, and ACAN,22,72,87–91 potentially involved in

the short stature of the RHG. Notably, 75 out of 76 Di-SNPs in

a 15-Mb region of chromosome 3 (between 45 and 60 Mb) that

were significantly associated with height variation in the

RHG22,87 were predicted to be eQTLs of DOCK3 or MAPKAPK3

in GTEx (Table S5). Further, 312 Di-SNPs (Table S6) were signif-

icantly associated with height (p value < 1 3 10-8) in previous

GWAS,73,92,93 suggesting that the short stature phenotype in

the RHG likely evolved due to positive selection at multiple loci.

We observed an enrichment for Di-SNPs near genes that play

a role in immune-related pathways in the Fulani and Chabu (Fig-

ure 6 and Table S3). Studies have shown that the Fulani are more

resistant to severe malaria relative to other ethnic groups in

similar environments.94,95 In the Fulani, we observed significant

enrichment for Di-SNPs near genes involved in the ‘‘cellular

response to interleukin 6,’’ including IL6, IL6R, and IL6ST

(Table S3). Previous studies based on gene expression analysis

suggest that genes in the IL6 signaling pathwaymay play a role in

Figure 6. Representative phenotypic and physiological traits shaped by positive selection due to local adaptation in African populations

We identified signatures of positive selection in different populations using the di statistic. Representative traits and genes were selected based on functional

annotation of outlier SNPs in different populations using GREAT.71

See also Tables S3, S4, S5, S6, and S7
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relative resistance to malaria observed in the Fulani.96,97 The

rs1889314-A, rs10908834-T, and rs12118634-T alleles of three

Di-SNPs are more frequent in the Fulani than other African pop-

ulations in our study or in the gnomAD database (Table S4) and

are significantly associated with increased expression of IL6R

compared to the alternative alleles.80

In the Chabu, we observed enrichment for Di-SNPs near

genes involved in positive regulation of immune effector pro-

cesses, positive alpha-beta T cell activation and differentiation

(Table S3), reflecting an adaptation to a different environment

and different pathogens compared to the Fulani. We also de-

tected 318 Di-SNPs within or near the MICA locus (±50 kb),

including 8 missense mutations (rs1063630, rs1051786,

rs1051792, rs1051794, rs1131898, rs1051798, rs1051799, and

rs61738275). SNPs rs1063630 and rs61738275 are in one link-

A
B

D
C

E F G

Figure 7. rs77665059 affects the enhancer ac-

tivity of PDPK1 and may contribute to light

skin color of the San

(A) rs77665059 overlaps amelanocyte-specific open

chromatin region in the intron of PDPK1.

(B) Allele frequencies at rs77665059 in 12 African

populations. The ancestral allele ‘‘C’’ is highlighted in

green.

(C) Luciferase reporter assay of rs77665059 in

MNT-1 and WM88 melanoma cells. N = 10–12.

(D) rs77665059 is an eQTL of PDPK1 in cultured

fibroblast cells. Data from GTEx.

(E) CRISPRi of the enhancer inhibits PDPK1 gene

expression.

(F) CRISPRi of the PDPK1 enhancer decreases the

melanin level in MNT-1 cells.

(G) Melanin index for different genotypes of

rs77665059 in the San.

One-way ANOVA with pos hoc tests were used in

(C), (E), and (F). **** indicates p < 0.0001, *** in-

dicates p < 0.001.

age disequilibrium (LD) group (R2 = 1), while

the other six SNPs are in a separate LD

group (R2 = 1). MICA is a ligand of

NKG2D and triggers the cytotoxicity of nat-

ural killer cells and CD8 T cells, acting as an

important component of the innate immune

response.98

In the Hadza, we observed enrichment

for Di-SNPs near genes that play a role in

pathways related to cardiac function and

development, including BMP2, HEY1,

MYH6, RYR2, PITX2, and TPM1 (Table

S3). Previous studies have shown that

genes in cardiac-related pathways are en-

riched for being targets of positive selec-

tion in RHG populations in Africa and

Asia.99 The Hadza are one of the few pop-

ulations globally that continue to practice

a traditional hunting and gathering lifestyle

and are well-known for the remarkable dis-

tance that they travel daily; on averagemen

walk 13 km per day hunting animals and

gathering honey, and women walk 8 km per day foraging for

plant foods.100 Thus, selection at loci involved in heart develop-

ment could be adaptive in this population.

The Di-SNPs in the Sandawe are near genes involved in facial

and skeletal muscle development, such as regulation of skeletal

muscle fiber development, embryonic cranial skeleton morpho-

genesis, and cranial and craniofacial suture morphogenesis

(Table S3). For example, we detected Di-SNPs near MEF2C,101

TBX3,102 and HIF1AN,103 which are involved in skeletal muscle

development as well as FGFR2,104 TGFBR2,105 TBX15,106 and

TWIST1,107 which play important roles in cranial development

andmorphology.Theadaptivesignificanceof these loci isunclear.

We observed Di-SNPs in Herero and Tikari at loci that play

roles in hypertension, kidney disease, obesity, and diabetes

(Table S3), diseases which are relatively common in African
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Americans compared to other ethnic groups in the US.108,109 In

the Herero, ontologies such as regulation of systemic arterial

blood pressure by baroreceptor feedback, positive regulation

of blood pressure by epinephrine-norepinephrine, regulation of

systemic arterial blood pressure by norepinephrine-epinephrine,

and neurological system processes involved in regulation of

systemic arterial blood pressure are significantly enriched for

Di-SNPs. A set of 23 Di-SNPs in the Herero were significantly

associated with blood pressure traits (e.g., systolic/diastolic

blood pressure) in previous GWAS of UKBB samples.72 For

example, rs7821832-G is most frequent in the Herero compared

to other populations in our study and to populations in gnomAD

(Table S4) and is significantly associated with systolic blood

pressure (p value = 5.4310�20) and diastolic blood pressure

(p value = 8.2310�9) in the UKBB samples.72 In the Tikari,

we observed enrichment for Di-SNPs near genes involved in

long-chain fatty acid import (Table S3). For example, one of the

Di-SNPs, rs2717609-T, is significantly associated with traits

such as body fat percentage (p value = 1.1310�10), whole

body fat mass (p value = 4.9310�10), trunk fat mass (p value =

7.6310�12), and hip circumference (p value = 5.0310�9) in a

prior GWAS of UKBB samples.72

In the Mursi, Amhara, and Dizi (Table S3), we observed

enrichment for genes involved in pathways related to kidney

development and morphology which could reflect an adaptation

to environments that are often arid, with little access to water.

