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A B S T R A C T

The purpose of this study is to conduct a systematic review of the literature on the relationship between general

cognitive ability and fertility among modern humans. Our goals were to (a) evaluate the state of the extant

literature, and (b) provide a quantitative summary of effect sizes to the extent possible (given the limitations of

the literature). A thorough search identified 17 unique datasets that passed the inclusion criteria. Using a Random

Effects Model to evaluate the data, the overall weighted effect was r=−0.11, although the data also indicated a

sex effect (stronger correlations among females than males), and a race effect (stronger correlations among Black

and Hispanic populations compared to Whites). Importantly, the data suggest the correlation has been increasing

in strength throughout the 20th century (and early 21st). Finally, we discovered several notable limitations of

the extant literature; limitations that currently prohibit a psychometric meta-analysis. We discuss these issues

with emphasis on improving future primary studies to allow for more effective meta-analytic investigations.

1. Introduction

Several studies have documented an inverse relationship between

cognitive ability and number of offspring in modern societies (some-

times termed “dysgenic fertility”, e.g. Lynn, 1996), which has, in turn,

resulted in both predictions and observations of a declining ‘genotypic’

IQ (e.g., Kong et al., 2017; Lynn, 1996; Lynn & Harvey, 2008). More

recently, research has linked this association to secular trends sugges-

tive of long-term phenotypic declines in general cognitive ability (g)

(Sarraf, 2017; Woodley of Menie et al., 2017). This trend, if present at a

broad scale, would negatively affect occupational, educational, and

social outcomes at the individual level, and our ability to solve social

problems in an increasingly complex world (Neiss, Rowe, & Rodgers,

2002; Rindermann, 2012, 2018; Rindermann, Sailer, & Thompson,

2009). For example, Woodley of Menie and colleagues (e.g., Woodley,

2012; Woodley of Menie et al., 2017) reported evidence of a strong

association between a decline in g (as measured using convergent

phenotypic indicators) and a decline in per capita macro-innovation

rates (i.e. the frequency of disruptive or ‘breakthrough’ innovations).

Woodley of Menie (2015) also reported a small meta-analysis of studies

reporting empirical estimates of IQ loss due to dysgenic reproduction in

U.S. and U.K. populations. After correction for method artifacts, relia-

bility and validity, the data revealed an aggregate g loss of −0.38 IQ

points per decade.

A decrease in our ability to innovate solutions to complex problems

could have serious implications for the future of humanity. As such, the

aim of this review is to enhance our understanding of the negative re-

lationship between cognitive ability and number of offspring (NoO) by

conducting a systematic review of, and a quantitative descriptive

summary of the extant empirical literature. Our specific goals are to (a)

provide a descriptive summary of the distribution of effect sizes found

in the literature, and (b) highlight methodological concerns with the

primary literature vis-a-vis potential meta-analytic studies. We begin by

presenting multiple, complimentary theoretical perspectives leading to

a hypothesis of a negative relationship between cognitive ability and

number of offspring in modern societies. Following this, we report a

quantitative summary of effect sizes found in the extant literature.

Finally, we discuss the implications of our quantitative findings, and the

state of the literature with respect to its ability to support potential

formal meta-analyses.

1.1. General cognitive ability (‘g’)

“Intelligence” may be best conceptualized as a collection of closely-

related constructs, structured hierarchically in a tightly-knit nomolo-

gical network, with g reflecting the critical core of intelligence, namely
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the ability to learn from and reason with novel information (Jensen,

1998; Reeve & Bonaccio, 2011). Empirical research on g has expanded

across two primary dimensions to form what is commonly referred to as

the g-nexus (Jensen, 1998). The vertical dimension assumes a focus on

the biological and neurological bases for intelligence. Examples include

the study of relationships between IQ and a range of heritable traits

including reaction times, evoked potentials of the cerebral cortex, and

brain pH (Herrnstein & Murray, 1994; Jensen, 1998). The horizontal

dimension examines relationships between g and a range of personal,

social, educational, occupational and health outcomes. Non-exhaustive

examples of the horizontal line of inquiry include studies of the re-

lationships between g and myriad indicators of psychological wellbeing

(Lubinski & Benbow, 2000), physical health (Gordon, 1997;

Gottfredson, 2004), religiosity (Razmyar & Reeve, 2013; Reeve, 2009),

job performance (Gottfredson, 1997; Meisenberg, 2010), criminality

and poverty (Gordon, 1997), and of most relevance to the current

study, reproductive behavior (Reeve, Lyerly, & Peach, 2013; Lynn,

1999; Lynn & Harvey, 2008; Meisenberg, 2010; Peach, Lyerly, & Reeve,

2014; Retherford & Sewell, 1989).

1.2. Selection favoring lower g

According to evolutionary theory, g originally evolved as an adap-

tation to confer a survival advantage via the enhanced ability to adapt

and survive in evolutionarily novel situations (Chiappe & MacDonald,

2005; Gordon, 1997; Jensen, 1998; Kanazawa, 2004). The advent and

rise of civilization and technology lead to a modern environment which

is radically different to our ancestral environment, particularly with

respect to the degree of “evolutionary novelty” we encounter. As such,

the behavioral advantage conferred to an individual by higher g is al-

most ubiquitous in modern society (where most of that environment is

“evolutionarily novel”). However, there is one domain of modern life in

which higher g may no longer confer the “Darwinian Advantage” it did

in the ancestral environment; namely, human reproduction (i.e., in-

creased probability of passing genes to the next generation).

Throughout human history, any form of industrialization initiates a

shift away from a hunter-gather and agrarian lifestyles (common to our

ancestors) where larger families were an asset for kin-group pro-

ductivity and survival. As human culture and technology began to

fundamentally change our daily environment into a largely “evolutio-

narily novel” one (Kanazawa, 2010), the traditional Darwinian ad-

vantage for larger numbers of offspring began to erode. For example,

medicine began to reduce the infant mortality rate (thus, one did not

need to have large numbers of offspring to ensure survival of at least a

few), and large numbers of offspring were more likely to be an eco-

nomic liability rather than a resource, for most people. Ergo, the ability

to discern the personal advantage of limited reproduction (though

clearly not a genetic reproductive advantage), and the ability to control

one's reproduction independent of copulation, became a catalyst for

reduced reproduction at the individual level. In other words, sexual

reproduction became an “evolutionarily novel” proposition. Such the-

orems were coined the “Internal Relaxation/Reversal of Darwinian

Selection” (IRDS) by Nyborg (2012), and are widely cited as the un-

derlying drivers of the negative g-NoO relationships observed in a large

and growing body of empirical literature (Lynn & Van Court, 2004;

Herrnstein & Murray, 1994; Lynn & Harvey, 2008; Nyborg, 2012;

Woodley & Figueredo, 2013).