For example, we found that the Di-SNPs rs9823161,

rs72841902, and rs4567493 in the Amhara, Dizi, and Mursi are

significantly associated with traits related to kidney function

in previous GWAS based on multi-ancestry samples.110

rs9823161-A and rs72841902-A are positively associated with

estimated glomerular filtration rate, and rs4567493-A is nega-

tively associated with blood urea nitrogen levels.

We also detected loci showing signatures of recent positive

selection based on extended haplotype homozygosity using

the integrated haplotype score (iHS) statistic (Table S7). We

defined the top 1% of windows with the highest fraction of

extreme integrated haplotype scores as outliers and observed

some loci that show a shared signature of recent positive se-

lection (Table S7). For example, we observed a shared signa-

ture of positive selection at the major histocompatibility com-

plex (MHC) locus in the Chabu, Mursi, and Dizi from Ethiopia

(Table S7) . We also identified population-specific positive se-

lection signals. For example, genes located in the outlier win-

dows showing strong iHS signals are significantly enriched

(FDR-adjusted p value <0.01) in pathways involved in

alcohol dehydrogenase activity (e.g., ADH4, ADH5, ADH6,

ADH7, and ADH1A) in the Amhara (Table S7), consistent with

observations in this population based on SNP array data,111

in bitter taste receptor activity (e.g.,TAS2R20, TAS2R30,

TAS2R31, TAS2R43, TAS2R46, and TAS2R50) in the Hadza,

and in growth hormone receptor binding (e.g., GH1, GH2,

CSH1, CSH2, and CSHL1) in the Fulani (Table S7).

DISCUSSION

In this study, we analyzed high-coverage WGS data from 180 in-

dividuals from 12 indigenous African populations, representing a

wider range of cultural, linguistic, phenotypic, and genetic diver-

sity in Africa than in previous studies of Africans.3,112 We identi-

fied �5.3 million previously unreported variants, many of which

are predicted to be functional. Furthermore, we found that 44

out of 154 ‘‘Pathogenic’’ or ‘‘Likely Pathogenic’’ SNPs, as

defined in the ClinVar database, are common (frequency

>0.05) in one or more populations in this study but are rare (fre-

quency <0.01) in non-African populations. These results do not

imply that African populations have a high frequency of patho-

genic variants but likely reflect that low prevalence of variants

is a factor for determining pathogenicity in current clinical

studies, and bias toward non-African populations may result in

the misclassification of pathogenic variants. These observations

emphasize the importance of including ethnically diverse popu-

lations and developing unbiased genotyping (e.g., SNP arrays

designed for samples of African ancestries) in human genetic

studies.15,113

Our study depicts a complex demographic history of African

populations, consisting of ancient population divergence,

regional and cross-continental migration, and admixture events

(Figures 3 and 4B–4D). Although phylogenetic analyses indicate

that the San descend from a population ancestral to all other

modern humans, demographic modeling using momi, allowing

for changes in effective population size and migration between

populations, consistently supports a model in which the RHG

and San form a sister clade, deriving from a population ances-

tral to all other modern human populations. We find similar

effective population sizes of the San and RHG from 50 to 200

kya (Figure 5), consistent with shared common ancestry. Simi-

larly, ADMIXTURE analysis identifies shared ancestry between

the San and RHG, particularly at low K values (Figure S2). On

the other hand, qpgraph suggests that the RHG and Bantu

populations derive a substantial portion of their ancestry from

a population that is an outgroup to all modern populations (Fig-

ure 4B). One possibility to explain these observations is a

model with multiple introgression events between a deeply

diverged population (diverged >1–3 mya) with the ancestors

of all modern humans (Figure 4C) and, more recently, with

the ancestors of the RHG and Bantu populations (Figure 4D),

consistent with previous reports of archaic introgression in Af-

rican populations.22,23,42,55 However, these results could also

be explained if the lineages related to modern-day African pop-

ulations were part of a deeply structured ancestral population

(a ‘‘multiregional’’ model of modern human origins in Africa

which could have been facilitated by gene flow between

structured populations). Sequencing ancient DNA from archaic

hominid fossils in Africa, if it becomes feasible, may provide

more direct evidence of archaic admixture in Africa, as has

been the case for Neanderthal and Denisovan introgression in

non-Africans.50,114

Thus, the early demographic history of the lineages leading to

modern humans is complex, with multiple episodes of gene flow

between modern human lineages and possibly with other homi-

nid lineages. When accounting for gene flow, we estimated that

the deepest divergence among modern humans dates back to

285 kya, which is consistent with the estimates based on ancient

African samples55,43 and fossil records in Africa.1 Without ac-

counting for gene flow, however, our estimates from MSMC
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analyses are much more recent (�100–150 kya) but still quite

deep. We also show that populations speaking all major lan-

guage families diverged tens of thousands of years ago, con-

sistent with long-term population structure both within and

between populations speaking languages from different

phyla.42,115,116

Although their languages are highly divergent and their clas-

sification into the Khoesan phylum is still contentious, our ana-

lyses based on qpgraph, TreeMix, and momi identified signals

of ancient gene flow between currently geographically isolated

Khoesan-speaking hunter-gatherer populations, the Hadza and

Sandawe in East Africa, and the Ju|’hoansi and !Xoo who

currently reside in southern Africa, as recent as within the last

12 ky. Evidence based on mtDNA and autosomal data from

modern and ancient samples42,44,45,116,117 suggests the pre-

sent-day San may have originated in eastern Africa, then

migrated into southern Africa and that there could have been

a broader distribution of Khoesan-speaking populations in Af-

rica. Therefore, there could have been continuous gene flow

between the Khoesan-speaking populations in eastern and

southern Africa over long periods of time. In addition, we

observed that Niger-Congo-related ancestries are highest in

the Niger-Congo-speaking populations in West and Central Af-

rica (e.g., Tikari), but are slightly lower in the Herero of

Botswana, reflecting an origin of Bantu-speaking populations

in West and Central Africa within the past 5 ky and more recent

migration of the Herero into southern Africa within the past 1 ky,

as well as subsequent admixture with Khoesan-speaking pop-

ulations such as the !Xoo. We also observed Bantu ancestry in

the Sandawe and !Xoo, reflecting admixture of Bantu-speaking

people with indigenous populations as they spread throughout

Africa. Consistent with the linguistic and archeologic record, we

observe evidence for migration and gene flow of Nilo-Saharan-

and Afro-Asiatic-speaking populations from a homeland in pre-

sent day Sudan/Ethiopia southward into Kenya and Tanzania

(Figure 3). The local indigenous hunter-gatherer populations

were either assimilated or forced to move into harsh habitats,

leading to severe decreases in effective population size in the

Hadza22 and Chabu,26 but not the Sandawe, who assimilated

with the neighboring Cushitic- and Bantu-speaking pop-

ulations, resulting in high levels of gene flow, adoption of

agro-pastoralism, and population growth. We also observed

decreases in effective population size in the Fulani (consistent

with a study based on mtDNA markers118) and Herero. German

colonial soldiers nearly exterminated the Herero people of

Namibia in the past 100 years, which likely explains the bottle-

neck in that population.

We identified loci that may play a role in phenotypic and phys-

iological adaptation to diverse environments, diets, and patho-

gens across African populations. Some of these loci may affect

disease susceptibility in current populations living in more ur-

ban environments. Combining in silico and in vitro data, we

show that one of the Di-SNPs, rs77665059, may play a role in

light skin color of the San by regulating expression of PDPK1,

which could be adaptive in this population living relatively far

from the equator. With ongoing deep phenotyping of global

populations based on multiple ‘‘-omics’’ data and the advances

of in vitro and in vivo technologies, we expect the functions of

adaptive variants in more human populations will be character-

ized in the future.20 The identification of genetic variants that

differ in frequency in ethnically diverse populations is a comple-

mentary approach to GWAS for identifying functionally impor-

tant variation, particularly in cases where that variation is

strongly correlated with ancestry and where GWAS may have

limited power due to small sample sizes and/or variants that

are close to fixation in particular populations.

Limitations of the study
Thereare still someambiguities in our inferencesofAfricandemo-

graphic history because we can only model simple demographic

histories whereas the real demographic histories are likely to be

muchmore complex. Additionally, given 15 samples per popula-

tion, wemay be underpowered to detect all loci that are under se-

lection. Moreover, we may be missing some rare but functionally

important SNPs as well as SNPs that may be specific to popula-

tions from regions not well represented in the current study such

as western and northern Africa. To deepen our understanding of

complex evolutionary history of Africans, we must develop more

efficient computationalmethods, includemore indigenous popu-

lations and ancient samples at broad geographic and temporal

scales, and integrate genomic data with paleobiological, archeo-

logical, and linguistic data. Additional genomic data modalities,

such as long-read sequencing to uncover structural variants,

may illuminate additional forms of genetic variation beyond

SNPs and small insertions and deletions.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENT MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B DNA sequencing

B Curation of sequencing data and short variant calling

d SNP ANNOTATION

d MERGING WITH THE SGDP DATA

d QUANTIFICATION AND STATISTICAL ANALYSIS

B ADMIXTURE and PCA

B Incorporation of ancient African DNA samples

B Phylogenetic relationship inference

B Effective population size and divergence time

inference

B D-statistic analysis of the relationship of African and

non-African populations

B Demographic inference based on momi

B Demographic inference using qpgraph

B DATES analysis

B Divergence time estimates based on MSMC

B Identification of signatures of positive selection

B Functional analyses of rs77665059 at the PDPK1 locus

ll

934 Cell 186, 923–939, March 2, 2023

Article



SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2023.01.042.

ACKNOWLEDGMENTS

We thank Huiru Sun and Shuhang Li for careful reading of the manuscript, Iain

Mathieson at the University of Pennsylvania for discussing the analyses of

ancient samples and participants who donated samples. We thank Michael

S. Marks at Children’s Hospital of Philadelphia Research Institute and Ashani

Weeraratna at Wistar institute for providing melanoma tumor cell lines.

Research supported in part by NIH grants 1R35GM134957, R01AR076241,

and ADA 1-19-VSN-02 (to S.A.T.), R35-GM134922 (to Y.S.S.) and the Penn

Skin Biology and Diseases Resource-based Center, funded by NIH/NIAMS

grant P30-AR069589 and the University of Pennsylvania Perelman School of

Medicine. S.F. is supported by grants from the National Key R&D Program

of China (2020YFE0201600 and 2021YFC2500202), National Natural Science

Foundation of China (grant No. 31970563), the 111 Project (B13016), and

Shanghai Municipal Science and Technology (grant No. 2017SHZDZX01,

grant No. 19410741100).

AUTHOR CONTRIBUTIONS

S.A.T conceived and supervised the research. S.F., J.P.S., Y.F., J.T., N.T, and

Y.S.S. conducted the analyses. Y.F performed the functional validation exper-

iments. S.A.T., M.E.B.H., A.R., J.H., M.H.B., W.B., T.N., S.W.M., G.G.M.,

A.K.N., C.F., D.W.M., and G.B. contributed to sample collection and prepara-

tion. S.F., J.P.S., Y.F., Y.S.S., and S.A.T. wrote the manuscript. All authors

read and approved the final manuscript.

DECLARATION OF INTERESTS

The authors declare that they have no competing interests.

Received: April 3, 2022

Revised: October 16, 2022

Accepted: January 30, 2023

Published: March 2, 2023

REFERENCES

1. Hublin, J.-J., Ben-Ncer, A., Bailey, S.E., Freidline, S.E., Neubauer, S.,

Skinner, M.M., Bergmann, I., Le Cabec, A., Benazzi, S., Harvati, K.,

and Gunz, P. (2017). New fossils from Jebel Irhoud, Morocco and the

pan-African origin of Homo sapiens. Nature 546, 289–292. https://doi.

org/10.1038/nature22336.