Another theoretical perspective that makes similar predictions is

Population cycle theory (Woodley of Menie et al., 2017). It proposes, that

for most of human history, colder climates promote inter-group conflict

because it makes vital resources scarcer (e.g., food, proper shelter,

fertile ground). Such conditions should place a fitness premium on g

because those who are better able to solve novel problems or learn

critical skills faster will be better able to survive and prosper in difficult

environments. Higher g also leads to more innovations that can give a

population an edge in inter-group conflict. Conversely, warmer climates

are proposed to reduce this ecological stress on populations (relatively

speaking), and thus the fitness value of g would be much lower (i.e.,

variance in g would have less impact on selection). Thusly, historically,

we should see evidence of increasing g over time in populations living

in colder climates, and a weaker increase in populations historically

isolated in warmer climates (see also Lynn, 1991, and Rushton, 1995,

for similar arguments). The prediction that evolutionary novelty in-

creases with colder climates, and that both novelty and the increased

selection pressures of cold climates influence reproductive trends has

been corroborated (Kanazawa, 2008).

Similar to the previous theories, population cycle theory also sug-

gests that greater ecological and social stability stemming from in-

creased global temperature, coupled with advances in technology, over

the last 200 years have significantly changed the pattern of selection on

g by artificially raising the odds favoring reproduction of those with

lower g, relative to those with higher g, who, as was mentioned pre-

viously, can use innovations such as contraception to attenuate their

fertility. Under such conditions, one would expect to see those with

lower g exhibiting higher fitness. To empirically test the population

cycle theory, Woodley of Menie et al. (2017) tracked the utilization

frequencies of the four high-difficulty words from WORDSUM across

400 years of Google Ngram viewer data. The utilization frequencies of

these words served as a proxy vocabulary IQ test (which is highly g-

loaded; Kan, Wicherts, Dolan, & van der Maas, 2013). First, their ana-

lyses showed that the utilization frequencies of the common factor

among these words increases between 1500 and 1850, and declines

precipitously thereafter. Second, and importantly, they were able to

empirically predict this cycle using variations in (a) both the mean and

variance in global temperature, and (b) strength of intergroup compe-

tition pressures.

Finally, it is critical to point out why our theories focus on g as the

putative variable, rather than other non-g skills and abilities. First and

foremost, the negative correlation between IQ and fertility has been

shown to be a Jensen Effect. A Jensen Effect refers to the empirical

finding that effect sizes (e.g., heritability coefficients, predictive va-

lidity coefficients, mean differences in average phenotypic intelligence,

etc.) typically correlate significantly with the subtests' g-loadings –

meaning that g can be said to moderate the association. Said differently,

the Jensen effect refers to the finding that measures with higher g-sa-

turation are better than lower g-saturated measures at differentiating

between individuals and groups in outcomes that are influenced by IQ.

A number of studies have found large and significant Jensen effects for

the Black–White mean test score difference (e.g., te Nijenhuis & van den

Hoek, 2016), inbreeding depression scores, evoked potentials, brain pH,

reaction times, test heritabilities (Jensen, 1998; van Bloois, Geutjes, te

Nijenhuis, & de Pater, 2009), and sex differences (Nyborg, 2005) among

others. Jensen effects have also been found to explain variability on

non-biological variables such as differences in retest effects (e.g., Reeve

& Lam, 2007) and race differences in work criteria (Reeve & Bonaccio,

2009).

While the negative association between scores on cognitive tests and

NoO has acquired increasing empirical support and scientific publicity,

there remains some skepticism as to whether these effects are truly due

to differences in g, partly because specific estimates of the fertility

gradient appear to vary somewhat depending on the specific ability

measure used. However, it has been shown that the magnitude of the

fertility gradient is positively moderated by the g-loading of cognitive

ability measures (making it a Jensen Effect). For example, Peach, Lyerly,

and Reeve (2014) used the Project Talent database to conduct a cor-

related vectors analysis by correlating the vector of g-loadings of the

ability subtests with the vector of computed fertility gradients (i.e., the

correlations between each subtest and the number of biological chil-

dren). The strength of the Jensen effect was r=0.89 among the full

sample. These findings indicate that the fertility gradient is strongly

proportional to the g-loading of the test, thus confirming the hypothesis

that g is the primary factor on which selection operates. More recently,
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Woodley of Menie et al. (2017) confirmed this finding via a meta-

analysis of studies reporting vector correlations involving the “IQ-fer-

tility gradient,” revealing an aggregate vector correlation of 0.87

(K=6, N=108,040).

The natural synergy among these perspectives is clear. Both

Population Cycle Theory and IRDS assert that improving living condi-

tions set the stage for increasing the odds of survival and reproduction

among those with fewer cognitive resources. How we fare in the world,

educationally, occupationally, economically, and reproductively are all

linked to the g-factor, to the degree that they reflect evolutionarily

novelty. Finally, Population Cycle Theory predicts that selection should

start to favor lower g around the mid-19th century for similar reasons

(modern society coupled with a milder, less ecologically stressful cli-

mate gave low-g individuals high odds of survival and reproduction).

Based on all these perspectives, we expect to find (a) the mean of the

distribution of reported effect sizes (of the relation between measures of

cognitive ability and NoO) will be negative, and (b) the magnitude of

the inverse effect is increasing in strength over time. In addition, we

report descriptive analyses for any sub-groups for which the data al-

lowed.

2. The quantitative summary

To recap, our goals were to provide a quantitative summary of effect

sizes to the extent possible (given the limitations of the literature), and

second, to use the results of the literature search itself to identify lim-

itations and recommend improvements to the primary literature. We

discuss some of the limitations here to clarify our decisions in reporting;

but reserve most of the discussion of limitations of the literature for the

main discussion.