2. Beltrame, M.H., Rubel, M.A., and Tishkoff, S.A. (2016). Inferences of Af-

rican evolutionary history from genomic data. Curr. Opin. Genet. Dev. 41,

159–166. https://doi.org/10.1016/j.gde.2016.10.002.

3. Tishkoff, S.A., Reed, F.A., Friedlaender, F.R., Ehret, C., Ranciaro, A., Fro-

ment, A., Hirbo, J.B., Awomoyi, A.A., Bodo, J.-M., Doumbo, O., et al.

(2009). The genetic structure and history of Africans and African Ameri-

cans. Science 324, 1035–1044. https://doi.org/10.1126/science.

1172257.

4. Blench, R. (2006). Archaeology, Language, and the African Past (Row-

man Altamira)).

5. Heine, B., and Nurse, D. (2000). African Languages: An Introduction

(Cambridge University Press).

6. Ehret, C. (1983). Population Movement and Culture Contact in the South-

ern Sudan, c. 3000 BC to AD 1000. In Culture History in the Southern

Sudan, J. Mack and P. Robertshaw, eds. (British Institute in Eastern Af-

rica)), pp. 19–48.

7. Diamond, J., and Bellwood, P. (2003). Farmers and their languages: the

first expansions. Science 300, 597–603. https://doi.org/10.1126/sci-

ence.1078208.

8. Pickrell, J.K., Patterson, N., Barbieri, C., Berthold, F., Gerlach, L., Gülde-
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and information should be directed to and will be fulfilled by the lead contact, Dr.

Sarah A. Tishkoff (tishkoff@pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCES IDENTIFIER

Biological samples

Whole blood samples N/A

Critical Commercial Sequencing

platform

N/A

HiSeq X Ten Illumina N/A

Deposited data

SNP data dbGaP phs003096.v1.p1

Software and algorithms

Plink Chang et al.119 https://www.cog-genomics.org/plink/2.0/

Annovar Wang et al.33 https://annovar.openbioinformatics.org/en/latest/

Eigensoft Patterson et al.120,121 https://github.com/DReichLab/EIG

Figtree http://tree.bio.ed.ac.uk/software/figtree/

ADMIXTOOLS2 https://uqrmaie1.github.io/admixtools/index.html

BWA Li and Durbin (2009)122 https://github.com/lh3/bwa

GATK McKenna et al.123 https://gatk.broadinstitute.org/

ADMIXTURE Alexander et al.47 http://software.genetics.ucla.edu/admixture/

Trimadap https://github.com/lh3/trimadap

SAMBLASTER Faust and Hall124 https://github.com/GregoryFaust/samblaster

Delly Rausch et al.125 https://github.com/dellytools/delly

CLUMPP Jakobsson and Rosenberg126 https://web.stanford.edu/group/rosenberglab/

clumpp.html

MEGA Tamura et al.39 https://www.megasoftware.net/

PSMC Li and Durbin (2011)68 https://github.com/lh3/psmc

MSMC Schiffels and Durbin65 https://github.com/stschiff/msmc

SMC++ Terhorst et al.69 https://github.com/popgenmethods/smcpp

GREAT McLean et al.71 http://great.stanford.edu/public/html/

Momi Kamm et al. (2017)56and

Kamm et al. (2020)57
https://github.com/popgenmethods/momi

qpgraph Patterson et al.41 https://uqrmaie1.github.io/admixtools/articles/

admixtools.html

cTools Mallick et al.37 https://github.com/DReichLab/cTools

DATES Narasimhan et al.62 https://github.com/priyamoorjani/DATES

TreeMix Pickrell and Pritchard49 https://bitbucket.org/nygcresearch/treemix/wiki/Home

SHAPEIT4 Delaneau et al.127 https://odelaneau.github.io/shapeit4/

Selscan Szpiech and Hernandez128 https://github.com/szpiech/selscan

DAVID Sherman et al.129 https://david.ncifcrf.gov/tools.jsp

VCFtools Danecek et al.130 https://vcftools.github.io/man_latest.html
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Data and code availability
The single nucleotide polymorphism (SNP) data are publicly available through the database of genotype and phenotype (dbGAP)

(accession number: phs003096.v1.p1). Links to the software and algorithms in the present study were listed in the key re-

sources table.

EXPERIMENT MODEL AND SUBJECT DETAILS

Before sample collection, permits were received from the Ministry of Health and National Committee of Ethics in Cameroon,

COSTECH, NIMR in Dar es Salaam, Tanzania, the University of Addis Ababa and the Federal Democratic Republic of Ethiopia Min-

istry of Science and Technology National Health Research Ethics Review Committee; the University of Botswana and the Ministry of

Health in Gaborone, Botswana. We obtained Informed consent from all research participants. In addition, appropriate IRB approval

was obtained from the University of Pennsylvania. We merged the Baka and Bagyeli into one population, RHG. All the samples were

males and >18 years old.

METHOD DETAILS

DNA sequencing
We conducted whole-genome sequencing of 180 individuals (fifteen unrelated samples per population) at high coverage (on

average > 30X) using Illumina HiSeq X Ten platform. All samples were processed using the same PCR-free library preparation

and the same sequencing protocol, which reduces the potential for PCR bias and also minimizes artifactual differences caused

by sample preparation. The samples were sequenced using paired-end sequencing with 150 bp at each end and a 350 bp insertion

size.