3. Methods

3.1. Search strategy

To find existing research we utilized PsycINFO, PsycArticles,

MEDLINE, Health Source Nursing Edition, Health Source Consumer

Edition, Academic Search Complete and ProQuest Dissertation and

Theses. These databases were searched using variants and combinations

of keywords identified in a subset of articles including: “intelligence”,

“IQ”, “cognitive ability”, “GMA”, “reproduc*”, “dysgenic”, “fertility”,

“number of children, and “birth rate”. Following this, forward and

backward searches using the Social Science Citation Index were per-

formed, followed by manual reviews of the reference sections from all

articles obtained. Finally, prominent experts in the field were contacted

via email to identify any unpublished data or any studies currently in

press. No additional suggestions were received, no respondent reported

any unpublished data, and no additional unpublished reports were

discovered. We do not claim a truly exhaustive list of effect sizes; it is

possible we missed some effect sizes to be found in unpublished (or

obscure) papers.

3.2. Inclusion/exclusion criteria

We included studies published in English language journals that

were available as of November 5th, 2016. Studies needed to have re-

lated quantitative measures of cognitive abilities or intellectual

achievement tests (e.g., Program for International Student Assessment)

with the total number of biological children produced by that person.

Upon collecting the initial pool of articles, studies were screened for

relevance and reported effect sizes in the form of bivariate correlations,

or other effect-size statistics that could be converted to bivariate cor-

relations keeping with guidelines outlined in Peterson and Brown

(2005).

Fig. 1 depicts the literature search and screening process. We began

with 737 articles from the initial electronic search. After reviewing the

abstracts, 580 articles that clearly did not addressed our focal question.

Examples of these articles include studies of fertility treatment efficacy,

impacts on offspring born to mothers with various health conditions,

studies of birth order and intelligence, and the relations between traits

and behaviors of teenage parents with offspring development. If the

abstract provided any suggestion that the relation between cognitive

ability and number of offspring was discussed, the article was retained

for further review. While it may seem like we excluded a large number

of studies at this stage, it is worth noting that this is due to the fact that

we purposely cast a very large net in our initial electronic search in

order to maximize the likelihood of finding all relevant data; in essence

we collected the haystack so as to ensure we found all the needles.

The remaining 157 articles were reviewed for comparison to the

remaining inclusion criteria. At this stage, 41 articles were excluded

because they were reviews, or theoretical papers, that provided no

novel empirical results (references in these review articles were cross-

checked). Next, another 40 articles were excluded because they re-

ported relations that were distinctly different from the relationship of

interest (i.e., did not provide an effect size estimate of the relation

between cognitive ability and any estimate of NoO). Finally, another 20

studies were excluded because they used a different unit of analysis

(e.g., birth rates for geo-political units or geographic regions).

Of the remaining 41 articles, fifteen articles (all primarily in the

early 20th century) were excluded because they did not measure the

intelligence of the potential parent, but rather used the cognitive-ability

scores of the offspring themselves as a proxy for parental intelligence.

Four more articles based on cognitively impaired groups were excluded.

Finally, ten of the remaining articles were removed because they re-

ported analyses from the same dataset as other articles in our pool. In

each case, we excluded the article that reported fewer effect sizes (i.e.,

fewer cuts of the data). Characteristics of the final pool of studies are

presented in Table 1. Our data is available on-line (Heeney & Reeve,

2017).

3.3. Coding procedures

Various characteristics of the studies and effect sizes were coded for

potential sub-group analyses. Coded data are maintained in an Excel

table that includes the following variables: bivariate correlation or (or

convertible effect-size statistics) relating g/IQ and measures of NoO,

and other numeric indicators such as mean sample age, year in which

the criterion data were collected, and sample size. Additionally, this

table includes potential moderator variables such as sex, race, geo-

graphic region and indicators of study characteristics.

Effects were recorded at the most granular level available (for ex-

ample, Black Female/Black Male/White Female/White Male) to facil-

itate the most fine-grained presentation of the data Effect-size statistics

that are convertible to bivariate correlations were converted using the

Practical Meta-Analysis Effect Size Calculator that accompanies Lipsey

and Wilson (2001). Sex of the sample was coded dichotomously. In

cases where sex or race were not indicated (k=2 and k=5 respec-

tively), the categorical value “All” was coded into the database. Re-

ported effects were also coded for a geographic region. Coding of the

articles was first accomplished by the second author (expertise in meta-

analyses). The lead author (expertise with the g-nexus) then in-

dependently coded 20% of articles. These were crossed checked for

discrepancies. As only a single discrepancy was found (which the au-

thors quickly resolved by discussion), the coding was deemed reliable.

The database is publicly available on Mendeley Data (< < link omitted

for blind review process> > )

3.4. Quantitative analyses

SAS Version 9.4 (SAS Institute, 2017) was used to import the coded

Excel database and stage the data for calculation of the descriptive

statistics of the effect size distribution. Though not a meta-analysis, we
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did employ some basic concepts for our analyses. In particular, a

shifting unit of analysis approach was applied as prescribed by Cooper

(2010), to aggregate effects appropriately before conducting each se-

parate analysis. For example, in staging the input for calculating the

overall effect, the process generates seventeen study-level effects by

calculating a sample-weighted average of all inputs by study and ag-

gregating a total corresponding sample size for each effect. Then for the

“moderator analysis” (e.g., examining by sex or race) the process begins

again with the raw data and calculates weighted effects (with corre-

sponding total N) for each sex. For each moderator analysis, the raw

data were re-aggregated according to this methodology for each cate-

gory. Thus, the number of relevant effect sizes varies depending on the

specific sub-categories reported.

Once the data were staged, descriptive analyses were conducted

using Comprehensive Meta-analysis (CMA) Version 3 (Borenstein,

Hedges, Higgins, & Rothstein, 2015). Due to limitations in the primary

data (discussed further below), we were unable to apply normal psy-

chometric corrections for statistical artifacts as prescribed by Schmidt

and Hunter (2015), which would be the ideal. The initial analysis es-

timated the weighted mean effect size and its distribution across stu-

dies. We utilized a Random Effects Model because effects are expected

to be heterogeneous across studies due to potentially diverse measures

of g (i.e., differential g-loadings) and sample characteristics discussed

above. Within-group comparisons at the study level are reflected in a

statistic of within-group variation, Qw. Between-group variation is in-

dexed with Qb. Both Q-statistics follow a chi-square distribution similar

to those applied in the analysis of individual samples. Consistent with

recommendations of the Cochrane collaborative (Higgins & Green,

2008) the present study adopted an alpha level of 0.10.