Curation of sequencing data and short variant calling
We trimmed the sequencing adapters using trimadap (https://github.com/lh3/trimadap) and masked optical duplicate reads using

SAMBLASTER124 (version 0.1.22). The reads were mapped to the decoy version of the human reference genome (hs37d5) with

bwa mem mode (version 0.7.10).122 SAMtools version 1.4131 was used to sort and index the mapping results. We also filtered out

the reads with mapping quality <20 using SAMtools. We conducted variant calling using Haplotypecaller module in GATK Toolkit

(version nightly-2016-09-26-gfade77f)123 following the best practice guidance of germline short variant discovery. In addition, we

used a prior of (0.4995, 0.001, 0.4995) for the homozygous to reference, heterozygote, and homozygous non-reference allele

were used in the Bayesian SNP calling step to generate reference-bias free genotypes following the recommendations of the Simons

Genome Diversity Project (SGDP).37 The sample-level variant calling results were stored in intermediate files with genomic variant

calling format (gVCF) that contain a record for every position of the examined regions in the genome. We then merged the sam-

ple-level gVCF files using CombineGVCFsmodule. We performed joint genotyping using GenotypeGVCFs module, which generated

one quality score for each variant site based on the inferred genotype likelihood across all the samples. We filtered the variants using

a 2-fold filtering strategy. First, SNPs from the 1000 Genomes project Phase 338, Illumina Omini 5M SNP array,74 and the HapMap

project were used as the truth data in the GATK variant quality score recalibration (VQSR) step. For the INDEL VQSR, we used the

curated genotypes from Mills et al.132 as the training dataset. We obtained 33,360,065 SNPs and 2,762,633 Indels after VQSR. Sec-

ond, we further excluded the variants (28 SNPs and 0 InDels) that locate in the potentially duplicated regions identified by Delly

(version 0.7.6)120, and are in the low complexity regions of the human reference genome (921,130 SNPs and 0 InDels).133

Finally, we obtained 35,201,568 variants, consisting of 32,438,935 SNPs and 2,762,633 InDels. We note that no variant violates

HWE (p value <1E-6) when calculating HWE for each population using Plink.119

SNP ANNOTATION

We used ANNOVAR version 2018-04-16 to annotate the biallelic SNPs. The unreported SNPs are identified based on the compar-

isons to the variants in dbSNP28 (version 155) and gnomAD (version 2.1) databases.29 The functional impacts of the SNPs in the cod-

ing regions were predicted based on RefSeq annotation of hg19.134 We intersected the SNPs in our dataset with the annotations of

transcription factor binding sites (TFBS) and predicted chromatin state segmentations of GM12878 generated by the ENCODE proj-

ect.30We also intersected our SNPswith the variants in the ClinVar database (as of 2021-05-01).34We reported the variants that were

only labeled ‘‘Pathogenic’’ or ‘‘Likely Pathogenic’’ in the Clinvar database.

MERGING WITH THE SGDP DATA

We first removed SNPs in linkage disequilibrium (LD) using Plink version v1.90b3j119 with parameters –indep-pairwise 50 10 0.1. The

pruned datawere recruited as query to extract the genotype information of 251 and 93 non-African and African samples, respectively,
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from the Simons Genome Diversity Project (SGDP)20,37 using cTools (https://github.com/DReichLab/cTools). We used VCFtools130

version 0.1.17 to merge the variants in our and SGDP datasets. A total of 12,443,243 SNPs were used in the ADMIXTURE and prin-

cipal components analysis (PCA).

QUANTIFICATION AND STATISTICAL ANALYSIS

ADMIXTURE and PCA
The merged data were used as input for ADMIXTURE version 1.3.0.47 The number of ancestral groups (K) was set from 2 to 16. We

conducted 10 runs at each K value using the default parameters to avoid local optima andmerged the results of the 10 runs at each K

value using CLUMPP version 1.1.2.126 We performed PCA of our dataset with the global samples of the SGDP using smartpca in the

EIGENSOFT toolkit version 6.0.1.120,121

Incorporation of ancient African DNA samples
We repeated the PCA incorporating genotypes from 55 ancient African samples from four studies.42,43,44,45 The genotype information

of Prendergast et al. were obtained from the authors directly. For the other three studies, we downloaded the bam files and conduct-

ed SNP calling using apulldown.py (https://github.com/mathii/gdc3/blob/master/apulldown.py), which conducts haploid calling for

ancient samples. 345,065 transversion SNPs from the ancient samples were merged with our dataset. Using the lsq mode in

smartpca,120 we projected the ancient samples to present-day populations.

Phylogenetic relationship inference
We first extracted the orthologous base pairs in the chimpanzee genome from the alignment of human and chimpanzee genomes

generated by the Ensembl database.135 Using chimpanzee as outgroup, we inferred the phylogenetic relationship of African and

non-African populations with the neighbor-joining method in MEGA version 11.39 We evaluated the robustness of the phylogeny us-

ing 100 bootstraps. We used Figtree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) to visualize the results from MEGA.

Effective population size and divergence time inference
We estimated effective population sizes using the pairwise sequentially Markovian coalescent (PSMC) version 0.6.4-r49 with default

parameters.68 Since the PSMC model is only capable of inferring the effective population size >60 kya,68 we also used the SMC++

model version 1.11.1 with default parameters69 to infer the recent effective population sizes of African populations. To convert from

generations to years, we assumed a generation time of 29 years and 1.25 3 10�8 mutations per site per year.

D-statistic analysis of the relationship of African and non-African populations
We used D statistics to identify the potential out-of-Africa source population(s) and waves of admixture between African and non-

Africans using D-statistics. D-statistics measure excess allele sharing between populations and are computed for a set of four pop-

ulations. For populations 1, 2, 3, and 4 D(1, 2; 3, 4) is computed as (p(ABBA) - p(BABA))/(p(ABBA) + p(BABA)) where p(ABBA) rep-

resents the probability that for a randomly chosen biallelic site a randomly chosen individual from population 1 and a randomly chose

individual from population 4 have the same allele (whichwe call A) while a randomly chosen individual chosen frompopulation 2 and a

randomly chosen individual frompopulation 3 have the other allele (whichwe call B). Similarly, p(BABA) represents the probability that

for a randomly chosen biallelic site randomly chosen individuals from populations 1 and 3 have the same allele (B) and randomly cho-

sen individuals from populations 2 and 4 have the same allele (A). If the four populations are related by an unrooted tree such that

populations 1 and 2 are sister taxa and populations 3 and 4 are sister taxa, then both ABBA and BABA sites are discordant with

the tree. That is, the individuals that share alleles are not from sister taxa, and hence the mutation must have either arisen indepen-

dently in two different populations or have occurred in the population ancestral to all four populations. Since both ABBA and BABA

sites are discordant, they should be approximately equally likely, and so D(1, 2; 3, 4) is approximately zero. In the case that popu-

lations 1 and 2 are not sister taxa, then population 1 must either be more closely related to population 3 than population 4, in which

case p(BABA) will be larger than p(ABBA), or vice-versa, in which case p(ABBA) will be larger than p(BABA). In either case, D(1, 2; 3, 4)

will differ significantly from zero. Therefore, we can interpret D-statistics that are close to zero as being consistent with populations 1

and 2 being sister taxa and populations 3 and 3 being sister taxa. We merged our dataset with the SGDP data20,37 and restricted our

analyses to biallelic SNPs. All D-statistics41 were computed using admixtools2 version 2.0.0 (https://uqrmaie1.github.io/admixtools/

index.html), using the commands ‘‘extract_f2’’ with the options ‘‘minmaf = 0.05’’ and ‘‘maxmiss = 0.01’’ to precompute statistics and

using the ‘‘qpdstat’’ command to compute D-statistics. To obtain genetic distances betweenmarkers, we used the pyrho YRI recom-

bination map, which was inferred to be a population-specific recombination map for the Yoruba in Ibadan Nigeria (YRI) as a proxy for

the recombination rates in the present samples.136

Demographic inference based on momi
We performed twomain types of analyses in momi.56,57 In one set of analyses, we considered ‘‘generic’’ models and fit thesemodels

to many sets of populations. These analyses used all 15 individuals from each population. We considered four different generic

models (Figure S7).
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Model 1 has two populations that start as a single population, and then population 2 splits from population 1 at an inferred diver-

gence time. The ancestral population has some size, that changes 100 kya to the present-day size of population 1 and population 2

has a constant size from the time of divergence onward. The divergence time and the three populations sizes are all inferred from

the data.

Model 2 is identical to Model 1 in the recent past but at some time pre-dating the split of the two present-day populations, an

unsampled ‘‘ghost’’ population splits from the ancestral population and at some point after this split but prior to the divergence of

the two modern populations there is a pulse of gene flow from the ghost population into the population ancestral to the two mod-

ern populations. In this model, we infer all of the same parameters as in the first model but, additionally, the divergence time of the

ghost population, the size of the ghost population, and the timing and amount of pulse admixture from the ghost population into

the ancestral population. Both Model 1 and Model 2 were fit using each possible pair of populations as the first and second

population.

Model 3 was designed to account for pervasive gene flow between RHG and Tikari when computing divergence times between

RHG and other populations. In this model, RHG and population 1 each diverge from an ancestral population at their own inferred

divergence time and having their own population sizes after divergence. At an inferred time there is a pulse admixture of an inferred

strength from the Tikari into RHG. The ancestral population has some size, which changes to the present-day size of the Tikari 100

kya. In this model we infer the two divergence times, the four population sizes (three present day, one ancient), and the timing and

strength of the pulse admixture event.

Model 4 is identical to Model 3 but with a ghost population added in the same way as going fromModel 1 to Model 2. Models 3 and

4 were fit by including each non-Tikari, non-RHG population with Tikari and RHG populations.

In another set of analyses, we fit more complex models to specific sets of populations. Due to the complexity of these models,

these were fit using only two arbitrarily chosen individuals per population. These models were initially based on qpgraph results

or known historical events (e.g., the Bantu expansion). Using goodness-of-fit criteria from momi (f2 and identity-by-state) additional

admixture events, population size changes, or unsampled populations were added to the model. To investigate the deepest splits

between populations, we considered models with Ju|’hoansi, RHG, Tikari, and Hadza and explored models where either RHG

was the outgroup, Ju|’hoansi was the outgroup, or RHG and Ju|’hoansi were sister groups. Keeping this aspect of the tree topology

fixed, we tried several different demographic models by adding admixture events to try to find a sensiblemodel with the topology that

produced a good likelihood and also had good goodness-of-fit.

In all cases, models were initialized randomly several times and re-optimized to avoid getting stuck in local optima. Both sets of

analyses determined the derived allele based on the ancestral alleles provided by the 1000Genomes Project,38 although results were

qualitatively similar when using the ‘‘folded’’ frequency spectrum obtained using the momi function ‘‘fold()’’.

Demographic inference using qpgraph
We used the statistics computed using admixtools2 (https://uqrmaie1.github.io/admixtools/articles/admixtools.html) as above (Out-

of-Africa Source Population) as the input to qpgraph as implemented in admixtools2. In particular, we used the ‘‘find_graphs’’ func-

tion in admixtools2. This performs an automated search similar to simulated annealing to find the best fitting admixture graph with a

given number of admixture events, but can get stuck in local optima. To this end, we ran ‘‘find_graphs’’ 20 times per number of admix-

ture events and stored the best fitting graph. We used the parameters ‘‘stop_gen = 1000’’ and ‘‘numgraphs = 25’’, which determine

the extent of the search for the optimal graph. For the graph with no admixture events, we initialized each search randomly. For

graphs with one or more admixture graphs we initialized the search at the best graph we found with one fewer admixture event.

In all qpgraph analyses we used chimpanzee as an outgroup.

DATES analysis
The Fulani show clear signatures of being admixed with some ancestry similar to the Amhara and some ancestry similar to the Tikari.

To date the timing of this admixture, we used the software DATES.62 DATES uses the covariance of ancestry as a function of genetic

distance betweenmarkers to estimate a time of admixture. We obtained the genetic distances betweenmarkers as described above

in ‘‘Out-of-Africa Source Population’’. We ran DATES version 753 using the parameters ‘‘binsize: 0.001’’, ‘‘maxdis: 1.0’’, ‘‘qbin: 10’’,

‘‘afffit: yes’’, and ‘‘lovalfit: 0.45’’.

Divergence time estimates based on MSMC
The SNPs in our dataset were phased with SHAPEIT version 2.r837137 using the haplotypes of African populations in the 1000 Ge-

nomes Project phase 338 as the reference panel (with parameters –no-mcmc, –input-ref, –include-grp AFR, –effective-size 17,469,

-window 0.5). The heterozygous sites that were not reported in the 1000 Genomes Project were kept as unphased. We used a mu-

tation rate 2 mm = 2.5 3 10�8 mutations per nucleotide per generation and generation time g = 29 years in the MSMC analysis.