3.5. Analysis for publication bias

Publication bias can result when studies yielding null findings fail to

be reported. To the extent that this occurs, conventional literature

searches may overlook these studies causing a potential bias in the

distribution of effect sizes examined (Borenstein, Hedges, Higgins, &

Rothstein, 2009). Although there is no way to account for publication

bias directly, there are techniques to estimate the potential for this to

occur based on the studies that were identified through the literature

search. For example, Rosenthal's Fail-Safe N calculates the number of

studies required with null results to render the p-value of the overall

effect to be>0.05. Orwin's Fail-Safe N is considered a more con-

servative test of publication bias because it does not assume null results;

rather, it allows for selection of a trivial effect (Lipsey & Wilson, 2001).

We chose an effect size equal to half of the overall point-estimate as the

“trivial” criterion. A third method of detecting publication bias is

through the use of a funnel plot (see Fig. 4). Publication bias is evident

when the plot depicts an asymmetrical distribution of effects about the

overall point-estimate (represented by a vertical line), suggesting that

studies of smaller sample sizes (and therefore greater standard error)

and with large effects are favored by publishers due to favorable out-

comes (Borenstein, Hedges, Higgins, & Rothstein, 2009). However, in

the current data, most effect sizes were based on very large samples

(average N=21,666). Thus, the use of the funnel plot in this case is

quite limited as almost all of the observations lie at the tip of the funnel

(Fig. 3).

4. Results

A forest plot of the seventeen study-level effects and their 95%

confidence intervals is presented in Fig. 2. All studies but one (Bajema,

1968) reflect a negative effect size, which is also among three studies

that fail to reflect a significant difference from zero at p < .05. As we

are examining distributions of correlations as our effect size indicators,

we refer to Cohen's (1969) traditional effect size guidelines for inter-

preting the average effect sizes seen here. Namely, the values for

Pearson product moment correlations that correspond to the traditional

D values of 0.2, 0.5, and 0.8. for so-called “small,” “medium,” and

“large” effects, respectively, are r≥ 0.10, r≥ 0.24, and r≥ 0.37

(Rosenthal & Rosnow, 1991, p. 446). However, we also caution against

over-interpretation of Cohen's guidelines. Whether a given effect (of

any size) portrays an important impact on human affairs is determined

by many other factors including the degree of variance in the outcome,

severity of outcome, potential for accumulation of effects over time, etc.

(Abelson, 1985). While Cohen's suggestions provide a standard con-

vention for translating statistical coefficients into verbal descriptions, it

must be noted that these general, context-free standards do not take

into consideration substantive considerations. “Small” effects can have

very large consequences, particularly when applied to large populations

and can cumulate over time.

The overall correlation between cognitive ability scores and the

number of children born is r=−0.11, with a 95% confidence interval

of r=−0.08 to r=−0.13. This indicates there is a significant, nega-

tive relationship between parental cognitive ability and the number of

children born to that parent. The top of Table 2 indicates that, con-

sistent with expectations, study level effect sizes are heterogeneous, χ2

Initial Database Search

(k = 737)

Remaining records after title  Records Removed

screening and removal of duplicates (k = 580)

(k = 157)

Full text review for Articles excluded:

14=k:atadonhtiwsrepaplaciteroehtdnasweiverlacitirCytilibigile

04=k:cipotffO)751=k(

Country or regional analyses: k = 20

Sibling studies: k = 15

Redundant samples = 10

Restricted Samples (eg., teenagers, gifted, cognitively impaired): k = 4

Studies included

in meta-analysis

(k = 17)

Fig. 1. Flowchart for literature selection procedure.
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(16)= 292.17, p < .001, confirming that there is significant varia-

bility in the study-level effects. Importantly, the I2 index of 94.52%,

which can be loosely conceptualized as a ratio of “signal-to-noise”

(Borenstein, Hedges, Higgins, & Rothstein, 2009), supports the con-

clusion that the observed heterogeneity in study-level effects reflects

primarily “real” variation rather than merely measurement error var-

iance. Hence, we continued on to explore sub-group analyses.

Results are presented in Table 2. First, because this relation is

thought to be a Jensen Effect (i.e., due to g), we examined whether

there are meaningful differences in effects between studies that use raw

test scores vs. factor-analytically derived measures of g. The concern is

that observed scores are not as g-saturated as g-scores, and thus could

under-estimate the relation. However, the results do not show a

meaningful difference, suggesting that the use of raw test scores may

not be a significant methodological concern generally speaking (ob-

viously, the validity of any specific test used should always be con-

sidered). However, the limited number of studies that used factor

analytically derived g-scores (K=3) may be a factor behind the non-

significant result. A more important and critical discovery, in our opi-

nion, was the inability to examine differences in g-saturation with more

fidelity. Unfortunately, we quickly discovered during our review of

articles that most studies failed to provide clear reports of the exact

measures used, exactly how scores were computed, or their g-satura-

tions. This information is necessary to allow one to systematically

Fig. 2. Study-level effects, N, confidence intervals and forest plot.

Note. Template provided by Neyeloff, Fuchs, & Moreira, 2012.

r = -.37, p = .05

-0.4

-0.3

-0.2

-0.1
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0.2

0.3

Fig. 3. Distribution of effects scaled to year when parent is age 30.

Note. Each bar reflects the effect size of the g-NoO gradient reported by a study. The dates along the axis reflect the year in which the sample of that study was aged

30 (on average).
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correct for this artifact.

Second, we examined whether the nature of the sample moderated

the effects. Three studies (Conrad & Jones, 1932; Higgins, Reed, &

Reed, 1962; Willoughby, 1928) limit the samples to families with at

least one child. By excluding participants with no children, this

sampling methodology has the potential to attenuate the observed ef-

fects. As such, we created a dichotomous variable to distinguish be-

tween these studies and studies that allow participants with no chil-

dren. The results show the weighted effect for the parent-only group

(r=−0.08, p < .10) is observed to be smaller than the group that
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Funnel Plot of Standard Error by Fisher's Z

Fig. 4. Funnel plot of standard error by Fisher's Z for study level effects between cognitive ability and fertility.