Identification of signatures of positive selection
We employed the di statistic

70 to identify signals of positive selection in different populations. di statistics normalizes the Fst values

between populations and identifies the most differential variants in each population.
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di =
X

jsi
ðFstði; jÞ � E½Fstði; jÞ�Þ = sdðFstði; jÞÞ

where Fst (i,j) is the Fst value of an SNP site between populations, E½Fstði; jÞ� and sd½Fstði;jÞ] is the average and SD of Fst value between

populations. Here, we defined outliers falling in the 99.9th percentile of the empirical distribution of Di values as Di-SNPs. We func-

tionally annotated the outlier SNPs using the Genomic Regions Enrichment of Annotations Tool (GREAT) version 3.0.71 We first run di

using all 15 populations. Due to the recent divergence between Ju|’hoansi and !Xoo, we also performed di analysis using the merged

Ju|’hoansi and !Xoo as a single group against other populations.

We also used integrated haplotype score (iHS) statistics138 to detect recent hard selection sweeps. The SNPs were phased with

Shapeit4127 version 4.1.3 using the haplotypes of the 1000Genomes project38 as a reference panel. We calculated iHS for every SNP

with minor allele frequency >5% within each population using selscan version 2.0.0127 with default parameters. The unstandardized

integrated haplotype scores were normalized in frequency bins across the genome using normmodule in selscan. We partitioned the

genome to 100 kb non-overlapping windows. The top 1% of windows with the highest fraction of extreme integrated haplotype

scores were defined as outliers.138 Using the genes located in the outlier windows in each population as query, we conducted

GO enrichment tests using DAVID, an online functional annotation tool.129 We reported the GO ontologies with an FDR adjusted p

value <0.05.

Functional analyses of rs77665059 at the PDPK1 locus
Cell culture

MNT-1 cells (ATCC, #CRL- 3450), that were obtained fromDr. Michael S. Marks at Children’s Hospital of Philadelphia Research Insti-

tute, were grown in DMEM (Gibco, #11965084) supplemented with 20% Fetal Bovine Serum (FBS), 1% GlutaMAX (Gibco,

#35050061), 1% NEAA (Gibco, #10370021), 1% penicillin/streptomycin (Gibco, #15140122), and 10% AIM-V (Gibco, #12055-

091). Cells were transfected using Lipofectamine 3000 Transfection Reagent (Invitrogen, #L3000150).

WM88, melanocytic patient-derived melanoma tumor cell line, was obtained from Dr. Ashani Weeraratna at Wistar institute, Phil-

adelphia, PA, were cultured in Tumor Specialized medium (80% MCDB153, 20% Leibovitz’s L-15, supplemented with 2% fetal

bovine serum (FBS) and 1.68 mM CaCl2) at 37
�C with 5% CO2 in a humidified incubator.

Luciferase reporter assay

TheMNT-1 andWM88 cell lines were used for luciferase reporter assays. The cells were plated in 24-well plates at 0.1M per well, and

500 ng firefly luciferase plasmid, 20 ng pRL Renilla luciferase plasmid (Promega, #E2231) and 1.5 mL Lipofectamine 3000 (Invitrogen,

#L3000150) were added to each well. 36 h post transfection, luciferase activity was determined using the Dual-Luciferase Assay kit

(Promega, #E1910) according to manufacturer instructions. The luminescence signal was detected in a white 96-well plate using

SpectraMax i3x Multi-Mode Microplate Reader. The reporter gene activity of firefly luciferase was normalized to that of Renilla lucif-

erase to determine the activity of functional elements.

Plasmid cloning

For the luciferase assay, human enhancer elements were cloned using genomic DNA extracted from MNT-1 cells. The amplified

enhancer fragments were sequenced and ligated to PGL4.23 vector (Promega, #E8411) using Gibson assembly (NEB, #E2621).

Candidate functional SNPs were introduced by mutated primers.

For CRISPR inhibition experiments, sgRNAs were designed using IDT (https://www.idtdna.com/site/order/designtool/index/

CRISPR_CUSTOM) or CRISPOR (http://crispor.tefor.net/) and cloned into a pLKO5.sgRNA.EFS.GFP (Addgene, #57822) vector using

FastDigest BsmBI (Fermentas) following the protocol (https://media.addgene.org/data/plasmids/52/52961/52961-attachment_

B3xTwla0bkYD.pdf).

CRISPR mediated inhibition

To perform enhancer CRISPR inhibition, we first constructed MNT-1 cells stably expressing dCas9-KRAB-MeCP2 (Addgene,

#110821). We produced dCas9-KRAB-MeCP2 (CRISPRi) lentiviruses following the published protocol.139 Then, MNT-1 cells were

infected with each virus with 8 mg/mL Polybrene (Sigma CatNo.H9268). For CRISPR inhibition of the enhancer, we cultured MNT-

1-dCas9-KRAB-Mecp2 cells in 24-well plates at a density of 0.05M per well and cultured for 24h. We changed to fresh medium

with 8 mg/mL Polybrene (MNT-1 cells) before infection. We added PLKO5-sgRNA (target to enhancer) virus at �10 MOI, centrifuged

at 1000g for 30min at 32�C. 24 hrs post infection, we replaced themedium usingmediumwith Blasticidin (5 mg/mL), and changed the

medium every 24 hrs. 5 days after infection, we harvested the cells for total RNA extraction or melanin assay.

Real-time quantitative reverse transcription PCR (RT-qPCR)

Total RNA was purified from all the cultured cells (CRISPR KO, CRISPR inhibition, Overexpression) using Direct-zol RNA Miniprep

Kits (Zymo, R2052) following manufacturer’s instruction, and concentration was determined by a Nanodrop.

For RT-qPCR, 200–500 ng RNA was used for reverse transcription using M-MLV Reverse Transcriptase (Promega, #M1701) and

Random Primer Mix (NEB, S1330). qPCR was conducted using Luna Universal qPCR Master Mix (NEB, M3003) on a QuantStudio 6

Flex Real-Time PCR machine.

Melanin assay

MNT-1 cells were washed with PBS twice and detached by 0.25% trypsin. The cells were pelleted at 300 g for 3 min and supernatant

was remove gently. The cell pellet was washed once with PBS and lysed in 200 mL lysis buffer (50 mM Tris-HCl, pH 7.4, 2 mM EDTA,
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150 mM NaCl, 1 mM dithiothreitol) per million cells and vortexed 3 times, every 5 min. We centrifuged the lysate at 12,000 g, 10 min,

4�C. We used 50 mL supernatant for protein quantification (BCA assay, Thermo Scientific, #23225). Then, 150 mL 2X Protease Lysis

buffer (20mM Tris (pH 8), 200mM NaCl, 50mM EDTA, 1% SDS, 0.5 mg/mL protease K) was added to the 150 mL cell lysate to digest

the pellet. We rotated at 65�C for 5 h and spun at 12,000 g for 10 min at room temperature to collect melanin. We dissolved the

melanin pellets in 0.45 mL 2M NaOH/20%DMSO and then incubated at 60�C for 30 min with 850 rpm shaking. Once the melanin

has fully dissolved (if not, we performed sonication for 5 min), we vortexed to mix and read the absorbance at 450 nm. If necessary,

we diluted the melanin with the buffer (2M NaOH/20%DMSO) so that the reading is less than 0.35.

Melanocyte epigenomic data

The chromatin accessibility data and ChIP-seq data of melanocytes or melanoma cells are collected from the Cistrome and ENCODE

databases. Themelanocyte data includeDNase-Seq (Citrome: #41038), ATAC-Seq (Citrome: #79019), H3K27AcChIP-Seq (Citrome:

#39849), H3K4Me1 ChIP-Seq (Citrome: #85888), H3K4Me3 ChIP-Seq (Citrome: #34310), MITF ChIP-Seq (Citrome: #42176). The

melanoma (501-MEL) data include SOX10 ChIP-Seq (Citrome: #52549), MITF ChIP-Seq (Citrome: #52398), SMARCA4 ChIP-

Seq (Citrome: #52555). The ENCODE cell line DNase data are from /http://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/

wgEncodeRegDnase/.

SNP frequency plots were plotted using R packages (‘‘ggplot2’’, ‘‘ggrepel’’, ‘‘ggspatial’’, ‘‘sf’’,‘‘scatterpie’’,‘‘tidyverse’’, ‘‘data.table’’)

in R version 4.1.1.
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Supplemental figures

Figure S1. Frequencies of four annotated ‘‘Pathogenic’’ variants, related to Figure 1
(A) rs74853476-C is a splice donormutation andwas linked toOrthostatic hypotension 1.We found that the frequency of rs74853476-C reaches 13% in the Fulani

but is nearly absent in other African populations in the current study and in populations from the gnomADproject. The x and y axis shows the population name and

the frequency of rs74853476-C of each population respectively.

(B–D) rs139426141-G, rs140482516-T, rs34097903-A are three nonsynonymousmutations that were reported to be associated with central centrifugal cicatricial

alopecia in individuals of African ancestry. We found that the frequencies of these three mutations are >5% in the African populations in our current study but are

rare in the populations from the gnomAD database29. The x and y axis shows the population name and the frequencies of rs139426141-G, rs140482516-T,

rs34097903-A in each population, respectively.

AFR, AMR, EAS, NFE, FIN, ASJ: samples of African, American, East Asian, European (non-Finnish), European, and Ashkenazi Jewish ancestry. OTH: Others.
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Figure S2. ADMIXTURE analyses of global populations, related to Figure 3

We used K from 2 to 16 including the populations in the present study and SGDP. The SGDP dataset includes 251 and 108 non-African and African samples,

respectively. We used a total of 12,443,243 SNPs in the ADMIXTURE analyses.
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Figure S3. Treemix results when allowing number of migrations to range from 0 to 11, related to Figure 4
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Figure S4. qpgraph results when allowing number of migrations to range from 0 to 11, related to Figure 4
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Figure S5. Time-resolved demographic models relating the San (Ju|’hoansi), East African Khoesan (Hadza), RHG (Baka), Bantu-speaking

(Tikari), and unsampled ‘‘ghost’’ populations, related to Figure 4

We found that model (C) which had the San and RHG as a sister clade consistently had the highest likelihood when comparing the models using the RHG (A) or

Ju|’hoansi (B) as outgroups, respectively.
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(legend on next page)
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Figure S6. MSMC results, related to Figure 4

(A) Divergence time between Ju|’hoansi and non-Khoesan-speaking, non-RHG populations.

(B) Divergence time between !Xoo and non-Khoesan-speaking, non-RHG populations.

(C) Divergence time between RHG and other populations.

(D) Divergence time between Niger-Congo (NC)- and Nilo-Saharan (NS)-speaking populations.

(E) Divergence time between NS- and Afroasiatic (AA)-speaking populations.

(F) Divergence time between AA- and NC-speaking populations.

(G) Divergence time between the Hadza and AA-speaking populations.

(H) Divergence time between the Sandawe and AA-speaking populations.

(I) Divergence time between two NC-speaking populations, Herero and Tikari.

(J) Divergence time between Ju|’hoansi and !Xoo. x and y axis is the inferred divergence time and relative cross coalescence rate, respectively.
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Figure S7. Models used in momi pairwise analyses, related to STAR Methods

Model 1 has two populations sharing a common ancestor. We assumed a constant population size after the population split (upper boundary 100 kya) and

inferred the divergence time and population sizes of populations 1 and 2 and the ancestral population. Model 2 assumes an unsampled ‘‘ghost’’ population splits

from the ancestral population of populations 1 and 2 as well as a pulse of gene flow from the ghost population into the population ancestral to the two present-day

populations.We inferred the same parameters as inmodel 1, but also the divergence time and the population size of the ghost population and the amount of pulse

admixture from the ghost population into the ancestral population. Both Model 1 and Model 2 were fit using each possible pair of populations as the first and

second population. We used models 3 and 4 to infer the divergence times between RHG and each non-Tikari, non-RHG population, due to strong gene flow

between the RHG and Tikari. In model 3, RHG and population 1 each diverge from an ancestral population at their own inferred divergence time and having their

own population sizes after divergence. At an inferred time, there is a pulse admixture of an inferred strength from the Tikari into RHG. The ancestral population has

some size, which changes to the present-day size of the Tikari 100 kya. In this model, we infer the two divergence times, the four population sizes (three present

day, one ancient), and the timing and strength of the pulse admixture event. Model 4 is identical to Model 3 but with a ghost population added in the same way as

going from Model 1 to Model 2.
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