Table 2

Overall point estimate and moderator analyses for methodological artifacts.

Analysis k Weighted r 95% CI for r Qb Qw I2

Overall point-estimate 17 −0.11⁎⁎⁎ −0.13 −0.08 292.17⁎⁎⁎ 94.52

Type of score 17 0.01

Raw score 13 −0.10⁎⁎⁎ −0.14 −0.07 55.66⁎⁎⁎ 78.44

g-Score 4 −0.11⁎⁎⁎ −0.16 −0.06 110.64⁎⁎⁎ 97.29

Type of sample 17 0.34

Parents only 3 −0.08† −0.16 0.00 0.67 0.00

Incl no children 14 −0.11⁎⁎⁎ −0.14 −0.08 281.03⁎⁎⁎ 95.37

Fertilitya 19 6.25⁎

Incomplete 10 −0.14⁎⁎⁎ −0.17 −0.10 115.52⁎⁎⁎ 92.21

Complete 9 −0.07⁎⁎⁎ −0.11 −0.04 37.70⁎⁎⁎ 78.78

Female only 16 1.21

Incomplete 8 −0.14⁎⁎⁎ −0.17 −0.11 25.85⁎⁎⁎ 72.92

Complete 8 −0.12⁎⁎⁎ −0.15 −0.09 18.51⁎⁎ 62.18

Male only 17

Incomplete 8 −0.10⁎⁎ −0.16 −0.03 2.33 159.28⁎⁎⁎ 95.61

Complete 9 −0.03 −0.09 0.03 27.18⁎⁎⁎ 70.57

Fertilityb 12 26.49⁎⁎⁎

Incomplete 7 −0.16⁎⁎⁎ −0.17 −0.16 5.63 0.00

Complete 5 −0.11⁎⁎⁎ −0.13 −0.09 4.73 15.35

Female only 9 0.90

Incomplete 4 −0.17⁎⁎⁎ −0.20 −0.13 5.23 42.66

Complete 5 −0.14⁎⁎⁎ −0.18 −0.11 4.62 13.36

Male only 9 6.78⁎⁎

Incomplete 4 −0.15⁎⁎⁎ −0.18 −0.11 11.53⁎⁎ 73.98

Complete 5 −0.07⁎⁎ −0.11 −0.03 2.89 0.00

⁎⁎⁎ p < .001.
⁎⁎ p < .01.
⁎ p < .05.
† p < .10.
a Indicates the sample's mean age is at least 45 years.
b Indicates the sample's mean age is at least 50 years and those aged 35–49 removed.
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includes adults with no children in the sample (r=−0.11, p < .001),

but due to the limited number of studies that include only parents

(K=3), the difference is not statistically significant.

In reviewing the studies, it become clear that a key difference across

studies was the timing of the measurement of the dependent variable.

Some studies report effects based on samples of individuals who are still

in their child-bearing years whereas others wait to assess until most or

all of the sample is likely past the age of bearing children. The ex-

pectation is that the effect sizes from samples measured too early would

likely be somewhat larger than effects seen in samples who have

“completed” fertility. The key issue is that delays in childbearing,

perhaps in favor of school or early career opportunities, may make the

effect seem larger to the degree that delays, but not actually decreases,

in having children is associated with ‘g’. It is also possible that by

measuring the outcome too early, researchers have truncated the upper

tail of the distribution causing range restriction (e.g., some people may

continue to have offspring late into life).

As such, two variables were created to code for this issue. Both

approaches define the age of the sample using the best measure of

central tendency available (the mean by default, and if not reported, the

midpoint of the reported range). The first approach simply defines

“completed fertility” as samples with an average age of 45 years old or

more. This value corresponds to the results from Fieder and Huber

(2007) who showed that 99.7% of women and 96.5% of men in a re-

presentative Swedish sample have completed their lifetime reproduc-

tion by 45. The second approach uses something akin to an extreme

groups design by removing studies with an “indeterminate” mean age

(range 35 to 49 years old). This leaves one group of effects based on

“completed fertility” defined as a sample with a mean age of 50 years or

older, and the “incomplete fertility” group defined as a mean age<

35 years old. Analysis of the data using both versions of our coding

system yielded significant differences in mean effect sizes. When “in-

complete vs. completed fertility” groups are classified as less (or more)

than 45 years old, there was a significant difference in the mean effect

sizes. When we excluded the data from samples with indeterminate

completion status, the differences was more pronounced. These differ-

ences also appeared when data were analyzed for men and women

separately (though the difference was not significant among men when

the “indeterminate” studies were included).

Analyses of sex and race subgroups are shown in Table 3. Overall,

we obtained results that are generally consistent with expectations. The

weighted effect for women (r=−0.13, p < .001) is over double that

for men (r=−0.06, p < .01) and the difference is statistically sig-

nificant (χ2 (28)= 5.96, p < .01), although there is still significant

variation in effect sizes within the two groups (women, χ2

(13)= 52.70, p < .001; men, χ2 (14)= 362.50, p < .001).

We also found significant differences in effect sizes between each of

the four identified racial groups (χ2 (15)= 21.87, p < .001). Effect

sizes appear to be larger in samples of Blacks (r=−0.17, p < .001)

and Hispanics (r=−0.23, p < .001) compared to samples of Whites

(r=−0.07, p < .001) and Asians (r=−0.11, p < .001). Further

analysis suggests that these differences are concentrated primarily

among women (χ2 (14)= 56.87, p < .001), with no statistically sig-

nificant differences across racial groups for men (χ2 (14)= 4.42,

p > .10).

Since the timing of the shift towards the g-fertility gradient be-

coming negative has been largely attributed to nineteenth-century in-

dustrialization in the Western world (Lynn, 1996; Nyborg, 2012;

Woodley of Menie et al., 2017), this may suggest that differing levels of

present-day industrialization would exert an influence on the relation-

ship between intelligence and reproductive behavior. From a theore-

tical perspective (Kanazawa, 2010), populations living in less in-

dustrialized nations would experience relatively less evolutionary

novelty in the reproductive process than those living in fully in-

dustrialized societies. Thus, we would expect the IQ-fertility relation-

ship to be stronger in industrialized societies than non-industrialized

ones, to the extent culture is independent of g. Such cross-country

comparisons could also highlight the influence of culture on fertility

independent of g. For example, previous research has also shown that

national religiosity has a large effect on fertility rates, and less in-

dustrialized nations tend to have high religiosity rates (Reeve, 2009).

Thus, this cultural factor could potentially moderate the g-fertility

gradient.

Differences due to location are reported in Table 3. The weighted

effect size for the two European studies was less than half of those for

the other geographic regions. However, this analysis is merely cursory

as the extremely limited number of studies from regions outside of the

United States was highly limited (Asia= 2, Dominica= 1,

Europe=2). We report the specific results for the sake of completeness,

but we caution against strong inferences given the limited data. Rather,

the most significant finding here is the need for more data from outside

the U.S.

The studies included in this analysis range from the early 20th

century (Willoughby, 1928) to current day (Wang, Fuerst, & Ren, 2016;

Woodley of Menie, Schwartz, & Beaver, 2016). This provides us with

two alternative approaches to exploring the g-fertility gradient over

time. First, two dichotomous variables were derived to reflect what we

thought would be the most relevant historical events for the time frame

under study: 1) pre vs. post World War II, and 2) pre vs. post Roe vs.

Wade (for U.S. studies only). Second, we conducted a correlational

analysis between the date of the data collection and the size of the g-

Table 3

Results for substantive moderators.

Analysis k Weighted r 95% CI for r Qb Qw I2

Sex 29 5.96⁎

Female 14 −0.13⁎⁎⁎ −0.17 −0.09 52.70⁎⁎⁎ 75.33

Male 15 −0.06⁎⁎ −0.10 −0.02 362.50⁎⁎⁎ 96.14

Race 16 21.87⁎⁎⁎

Asian 2 −0.11⁎⁎⁎ −0.18 −0.05 2.21 54.65

Black 3 −0.17⁎⁎⁎ −0.22 −0.12 4.84† 58.67

Hispanic 1 −0.23⁎⁎⁎ −0.31 −0.14 0.00 0.00

White 10 −0.07⁎⁎⁎ −0.09 −0.04 35.63⁎⁎⁎ 74.74

Race (female

only)

15 56.87⁎⁎⁎

Asian 2 −0.14⁎⁎⁎ −0.19 −0.10 1.83 45.45

Black 3 −0.25⁎⁎⁎ −0.29 −0.21 0.53 0.00

Hispanic 1 −0.27⁎⁎⁎ −0.35 −0.19 0.00 0.00

White 9 −0.09⁎⁎⁎ −0.11 −0.08 10.03 20.22

Race (male

only)

15 4.42

Asian 2 −0.08 −0.17 0.02 0.37 0.00

Black 2 −0.01 −0.10 0.08 0.09 0.00

Hispanic 1 −0.17⁎ −0.30 −0.04 0.00 0.00

White 10 −0.05⁎ −0.08 −0.01 44.10⁎⁎⁎ 79.59

Geographic

region

17 3.43

Asia 2 −0.12⁎⁎ −0.21 −0.04 2.21 54.65

Dominica 1 −0.12⁎ −0.24 0.00 0.76 0.00

Europe 2 −0.05 −0.11 0.02 0.00 0.00

U.S. 12 −0.11⁎⁎⁎ −0.14 −0.08 151.66⁎⁎⁎ 92.75

Date of study 18 0.04

Post WWII 13 −0.11⁎⁎⁎ −0.14 −0.07 279.23⁎⁎⁎ 95.70

Pre WWII 5 −0.10⁎⁎ −0.16 −0.03 2.96 0.00

Date of study 13 6.90⁎⁎

Post Roe 6 −0.14⁎⁎⁎ −0.17 −0.11 50.23⁎⁎⁎ 90.05

Pre Roe 7 −0.08⁎⁎⁎ −0.11 −0.04 11.64† 48.44

Females 10 19.52⁎⁎⁎

Post Roe 5 −0.15⁎⁎⁎ −0.15 −0.15 7.44 46.23

Pre Roe 5 −0.10⁎⁎⁎ −0.12 −0.07 0.26 0.00

Males 11 1.51

Post Roe 5 −0.10⁎⁎⁎ −0.17 −0.04 108.77⁎⁎⁎ 96.32

Pre Roe 6 −0.04 −0.11 0.03 7.12 0.21

⁎⁎⁎ p < .001.
⁎⁎ p < .01.
⁎ p < .05.
† p < .10.
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fertility gradient.

Of the two variables that classified historical events, only the pre vs.

post Roe vs. Wade moderator demonstrated a statistically significant

difference (χ2 (13)= 6.90, p < .01), with a much stronger effect ob-

served post Roe vs. Wade (r=−0.14, p < .001). While the effect sizes

were higher for both male and female samples after that landmark

decision, further analysis shows the difference is significant only among

women (χ2 (10)= 19.52, p < .001).

Next, we computed a bivariate correlation between the date of study

(scaled according to the age of each sample) and effect size produced by

the study. This analysis yields a strong inverse association (r=−0.37),

indicating the magnitude of the effect is increasing over time with a

large magnitude effect size (see Fig. 2). However, one early study by

Conrad and Jones (1932) reported a large, positive association for a

group of males only. Empirically, this estimate is an outlier; hence, to

be conservative we explored the effect of removing this datum. With

that study removed, the correlation between date of study and effect

size diminishes noticeably, but still yields a moderate inverse effect

(r=−0.22). Accordingly, it appears the gradient is growing stronger

over time at a moderate pace. While this finding is contradictory to

Lynn (2011) who examined the correlation between IQ and number of

siblings in the UK, finding a weakening over 60 years, and also to Wang,

Fuerst, and Ren (2016), who found that in China the effect was weak-

ening over time when both completed fertility and sibling numbers

were used, it is consistent with the more recent finding from Sweden

showing a possible slight strengthening of selection against g over

several decades among mixed sex cohorts (Madison, Woodley of Menie,

& Sänger, 2016). To better explore whether this effect is influenced by

“early” studies that might reflect significantly different social condi-

tions, we recomputed the correlation, restricting the sample to just

those occurring after WW2. This arguably provides an estimate of the

trend under recent social conditions. That analysis yields r=−0.56.

Thus, the secular trend is not likely an artifact of a few early studies.

Finally, we computed two fail-safe checks to evaluate the possibility

of a “file drawer bias”. Rosenthal's Fail-Safe N indicates that 7552

studies with null findings would be required to reduce the overall effect

to a level that is non-significant at p > .05. Orwin's Fail-Safe N in-

dicates that it would require 36 null studies (more than double the

number available) to reduce the overall effect to less than r=−0.05

(which is about half of the observed weighted effect).

5. Discussion & critique of the literature

The overall goal of the current study was to systematically analyze

the empirical literature on the relation between general cognitive

ability and reproduction. To that end, a thorough review of the litera-

ture revealed 17 independent studies that provided sufficient in-

formation for inclusion in at least a basic level meta-analysis. Our re-

sults indicate, that on average, there is a small but significant and

meaningful negative g-fertility gradient present among modern human

populations (r=−0.11). Although most of the data analyzed to date

stems from North America and Europe, the small number of studies

outside this region suggest the trend is likely operating in other regions

also. These findings are consistent with multiple theoretical perspec-

tives as described in the introduction.

As expected, we also discovered significant variation in the mag-

nitude of the effect. We sought to test several factors as potential

sources of this variation, both substantive and methodological. One key

result is that the selection trend appears to be stronger among women

than men. This study cannot empirically determine why the difference

exists, but we can posit potential explanations. One explanation may be

more intelligent women are more deliberate in their decisions regarding

childbearing than equally intelligent men. This proposition is supported

by Kanazawa (2014), who found that more intelligent young men and

women at 23 are more likely to desire to remain childless for life than

less intelligent young men and women do, but, by age 47, intelligent

men were no more likely to have remained childless than less intelligent

men, whereas more intelligent women did in fact remain childless than

less intelligent women. More intelligent women, it seems, were able to

implement their desire to remain childless for life, whereas more in-

telligent men did not do so. Additionally, Kanazawa (personal com-

munication) analyzed the GSS data for the years between 2004 and

2014 and found that among respondents aged 45 or older, the bivariate

correlation between WORDSUM scores, and the total number of chil-

dren is r=−0.197 among women and r=−0.077 among men. This

further confirms that more intelligent women better implement/main-

tain the desire to remain childless than intelligent men. This increased

female selectivity is likely reinforced by sex differences in typical fer-

tility windows, the levels of biological investment necessary to

procreate, and cultural norms that place a disproportionate burden on

women during child rearing (Trivers, 1972; Trivers & Willard, 1973).

These “higher stakes” are compounded by the more “evolutionary novel

trade-offs” that women face between work, education and raising a

family (Kanazawa, 2010). Matters of sex and reproduction are thusly

largely driven by female choices.

Second, the issue of when to measure the NoO appears to be a key

issue influencing observed effect sizes. Studies with what are referred to

as “completed-fertility samples” yielded smaller effect sizes compared

to the “incomplete fertility samples.” The extreme groups design (with

indeterminate completion removed) also showed a more pronounced

difference than when all samples are included. From a purely metho-

dological perspective, these results provide evidence that the size of the

estimated relationship will vary depending on the proportion of the

sample with “completed fertility.” However, from a substantive per-

spective, these results also demonstrate that higher g individuals are

delaying reproduction longer than their lower g counterparts, even if

they eventually go on to have children. That is, more intelligent people

appear to be delaying reproduction until later in life compared to less

intelligent people who begin reproducing earlier in life. The critical

implication is that less intelligent people will have shorter inter-gen-

erational intervals than more intelligent people. This implies that the

observed effect size at the individual level (e.g., r=−0.11) might se-

verely underestimate the total dysgenic effect of intelligence at the

macrosocial level.

For example, if more intelligent individuals on average have two

children whereas less intelligent individuals on average have four

children, it would appear that there would be only twice as many less

intelligent individuals in society than more intelligent individuals due

to the dysgenic trend. However, at the end of the century, there are

actually four times as many less intelligent individuals as more in-

telligent individuals because there can be five generations in a century

among less intelligent individuals (on average reproducing at age 20),

whereas there can be two and a half generations among more in-

telligent individuals (on average reproducing at age 40). Thus, after a

century, the population of less intelligent individuals in society is far

larger than the negative effect of intelligence on fertility appears to

suggest at the individual level (Kanazawa, pers. comm). Consistent with

this, Rindermann (2018) estimated a decadal IQ loss of −0.87 points

per decade when the interaction between generation length, fertility

and IQ is simulated. The study of Kong et al. (2017), which tracked the

decline in the frequency of genetic variants promoting educational at-

tainment over seven decades in Iceland estimated an equivalent IQ loss

of −0.30 points per decade, which increases to −0.86 points per

decade once a latent variable estimate of g's heritability is used to

correct for ‘missing heritability’ (Woodley of Menie et al., 2017). Kong

et al. (2017) note that most of the genetic decline in Iceland is driven by

the effect of different generation lengths among those with different

levels of educational attainment, rather than different levels of fertility.

Predicted losses in g of around one point per decade are close to the g

equivalent declines observed in cross-temporal analyses of slowing

simple reaction time and decreasing vocabulary knowledge (Woodley

of Menie et al., 2017).
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Perhaps the most important methodological implication here is that

defining “completed fertility” by age is not valid methodology. Men

theoretically have boundless fertility windows, whereas women have

more biologically finite fertility windows. Thus, the measurement of

“completed fertility” should be considered more carefully. We suggest it

may be better to assess both intended fertility and actual fertility among

both men and women. In addition, future studies should attempt to

assess for medically induced infertility. These results reflect the im-

portance of considering the methodological complexity in measuring

lifetime reproductive capacities for men versus women.

Of the two historical events coded, only the Roe vs. Wade event (for

U.S. based studies) yielded significant differences. The weighted effect

for the post Roe vs. Wade period is approximately double the effect for

the period prior. This suggests that the g-fertility gradient may be

stronger when people have more complete and independent control

over their reproductive options than when they are restricted by gov-

ernments or cultural norms (e.g., religious influences). However, it may

also be possible that the stronger effects post Roe vs. Wade are merely a

reflection of the increasing magnitude of the selection pressure over

time. As noted above, our analysis shows a correlation of r=−0.37

between the size of the correlations and dates of the studies. This may

reflect Kanazawa's (2010) hypothesis that the effect of g on cognitive

loaded behaviors will become increasingly stronger as the world that

we inhabit becomes increasingly complex. Or the secular trend towards

strengthening the negative g-fertility gradients could be due to the

hypothesized effect of reduced ecological stress and concomitantly re-

duced intergroup competition (Woodley of Menie et al., 2017). Un-

derstanding exactly what mechanisms are driving this effect will re-

quire further study with more sensitive and detailed measures.

Our analysis of the effect of differences in the g-saturation of mea-

sures did not yield any notable effect. However, we caution that due to

limitations in the primary literature, we could only analyze a dichot-

omous proxy variable; studies using factor analytic derived g-scores vs.

raw test scores. Clearly this is not the sensitive analysis we would have

desired and may explain the null finding. However, given that we did

not observe meaningful differences, this may serve to somewhat alle-

viate the concern about measurement differences. This may be due to

the fact that raw scores generated by most professionally developed

cognitive ability tests, although not psychometrically pure measures of

g, are by design highly g-saturated (clearly some sub-scales are not, but

most tend to be). If so, this could also serve to somewhat assuage

concerns about measurement error in the independent variable.

Reliability estimates were not available in most of the included studies

(a notable problem with the extant literature); however, it can be as-

sumed g-scores generated from factor analyses are more reliable that

observed test scores as they are constructed from only the systematic

variance in the observed sigma matrix. And it has been shown (Reeve &

Blacksmith, 2009) that when sample sizes are at least 400, the g-load-

ings and g-scores generated from different factor analytic methods are

highly reliable (i.e., 0.92 to 0.97). Given this, the analysis effectively

tested for differences between studies using a (theoretically) perfectly

valid and (near perfectly) reliable predictor vs. those that did not.

Again, the fact that we did not find a difference may be due to the fact

that professionally developed ability tests are quite valid and reliable

standard systems of measurement. Thus, there simply may not be en-

ough variance in reliability or validity to create a moderator effect.

However, this analysis also points to a key implication for future re-

search. We were not able to conduct a standard correction for un-

reliability because too many of the studies did not report sufficient

psychometric information about the observed scores actually used in

the analysis. In many senses, we think this finding (the need for better

and more consistent reporting) may be the key implication of this

analysis.

Although no evidence from this study emerged to support differ-

ences in the other methodological issues examined, this may be due to

the limited number of studies available to represent some sub-groups. It

is nonetheless reasonable to expect the use of raw test scores to in-

troduce measurement error with respect to g, and in turn introduce

measurement error in its relationship with fertility and any other in-

dicators with which correlations may be performed. Resources that can

be used to extract g from raw test scores are now abundant and should

be used when the data permit. Likewise, it is reasonable to expect

studies that restrict samples to only adults that have at least one child

will attenuate the effects, as we did observe a reduced effect size for

these studies.

It was not possible to conduct traditional psychometric comparisons

for a variety of variables due to the limited number of studies, or the

limited information reported. For example, we located only a single

study from a country that may be considered less industrialized than

the other samples, most of which come from western, industrialized

countries. This highlights the need for more and better data from under-

represented regions of the world. Likewise, we could not conduct sub-

group analyses for potential moderators that have been noted in pre-

vious primary research, such as religiosity, socioeconomic status, and

education level.

6. General conclusion

In general, a declining g due to selection may lie beneath a range of

societal concerns that could impact the course of our future. This pos-

sibility is made all the more salient by the aforementioned recent ob-

servation that polygenic scores predictive of g and educational attain-

ment have now been shown to have actually declined in the population

of Iceland over 70 years, in direct proportion to the observed strength of

selection acting against them (Kong et al., 2017). In educational sys-

tems, this may mean a decline in the abilities of students over time, a

dilution of curricula and academic standards, and potentially a slow-

down in the progress of science. Although policy decisions and auto-

mation are likely the primary drivers, a declining g is consistent with

the widely-reported income gap, and may combine with these en-

vironmental influences to exacerbate the problem. The quality of our

decisions as individuals and as a society, particularly how we handle

high-stakes events as they unfold on the world stage (e.g., refugee crisis,

climate change, overpopulation, shortage of fresh drinking water, etc.),

reflect abilities to navigate highly complex problems that are un-

doubtedly highly dependent on g. It is clear that the implications are

far-reaching.

Indeed, the decline of a heritable trait so crucial to health, occu-

pational, and socio-behavioral outcomes yields substantial ramifica-

tions at both the individual and national level (Woodley, 2012;

Woodley & Figueredo, 2013; Woodley of Menie et al., 2017). For ex-

ample, childhood intelligence predicts physical, functional, and sub-

jective health in adulthood, as well as hospital visits and sick leave days

later in life (Wrulich et al., 2014), and has even been shown to predict

social outcomes such as political involvement, liberal attitudes and

social progress (Deary, Batty, & Gale, 2008; Rindermann, Sailer, &

Thompson, 2009). At the national level, research shows that g is a

critical social resource that can predict changes in the rates of scientific

and technological innovation, which clearly yields implications for

current and future societal well-being. For example, in addition to the

observed “Woodley Effects” on measures of simple visual and auditory

reaction times, working memory, color discrimination, three-dimen-

sional rotation, and vocabulary level (see: Sarraf, 2017), per capita

rates of eminent individuals and macro-innovations, or conspicuously

novel innovations like the plough and splitting the atom have shown a

concomitant decline (e.g., Woodley, 2012; Woodley & Figueredo, 2013;

Woodley of Menie et al., 2017). That the phenomenon of declining g

should be so comprehensively linked to a decline in critical real-world

outcomes should be of imminent concern, especially as the counter-

vailing Flynn Effect (the secular increase in narrow and low-heritability

cognitive abilities independently of g over time; te Nijenhuis & van der

Flier, 2013) does not appear to be mitigating these declines. Should this
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trend continue unabated, coupled with continuing overpopulation,

there is a risk it will eventually trigger economic stagnation and de-

cline, and civil instability (Nyborg, 2012; Woodley, 2012).

Although the range of practical, and ethically proper, policy options

may be limited, it seems clear that more and better education regarding

family planning could improve the fortunes of prospective parents and

their families, and through this potentially attenuate the existing trend.

These efforts should consist of not only instruction about the appro-

priate use of contraceptives, but also a convincing narrative that ex-

plains the tradeoffs between having children (particularly early in life),

education and long-term financial security. Although there have been

many efforts to accomplish this, even more resources devoted to the

development and implementation of evidence-based interventions

would surely benefit both individuals and society at large.
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